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Three stages of frequency control:

@ Inertial response: fast response of rotating machines

Time scale: immediate/seconds

@ Primary control: turbine-governor control for stabilization
Time scale: seconds

© Automatic Generation Control (AGC): multi-area control which
eliminates generation-load mismatch within each area
Time scale: minutes
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Automatic Generation Control

@ interconnected system consisting of balancing authority areas

@ decentralized integral control driven by area control error
ACEk(t) = AN|k(t) + bkAfk(t)
N—— N——
Net Interchange  Frequency Biasing
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Automatic Generation Control

Characteristics:

@ Area-by-area decentralized control, deployed since 1940's

o Eliminates generation-load mismatch within each area

o AGC is slow compared to primary control dynamics

Analysis:
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Automatic Generation Control

Characteristics:

@ Area-by-area decentralized control, deployed since 1940's

o Eliminates generation-load mismatch within each area

o AGC is slow compared to primary control dynamics

Analysis:

@ Textbook analysis considers only equilibrium

@ 70+ years of research literature contains no formal dynamic analysis

Our Contribution: a definitive formal stability analysis of AGC
in a fairly general interconnected nonlinear power system.
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Interconnected Power System Model
© Interconnected system with areas 4 = {1,..., N}
@ i = set of generators w/ turbine-gov systems in area k € A
(3] g;}GC C Gk = subset of gen which participate in AGC
@ power ref. to gen. j € gﬁGC = uyj € [uy, Uki], dispatch value “Z,i
@ Af, = any frequency deviation measurement for area k € A
@ ANIg = net power flow (dev. from set-point) out of area k € A

@ Nonlinear interconnected power system model
x(t) = F(x(t), u(t), w(t))
(Af(t), ANI(t)) = h(x(t), u(t), w(t)),
where w(t) = unmeasured disturbances and u(t) € U
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Technical Assumptions on Power System Model

There exist domains X C R" and W C R™ such that the following hold:

© Model Regularity: F, h, and Jacobians are Lipschitz cont. on X
uniformly in (u,w) € U x W;

@ Steady-State: there exists a C' map xss : U X W — X which is
Lipschitz on U x W and satisfies 0 = F(xss(u, w), u, w) for all
(u,w) €U xW;

© Stability: the steady-state xss(u, w) is locally exponentially stable,
uniformly in the inputs (u, w) €U x W;
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© Model Regularity: F, h, and Jacobians are Lipschitz cont. on X
uniformly in (u,w) € U x W;

@ Steady-State: there exists a C' map xss : U X W — X which is
Lipschitz on U x W and satisfies 0 = F(xss(u, w), u, w) for all
(u,w) €U xW;

© Stability: the steady-state xss(u, w) is locally exponentially stable,
uniformly in the inputs (u, w) €U x W;

© Steady-State Model: the values (Af, ANI) = h(xss(u, w), u, w)
satisfy Aff = Af, =--- = Afy and

Z,eg (Px,i — uk;) = DiAfi + APE + ANIy
€9k
1 Aﬁ(

Pri=uki — 5~

for each k € A and i € Gi.
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Area Control Error and AGC Model

@ Recall: ACE defined as

ACEk(t) = Ale(t) + bkAfk(t)
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Area Control Error and AGC Model
@ Recall: ACE defined as
ACEk(t) = Ale(t) + bkAfk(t)

@ AGC controller for area k: integrator & dispatch rule

Tk (t) = —ACE(t)
Ui = satk#-(up,- + Ozk,mk)

e time constants 7, € [30s, 200s]

@ constant participation factors «y ; satisfy

agi >0, Z ak,i = 1.

iegpac
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Closed-Loop Stability under AGC

Main Theorem: Consider the interconnected power system
with AGC under the previous assumptions. There exists 7% > 0
such that if mingc 4 7% > 7%, then
© the closed-loop system possesses a unique exponentially
stable equilibrium point (%,7) € X x RN, and
@ ACE(t) — 0 as t — oo for all areas k € A.

Comments:
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Closed-Loop Stability under AGC

Main Theorem: Consider the interconnected power system
with AGC under the previous assumptions. There exists 7% > 0
such that if mingc 4 7% > 7%, then
© the closed-loop system possesses a unique exponentially
stable equilibrium point (%,7) € X x RN, and
@ ACE(t) — 0 as t — oo for all areas k € A.

Comments:

@ result is independent of bias tunings by, > 0

@ consistent with engineering practice; no coordination required for
stable tuning under usual time-scales of operation
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@ Set e = (ming7) ! and let t — et. Then CLS is
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ex = F(x,u,w) Tenk = — (ANl + b Afy)
(Af, ANI) = h(x, u, w) uk,i = sat (g + ok ing),

@ Boundary layer dynamics are uniformly exp. stable

© Routine calculations to obtain vectorized reduced dynamics
71 = B(p(n) — APY)

where pi(nk) = Ziegk (satk,;(uz,,- + ok ink) — “Z,i) and

B+ b — B b — B by — B
1| b—5 B+ b— B2 :
Bi=—— :
B : : bn—1 — Bn-1
by — Bn by — By B+ bn— B
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Proof Sketch

Lemma: The matrix B is diagonally stable, i.e., there exists a
matrix D = diag(ds, . .., dy) = 0 such that BTD + DB < 0. J
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Proof Sketch

Lemma: The matrix B is diagonally stable, i.e., there exists a
matrix D = diag(ds, . .., dy) = 0 such that BTD + DB < 0. J

© Easy to argue that there exists unique 7 such that o(7j) = AP,
unique equilibrium 7 of the reduced dynamics

1) = B(yp(n) — AP")

@ Lyapunov candidate V : RN — R given by

deTk/ k(&) — er(T)) dék-

establishes local exp. stability of 7 for reduced dynamics O
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Conclusions

The first (to our knowledge) rigorous stability analysis of AGC
@ Singular perturbation theory, explicit Lyapunov construction

@ Theory backing 70 years of engineering practice

LOGO —

Diagonal Stability of Systems with Rank-1

Interconnections and Application to Automatic
Generation Control in Power Systems

ot W, Simpson Porco, Membor (EEE and Nima Morsiizaden Moo, IEEE.
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Conclusions

The first (to our knowledge) rigorous stability analysis of AGC
@ Singular perturbation theory, explicit Lyapunov construction

@ Theory backing 70 years of engineering practice

Future Work:
@ Incorporating governor deadband and network losses

@ Implications for tuning and modernizing AGC

LOGO —

Diagonal Stability of Systems with Rank-1
Interconnections and Application to Automatic
Generation Control in Power Systems

ot W, Simpsan orco, anbor

Momber,
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Questions

g% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
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https://www.control.utoronto.ca/~jwsimpson/
jwsimpson@ece.utoronto.ca
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