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Motivation
Selected Trends/Challenges in Grid Modernization:
@ reliability concerns from decreased inertia & new RES, DERs

@ inadequate legacy monitoring/control architectures (e.g., SCADA)

Required Advances for Next-Grid Control:

@ use of high-bandwidth closed-loops (e.g. 10+ samples/sec)
@ online coordination of heterogeneous inverter-based resources (IBRs)

@ distributed hierarchical controls for (i) integration of many devices,
(ii) local situational awareness, (iii) low-latency localized response

» EPRI Whitepaper: “Next-Generation Grid Monitoring and
Control: Toward a Decentralized Hierarchical Control Paradigm”J
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Enabling Fast Control via Inverter-Based Resources

Objectives and design constraints

Big Picture: fully leverage IBR capabilities for freq./volt. control J

@ Design Objectives
e Fast and localized compensation of disturbances
e Hierarchical/decentralized architecture (min. delay, scalability)

o State/control variable constraint satisfaction

@ Design Constraints

o Premium on simplicity in design and implementation
o Integrable with legacy controls

o Uses realistically available model info.
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Outline of Talk

@ Frequency controller design
@ Voltage controller design

© Joint frequency/voltage design
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Review: Frequency Control in the Bulk Grid

f restoration time
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\ ROCOF (max rate of change of frequency)

Fundamentals of frequency control:

@ Inertial response: fast response of rotating machines

Time scale: immediate

@ Primary control: turbine-governor control for stabilization
Time scale: seconds. Spatial scale: local control, global response

© Automatic Generation Control (AGC): multi-area control which
eliminates generation-load mismatch within each area
Time scale: minutes. Spatial scale: area control, area response.
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Control Center

A

As

Bulk grid divided into
small local control
areas Ap,..., Ay

(e.g., a few
substations each)

Measurements and
resources locally
available within each
LCA

© Stage 1: LCA-decentralized controllers Cy redispatch local IBRs

@ Stage 2: Centralized coordination for severe contingencies

Conceptual goal: very fast and localized secondary-like response |
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Stage 1: Local Control Area (LCA) Frequency Control

Philosophy: quickly estimate and compensate all local imbalance
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Stage 1: Local Control Area (LCA) Frequency Control

Philosophy: quickly estimate and compensate all local imbalance

AP,
, l IBRs: can have
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1 APibr: : _______ — ‘: bUt must
2~ Te | !
. TS R accept a
: A A | provided
Ay b Power . Detuning | Disturbance 4__: .
Tibr 77 Allocator Filter Estimator set-point
LCA Controller

@ Disturbance Estimator: real-time estimate of gen.-load mismatch
@ Detuning (if needed): lower bandwidth to ensure robust stability

© Power Allocator: compute (constrained) power set-points for IBRs
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Stage 1: Design of the Disturbance Estimator

An application of classical internal model control (IMC) ...
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Stage 1: Design of the Disturbance Estimator

An application of classical internal model control (IMC) ...

O A crude/aggregate LCA model, e.g.,

2HA(A) = —(D + R%)Aw + APm - APu - A'Dinter +A iCbr
TP = ~APy — R (8w + TrFnd),

where Ax = (Aw, APy,) and AP, = unknown gen/load mismatch
@ Assume: Aw measured, APy, measured (subj. to. delays)
© Discretize LCA model & augment with disturbance/delay models
APy (k+1) = APy(k),  Dwm(k) = Aw(k — 7q), ...

Q Design observer (e.g., Kalman) to estimate A%(k) and AP, (k))
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Stage 1: Detuning and Power Allocator

An application of classical internal model control (IMC) ...
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Stage 1: Detuning and Power Allocator

An application of classical internal model control (IMC) ...

. Detuning (optional):
. 7 low-pass filter
4{" Power System Model Ay
i i 1 — €
i S ' -
AP,hr:. _______ =ob---- | F(Z)— Z_e—T/’T
Ar ] Power Detuning Disturbance E .
7o = Allocator [* | Filter [~ Estimator [t for lowering controller
LCA Controller ba ndwidth

Power Allocator: Allocate disturbance estimate AP, to compute IBR
set-points Pj, within the /th LCA:

minimize  f({Pi}) + N\ilwil
©i,Pik€[Py,Pi]

subject to Zkel‘(P,- - P;,i(iSpatCh) + @i = Aﬁm;
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Case Study: Three-LCA System
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Simplified Model Response vs. True Nonlinear Model

o LCA model parameters set via simple inertia/droop gain aggregation
and using largest turbine-gov time constant (very crude!)

@ 63 MW load increase in Area 2
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Scenario: 63 MW Disturbance, Area 2
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Localized Response: IBRs in Area 2 ramp quickly; IBRs in Areas
1/3 don't need to react, so they don't. J
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Stage 2: Centralized Coordinator Design

What if local IBR capacity is insufficient to meet the disturbance?
Then IBRs in electrically close areas should respond. J

14/30



Stage 2: Centralized Coordinator Design

What if local IBR capacity is insufficient to meet the disturbance?
Then IBRs in electrically close areas should respond. J

@ mismatch variable ¢; from Stage 1 will be non-zero

14/30



Stage 2: Centralized Coordinator Design

What if local IBR capacity is insufficient to meet the disturbance?
Then IBRs in electrically close areas should respond. J

@ mismatch variable ¢; from Stage 1 will be non-zero

o total IBR adjustments a; computed as

o . . . 2

e 3 e,
st. 0= ZieA (ai — ¢7)

0§a;-sign<zi6A<p}k), ieA

a; + ZjeZ,- P} € [lower, upper], i€ A

14/30



Stage 2: Centralized Coordinator Design

What if local IBR capacity is insufficient to meet the disturbance?
Then IBRs in electrically close areas should respond. J

@ mismatch variable ¢; from Stage 1 will be non-zero

o total IBR adjustments a; computed as

o . . . 2

e 3 e,
st. 0= ZieA (ai — ¢7)

0§a;-sign<zieA4p}k), ieA

a; + ZjeZ,- P} € [lower, upper], i€ A

Solution method matters! Centralized vs. privacy-preserving ADMMJ
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Scenario: 130MW Disturbance, Area 2
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IBRs in Area 2 hit limits; Stage 2 forces Area 1/3 response. |




Conclusions for Frequency Control

Summary:
@ Two-stage design: local area control & global coordination
@ Design enables fast frequency control via IBRs
@ Response is localized to the contingency

@ Inherent robustness against model imperfections
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Conclusions for Frequency Control

Summary:

Two-stage design: local area control & global coordination
@ Design enables fast frequency control via IBRs
@ Response is localized to the contingency

@ Inherent robustness against model imperfections

Ongoing:
@ remove even the crude model requirement via data-driven control

@ extend to incorporate distribution-integrated DERs

Paper: https://www.control.utoronto.ca/~jwsimpson/

© IEEE TPWRS: “Hierarchical Coordinated Fast Frequency
Control using Inverter-Based Resources'
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Overview of Proposed Voltage Controller (One-Area)
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Overview of Proposed Voltage Controller (One-Area)
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Control resources:
@ SGs: vgef — Qg
e SVCs: vi*f — g
e IBRs: ¢i*f — g;
@ u = vector of references
°

q = vector of power outputs

Model:

x = f(x,u,w)

y = (Vaq) = h(X7 u, W)

minimize
ue{Limits}

subject to

f(q)

voltage limits

power limits
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Steady-State Optimization Problem (One-Area)

minimize  Priority(qg, gs, q;) + PenaltyFen(qg, gs, v) := F(u,y)
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Steady-State Optimization Problem (One-Area)

minimize
Véef7vgef7qfef

Priority(qg. s, 4;) + PenaltyFen(qg, 4s, v) := F(u, )
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Feedback Implementation of Voltage Controller

@ approximate gradient method steps can be evaluated using real-time
system measurements leading to a feedback controller

i = Proiy {u — o (VuF (o) + 1TV Flaio ) | |

19/30



Feedback Implementation of Voltage Controller

@ approximate gradient method steps can be evaluated using real-time
system measurements leading to a feedback controller

Uyl = Proju{uk —a (VUF(uk,yk) + nTva(uk,yk)) } J

@ nonlinear controller implemented on a nonlinear dynamic transmission
system; stability analysis is non-trivial

19/30



Feedback Implementation of Voltage Controller

@ approximate gradient method steps can be evaluated using real-time
system measurements leading to a feedback controller

Upp1 = Proju{uk -« (VUF(uk,yk) + I‘ITVyF(Uk,)/k)> } J

@ nonlinear controller implemented on a nonlinear dynamic transmission
system; stability analysis is non-trivial

Theorem: Assume grid is nominally “stable” and “well-behaved’. If
u s VyF(u,m(u,w)) + NV, F(u, 7(u, w))

is a strongly monotone operator, then CLS is stable for all sufficiently
small controller gains o > 0.
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Add-Ons and Extensions for Voltage Controller

The base controller is flexible and admits various modifications ).
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Add-Ons and Extensions for Voltage Controller

The base controller is flexible and admits various modifications J

Ukr1 = Pl"Oju{Uk -« (VUF(uk,yk) + I_ITVyF(UkaYk)) } J

@ Multi LCA Systems: use one-area controller in each LCA

@ Faster/Slower Unit Responses: replace o with diagonal matrix
a = blkdiag( by, Qsve, isg) and tune elements as desired

© Improved Recovery to Pre-Fault Operating Voltages: integrate
term proportional to ||Avg||3 into objective function

@ Increased Transient Response: integrate term proportional to
Yk — Yk—1 into controller (“derivative” action)

20/30



Scenario: 120 MVAR Disturbance (SG Priority)
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Scenario: 180 MVAR Disturbance (G2/IBR Priority)

solid: with proposed controller

dotted: ignore

. SG and SVC buses . Load buses
bus4 bus7 bus9
bus5 bus8
e
&
o)
g
G
>
0.95
busl bus2
bus3 bus6
0.9 0.9
0 10 20 30 40 50 10 20 30 40 50
Time (s) Time (s)
o IBRs NYe SGs
g 1
= IBR1
= ——IBR2
5]
E
<)
a
o]
2
51
§ -0.5
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Time (s) Time (s)

Time (s)

22/30



Scenario: 180 MVAR Disturbance (IBR Priority)
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Conclusions for Voltage Control

Summary:
@ Local area control based on local model/meas.
o Flexible design allows operator to set device priority
@ Bus voltage and device output constraint satisfaction

@ More scenarios: line trips, 3¢-fault, multi-areas, etc. ...
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Conclusions for Voltage Control

Summary:

@ Local area control based on local model/meas.

Flexible design allows operator to set device priority

Bus voltage and device output constraint satisfaction

@ More scenarios: line trips, 3¢-fault, multi-areas, etc. ...

Ongoing:
@ combine with online least-squares sensitivity estimation (model-free)

@ integration with frequency controller

Paper: https://www.control.utoronto.ca/~jwsimpson/

© IEEE TPWRS: “Measurement-Based Fast Coordinated Voltage
Control for Transmission Grids"

24/30


https://www.control.utoronto.ca/~jwsimpson/

Integration of Freq. and Volt. Controllers

The two controllers can operate simultaneously. )

© Allocate IBR capacity priority

Frequency Voltage Frequency Voltage
Controller Controller Controller Controller
Piim * *Qluu
SIBR PIBR SIBR

B SIZHR - Puzik P
IBR
P y VQLBR L / y Quir
| IBRs | IBRs |
A)FC>VC B) VC >FC

@ Dynamic cross-couplings between controllers:
e voltage-sensitivity of (e.g., impedance) loads

e PSS and VC both operate through SG AVR systems
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Scenario: 150MW/80MVAR Disturbance (FC Priority)

solid: with proposed controller dotted: without
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Scenario: 150MW/80MVAR Disturbance (FC Priority)

solid: with proposed controller

dotted: without

SG buses
11
1.05
3 V-
CEE
P
z
£ 095
o
=
0.9
busl
0.85
0 10 20 30 40 50
Time(s)
IBR:
2 S
=
®
>
=R
2
=
: ol
=3
2
2
= -1
g
g ——IBRS IBRS MVA
= , ——IBR6 ——IBR6 MVA
0 10 20 30 40 50
Time(s)

Load buses
1.1
1.05
3
& 1
@
g
= 095
S
>
0.9 I -
—biis) bus3 bus4 buss
bus6 bus7 bus8 bus9
0.85
0 10 20 30 40 50
Time(s)
SG:
N S
1
0
-1
—G7
2
0 10 20 30 40 50
Time(s)

27 /30



Collaborators

UWaterloo: Etinosa Ekomwenrenren (PhD), Zhiyuan Tang (PDF), JWSP

ol
A‘.'l

5

s

EPRI: Evangelos Farantatos, Mahendra Patel, Hossein Hooshyar,
Aboutaleb Haddadi

28/30



Questions

%ﬁ The Edward S. Rogers Sr. Department UNIVERSITY OF CPE'
of Electrical & Computer Engineering W WATERLOO
UNIVERSITY OF TORONTO @ ELECTRIC POWER

https://www.control.utoronto.ca/~jwsimpson/
jwsimpson@ece.utoronto.ca
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Comparison with Traditional Frequency Control

Traditional frequency control:

O very fast inertial response of machines limits ROCOF
@ primary layer (droop) provides “fast” & global stabilizing response

© secondary layer (AGC) provides slow & “localized” response

Traditional frequency control + next-gen IBR controller:

@ very fast inertial response of machines limits ROCOF

@ Stage 1 (local IBR redispatch) provides fast & localized response

Ideally, minimal activation of SG turbine-govs )

© Stage 2 (global IBR redispatch) provides fast & semi-local response

@ AGC cleans up any remaining mismatch on minutes time-scale



Frequency Scenario: Robustness Test

e Introduce large (50%—-100%) errors in parameters (H, T, R, ...) used
for LCA disturbance estimator designs
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Scenario: 150MW /80MVAR Disturbance (VC Priority)
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Scenario: 150MW/80MVAR

Voltage (p.u.)

Reactive power (100 Mvar)
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