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3.3. Paths and connectivity in digraphs 37

(a) A periodic digraph with period 2 (b) An aperiodic digraph with cycles of
length 1 and 2.

(c) An aperiodic digraph with cycles of
length 2 and 3.

Figure 3.6: Example periodic and aperiodic digraphs.

3.3.3 Condensation digraphs

[Strongly connected components] A subgraph H is a strongly connected component of G if H is strongly connected
and any other subgraph of G strictly containing H is not strongly connected.

[Condensation digraph] The condensation digraph of a digraph G, denoted by C(G), is de�ned as follows: the nodes
of C(G) are the strongly connected components of G, and there exists a directed edge in C(G) from node H1 to
node H2 if and only if there exists a directed edge in G from a node of H1 to a node of H2. The condensation
digraph has no self-loops. This construction is illustrated in Figure 3.7.

(a) An example digraph G (b) The strongly connected components of the di-
graph G

(c) The condensation di-
graph C(G)

Figure 3.7: An example digraph, its strongly connected components and its condensation digraph.

Lemma 3.2 (Properties of the condensation digraph). For a digraph G and its condensation digraph C(G),

(i) C(G) is acyclic,

(ii) G is weakly connected if and only if C(G) is weakly connected, and

(iii) the following statement are equivalent:

a) G contains a globally reachable node,

b) C(G) contains a globally reachable node, and

c) C(G) contains a unique sink.

Lectures on Network Systems, F. Bullo, edition 1 (revision v1.0 – May 1, 2018). Tablet PDF version. Copyright © 2012-18.
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Problems in power system operations
Power Flow Analysis
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Optimal Power Flow [Molzahn et al.]

Contingency Analysis [Hines et al.]

Transient Stability [Overbye et al.]
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Modeling AC power flow
1 Network Graph: (N , E), complex weights yij = gij + jbij

2 Nodal Variables: voltage Vie
jθi , power Si = Pi + jQi

3 Coupling Laws: Kirchhoff & Ohm

4 Admittance Matrix: Y = G + jB = Laplacian-like w/ weights yij

5 Lossless Lines: Gij = 0

• active power: Pi =
∑

j ViVjBij sin(θi − θj) + ViVjGij cos(θi − θj)

• reactive power: Qi = −
∑

j ViVjBij cos(θi − θj) + ViVjGij sin(θi − θj)
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Modeling AC power flow

• active power: Pi =
∑

j ViVjBij sin(θi − θj)

• reactive power: Qi = −
∑

j ViVjBij cos(θi − θj)

6 n Loads ( ) and m Generators ( ) N = NL ∪NG

7 Load Model: PQ bus constant Pi constant Qi

8 Generator Model: PV bus constant Pi constant Vi ,

Pi =
∑

j
ViVjBij sin(θi − θj) , i ∈ NL ∪NG

Qi = −
∑

j
ViVjBij cos(θi − θj) , i ∈ NL

2n +m equations in variables θ ∈ Tn+m and VL ∈ Rn
>0.
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Why study solvability of power flow problems?

1 Because it is interesting to do so

2 Numerical methods
understand convergence, divergence, and initialization issues

State vector: x = (θ,V )

Newton iteration:

xk+1 = xk − J(θk ,V k)−1f (xk)

[Deng et al.]

3 Optimal power flow

4 Transient stability
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Motivation I: numerical methods for power flow

Power flow always solved with variant of Newton iteration

x =
(
θ VL

)T
, xk+1 = xk − J(xk)−1f (xk) .

If convergent, may converge to “wrong” solution

If non-convergent, several possibilities:

(a) No power flow solution exists

(b) Numerical instability (conditioning)

(c) x0 not in any region of convergence

[Deng et al.]

To differentiate, need theory of power flow solvability
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Motivation II: multimachine transient stability

Constrained Swing Dynamics

Gen :

 θ̇i = ωi

Mi ω̇i = −Diωi + Pi −
∑

j
ViVjBij sin(θi − θj)

Load :

Di θ̇i = Pi −
∑

j
ViVjBij sin(θi − θj)

Qi = −
∑

j
ViVjBij cos(θi − θj)

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.O.S., . . .

{Equilibria} = {Power Flow Solutions}
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Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

minimize
θ,VL,PG

∑
i∈NG

fi (Pi )

subject to Pi =
∑

j
ViVjBij sin(θi − θj) i ∈ NL ∪NG ,

Qi = −
∑

j
ViVjBij cos(θi − θj) i ∈ NL ,

Vmin
i ≤ Vi ≤ Vmax

i i ∈ NL ,

Smin
i ≤ |Pi + jQi | ≤ Smax

i i ∈ NG ,

smin
ij ≤ |pi→j + jqi→j | ≤ smax

ij (i , j) ∈ E ,

non-convex, solved every 5-15 min. via linearization, ($$$)

“Today, 50 years after the problem was formulated, we still do not have a fast, robust
solution technique for the full ACOPF.”

— Richard P. O’Neill (Chief Economic Advisor, FERC, 2016)
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Intuition on power flow solutions

1 ‘Normally’, exists unique high-voltage soln:

voltage magnitude Vi ≃ 1
phase diff |θi − θj | << 1
current flows from high V to low V !

[Josz et al.]
2 Lightly loaded systems: many low-voltage solutions

3 Heavily loaded systems: Few solutions
or infeasible

saddle node bifurcations
maximum power transfer limit
non-convex feasible set in (P,Q)-space

[Hiskens & Davy]
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Literature on Power Flow Solvability

Given data: network topology, impedances, generation & loads

Q: ∃ “stable high-voltage” solution? unique? properties?

Many approaches over 45+ years of literature:

[Weedy ’67]: Jacobian singularity

[Korsak ’72]: Multiple “stable” solutions

[Wu & Kumagai ’77, ’80, ’82]: Fixed-point analysis of existence

[Araposthatis, Sastry & Varaiya, ’81]: Jacobian analysis

[Baillieul and Byrnes ’82]: Counting # of solutions, Bezout/Morse analysis
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Solution of two-bus system

PL = bVGVL sin(−η)
PG = bVGVL sin(η)

QL = bV 2
L − bVLVG cos(η)
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Solution of two-bus system

Γ = v sin(η)

∆ = −4v2 + 4v cos(η)

v :=
VL

VG
Γ :=

p

bV 2
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−1
4bV

2
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4Γ2 +∆ < 1

1 High-voltage solution
v+ ∈ [12 , 1)

2 Low-voltage solution
v− ∈ [0, 1√

2
)

Angle: sin(η∓) = Γ/v±
1 Small-angle solution
η− ∈ [0, π/4)

2 Large-angle solution
η+ ∈ [0, π/2)
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Solution of two-bus system

Squaring and adding equations does not generalize to networks.

Is there any hope then?

Γ = v sin(η)

∆ = −4v2 + 4v cos(η)

Use cos(η) =
√
1− sin2(η) =⇒ ∆ = −4v2 + 4v

√
1− (Γ/v)2

Rearrange to get fixed-point equation

v = f (v) := −1

4

∆

v
+

√
1−

(
Γ

v

)2

This generalizes! Leverage intuition.
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Notation I: branches and bus types

Pi =
∑

j
ViVjBij sin(θi − θj) , i ∈ NL ∪NG

Qi = −
∑

j
ViVjBij cos(θi − θj) , i ∈ NL

Bus partitioning N = NL ∪NG induces branch partitioning

E = Eℓℓ ∪ Egℓ ∪ Egg , A =

(
AL

AG

)
=

(
Aℓℓ
L Agℓ

L 0

0 Agℓ
G Agg

G

)
.
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Notation II: open-circuit voltages

Pi =
∑

j
ViVjBij sin(θi − θj) , i ∈ NL ∪NG

Qi = −
∑

j
ViVjBij cos(θi − θj) , i ∈ NL

• Generators NG : Vi fixed

• Loads NL: Vi free

Partitioned Variables

V =

(
VL

VG

)
, B =

(
BLL BLG

BGL BGG

)

Open-circuit voltages

V ∗
L ≜ −B−1

LL BLG︸ ︷︷ ︸
Generators→Loads

·VG vi ≜ Vi/V
∗
i
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Notation III: stiffness matrices

V =

(
VL

VG

)
, B =

(
BLL BLG

BGL BGG

)
, V ∗

L = −B−1
LL BLGVG

Need to non-dimensionalize power flow equations

Stiffness matrices quantify grid strength in units of power

1 Nodal stiffness matrix S ≜
1

4
[V ∗

L ] · BLL · [V ∗
L ]

2 Branch stiffness matrix D ≜ [V ∗
i V

∗
j Bij ](i ,j)∈E

3 Laplacian stiffness matrix L ≜ ADAT
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Active power flow reformulation

Notation:

he(v) =


vivj if e = (i , j) ∈ Eℓℓ

vj if e = (i , j) ∈ Egℓ

1 if e = (i , j) ∈ Egg

Active Power:

Pi =
∑

j
ViVjBij sin(θi − θj)

P = A︸︷︷︸
Incidence

D︸︷︷︸
Branch Stiff.

[h(v)]︸ ︷︷ ︸
Voltages

sin(ATθ)︸ ︷︷ ︸
sin(θi−θj )

Let columns of C be a basis for ker(A), let pc ∈ Rc

Semi-Explicit Solution

sin(ATθ) = ψ(v , pc) ≜ [h(v)]−1
(
ATL†P +D−1Cpc

)
0 = CTarcsin(ψ)

19 / 31
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Reactive power flow reformulation
Skipping some details . . .

QL = −4[v ]S(v − 1n) + |A|LD [h(v)](1|E| − cos(ATθ)) .

Rearrange for v

v = f (v , θ) = 1n −
1

4
S−1[QL][v ]

−11n

+
1

4
S−1[v ]−1|A|LD [h(v)] (1|E| − cos(ATθ)) ,

Now plug in cos(z) =
√

1− sin2(z)!
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Fixed-Point Power Flow: Meshed Networks

(θ,VL) is a power flow solution iff (v , pc) solves the FPPF
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An approximate power flow solution

The model says v = f (v , pc), and sin(ATθ) = ψ(v , pc).

By construction, when P = QL = 0, a solution is

v = 1n, pc = 0c , ATθ = 0|E| .

Taylor expand FPPF model around this solution

ATθapprox = ATL†P

vapprox ≃ 1n −
1

4
S−1QL +

1

8
S−1|A|LD[ATL†P]ATL†P

pc,approx = 0
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Numerical results I

δmax = ∥v − vapprox∥∞ , δavg =
1

n
∥v − vapprox∥1

Base Load High Load

Test Case
FPPF δmax δavg FPPF δmax

Iters. (p.u.) (p.u.) Iters. (p.u.)

New England 39 4 0.006 0.004 8 0.086
57 bus system 5 0.011 0.003 8 0.118
RTS ’96 (3 area) 4 0.003 0.001 8 0.084
118 bus system 3 0.001 0.000 7 0.054
300 bus system 6 0.022 0.004 8 0.059
PEGASE 1,354 5 0.011 0.001 8 0.070
Polish 2,383 wp 4 0.003 0.000 8 0.078
PEGASE 2,869 5 0.015 0.002 8 0.098
PEGASE 9,241 6 0.063 0.003 9 0.133
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Numerical results II – convergence rates

IEEE 300 bus system under heavy loading
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Numerical results III – sensitivity to initialization

perturb voltage magnitude initialization randomly

IEEE 118 bus system, base case

IC Spread (α) NR FDLF FPPF

0.05 0.98 0.98 1.00
0.10 0.53 0.53 1.00
0.15 0.18 0.18 1.00
0.2 0.03 0.03 1.00
0.3 0.00 0.00 1.00
0.5 0.00 0.00 1.00
0.7 0.00 0.00 0.99
0.9 0.00 0.00 0.99

extreme insensitivity to initialization (contraction)
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Fixed-Point Power Flow: Radial Networks

(θ,VL) is a power flow solution iff v is a fixed point of

f (v) ≜ 1n −
1

4
S−1[QL][v ]

−11n +
1

4
S−1[v ]−1|A|LD [h(v)] u(v) ,

where

u(v) ≜ 1 −
√

1 − [ψ]ψ

ψ(v) = [h(v)]−1D−1p

p = (ATA)−1ATP

with the phase angles ATθ = arcsin(ψ) .

On what invariant set is f a contraction?
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Solvability results for different tree topologies

PQ buses have one PV bus neighbor

Sufficient + Necessary
Existence + Uniqueness

PQ buses have many PV bus neighbors

Sufficient + Tight
Existence + Uniqueness

General interconnections

Sufficient
Existence
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Partitioning of voltage space

max
i∈NL

∆i + 4Γ2i < 1

max
(i ,j)∈Egg

Γij < 1 ,

vi,± ≜

√
1

2

(
1−

∆i

2
±

√
1− (∆i + 4Γ2i )

)

v2i ,+ − v2i ,− =
√
1− (∆i + 4Γ2i ) .
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Summary
Framework for studying Lossless Power Flow:

1 Fixed-Point Power Flow

2 Approximate solution
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A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE

Abstract—This two-part paper details a theory of solvability
for the power flow equations in lossless power networks. In
Part I, we derive a new formulation of the lossless power
flow equations, which we term the fixed-point power flow. The
model is stated for both meshed and radial networks, and is
parameterized by several graph-theoretic matrices – the power
network stiffness matrices – which quantify the internal coupling
strength of the network. The model leads immediately to an
explicit approximation of the high-voltage power flow solution.
For standard test cases, we find that iterates of the fixed-
point power flow converge rapidly to the high-voltage power
flow solution, with the approximate solution yielding accurate
predictions near base case loading. In Part II, we leverage the
fixed-point power flow to study power flow solvability, and for
radial networks we derive conditions guaranteeing the existence
and uniqueness of a high-voltage power flow solution. These
conditions (i) imply exponential convergence of the fixed-point
power flow iteration, and (ii) properly generalize the textbook
two-bus system results.

Index Terms—Power flow equations, complex networks, power
systems, circuit theory, optimal power flow, fixed point theorems.

I . I N T R O D U C T I O N

1) Update DCPF with PQ term.
2) y has units of power. Amount of active power associated

with each cycle? Maybe use pc instead of y

The power flow equations describe the balance and flow of
power in a synchronous AC power system. The solutions of
these equations (also called operating points of the network)
describe the configurations of voltages and currents which
(i) are physically consistent with Kichhoff’s and Ohm’s laws,
and (ii) meet the prescribed boundary conditions, specified
in terms of fixed power injections or fixed voltage levels at
particular nodes in the network. Knowledge of the current
system operating point is crucial, as is understanding how the
current operating point will change as control actions are taken
or as unexpected contingencies occur. As such, the power
flow equations are embedded in nearly every power system
analysis or control problem, including optimal power flow and
its security-constrained variants, transient and voltage stability
assessment, contingency screening, short-circuit analysis, and
wide-area monitoring/control [1].

As the equations are nonlinear, the existence of real-valued
solutions is not guaranteed: lightly loaded networks typically
possess many solutions [2], while a network which is loaded
sufficiently will possess none. Despite this potential for both
multiple reasonable solutions and infeasibility, typically there

J. W. Simpson-Porco is with the Department of Electrical and Computer
Engineering, University of Waterloo. Email: jwsimpson@uwaterloo.ca.

is a single desirable solution, characterized by high voltage
magnitudes at buses and small inter-bus current flows. This
solution is often termed stable, as it behaves in a manner
consistent with the intuition of operators, and moreover, is
a locally exponentially stable equilibrium point for some
simplified dynamic grid models [3], [4]. The ability to ac-
curately and consistently calculate this high-voltage solution is
incredibly important, and fairly reliable numerical techniques
are available for this purpose [2], [5], [6]. While our results have
computational implications, our main interest and motivation
is the question of power flow feasibility/solvability: for what
classes of networks and loading scenarios can we guarantee
that the power flow equations are solvable for a useful solution,
and what can be rigorously said about this solution?

Aside from intellectual merit, there are at least two important
engineering motivations for understanding solvability. The first
is to better understand the convergence of iterative numerical
algorithms for solving power flow equations. When a power
flow solver diverges, it may be because of a numerical instabil-
ity in the algorithm, an initialization issue [7], [8], or it may be
because no power flow solution exists to be found [9]. Without
a coherent theory of power flow solvability, it is difficult to
distinguish between these cases. Our proposed algorithm from
Part I combined with the theoretical results in Part II will
provide a certificate to rule out the second and third cases.

The second motivation comes from the desire to operate
power systems safely yet non-conservatively. Due to the large
capital costs of transmission infrastructure investment, system
operators are incentivized to operate power networks close to
their maximum power transfer limits. The present work is an
additional step towards characterizing these nonlinear transfer
limits, and understanding in a precise mathematical way how
the transfer limits depend on the internal structure of the grid. In
this context, our results in Part II provide a topology-dependent
loading margin for the grid. This loading margin can serve as
a solvability certificate, or as a lower bound on the distance
to the maximum power transfer boundary.

A. Contributions of Part I and Preview of Part II Results

This two-part paper presents a new model of power flow in
lossless networks, and then leverages this model to obtain (i)
a new iterative power flow algorithm, (ii) an approximation
of the high-voltage solution, and (iii) new theoretical results
on power flow solvability. Our new model is inspired by the
way that phase angles are eliminated in the standard textbook
analysis of the two-bus PV-PQ power system [10, Chapter 2].
We begin with the lossless power flow equations in polar form,

New conditions for power flow solvability:

3 Contractive iteration

4 Existence/uniqueness

5 Generalizes known results
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A Theory of Solvability for Lossless Power Flow
Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member, IEEE

Abstract—This two-part paper details a theory of solvability
for the power flow equations in lossless power networks. In
Part I, we derived a new formulation of the lossless power flow
equations, which we term the fixed-point power flow. The model
is parameterized by several graph-theoretic matrices – the power
network stiffness matrices – which quantify the internal coupling
strength of the network. In Part II, we leverage the fixed-point
power flow to study power flow solvability. For radial networks,
we derive parametric conditions which guarantee the existence
and uniqueness of a high-voltage power flow solution, and
construct examples for which the conditions are also necessary.
Our conditions (i) imply convergence of the fixed-point power
flow iteration, (ii) unify and extend recent results on solvability
of decoupled power flow, (iii) directly generalize the textbook
two-bus system results, and (iv) provide new insights into how
the structure and parameters of the grid influence power flow
solvability.

Index Terms—Power flow equations, complex networks, power
systems, circuit theory, optimal power flow, fixed point theorems.

I . I N T R O D U C T I O N

1) Dib - An Explicit Solution of the Power Balance E
2) Barabanov - On Existence and Stability of Equilibria of

Linear TimeInvariant Systems with Constant Power Loads
3) Martinez - On Existence of Equilibria of Multi-port Linear

AC Networks with Constant-Power Loads
4) Upper bound of 1 on voltages in thereom statements

In the companion paper [1], we developed a new model of
coupled power flow for lossless networks, which we termed
the fixed-point power flow (FPPF). The name references the
fact that for radial networks, the fixed-point power flow can be
written as a vector fixed-point equation v = f(v) in the scaled
voltage magnitudes vi = Vi/V ⇤

i at PQ buses. Phase angles
are not present in the model, but are recovered directly (and
uniquely) as an “output” after a voltage solution v is found.
We showed through numerical experiments that the iteration
vk+1 = f(vk) provides an effective means of solving the power
flow equations, converging in only a few iterations from a flat
start in both lightly and heavily loaded networks.

The reader is referred to Part I for a detailed introduction,
motivation, modeling assumptions, and a complete derivation
of the FPPF. We now shift our focus from modeling and
computation to analysis, and address the following problem.

Problem 1 (Power Flow Solvability Problem): Give nec-
essary and/or sufficient conditions on the active and reactive

J. W. Simpson-Porco is with the Department of Electrical and Computer
Engineering, University of Waterloo. Email: jwsimpson@uwaterloo.ca.

power injections, the generator voltage magnitudes, the network
topology, and the series/shunt admittances under which the
power flow equations possess a unique, high-voltage solution.
In addition, quantify the location of the solution in voltage-
space in terms of the problem data.

A. Contributions of Part II
We leverage the FPPF developed in Part I, and for radial net-

works we derive sufficient conditions which ensure the power
flow equations possess a solution. Our conditions guarantee the
existence of a solution within a desirable set in voltage space,
where voltage magnitudes are near their open-circuit values and
phase angle differences between buses are small. For simplified
topologies containing no connections between PQ buses, we
further show that our existence condition implies the fixed-
point power flow mapping f is a contraction mapping. This in
turn implies that (i) the solution is unique within the specified
set, and (ii) the FPPF iteration vk+1 = f(vk) converges
exponentially to the unique power solution. For certain cases,
we show our conditions are also necessary for existence. As a
byproduct of our analysis, we also establish the non-existence
of solutions within a both a “medium-voltage” and an ”extra-
high-voltage” region of voltage-space. The existence of this
medium-voltage solutionless region implies a lower bound in
voltage-space between the unique high-voltage solution and
any undesirable low-voltage solutions.

The conditions we derive are parametric, depending only on
the given data of the power flow problem including fixed active
and reactive power injections, shunt and series susceptances, the
network topology, and PV bus voltage set-points. Rather than
imposing spectral or worst-case bounds individually on these
quantities, our conditions fuse the relevant parameters together
into intuitive loading margins for the system, by exploiting the
stiffness matrices introduced in Part I [1, Def. 2]. These loading
margins generalize the textbook two-bus network feasibility
results [2, Chapter 2], and unify recent results on feasibility
of decoupled active [3] and reactive [4] power flow. While
our results are currently restricted to an unrealistic class of
networks (lossless, radial), the analysis presented is — in the
authors opinion — the most complete one available in the
literature. The theoretical results here also provide a partial
explanation for the robust numerical behavior of the FPPF
iteration observed in Part I.

B. Organization of Paper
Section II presents an extensive literature review, surveying

the history of power flow solvability results, with a focus on
incorporating structural information into solvability conditions.

What’s unresolved?

1 Lossless meshed case

2 Lossy meshed case; algorithms in
Chen & JWSP 2022, but theory is hard
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Abstract—This two-part paper details a theory of solvability
for the power flow equations in lossless power networks. In
Part I, we derive a new formulation of the lossless power
flow equations, which we term the fixed-point power flow. The
model is stated for both meshed and radial networks, and is
parameterized by several graph-theoretic matrices – the power
network stiffness matrices – which quantify the internal coupling
strength of the network. The model leads immediately to an
explicit approximation of the high-voltage power flow solution.
For standard test cases, we find that iterates of the fixed-
point power flow converge rapidly to the high-voltage power
flow solution, with the approximate solution yielding accurate
predictions near base case loading. In Part II, we leverage the
fixed-point power flow to study power flow solvability, and for
radial networks we derive conditions guaranteeing the existence
and uniqueness of a high-voltage power flow solution. These
conditions (i) imply exponential convergence of the fixed-point
power flow iteration, and (ii) properly generalize the textbook
two-bus system results.

Index Terms—Power flow equations, complex networks, power
systems, circuit theory, optimal power flow, fixed point theorems.
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The power flow equations describe the balance and flow of
power in a synchronous AC power system. The solutions of
these equations (also called operating points of the network)
describe the configurations of voltages and currents which
(i) are physically consistent with Kichhoff’s and Ohm’s laws,
and (ii) meet the prescribed boundary conditions, specified
in terms of fixed power injections or fixed voltage levels at
particular nodes in the network. Knowledge of the current
system operating point is crucial, as is understanding how the
current operating point will change as control actions are taken
or as unexpected contingencies occur. As such, the power
flow equations are embedded in nearly every power system
analysis or control problem, including optimal power flow and
its security-constrained variants, transient and voltage stability
assessment, contingency screening, short-circuit analysis, and
wide-area monitoring/control [1].

As the equations are nonlinear, the existence of real-valued
solutions is not guaranteed: lightly loaded networks typically
possess many solutions [2], while a network which is loaded
sufficiently will possess none. Despite this potential for both
multiple reasonable solutions and infeasibility, typically there

J. W. Simpson-Porco is with the Department of Electrical and Computer
Engineering, University of Waterloo. Email: jwsimpson@uwaterloo.ca.

is a single desirable solution, characterized by high voltage
magnitudes at buses and small inter-bus current flows. This
solution is often termed stable, as it behaves in a manner
consistent with the intuition of operators, and moreover, is
a locally exponentially stable equilibrium point for some
simplified dynamic grid models [3], [4]. The ability to ac-
curately and consistently calculate this high-voltage solution is
incredibly important, and fairly reliable numerical techniques
are available for this purpose [2], [5], [6]. While our results have
computational implications, our main interest and motivation
is the question of power flow feasibility/solvability: for what
classes of networks and loading scenarios can we guarantee
that the power flow equations are solvable for a useful solution,
and what can be rigorously said about this solution?

Aside from intellectual merit, there are at least two important
engineering motivations for understanding solvability. The first
is to better understand the convergence of iterative numerical
algorithms for solving power flow equations. When a power
flow solver diverges, it may be because of a numerical instabil-
ity in the algorithm, an initialization issue [7], [8], or it may be
because no power flow solution exists to be found [9]. Without
a coherent theory of power flow solvability, it is difficult to
distinguish between these cases. Our proposed algorithm from
Part I combined with the theoretical results in Part II will
provide a certificate to rule out the second and third cases.

The second motivation comes from the desire to operate
power systems safely yet non-conservatively. Due to the large
capital costs of transmission infrastructure investment, system
operators are incentivized to operate power networks close to
their maximum power transfer limits. The present work is an
additional step towards characterizing these nonlinear transfer
limits, and understanding in a precise mathematical way how
the transfer limits depend on the internal structure of the grid. In
this context, our results in Part II provide a topology-dependent
loading margin for the grid. This loading margin can serve as
a solvability certificate, or as a lower bound on the distance
to the maximum power transfer boundary.

A. Contributions of Part I and Preview of Part II Results

This two-part paper presents a new model of power flow in
lossless networks, and then leverages this model to obtain (i)
a new iterative power flow algorithm, (ii) an approximation
of the high-voltage solution, and (iii) new theoretical results
on power flow solvability. Our new model is inspired by the
way that phase angles are eliminated in the standard textbook
analysis of the two-bus PV-PQ power system [10, Chapter 2].
We begin with the lossless power flow equations in polar form,
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3 Contractive iteration

4 Existence/uniqueness

5 Generalizes known results
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for the power flow equations in lossless power networks. In
Part I, we derived a new formulation of the lossless power flow
equations, which we term the fixed-point power flow. The model
is parameterized by several graph-theoretic matrices – the power
network stiffness matrices – which quantify the internal coupling
strength of the network. In Part II, we leverage the fixed-point
power flow to study power flow solvability. For radial networks,
we derive parametric conditions which guarantee the existence
and uniqueness of a high-voltage power flow solution, and
construct examples for which the conditions are also necessary.
Our conditions (i) imply convergence of the fixed-point power
flow iteration, (ii) unify and extend recent results on solvability
of decoupled power flow, (iii) directly generalize the textbook
two-bus system results, and (iv) provide new insights into how
the structure and parameters of the grid influence power flow
solvability.

Index Terms—Power flow equations, complex networks, power
systems, circuit theory, optimal power flow, fixed point theorems.
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In the companion paper [1], we developed a new model of
coupled power flow for lossless networks, which we termed
the fixed-point power flow (FPPF). The name references the
fact that for radial networks, the fixed-point power flow can be
written as a vector fixed-point equation v = f(v) in the scaled
voltage magnitudes vi = Vi/V ⇤

i at PQ buses. Phase angles
are not present in the model, but are recovered directly (and
uniquely) as an “output” after a voltage solution v is found.
We showed through numerical experiments that the iteration
vk+1 = f(vk) provides an effective means of solving the power
flow equations, converging in only a few iterations from a flat
start in both lightly and heavily loaded networks.

The reader is referred to Part I for a detailed introduction,
motivation, modeling assumptions, and a complete derivation
of the FPPF. We now shift our focus from modeling and
computation to analysis, and address the following problem.

Problem 1 (Power Flow Solvability Problem): Give nec-
essary and/or sufficient conditions on the active and reactive
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power injections, the generator voltage magnitudes, the network
topology, and the series/shunt admittances under which the
power flow equations possess a unique, high-voltage solution.
In addition, quantify the location of the solution in voltage-
space in terms of the problem data.

A. Contributions of Part II
We leverage the FPPF developed in Part I, and for radial net-

works we derive sufficient conditions which ensure the power
flow equations possess a solution. Our conditions guarantee the
existence of a solution within a desirable set in voltage space,
where voltage magnitudes are near their open-circuit values and
phase angle differences between buses are small. For simplified
topologies containing no connections between PQ buses, we
further show that our existence condition implies the fixed-
point power flow mapping f is a contraction mapping. This in
turn implies that (i) the solution is unique within the specified
set, and (ii) the FPPF iteration vk+1 = f(vk) converges
exponentially to the unique power solution. For certain cases,
we show our conditions are also necessary for existence. As a
byproduct of our analysis, we also establish the non-existence
of solutions within a both a “medium-voltage” and an ”extra-
high-voltage” region of voltage-space. The existence of this
medium-voltage solutionless region implies a lower bound in
voltage-space between the unique high-voltage solution and
any undesirable low-voltage solutions.

The conditions we derive are parametric, depending only on
the given data of the power flow problem including fixed active
and reactive power injections, shunt and series susceptances, the
network topology, and PV bus voltage set-points. Rather than
imposing spectral or worst-case bounds individually on these
quantities, our conditions fuse the relevant parameters together
into intuitive loading margins for the system, by exploiting the
stiffness matrices introduced in Part I [1, Def. 2]. These loading
margins generalize the textbook two-bus network feasibility
results [2, Chapter 2], and unify recent results on feasibility
of decoupled active [3] and reactive [4] power flow. While
our results are currently restricted to an unrealistic class of
networks (lossless, radial), the analysis presented is — in the
authors opinion — the most complete one available in the
literature. The theoretical results here also provide a partial
explanation for the robust numerical behavior of the FPPF
iteration observed in Part I.

B. Organization of Paper
Section II presents an extensive literature review, surveying

the history of power flow solvability results, with a focus on
incorporating structural information into solvability conditions.

What’s unresolved?

1 Lossless meshed case

2 Lossy meshed case; algorithms in
Chen & JWSP 2022, but theory is hard

29 / 31



Summary
Framework for studying Lossless Power Flow:

1 Fixed-Point Power Flow

2 Approximate solution

SUBMITTED FOR PUBLICATION. THIS VERSION: JANUARY 14, 2017 1

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE

Abstract—This two-part paper details a theory of solvability
for the power flow equations in lossless power networks. In
Part I, we derive a new formulation of the lossless power
flow equations, which we term the fixed-point power flow. The
model is stated for both meshed and radial networks, and is
parameterized by several graph-theoretic matrices – the power
network stiffness matrices – which quantify the internal coupling
strength of the network. The model leads immediately to an
explicit approximation of the high-voltage power flow solution.
For standard test cases, we find that iterates of the fixed-
point power flow converge rapidly to the high-voltage power
flow solution, with the approximate solution yielding accurate
predictions near base case loading. In Part II, we leverage the
fixed-point power flow to study power flow solvability, and for
radial networks we derive conditions guaranteeing the existence
and uniqueness of a high-voltage power flow solution. These
conditions (i) imply exponential convergence of the fixed-point
power flow iteration, and (ii) properly generalize the textbook
two-bus system results.
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The power flow equations describe the balance and flow of
power in a synchronous AC power system. The solutions of
these equations (also called operating points of the network)
describe the configurations of voltages and currents which
(i) are physically consistent with Kichhoff’s and Ohm’s laws,
and (ii) meet the prescribed boundary conditions, specified
in terms of fixed power injections or fixed voltage levels at
particular nodes in the network. Knowledge of the current
system operating point is crucial, as is understanding how the
current operating point will change as control actions are taken
or as unexpected contingencies occur. As such, the power
flow equations are embedded in nearly every power system
analysis or control problem, including optimal power flow and
its security-constrained variants, transient and voltage stability
assessment, contingency screening, short-circuit analysis, and
wide-area monitoring/control [1].

As the equations are nonlinear, the existence of real-valued
solutions is not guaranteed: lightly loaded networks typically
possess many solutions [2], while a network which is loaded
sufficiently will possess none. Despite this potential for both
multiple reasonable solutions and infeasibility, typically there
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is a single desirable solution, characterized by high voltage
magnitudes at buses and small inter-bus current flows. This
solution is often termed stable, as it behaves in a manner
consistent with the intuition of operators, and moreover, is
a locally exponentially stable equilibrium point for some
simplified dynamic grid models [3], [4]. The ability to ac-
curately and consistently calculate this high-voltage solution is
incredibly important, and fairly reliable numerical techniques
are available for this purpose [2], [5], [6]. While our results have
computational implications, our main interest and motivation
is the question of power flow feasibility/solvability: for what
classes of networks and loading scenarios can we guarantee
that the power flow equations are solvable for a useful solution,
and what can be rigorously said about this solution?

Aside from intellectual merit, there are at least two important
engineering motivations for understanding solvability. The first
is to better understand the convergence of iterative numerical
algorithms for solving power flow equations. When a power
flow solver diverges, it may be because of a numerical instabil-
ity in the algorithm, an initialization issue [7], [8], or it may be
because no power flow solution exists to be found [9]. Without
a coherent theory of power flow solvability, it is difficult to
distinguish between these cases. Our proposed algorithm from
Part I combined with the theoretical results in Part II will
provide a certificate to rule out the second and third cases.

The second motivation comes from the desire to operate
power systems safely yet non-conservatively. Due to the large
capital costs of transmission infrastructure investment, system
operators are incentivized to operate power networks close to
their maximum power transfer limits. The present work is an
additional step towards characterizing these nonlinear transfer
limits, and understanding in a precise mathematical way how
the transfer limits depend on the internal structure of the grid. In
this context, our results in Part II provide a topology-dependent
loading margin for the grid. This loading margin can serve as
a solvability certificate, or as a lower bound on the distance
to the maximum power transfer boundary.

A. Contributions of Part I and Preview of Part II Results

This two-part paper presents a new model of power flow in
lossless networks, and then leverages this model to obtain (i)
a new iterative power flow algorithm, (ii) an approximation
of the high-voltage solution, and (iii) new theoretical results
on power flow solvability. Our new model is inspired by the
way that phase angles are eliminated in the standard textbook
analysis of the two-bus PV-PQ power system [10, Chapter 2].
We begin with the lossless power flow equations in polar form,
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is parameterized by several graph-theoretic matrices – the power
network stiffness matrices – which quantify the internal coupling
strength of the network. In Part II, we leverage the fixed-point
power flow to study power flow solvability. For radial networks,
we derive parametric conditions which guarantee the existence
and uniqueness of a high-voltage power flow solution, and
construct examples for which the conditions are also necessary.
Our conditions (i) imply convergence of the fixed-point power
flow iteration, (ii) unify and extend recent results on solvability
of decoupled power flow, (iii) directly generalize the textbook
two-bus system results, and (iv) provide new insights into how
the structure and parameters of the grid influence power flow
solvability.

Index Terms—Power flow equations, complex networks, power
systems, circuit theory, optimal power flow, fixed point theorems.
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In the companion paper [1], we developed a new model of
coupled power flow for lossless networks, which we termed
the fixed-point power flow (FPPF). The name references the
fact that for radial networks, the fixed-point power flow can be
written as a vector fixed-point equation v = f(v) in the scaled
voltage magnitudes vi = Vi/V ⇤

i at PQ buses. Phase angles
are not present in the model, but are recovered directly (and
uniquely) as an “output” after a voltage solution v is found.
We showed through numerical experiments that the iteration
vk+1 = f(vk) provides an effective means of solving the power
flow equations, converging in only a few iterations from a flat
start in both lightly and heavily loaded networks.

The reader is referred to Part I for a detailed introduction,
motivation, modeling assumptions, and a complete derivation
of the FPPF. We now shift our focus from modeling and
computation to analysis, and address the following problem.

Problem 1 (Power Flow Solvability Problem): Give nec-
essary and/or sufficient conditions on the active and reactive
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power injections, the generator voltage magnitudes, the network
topology, and the series/shunt admittances under which the
power flow equations possess a unique, high-voltage solution.
In addition, quantify the location of the solution in voltage-
space in terms of the problem data.

A. Contributions of Part II
We leverage the FPPF developed in Part I, and for radial net-

works we derive sufficient conditions which ensure the power
flow equations possess a solution. Our conditions guarantee the
existence of a solution within a desirable set in voltage space,
where voltage magnitudes are near their open-circuit values and
phase angle differences between buses are small. For simplified
topologies containing no connections between PQ buses, we
further show that our existence condition implies the fixed-
point power flow mapping f is a contraction mapping. This in
turn implies that (i) the solution is unique within the specified
set, and (ii) the FPPF iteration vk+1 = f(vk) converges
exponentially to the unique power solution. For certain cases,
we show our conditions are also necessary for existence. As a
byproduct of our analysis, we also establish the non-existence
of solutions within a both a “medium-voltage” and an ”extra-
high-voltage” region of voltage-space. The existence of this
medium-voltage solutionless region implies a lower bound in
voltage-space between the unique high-voltage solution and
any undesirable low-voltage solutions.

The conditions we derive are parametric, depending only on
the given data of the power flow problem including fixed active
and reactive power injections, shunt and series susceptances, the
network topology, and PV bus voltage set-points. Rather than
imposing spectral or worst-case bounds individually on these
quantities, our conditions fuse the relevant parameters together
into intuitive loading margins for the system, by exploiting the
stiffness matrices introduced in Part I [1, Def. 2]. These loading
margins generalize the textbook two-bus network feasibility
results [2, Chapter 2], and unify recent results on feasibility
of decoupled active [3] and reactive [4] power flow. While
our results are currently restricted to an unrealistic class of
networks (lossless, radial), the analysis presented is — in the
authors opinion — the most complete one available in the
literature. The theoretical results here also provide a partial
explanation for the robust numerical behavior of the FPPF
iteration observed in Part I.

B. Organization of Paper
Section II presents an extensive literature review, surveying

the history of power flow solvability results, with a focus on
incorporating structural information into solvability conditions.

What’s unresolved?

1 Lossless meshed case

2 Lossy meshed case; algorithms in
Chen & JWSP 2022, but theory is hard
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Final Thoughts

1 Power engineers have incredible intuitive insight into how the grid
works; put in the effort to work with them.

2 Opportunity to embed practitioner knowledge and intuition within
advanced optimization methods like moment-SOS hierarchy

3 Decades of literature on power flow theory, lots of important insights,
still many poorly understood aspects

30 / 31



Final Thoughts

1 Power engineers have incredible intuitive insight into how the grid
works; put in the effort to work with them.

2 Opportunity to embed practitioner knowledge and intuition within
advanced optimization methods like moment-SOS hierarchy

3 Decades of literature on power flow theory, lots of important insights,
still many poorly understood aspects

30 / 31



Final Thoughts

1 Power engineers have incredible intuitive insight into how the grid
works; put in the effort to work with them.

2 Opportunity to embed practitioner knowledge and intuition within
advanced optimization methods like moment-SOS hierarchy

3 Decades of literature on power flow theory, lots of important insights,
still many poorly understood aspects

30 / 31



Questions

https://www.control.utoronto.ca/~jwsimpson/

jwsimpson@ece.utoronto.ca

31 / 31

https://www.control.utoronto.ca/~jwsimpson/
https://www.control.utoronto.ca/~jwsimpson/

