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Problems in power system operations

Power Flow Analysis Contingency Analysis [Hines et al.]

Transient Stability [Overbye et al.]

Frequency (Hz)
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Modeling AC power flow

@ Network Graph: (N, &), complex weights y;; = gjj + jbjj

@ Nodal Variables: voltage V;el?, power S; = P; + jQ;

@ Coupling Laws: Kirchhoff & Ohm
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O Admittance Matrix: Y = G + jB = Laplacian-like w/ weights y;;

© Lossless Lines: G;j =0
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Modeling AC power flow

® active power: P = > ViViBjsin(0; — 0;)
N
® reactive power:  Q; = —3> . V;V;Bjcos(0; — 0;) J
e

2n + m equations in variables § € T"* and V| € RZ,,.
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® active power: P = > ViViBjsin(0; — 0;)
N
® reactive power:  Q; = —3> . V;V;Bjcos(0; — 0;)
Ne
O n Loads (e) and m Generators (m) N =N, UNg
@ Load Model: PQ bus constant P; constant Q;
Q Generator Model: PV bus constant P; constant V;,
[Pp = V;V;B;;sin(0; — 0; 5 i € Ni UN,
ZJ- i Bij sin( 7) ! L G

Q= X, Vs 0), i

2n + m equations in variables § € T""™ and V| € RZ,.
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Why study solvability of power flow problems?
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Why study solvability of power flow problems?

© Because it is interesting to do so

@ Numerical methods
e understand convergence, divergence, and initialization issues

e State vector: x = (6, V)

o Newton iteration:

Xk+1 _ Xk _ J(Gk, Vk)—lf-(Xk)

3

[Deng et al.]
© Optimal power flow

@ Transient stability
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Motivation |: numerical methods for power flow
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Motivation |: numerical methods for power flow

Power flow always solved with variant of Newton iteration

x= (0 VL)T , XKL = 5k ()L (xK) J

o If convergent, may converge to “wrong" solution

@ If non-convergent, several possibilities:
(a) No power flow solution exists
(b) Numerical instability (conditioning)

(c) x° not in any region of convergence

[Deng et al.]

To differentiate, need theory of power flow solvability J
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Motivation |I: multimachine transient stability

Constrained Swing Dynamics

é,-zw,—
Gen :
Mijw; = —Djw; + Pi — » V;iV;Bjjsin(8; — 0,
{ w w j{:l /i Bjj sin( 7))

Load : {
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Motivation |I: multimachine transient stability
Constrained Swing Dynamics

0,':0«),'

Gen :
M,",'—— —D,' ,'—i-P,'— E V,VB, i 9,‘—9'
w w i j Jsm( J)

Difi = Pi = V;V;Bysin(6; — 6))
J

Load :
P == § Vi VjBij cos(8; — 0
Q ViV ij cos( i)

4

Challenge: Characterize equilibria, stability, basin of attraction
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Motivation |I: multimachine transient stability

Constrained Swing Dynamics

i Direct Methods for

L — Stability Analysis of
0’ Wi Electric Power
Systems

Gen :
Y Mis; = —Djw; + P — >, ViV;Bysin(6; — 6))

Dif; = P; — Z, V;V;Bj sin(0; — 0))
Z V; V;B;j cos(8; — 6;)

Load :

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.0.S., ...
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Constrained Swing Dynamics

i Direct Methods for

L — Stability Analysis of
0’ Wi Electric Power
Systems

Gen :
Y Mis; = —Djw; + P — >, ViV;Bysin(6; — 6))

Dif; = P; — Z, V;V;Bj sin(0; — 0))
Z V; V;B;j cos(8; — 6;)

Load :

Challenge: Characterize equilibria, stability, basin of attraction

Approaches: Energy functions, nearest unstable eq. point, S.0.S., ...

{Equilibria} = {Power Flow Solutions} J
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Intuition on power flow solutions

@ ‘Normally’, exists unique high-voltage soln:

e voltage magnitude V; ~ 1
o phase diff |§; — 0;] < 1
e current flows from high V to low V!

ey

[Josz et al.]
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Intuition on power flow solutions

@ ‘Normally’, exists unique high-voltage soln:

e voltage magnitude V; ~ 1

o phase diff |§; — 0;] < 1

e current flows from high V to low V! | E—
[Josz et al.]

@ Lightly loaded systems: many low-voltage solutions

© Heavily loaded systems: Few solutions
or infeasible
o saddle node bifurcations
e maximum power transfer limit
e non-convex feasible set in (P, Q)-space U

Gon2 M )

[Hiskens & Davy]
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Literature on Power Flow Solvability

Given data: network topology, impedances, generation & loads J

Q: d “stable high-voltage” solution? unique? properties?
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Literature on Power Flow Solvability

Given data: network topology, impedances, generation & loads

Q: d “stable high-voltage” solution? unique? properties?

Many approaches over 45+ years of literature:

[Weedy '67]: Jacobian singularity

[Korsak '72]: Multiple “stable” solutions

[Wu & Kumagai '77, '80, '82]: Fixed-point analysis of existence

[Araposthatis, Sastry & Varaiya, '81]: Jacobian analysis

[Baillieul and Byrnes '82]: Counting # of solutions, Bezout/Morse analysis

[llic '86, '92]: “no-gain” results, nonlinear resistive networks

[Makarov, Hill & Hiskens '00]: Solution insights for general quadratic equations
[Dorfler, Chertkov & Bullo '12]: Existence/uniqueness for lossless P /6 problem
[JWSP, Dérfler & Bullo '15]: Existence/uniqueness for lossless Q/V problem
[Bolognani & Zampieri '16, Nguyen et al. '17, Wang et al. '17, ...]: Distribution networks
[JWSP '16, '17]: Lossy P/6, coupled power flow conditions

[Delabays, Jafarpour, Bullo '21]: Effect of cycles in P/ problem
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Literature on Power Flow Solvability

Given data: network topology, impedances, generation & loads J

Q: 1 “stable high-voltage” solution? unique? properties?

Many approaches over 45+ years of literature:

Main insight: stiffness vs. loading
© Stiff network + light loading = feasible
© Weak network + heavy loading = infeasible




Literature on Power Flow Solvability

Given data: network topology, impedances, generation & loads J

Q: 1 “stable high-voltage” solution? unique? properties?

Many approaches over 45+ years of literature:

Main insight: stiffness vs. loading A E i

© Stiff network + light loading = feasible % s

© Weak network + heavy loading = infeasible

Q: How to quantify network
stiffness vs. loading? J




Solution of two-bus system

P = bV Vsin(—n) Valn b Vi, 20
Pg = bV Vy sin(n) e
QL = bV? — bV, V¢ cos(n) Pz +iQc Py +jiQL

Figure 2.6 Voltage as a function of load active and reactive powers
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Solution of two-bus system

. Vain b V520
p = bVs Vi sin(n) J G* ~A L‘
= bV} — bV, Vg cos S P
L . Vi costa) Pc+JjQc PL+jQL
© Change Variables
Vi 1% QL

= — MN=——= Ai=——

T Ve bVZ “Ipv2
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Solution of two-bus system

. Vain b V5,20
p = bV V. sin(n) J G* e L‘
= bV} — bV, Vg cos S P
QL f 1 VG cos(n) o oo T
© Change Variables
Vi 1% QL

=— M=-—— A=———

T Ve bVZ “Ipv2

@ Square equations, add, and solve quadratic in v?

vi:\/% (1—%1 1—(4F2+A)>
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Solution of two-bus system

. Ve in b V5 /0
p = bV V. sin(n) G* ~A L‘
QL = bVZ — bV, V5 cos S P
‘ . Ve cos(n) Pe+iQc Pr+jiQc
© Change Variables
Vi 1% QL
= — MN=— A=——-—
YT Ve bV2 YV

@ Square equations, add, and solve quadratic in v?

vi:\/% (1—%1 1—(4I'2+A)>

© Nec. & Suff. Condition

AP+A<L |
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Solution of two-bus system

Ve bVZ T I

7
AP+ A <1

I = vsin(n) v
A = —4v? + 4v cos(n)
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Solution of two-bus system

- Vi P QL
I = vsin(n) V= Ve J = bV?2 A= —1pV2
A = —4v? + 4v cos(n) 2 A<l 4

@ High-voltage solution
vy € [%7 1)
@ Low-voltage solution
1
V- € [07 ﬁ)
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Solution of two-bus system

A = —4v? + 4v cos(n)

I = vsin(n) J v:

—$bVZ

@ High-voltage solution
vy € [%7 1)
@ Low-voltage solution
1
V- € [07 ﬁ)

Ut

<Y
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Solution of two-bus system

: QL
I = vsin(n) V::V—G r::b—vé A::Tb\/é
A = —4v? + 4v cos(n) ¢

@ High-voltage solution
vy € [%* 1)

@ Low-voltage solution : .
v_ € [0, %) N\t L

v_ vy

=}
<Y

Angle: sin(n+) =T /vy
© Small-angle solution
n- €[0,7/4)
@ Large-angle solution
0 € [0,7/2)
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Solution of two-bus system

@ Squaring and adding equations does not generalize to networks.

@ Is there any hope then?

This generalizes! Leverage intuition.
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Solution of two-bus system

@ Squaring and adding equations does not generalize to networks.

@ Is there any hope then?

= vsin(n) J

A = —4v? + 4vcos(n)

e Use cos(n) = m = A=-4v2+4v/1-(T/v)?

@ Rearrange to get fixed-point equation

V= f(v) = —%%+ 1 (5)2 J

This generalizes! Leverage intuition.
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Notation |: branches and bus types

Pizzj\/i\/jBijSin(ai_Hf)7 iEN[_ UNG N

Q,-:_Zj\/,-\/J-B,-jcos(Q,-—Gj), iGN[_ N
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Notation |: branches and bus types

P,-:ZJ_\/,-VJ-B,-J-sin(G,-—HJ-), iEN[_ UNG N

Qi:—zj\/,-\/jBijCOS(e,'—(gj), iGN[_ N

@ Bus partitioning N' = N U Ng induces branch partitioning

E=%yestyess,
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Notation |: branches and bus types

P,':Z_V,'V'B,'J'Sin(a,'—ej), ie NLUNg N

ZV iBjjcos(0; —0;), i€NL N
G

@ Bus partitioning N' = N U Ng induces branch partitioning

174 L
g—gltygstyess, A_<AL>_<AL Ao )

Ac 0 [Ag | A

16/31



Notation |: branches and bus types

Pi:Z.ViVjBijSin(ai_ej)’ iEN[_UNG Ny

ZV iBjjcos(0; —0;), i€NL N
G

@ Bus partitioning N' = N U Ng induces branch partitioning

174 L
g—gltygstyess, A_<AL>_<AL Ao )

Ac 0 [Ag | A

o o -1]o0
0|0 -1 0o }NL
“1/-1 0 o0]o

A=
ol1 o o|f1
oo 1 ol }.A&;
olo o 1|0
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Notation Il: open-circuit voltages

p,.=z.v,-vjs,-jsin(9,-—ej), i€ Nt UNg
ZV iBjjcos(0; — 0;), €N,

e Generators Ng: V; fixed
® Loads N;: V; free

N

Ng
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Notation Il: open-circuit voltages

P,-=Z,v,-vjs,-jsin(9,-—ej), i€ NLUNG

Z ViV;Bjcos(0; — 0;), i€ N, Ny
e Generators Ng: V; fixed Ne
® Loads N;: V; free

Partitioned Variables

Vi Bii | Big )
V=(-t), B=
( Ve > <BGL Bge
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Notation Il: open-circuit voltages

P; = Z. V; V;Bjjsin(6; — 6;

Z V;V;Bjj cos(6

e Generators Ng: V; fixed
® Loads N;: V; free

i€ N UNg
ieNL N

Ng

Partitioned Variables

_ (Y
V_<VG>’

Open-circuit voltages
Vi2 -B;'Bic Ve
—

Generators— Loads

B_ (BLL Bic )
BgL | Be
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Notation Il: open-circuit voltages

P,-=Z.v,-vjs,-jsin(9,-—01 i€ NLUNG
Z V;V;Bjj cos( ieN Ne
e Generators Ng: V; fixed
® Loads N;: V; free |
Partitioned Variables
Vi Bii | Big )
V=[], B=
( Vi ) (BGL Bge
Open-circuit voltages
Vi2 -B;'Bic Ve L V/VF
~——

Generators— Loads

Ng
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Notation IlI: stiffness matrices

Az _ (B |Bie «_ _p-1
v_(VG), B‘(BGL 2o ), Vi=-BilBicVe
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Notation IlI: stiffness matrices

Vi Bir | Big > . 1
\/ fry - | B = 5 V = —B B V
< Ve > <BGL Bge L LL PLG TG

@ Need to non-dimensionalize power flow equations

o Stiffness matrices quantify grid strength in units of power

@ Nodal stiffness matrix S£ 1_11 [V(]- Bu - [V] J

@ Branch stiffness matrix D[V Vi Bijl(ijyee J

© Laplacian stiffness matrix L2 ADAT |
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Active power flow reformulation

Notation:
viv, ife=(i,j)e&¥
he(v) =< v ife=(i,j) € &8
1 ife=(i,j)c&ee
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Active power flow reformulation

Notation:

_ o Active Power:
viv, ife=(i,j)e&¥

he(v) =< v ife=(i,j) € &8 Pi = ZJ. ViV;Bijjsin(6; — 0;)
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Active power flow reformulation

Notation:

_ o Active Power:
viv, ife=(i,j)e&¥

he(v) = Qv if e = (i,j) € £8° P—ZV iBjj sin(6; — 0)
1 ife=(ij)cE®

P= A D [h(v)] sin(AT9)
V N~~~ ) N AN S—
Incidence Branch Stiff. Voltages sin(0,——9j)
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Active power flow reformulation
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Notation:
Active Power:

vivi ife=(i,j)e&”
P; _Z V;V;Bjjsin(6; — 6))

he(v)=<v; ife=(i,j)c &8
1 ife=(i,j)cé&es

P= A D [h(v)] sin(AT9)
v N~~~ ) \ AN —
Incidence Branch Stiff. Voltages sin(é),-—Gj)

o Let columns of C be a basis for ker(A), let p. € R€

Semi-Explicit Solution
sin(AT0) = (v, pc) 2 [h(v)]* (ATLIP + D2 Cpc )
0 = CTarcsin(1)
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Reactive power flow reformulation
Skipping some details . ..

Qu=—4[vIS(v — 1n) + |A[LD [A(v)](1)¢) — cos(ATH)).
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Reactive power flow reformulation
Skipping some details . ..

Qu=—4[vIS(v — 1n) + |A[LD [A(v)](1)¢) — cos(ATH)).

@ Rearrange for v

v = F(v,0) = 1, — %S’l[QL][v]’lln

+ 3571V HALD [h()] (Lie| ~ cos(AT6))

o Now plug in cos(z) = /1 — sin?(2)!
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Fixed-Point Power Flow: Meshed Networks
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An approximate power flow solution

o The model says v = f(v, pc), and sin(AT0) = ¥ (v, pc).
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o The model says v = f(v, pc), and sin(AT0) = ¥ (v, pc).
@ By construction, when P = @Q; = 0, a solution is

v=1, pc=0c, AT0=04.

e Taylor expand FPPF model around this solution

ATpprox = ATLTP
1 1
Vapprox = 1p — Zs_lQL + §5_1|A|LD[ATLTP]ATLTP

Pc,approx = 0
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An approximate power flow solution
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An approximate power flow solution

T
A aapprox =

Vapprox = 1, - %S_IQL + %S_IIA’LD[ATLTP]ATLTP

ATLTP

o =} =} o =
[N = > © o

Voltage Magnitude (p.u.)

0.98

——MATPOWER
* FPPF Iteration |
-+- Approx. Soln.

0 5 10 15 20 25

Bus Number

30
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Numerical results |

1

Omax = ||V - Vapprox”oo ) 5avg = EHV - Vapprox”l
‘ Base Load ‘ High Load ‘

Test Case FPPF |  dmax Oavg FPPF |  dmax

Iters. | (p.u.) | (p.u.) | Ilters. | (p.u.)
New England 39 4 0.006 | 0.004 8 0.086
57 bus system 5 0.011 | 0.003 8 0.118
RTS '96 (3 area) 4 0.003 | 0.001 8 0.084
118 bus system 3 0.001 | 0.000 7 0.054
300 bus system 6 0.022 | 0.004 8 0.059
PEGASE 1,354 5 0.011 | 0.001 8 0.070
Polish 2,383 wp 4 0.003 | 0.000 8 0.078
PEGASE 2,869 5 0.015 | 0.002 8 0.098
PEGASE 9,241 6 0.063 | 0.003 9 0.133
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Numerical results |l — convergence rates

o |EEE 300 bus system under heavy loading

10°g ‘
"R —o—NR

~ 102 *.\_* 3
) )%Sf** —% FDLF (XB)
]
g . X Hoy —» FPPF
§ 107 F )S(

-6 L
L 10
3
=
o 10-8 L
S
=
.S 1010k
+~
=
=
U)O 1012k

10714
5 10 15 20 25 30 35 40 45
Iterations
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Numerical results Il — sensitivity to initialization

@ perturb voltage magnitude initialization randomly
o |EEE 118 bus system, base case

| IC Spread (a) | NR | FDLF | FPPF |

0.05 0.98 | 0.98 1.00
0.10 0.53 | 0.53 1.00
0.15 0.18 | 0.18 1.00
0.2 0.03 | 0.03 1.00
0.3 0.00 | 0.00 1.00
05 0.00 | 0.00 1.00
0.7 0.00 | 0.00 | 0.99
0.9 0.00 | 0.00 | 0.99

@ extreme insensitivity to initialization (contraction)
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Fixed-Point Power Flow: Radial Networks

(0, V) is a power flow solution iff v is a fixed point of
1 1
f(v) =1, - Zs_l[QL][V]_lln + Zs_l[V]_llAILD [A(v)] u(v),

where

u(v) 21— V1=
¥(v) =[h(V)]'D"p
p=(ATA)'ATP

with the phase angles AT# = arcsin().

On what invariant set is f a contraction?jl
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Solvability results for different tree topologies

PQ buses have one PV bus neighbor

1l

PQ buses have many PV bus neighbors

11

General interconnections

edoel

Sufficient + Necessary
Existence + Uniqueness

Sufficient 4+ Tight
Existence + Uniqueness

Sufficient
Existence
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Partitioning of voltage space
AV2/V5

| gy

A +4r? <1
i Sl S

max [; <1,
(ij)ecee

1 W/

1 A;
vig 2 \/2 (1— > ,/1—(A,-+4r,?))

v

28/31



Partitioning of voltage space

A V2 / V5

U1,—

vy 1 VAW

gy

max
ieEN,

Aj+4T% <1

max [; <1,
(ij)ecee

1 A;
vig 2 \/2 (1— > ,/1—(A,-+4r,?))

v

28/31



Partitioning of voltage space

V2,+

V2, —

A

A Vo / V5

U1,—

vy 1 VAW

gy

max
ieEN,

Aj+4T% <1

max [; <1,
(ij)ecee

1 A;
vig 2 \/2 (1— > ,/1—(A,-+4r,?))

v

28/31



Partitioning of voltage space

V2,+

V2, —

A

A Vo / V5

U1,—

vy 1 VAW

1

max A;+47% <1

ieEN,
max [; <1,
(ij)ecee
v
vig 2 \/; (1— % ,/1—(A,-+4r,?))

V.

28/31



Partitioning of voltage space

V2,+

V2, —

A

A Vo / V5

U1,—

vy 1 VAW

gy

max A;+47% <1

ieEN,
max [; <1,
(ij)ecee
v
vig 2 \/; (1— % ,/1—(A,-+4r,?))

v

28/31



Partitioning of voltage space

V2,+

V2, —

A

A Vo / V5

U1,—

vy 1 VAW

gy

max A;+47% <1

ieEN,
max [; <1,
(ij)ecee
v
vig 2 \/; (1— % ,/1—(A,-+4r,?))

v

28/31



Partitioning of voltage space

V2,+

V2, —

A

A V2 / V5

U1,—

vy 1 VAW

gy

max A;+47% <1

ieEN,
max [; <1,
(ij)ecee
v
vig 2 \/; (1— % ,/1—(A,-+4r,?))

v

28/31



Partitioning of voltage space

AV2/ V5
1 [
X x
V2,4
V2, —
X X
v1,— vy 1 VAW

PP

A +4r? <1
i Sl S

max [; <1,
(ij)ecee

A;
Vit L \/; (1— 7
Vi —vim =1 (8 +412).

28/31

,/1—(A,-+4r,?))

v

o




Partitioning of voltage space
AV VS
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V2 +
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V2, — IEN[_ ! !
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- V.
U1,— V14 1 V1/V1*
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2 2
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Summary

Framework for studying Lossless Power Flow:

@ Fixed-Point Power Flow

@ Approximate solution

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member; IEEE
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John W. Simpson-Porco, Member; IEEE

New conditions for power flow solvability:

© Contractive iteration
© Existence/uniqueness

@ Generalizes known results
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Summary

Framework for studying Lossless Power Flow:

@ Fixed-Point Power Flow

@ Approximate solution

A Theory of Solvability for Lossless Power Flow
Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member; IEEE

New conditions for power flow solvability:

© Contractive iteration
© Existence/uniqueness

@ Generalizes known results

What’s unresolved?

© Lossless meshed case

@ Lossy meshed case; algorithms in
Chen & JWSP 2022, but theory is hard

A Theory of Solvability for Lossless Power Flow
Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member, IEEE
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Final Thoughts

© Power engineers have incredible intuitive insight into how the grid
works; put in the effort to work with them.
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Final Thoughts

© Power engineers have incredible intuitive insight into how the grid
works; put in the effort to work with them.

@ Opportunity to embed practitioner knowledge and intuition within
advanced optimization methods like moment-SOS hierarchy

© Decades of literature on power flow theory, lots of important insights,
still many poorly understood aspects

30/31



Questions

g% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
X

N UNIVERSITY OF TORONTO

https://www.control.utoronto.ca/~jwsimpson/
jwsimpson@ece.utoronto.ca
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