Understanding Power Flow Solutions: History, Practice, Theory, Progress

> John W. Simpson-Porco https://www.control.utoronto.ca/~jwsimpson/

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

Centrum Wiskunde & Informatica

November 18, 2022

Prof. J. W. Simpson-Porco: control theory

jwsimpson@ece.utoronto.ca

Feedback-Based Optimization

Nonlinear Systems

Network Dynamics & Control

Prof. J. W. Simpson-Porco: energy systems

jwsimpson@ece.utoronto.ca

Power Flow Analysis & Algorithms

Renewable Energy Integration

Microgrid Control & Optimization

Next-Generation Hierarchical Control

Problems in power system operations

Optimal Power Flow [Molzahn et al.]

Contingency Analysis [Hines et al.]

Transient Stability [Overbye et al.]

- **1** Network Graph: $(\mathcal{N}, \mathcal{E})$, complex weights $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2** Nodal Variables: voltage $V_i e^{\mathbf{j}\theta_i}$, power $S_i = P_i + \mathbf{j}Q_i$
- **6 Coupling Laws:** Kirchhoff & Ohm

- Admittance Matrix: $Y = G + \mathbf{j}B = \text{Laplacian-like w}/\text{ weights } y_{ij}$
- **(b)** Lossless Lines: $G_{ij} = 0$

- **1** Network Graph: $(\mathcal{N}, \mathcal{E})$, complex weights $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2** Nodal Variables: voltage $V_i e^{j\theta_i}$, power $S_i = P_i + jQ_i$

Oupling Laws: Kirchhoff & Ohm

O Admittance Matrix: $Y = G + \mathbf{j}B = \text{Laplacian-like w}/\text{ weights } y_{ij}$

3 Lossless Lines: $G_{ij} = 0$

- **1** Network Graph: $(\mathcal{N}, \mathcal{E})$, complex weights $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2** Nodal Variables: voltage $V_i e^{\mathbf{j}\theta_i}$, power $S_i = P_i + \mathbf{j}Q_i$
- **Occupling Laws:** Kirchhoff & Ohm

O Admittance Matrix: $Y = G + \mathbf{j}B = \text{Laplacian-like w}/\text{ weights } y_{ij}$

(b) Lossless Lines: $G_{ij} = 0$

- **1** Network Graph: $(\mathcal{N}, \mathcal{E})$, complex weights $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2** Nodal Variables: voltage $V_i e^{j\theta_i}$, power $S_i = P_i + jQ_i$
- Output Coupling Laws: Kirchhoff & Ohm

$$P_i + \mathbf{j} Q_i \longrightarrow \diamondsuit \qquad V_i e^{\mathbf{j} \theta_i} \qquad y_{ij} \qquad V_j e^{\mathbf{j} \theta_j}$$

4 Admittance Matrix: $Y = G + \mathbf{j}B = \text{Laplacian-like w}/\text{ weights } y_{ij}$

b Lossless Lines: $G_{ij} = 0$

• active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) + V_i V_j G_{ij} \cos(\theta_i - \theta_j)$

• reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) + V_i V_j G_{ij} \sin(\theta_i - \theta_j)$

- **1** Network Graph: $(\mathcal{N}, \mathcal{E})$, complex weights $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2** Nodal Variables: voltage $V_i e^{j\theta_i}$, power $S_i = P_i + jQ_i$
- Output Coupling Laws: Kirchhoff & Ohm

$$P_i + \mathbf{j} Q_i \longrightarrow \diamondsuit \qquad V_i e^{\mathbf{j} \theta_i} \qquad y_{ij} \qquad V_j e^{\mathbf{j} \theta_j}$$

4 Admittance Matrix: $Y = G + \mathbf{j}B = \text{Laplacian-like w}/\text{ weights } y_{ij}$

3 Lossless Lines: $G_{ij} = 0$

• active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) + V_i V_j G_{ij} \cos(\theta_i - \theta_j)$

• reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) + V_i V_j G_{ij} \sin(\theta_i - \theta_j)$

- **1** Network Graph: $(\mathcal{N}, \mathcal{E})$, complex weights $y_{ij} = g_{ij} + \mathbf{j}b_{ij}$
- **2** Nodal Variables: voltage $V_i e^{j\theta_i}$, power $S_i = P_i + jQ_i$
- Output Coupling Laws: Kirchhoff & Ohm

$$P_i + \mathbf{j} Q_i \longrightarrow \diamondsuit \qquad V_i e^{\mathbf{j} \theta_i} \qquad y_{ij} \qquad V_j e^{\mathbf{j} \theta_j}$$

- **O Admittance Matrix:** $Y = G + \mathbf{j}B = \text{Laplacian-like w}/\text{ weights } y_{ij}$
- **3** Lossless Lines: $G_{ij} = 0$

• active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j)$ • reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j)$

- active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i \theta_j)$
- reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i \theta_j)$

- **(**) *n* Loads (**(**) and *m* Generators (**(**) $\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G$
- **O Load Model:** PQ bus constant P_i constant Q_i
- **Generator Model:** PV bus constant P_i constant V

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L}$$

- active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i \theta_j)$
- reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i \theta_j)$

- **(**) *n* Loads (**(**) and *m* Generators (**(**) $\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G$
- **O Load Model:** PQ bus constant P_i constant Q_i
- **Generator Model:** PV bus constant P_i constant V_i ,

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L}$$

- active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i \theta_j)$
- reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i \theta_j)$

- **(**) *n* Loads (**(**) and *m* Generators (**(**) $\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G$
- O Load Model:PQ busconstant P_i constant Q_i O Generator Model:PV busconstant P_i constant V_i ,

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L}$$

- active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i \theta_j)$
- reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i \theta_j)$

- **(**) *n* Loads (**(**) and *m* Generators (**(**) $\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G$
- **O Load Model:** PQ bus constant P_i constant Q_i
- **③ Generator Model:** PV bus constant P_i constant V_i ,

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L}$$

- active power: $P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i \theta_j)$
- reactive power: $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i \theta_j)$

- **(**) *n* Loads (**(**) and *m* Generators (**(**) $\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G$
- **O Load Model:** PQ bus constant P_i constant Q_i
- **6** Generator Model: PV bus constant P_i constant V_i ,

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L}$$

- Because it is interesting to do so
- O Numerical methods
 - understand convergence, divergence, and initialization issues

- State vector: $x = (\theta, V)$
- Newton iteration:

$$x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k)$$

- Optimal power flow
- Transient stability

Because it is interesting to do so

Output: Numerical methods

• understand convergence, divergence, and initialization issues

- State vector: $x = (\theta, V)$
- Newton iteration:

$$x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k)$$

- Optimal power flow
- Transient stability

- Because it is interesting to do so
- **2** Numerical methods
 - understand convergence, divergence, and initialization issues

- State vector: $x = (\theta, V)$
- Newton iteration:

$$x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k)$$

- Optimal power flow
- Transient stability

- Because it is interesting to do so
- **2** Numerical methods
 - understand convergence, divergence, and initialization issues

- State vector: $x = (\theta, V)$
- Newton iteration:

$$x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k)$$

- Optimal power flow
- Transient stability

- Because it is interesting to do so
- O Numerical methods
 - understand convergence, divergence, and initialization issues

- State vector: $x = (\theta, V)$
- Newton iteration:

$$x^{k+1} = x^k - J(\theta^k, V^k)^{-1} f(x^k)$$

- Optimal power flow
- **O** Transient stability

Power flow always solved with variant of Newton iteration

$$x = \begin{pmatrix} heta & V_L \end{pmatrix}^\mathsf{T}, \qquad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).$$

• If convergent, may converge to "wrong" solution

- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

Power flow always solved with variant of Newton iteration

$$x = \begin{pmatrix} \theta & V_L \end{pmatrix}^{\mathsf{T}}, \qquad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).$$

• If **convergent**, may converge to "wrong" solution

- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

Power flow always solved with variant of Newton iteration

$$x = \begin{pmatrix} \theta & V_L \end{pmatrix}^{\mathsf{T}}, \qquad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).$$

• If convergent, may converge to "wrong" solution

- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

$$x = \begin{pmatrix} \theta & V_L \end{pmatrix}^{\mathsf{T}}, \qquad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

$$x = \begin{pmatrix} \theta & V_L \end{pmatrix}^{\mathsf{T}}, \qquad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

$$x = \begin{pmatrix} \theta & V_L \end{pmatrix}^{\mathsf{T}}, \qquad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

$$x = \begin{pmatrix} \theta & V_L \end{pmatrix}^{\mathsf{T}}, \qquad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

Power flow always solved with variant of Newton iteration

$$x = \begin{pmatrix} \theta & V_L \end{pmatrix}^{\mathsf{T}}, \qquad x^{k+1} = x^k - J(x^k)^{-1}f(x^k).$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

To differentiate, need theory of power flow solvability

Constrained Swing Dynamics
Gen :
$$\begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \\ \text{Load} : \begin{cases} D_i \dot{\theta}_i = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases}$$

Challenge: Characterize equilibria, stability, basin of attraction

Constrained Swing Dynamics
Gen :
$$\begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \\ \text{Load} : \begin{cases} D_i \dot{\theta}_i = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases}$$

Challenge: Characterize equilibria, stability, basin of attraction

Constrained Swing Dynamics
Gen :
$$\begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \\ \text{Load} : \begin{cases} D_i \dot{\theta}_i = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases}$$

Challenge: Characterize equilibria, stability, basin of attraction

Constrained Swing Dynamics Gen : $\begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \\ \text{Load} : \begin{cases} D_i \dot{\theta}_i = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases}$

Challenge: Characterize equilibria, stability, basin of attraction

Constrained Swing Dynamics Gen : $\begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \\ \text{Load} : \begin{cases} D_i \dot{\theta}_i = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ Q_i = -\sum_i V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases}$

Challenge: Characterize equilibria, stability, basin of attraction

$${Equilibria} = {Power Flow Solutions}$$

Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

$$\begin{array}{ll} \underset{\theta, V_L, P_G}{\operatorname{minimize}} & \sum_{i \in \mathcal{N}_G} f_i(P_i) \\ \text{subject to} & P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) & i \in \mathcal{N}_L \cup \mathcal{N}_G , \\ & Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) & i \in \mathcal{N}_L , \\ & V_i^{\min} \leq V_i \leq V_i^{\max} & i \in \mathcal{N}_L , \\ & S_i^{\min} \leq |P_i + \mathbf{j}Q_i| \leq S_i^{\max} & i \in \mathcal{N}_G , \\ & s_{ij}^{\min} \leq |p_{i \to j} + \mathbf{j}q_{i \to j}| \leq s_{ij}^{\max} & (i, j) \in \mathcal{E} , \end{array}$$

Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

$$\begin{array}{ll} \underset{\theta, V_L, P_G}{\operatorname{minimize}} & \sum_{i \in \mathcal{N}_G} f_i(P_i) \\ \text{subject to} & P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) & i \in \mathcal{N}_L \cup \mathcal{N}_G , \\ & Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) & i \in \mathcal{N}_L , \\ & V_i^{\min} \leq V_i \leq V_i^{\max} & i \in \mathcal{N}_L , \\ & S_i^{\min} \leq |P_i + \mathbf{j}Q_i| \leq S_i^{\max} & i \in \mathcal{N}_G , \\ & s_{ij}^{\min} \leq |p_{i \to j} + \mathbf{j}q_{i \to j}| \leq s_{ij}^{\max} & (i, j) \in \mathcal{E} , \end{array}$$

• non-convex, solved every 5-15 min. via linearization, (\$\$\$)
Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

$$\begin{array}{ll} \underset{\theta, V_L, P_G}{\text{minimize}} & \sum_{i \in \mathcal{N}_G} f_i(P_i) \\ \text{subject to} & P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) & i \in \mathcal{N}_L \cup \mathcal{N}_G , \\ & Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) & i \in \mathcal{N}_L , \\ & V_i^{\min} \leq V_i \leq V_i^{\max} & i \in \mathcal{N}_L , \\ & S_i^{\min} \leq |P_i + \mathbf{j}Q_i| \leq S_i^{\max} & i \in \mathcal{N}_G , \\ & s_{ij}^{\min} \leq |p_{i \to j} + \mathbf{j}q_{i \to j}| \leq s_{ij}^{\max} & (i, j) \in \mathcal{E} , \end{array}$$

• non-convex, solved every 5-15 min. via linearization, (\$\$\$)

"Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the full ACOPF."

- Richard P. O'Neill (Chief Economic Advisor, FERC, 2016)

Motivation III: optimal power flow

Idea: Optimally match supply and demand (with constraints)

$$\begin{array}{ll} \underset{\theta, V_L, P_G}{\text{minimize}} & \sum_{i \in \mathcal{N}_G} f_i(P_i) \\ \text{subject to} & P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) & i \in \mathcal{N}_L \cup \mathcal{N}_G , \\ & Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) & i \in \mathcal{N}_L , \\ & V_i^{\min} \leq V_i \leq V_i^{\max} & i \in \mathcal{N}_L , \\ & S_i^{\min} \leq |P_i + \mathbf{j}Q_i| \leq S_i^{\max} & i \in \mathcal{N}_G , \\ & s_{ij}^{\min} \leq |p_{i \to j} + \mathbf{j}q_{i \to j}| \leq s_{ij}^{\max} & (i, j) \in \mathcal{E} , \end{array}$$

• non-convex, solved every 5-15 min. via linearization, (\$\$\$)

"Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the full ACOPF."

- Richard P. O'Neill (Chief Economic Advisor, FERC, 2016)

Intuition on power flow solutions

- O 'Normally', exists unique high-voltage soln:
 - voltage magnitude $V_i \simeq 1$
 - phase diff $| heta_i heta_j| \ll 1$
 - current flows from high V to low V!

[Josz et al.]

2 Lightly loaded systems: many low-voltage solutions

Heavily loaded systems: Few solutions or infeasible

- saddle node bifurcations
- maximum power transfer limit
- non-convex feasible set in (P, Q)-space

Intuition on power flow solutions

- O 'Normally', exists unique high-voltage soln:
 - voltage magnitude $V_i \simeq 1$
 - phase diff $| heta_i heta_j| \ll 1$
 - current flows from high V to low V!

[Josz et al.]

② Lightly loaded systems: many **low-voltage** solutions

Heavily loaded systems: Few solutions or infeasible

- saddle node bifurcations
- maximum power transfer limit
- non-convex feasible set in (P, Q)-space

Intuition on power flow solutions

- 'Normally', exists unique high-voltage soln:
 - voltage magnitude $V_i\simeq 1$
 - phase diff $| heta_i heta_j| \ll 1$
 - current flows from high V to low V!

[Josz et al.]

- **2** Lightly loaded systems: many low-voltage solutions
- Heavily loaded systems: Few solutions or infeasible
 - saddle node bifurcations
 - maximum power transfer limit
 - non-convex feasible set in (P, Q)-space

[Hiskens & Davy]

Given data: network topology, impedances, generation & loads
Q: ∃ "stable high-voltage" solution? unique? properties?

Many approaches over **45+ years** of literature:

- [Weedy '67]: Jacobian singularity
- [Korsak '72]: Multiple "stable" solutions
- [Wu & Kumagai '77, '80, '82]: Fixed-point analysis of existence
- [Araposthatis, Sastry & Varaiya, '81]: Jacobian analysis
- [Baillieul and Byrnes '82]: Counting # of solutions, Bezout/Morse analysis
- [llic '86, '92]: "no-gain" results, nonlinear resistive networks
- [Makarov, Hill & Hiskens '00]: Solution insights for general quadratic equations
- [Dörfler, Chertkov & Bullo '12]: Existence/uniqueness for lossless P/θ problem
- [JWSP, Dörfler & Bullo '15]: Existence/uniqueness for lossless Q/V problem
- [Bolognani & Zampieri '16, Nguyen et al. '17, Wang et al. '17, ...]: Distribution networks
- [JWSP '16, '17]: Lossy P/θ , coupled power flow conditions
- [Delabays, Jafarpour, Bullo '21]: Effect of cycles in P/θ problem

• . . .

Given data: network topology, impedances, generation & loads
Q: ∃ "stable high-voltage" solution? unique? properties?

Many approaches over 45+ years of literature:

- [Weedy '67]: Jacobian singularity
- [Korsak '72]: Multiple "stable" solutions
- [Wu & Kumagai '77, '80, '82]: Fixed-point analysis of existence
- [Araposthatis, Sastry & Varaiya, '81]: Jacobian analysis
- [Baillieul and Byrnes '82]: Counting # of solutions, Bezout/Morse analysis
- [Ilic '86, '92]: "no-gain" results, nonlinear resistive networks
- [Makarov, Hill & Hiskens '00]: Solution insights for general quadratic equations
- [Dörfler, Chertkov & Bullo '12]: Existence/uniqueness for lossless P/θ problem
- [JWSP, Dörfler & Bullo '15]: Existence/uniqueness for lossless Q/V problem
- [Bolognani & Zampieri '16, Nguyen et al. '17, Wang et al. '17, ...]: Distribution networks
- [JWSP '16, '17]: Lossy P/θ , coupled power flow conditions
- [Delabays, Jafarpour, Bullo '21]: Effect of cycles in P/θ problem

...

Given data: network topology, impedances, generation & loads
Q: ∃ "stable high-voltage" solution? unique? properties?

Many approaches over 45+ years of literature:

Main insight: stiffness vs. loading

- $\textbf{0} \quad \text{Stiff network} + \text{light loading} \Rightarrow \text{feasible}$
- 2 Weak network + heavy loading \Rightarrow infeasible

Q: How to quantify network stiffness vs. loading?

Given data: network topology, impedances, generation & loads
Q: ∃ "stable high-voltage" solution? unique? properties?

Many approaches over 45+ years of literature:

Main insight: stiffness vs. loading

- $\textbf{0} \quad \text{Stiff network} + \text{light loading} \Rightarrow \text{feasible}$
- 2 Weak network + heavy loading \Rightarrow infeasible

Q: How to quantify network stiffness vs. loading?

 $P_L = bV_G V_L \sin(-\eta)$ $P_G = bV_G V_L \sin(\eta)$ $Q_L = bV_L^2 - bV_L V_G \cos(\eta)$

$$\begin{array}{c} V_G \angle \eta & b & V_L \angle 0 \\ \downarrow & & & \\ P_G + \mathbf{j} Q_G & P_L + \mathbf{j} Q_L \end{array}$$

Figure 2.6 Voltage as a function of load active and reactive powers

 $p = bV_G V_L \sin(\eta)$ $Q_L = bV_L^2 - bV_L V_G \cos(\eta)$

O Change Variables

$$v := rac{V_L}{V_G}$$
 $\Gamma := rac{p}{bV_G^2}$ $\Delta := rac{Q_L}{-rac{1}{4}bV_G^2}$

② Square equations, add, and solve quadratic in v^2

$$v_{\pm} = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{2} \pm \sqrt{1 - (4\Gamma^2 + \Delta)} \right)}$$

Nec. & Suff. Condition

$$4\Gamma^2 + \Delta < 1$$

 $p = bV_G V_L \sin(\eta)$ $Q_L = bV_L^2 - bV_L V_G \cos(\eta)$

O Change Variables

$$v := rac{V_L}{V_G} \qquad \Gamma := rac{p}{bV_G^2} \qquad \Delta := rac{Q_L}{-rac{1}{4}bV_G^2}$$

② Square equations, add, and solve quadratic in v^2

$$v_{\pm} = \sqrt{rac{1}{2}\left(1-rac{\Delta}{2}\pm\sqrt{1-(4\Gamma^2+\Delta)}
ight)}$$

O Nec. & Suff. Condition

$$4\Gamma^2 + \Delta < 1$$

 $p = bV_G V_L \sin(\eta)$ $Q_L = bV_L^2 - bV_L V_G \cos(\eta)$

O Change Variables

$$v := rac{V_L}{V_G} \qquad \Gamma := rac{p}{bV_G^2} \qquad \Delta := rac{Q_L}{-rac{1}{4}bV_G^2}$$

② Square equations, add, and solve quadratic in v^2

$$v_{\pm} = \sqrt{rac{1}{2}\left(1-rac{\Delta}{2}\pm\sqrt{1-(4\Gamma^2+\Delta)}
ight)}$$

$$4\Gamma^2 + \Delta < 1$$

$$\begin{split} \Gamma &= v \sin(\eta) \\ \Delta &= -4v^2 + 4v \cos(\eta) \end{split}$$

$$egin{aligned} &v:=rac{V_L}{V_G} \quad \Gamma:=rac{p}{bV_G^2} \quad \Delta:=rac{Q_L}{-rac{1}{4}bV_G^2}\ &4\Gamma^2+\Delta<1 \end{aligned}$$

- **High-voltage** solution $v_+ \in [\frac{1}{2}, 1)$
- 3 **Low-voltage** solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$
- Angle: $sin(\eta_{\mp}) = \Gamma/v_{\pm}$
 - Small-angle solution $\eta_{-} \in [0, \pi/4)$
 - 2 Large-angle solution $\eta_+ \in [0, \pi/2)$

$$\begin{split} \Gamma &= v \sin(\eta) \\ \Delta &= -4v^2 + 4v \cos(\eta) \end{split}$$

$$egin{aligned} &v:=rac{V_L}{V_G} \quad \Gamma:=rac{p}{bV_G^2} \quad \Delta:=rac{Q_L}{-rac{1}{4}bV_G^2}\ &4\Gamma^2+\Delta<1 \end{aligned}$$

- **High-voltage** solution $v_+ \in [\frac{1}{2}, 1)$
- 2 **Low-voltage** solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$
- Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$
 - Small-angle solution $\eta_{-} \in [0, \pi/4)$
 - 2 Large-angle solution $\eta_+ \in [0, \pi/2)$

$$\begin{split} \Gamma &= v \sin(\eta) \\ \Delta &= -4v^2 + 4v \cos(\eta) \end{split}$$

$$egin{aligned} & v := rac{V_L}{V_G} & \Gamma := rac{p}{bV_G^2} & \Delta := rac{Q_L}{-rac{1}{4}bV_G^2} \ & 4\Gamma^2 + \Delta < 1 \end{aligned}$$

- **High-voltage** solution $v_+ \in [\frac{1}{2}, 1)$
- **2** Low-voltage solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$

- Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$
 - Small-angle solution $\eta_{-} \in [0, \pi/4)$
 - 2 Large-angle solution $\eta_+ \in [0, \pi/2)$

$$\begin{split} \Gamma &= v \sin(\eta) \\ \Delta &= -4v^2 + 4v \cos(\eta) \end{split}$$

$$egin{aligned} & v := rac{V_L}{V_G} & \Gamma := rac{p}{bV_G^2} & \Delta := rac{Q_L}{-rac{1}{4}bV_G^2} \ & 4\Gamma^2 + \Delta < 1 \end{aligned}$$

- **High-voltage** solution $v_+ \in [\frac{1}{2}, 1)$
- **3** Low-voltage solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$

- Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$
 - Small-angle solution $\eta_{-} \in [0, \pi/4)$
 - 2 Large-angle solution $\eta_+ \in [0, \pi/2)$

$$\begin{split} \Gamma &= v \sin(\eta) \\ \Delta &= -4v^2 + 4v \cos(\eta) \end{split}$$

$$egin{aligned} & v := rac{V_L}{V_G} & \Gamma := rac{p}{bV_G^2} & \Delta := rac{Q_L}{-rac{1}{4}bV_G^2} \ & 4\Gamma^2 + \Delta < 1 \end{aligned}$$

- **High-voltage** solution $v_+ \in [\frac{1}{2}, 1)$
- **3** Low-voltage solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$

Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$

- Small-angle solution $\eta_{-} \in [0, \pi/4)$
- 2 Large-angle solution $\eta_+ \in [0, \pi/2)$

- Squaring and adding equations does not generalize to networks.
- Is there any hope then?

$$\Gamma = v \sin(\eta)$$
$$\Delta = -4v^2 + 4v \cos(\eta)$$

• Use $\cos(\eta) = \sqrt{1 - \sin^2(\eta)} \implies \Delta = -4v^2 + 4v\sqrt{1 - (\Gamma/v)^2}$

• Rearrange to get *fixed-point equation*

$$v = f(v) := -\frac{1}{4}\frac{\Delta}{v} + \sqrt{1 - \left(\frac{\Gamma}{v}\right)^2}$$

- Squaring and adding equations does not generalize to networks.
- Is there any hope then?

$$\Gamma = v \sin(\eta)$$

 $\Delta = -4v^2 + 4v \cos(\eta)$

• Use $\cos(\eta) = \sqrt{1 - \sin^2(\eta)} \implies \Delta = -4v^2 + 4v\sqrt{1 - (\Gamma/v)^2}$

• Rearrange to get *fixed-point equation*

$$v = f(v) := -\frac{1}{4}\frac{\Delta}{v} + \sqrt{1 - \left(\frac{\Gamma}{v}\right)^2}$$

- Squaring and adding equations does not generalize to networks.
- Is there any hope then?

$$\Gamma = v \sin(\eta)$$

 $\Delta = -4v^2 + 4v \cos(\eta)$

• Use
$$\cos(\eta) = \sqrt{1-\sin^2(\eta)} \implies \Delta = -4v^2 + 4v\sqrt{1-(\Gamma/v)^2}$$

• Rearrange to get *fixed-point equation*

$$v = f(v) := -\frac{1}{4}\frac{\Delta}{v} + \sqrt{1 - \left(\frac{\Gamma}{v}\right)^2}$$

- Squaring and adding equations does not generalize to networks.
- Is there any hope then?

$$\Gamma = v \sin(\eta)$$

 $\Delta = -4v^2 + 4v \cos(\eta)$

• Use
$$\cos(\eta) = \sqrt{1-\sin^2(\eta)} \implies \Delta = -4v^2 + 4v\sqrt{1-(\Gamma/v)^2}$$

• Rearrange to get *fixed-point equation*

$$v=f(v):=-rac{1}{4}rac{\Delta}{v}+\sqrt{1-\left(rac{\Gamma}{v}
ight)^2}$$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L}$$

$$\mathcal{E} = \mathcal{E}^{\ell\ell} \cup \mathcal{E}^{g\ell} \cup \mathcal{E}^{gg} , \quad A = \left(\begin{array}{c|c} A_L \\ \hline A_G \end{array} \right) = \left(\begin{array}{c|c} A_L^{\ell\ell} & A_L^{g\ell} & 0 \\ \hline 0 & A_G^{g\ell} & A_G^{gg} \end{array} \right)$$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L}$$

$$\mathcal{E} = \mathcal{E}^{\ell \ell} \cup \mathcal{E}^{g \ell} \cup \mathcal{E}^{g g}, \quad A = \left(\begin{array}{c|c} A_L \\ \hline A_G \end{array} \right) = \left(\begin{array}{c|c} A_L^{\ell \ell} & A_L^{g \ell} & 0 \\ \hline 0 & A_G^{g \ell} & A_G^{g g} \end{array} \right)$$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L}$$

$$\mathcal{E} = \mathcal{E}^{\ell\ell} \cup \mathcal{E}^{g\ell} \cup \mathcal{E}^{gg} , \quad A = \left(\frac{A_L}{A_G} \right) = \left(\frac{A_L^{\ell\ell}}{0} \begin{vmatrix} A_L^{g\ell} & 0 \\ \hline 0 & A_G^{g\ell} & A_G^{gg} \end{vmatrix} \right)$$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L}$$

$$\mathcal{E} = \mathcal{E}^{\ell\ell} \cup \mathcal{E}^{g\ell} \cup \mathcal{E}^{gg} , \quad A = \left(\frac{A_L}{A_G} \right) = \left(\frac{A_L^{\ell\ell}}{\mathbb{O}} \left| \frac{A_L^{g\ell}}{\mathbb{O}} \right| \frac{0}{A_G^{g\ell}} \right)$$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{C}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L}$$

- Generators \mathcal{N}_G : V_i fixed
- Loads \mathcal{N}_L : V_i free

Partitioned Variables

$$V = \left(\frac{V_L}{V_G}\right), \qquad B = \left(\frac{B_{LL} \mid B_{LG}}{B_{GL} \mid B_{GG}}\right)$$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L}$$

- Generators \mathcal{N}_G : V_i fixed
- Loads \mathcal{N}_L : V_i free

Partitioned Variables

$$V = \left(\frac{V_L}{V_G}\right), \qquad B = \left(\frac{B_{LL}}{B_{GL}} | B_{LG}\right)$$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L}$$

- Generators \mathcal{N}_G : V_i fixed
- Loads \mathcal{N}_L : V_i free

Partitioned Variables

$$V = \left(\frac{V_L}{V_G}\right), \qquad B = \left(\frac{B_{LL}}{B_{GL}} | B_{LG}\right)$$

Open-circuit voltages

$$V_L^* \triangleq \underbrace{-B_{LL}^{-1}B_{LG}}_{\text{Generators} \to Loads} \cdot V_G$$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{d}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \quad i \in \mathcal{N}_{L}$$

- Generators \mathcal{N}_G : V_i fixed
- Loads \mathcal{N}_L : V_i free

Partitioned Variables

$$V = \left(\frac{V_L}{V_G}\right), \qquad B = \left(\frac{B_{LL}}{B_{GL}} \middle| \frac{B_{LG}}{B_{GG}}\right)$$

Open-circuit voltages

$$V_L^* \triangleq \underbrace{-B_{LL}^{-1}B_{LG}}_{G} \cdot V_G$$

Generators→Loads

$$v_i \triangleq V_i/V_i^*$$

$$V = \left(\frac{V_L}{V_G}\right), \quad B = \left(\frac{B_{LL}}{B_{GL}} | B_{LG} \right), \quad V_L^* = -B_{LL}^{-1} B_{LG} V_G$$

• Need to non-dimensionalize power flow equations

• Stiffness matrices quantify grid strength in units of power

O Nodal stiffness matrix

Branch stiffness matrix

$$\mathsf{S} \triangleq \frac{1}{4} \left[V_L^* \right] \cdot B_{LL} \cdot \left[V_L^* \right]$$

$$\mathsf{D} \triangleq [V_i^* V_j^* B_{ij}]_{(i,j) \in \mathcal{E}}$$

$$\mathsf{L} \triangleq \mathsf{A}\mathsf{D}\mathsf{A}^\mathsf{T}$$

$$V = \left(\frac{V_L}{V_G}\right), \quad B = \left(\frac{B_{LL}}{B_{GL}} \middle| \frac{B_{LG}}{B_{GG}}\right), \quad V_L^* = -B_{LL}^{-1}B_{LG}V_G$$

- Need to non-dimensionalize power flow equations
- Stiffness matrices quantify grid strength in units of power

$$V = \left(\frac{V_L}{V_G}\right), \quad B = \left(\frac{B_{LL}}{B_{GL}} \middle| \frac{B_{LG}}{B_{GG}}\right), \quad V_L^* = -B_{LL}^{-1}B_{LG}V_G$$

- Need to non-dimensionalize power flow equations
- Stiffness matrices quantify grid strength in units of power

1 Nodal stiffness matrix

$$\mathsf{S} \triangleq \frac{1}{4} \left[\mathsf{V}_{\mathsf{L}}^* \right] \cdot \mathsf{B}_{\mathsf{LL}} \cdot \left[\mathsf{V}_{\mathsf{L}}^* \right]$$

Branch stiffness matrix

$$\mathsf{D} \triangleq [V_i^* V_j^* B_{ij}]_{(i,j) \in \mathcal{E}}$$

$$L \triangleq ADA^{T}$$

$$V = \left(\frac{V_L}{V_G}\right), \quad B = \left(\frac{B_{LL}}{B_{GL}} | B_{LG} \right), \quad V_L^* = -B_{LL}^{-1} B_{LG} V_G$$

- Need to non-dimensionalize power flow equations
- Stiffness matrices quantify grid strength in units of power

1 Nodal stiffness matrix

$$\mathsf{S} \triangleq \frac{1}{4} \left[\mathsf{V}_{\mathsf{L}}^* \right] \cdot \mathsf{B}_{\mathsf{LL}} \cdot \left[\mathsf{V}_{\mathsf{L}}^* \right]$$

2 Branch stiffness matrix

$$\mathsf{D} \triangleq [V_i^* V_j^* B_{ij}]_{(i,j) \in \mathcal{E}}$$

$$\mathsf{L} \triangleq \mathsf{A}\mathsf{D}\mathsf{A}^\mathsf{T}$$

$$V = \left(\frac{V_L}{V_G}\right), \quad B = \left(\frac{B_{LL}}{B_{GL}} \middle| \frac{B_{LG}}{B_{GG}}\right), \quad V_L^* = -B_{LL}^{-1}B_{LG}V_G$$

- Need to non-dimensionalize power flow equations
- Stiffness matrices quantify grid strength in units of power

1 Nodal stiffness matrix

$$\mathsf{S} \triangleq \frac{1}{4} \left[\mathsf{V}_{\mathsf{L}}^* \right] \cdot \mathsf{B}_{\mathsf{LL}} \cdot \left[\mathsf{V}_{\mathsf{L}}^* \right]$$

Pranch stiffness matrix

$$\mathsf{D} \triangleq [V_i^* V_j^* B_{ij}]_{(i,j) \in \mathcal{E}}$$

$$L \triangleq ADA^{T}$$

Active power flow reformulation

Notation:

$$h_{e}(v) = \begin{cases} v_{i}v_{j} & \text{if } e = (i,j) \in \mathcal{E}^{\ell\ell} \\ v_{j} & \text{if } e = (i,j) \in \mathcal{E}^{g\ell} \\ 1 & \text{if } e = (i,j) \in \mathcal{E}^{gg} \end{cases}$$

$$P_{i} = \sum_{j} V_{i}V_{j}B_{ij}\sin(\theta_{i} - \theta_{j})$$

$$P = A \bigcup_{\text{Incidence Branch Stiff. Voltages } \sin(\theta_{i} - \theta_{j})} \underbrace{h(v)}_{\text{Voltages } \sin(\theta_{i} - \theta_{j})}$$
• Let columns of *C* be a basis for ker(*A*), let $p_{c} \in \mathbb{R}^{c}$

Semi-Explicit Solution

$$sin(A^{\mathsf{T}}\theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^{\mathsf{T}}\mathsf{L}^{\dagger}P + \mathsf{D}^{-1}Cp_c\right)$$

$$0 = C^{\mathsf{T}}arcsin(\psi)$$
Notation:

$$h_e(v) = \begin{cases} v_i v_j & \text{if } e = (i, j) \in \mathcal{E}^{\ell \ell} \\ v_j & \text{if } e = (i, j) \in \mathcal{E}^{g \ell} \\ 1 & \text{if } e = (i, j) \in \mathcal{E}^{g g} \end{cases}$$
Active Power:

$$P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j)$$

$$P = \underbrace{A}_{\text{Incidence Branch Stiff. Voltages } \text{sin}(A^{\mathsf{T}}\theta)} \underbrace{bin(A^{\mathsf{T}}\theta)}_{\text{Sin}(A^{\mathsf{T}}\theta)}$$

• Let columns of C be a basis for $\ker(A)$, let $p_c \in \mathbb{R}^c$

Semi-Explicit Solution

$$sin(A^{\mathsf{T}}\theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^{\mathsf{T}}\mathsf{L}^{\dagger}P + \mathsf{D}^{-1}Cp_c\right)$$

$$0 = C^{\mathsf{T}}arcsin(\psi)$$

Notation:

$$h_{e}(v) = \begin{cases} v_{i}v_{j} & \text{if } e = (i,j) \in \mathcal{E}^{\ell\ell} \\ v_{j} & \text{if } e = (i,j) \in \mathcal{E}^{g\ell} \\ 1 & \text{if } e = (i,j) \in \mathcal{E}^{gg} \end{cases}$$

$$Active Power:$$

$$P_{i} = \sum_{j} V_{i}V_{j}B_{ij}\sin(\theta_{i} - \theta_{j})$$

$$P = \underbrace{\mathcal{A}}_{\text{Incidence Branch Stiff. Voltages } \sin(\theta_{i} - \theta_{j})} \underbrace{[h(v)]}_{\text{Voltages } \sin(\theta_{i} - \theta_{j})}$$

• Let columns of C be a basis for $\ker(A)$, let $p_c \in \mathbb{R}^c$

Semi-Explicit Solution

$$sin(A^{\mathsf{T}}\theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^{\mathsf{T}}\mathsf{L}^{\dagger}P + \mathsf{D}^{-1}Cp_c\right)$$

$$0 = C^{\mathsf{T}}arcsin(\psi)$$

Notation:

$$h_{e}(v) = \begin{cases} v_{i}v_{j} & \text{if } e = (i,j) \in \mathcal{E}^{\ell\ell} \\ v_{j} & \text{if } e = (i,j) \in \mathcal{E}^{g\ell} \\ 1 & \text{if } e = (i,j) \in \mathcal{E}^{gg} \end{cases}$$

$$P = A \qquad D \qquad [h(v)] \sin(A^{T}\theta)$$

 $P = \underbrace{A}_{\text{Incidence Branch Stiff. Voltages}} \underbrace{D}_{\text{Voltages}} \underbrace{[h(v)]}_{\sin(\theta_i - \theta_j)} \underbrace{\sin(A^{+}\theta)}_{\sin(\theta_i - \theta_j)}$

• Let columns of C be a basis for $\ker(A)$, let $p_c \in \mathbb{R}^c$

Semi-Explicit Solution

$$sin(A^{\mathsf{T}}\theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^{\mathsf{T}}\mathsf{L}^{\dagger}P + \mathsf{D}^{-1}Cp_c\right)$$

$$0 = C^{\mathsf{T}}arcsin(\psi)$$

Notation:

$$h_{e}(v) = \begin{cases} v_{i}v_{j} & \text{if } e = (i,j) \in \mathcal{E}^{\ell\ell} \\ v_{j} & \text{if } e = (i,j) \in \mathcal{E}^{g\ell} \\ 1 & \text{if } e = (i,j) \in \mathcal{E}^{gg} \end{cases}$$

$$P_{i} = \sum_{j} V_{i}V_{j}B_{ij}\sin(\theta_{i} - \theta_{j})$$

$$P = \underbrace{A}_{i} \underbrace{D}_{i} \underbrace{h(v)}_{i} \underbrace{sin}(A^{T}\theta)$$

Incidence Branch Stiff. Voltages $sin(\theta_i - \theta_i)$

• Let columns of C be a basis for ker(A), let $p_c \in \mathbb{R}^c$

Semi-Explicit Solution

$$sin(A^{\mathsf{T}}\theta) = \psi(v, p_c) \triangleq [h(v)]^{-1} \left(A^{\mathsf{T}}\mathsf{L}^{\dagger}P + \mathsf{D}^{-1}Cp_c\right)$$

$$0 = C^{\mathsf{T}}arcsin(\psi)$$

Skipping some details

$$Q_L = -4[v]\mathsf{S}(v - \mathbb{1}_n) + |A|_L \mathsf{D}[h(v)](\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)).$$

• Rearrange for *v*

$$v = f(v, \theta) = \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} \mathsf{S}^{-1}[v]^{-1} |A|_L \mathsf{D}[h(v)] (\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)),$$

Skipping some details

$$Q_L = -4[v] \underbrace{\mathsf{S}}_{\text{Nodal stiff.}} (v - \mathbb{1}_n) + |A|_L \mathsf{D} [h(v)](\mathbb{1}_{|\mathcal{E}|} - \cos(A^{\mathsf{T}}\theta)).$$

• Rearrange for *v*

$$\begin{aligned} \mathbf{v} &= f(\mathbf{v}, \theta) = \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][\mathbf{v}]^{-1} \mathbb{1}_n \\ &+ \frac{1}{4} \mathsf{S}^{-1}[\mathbf{v}]^{-1} |A|_L \mathsf{D}\left[h(\mathbf{v})\right] \left(\mathbb{1}_{|\mathcal{E}|} - \cos(A^{\mathsf{T}}\theta)\right), \end{aligned}$$

Skipping some details

$$Q_L = -4[v]S(v - \mathbb{1}_n) + \underbrace{|A|_L}_{\text{Abs. Incidence BIk.}} D[h(v)](\mathbb{1}_{|\mathcal{E}|} - \cos(A^{\mathsf{T}}\theta)).$$

• Rearrange for v

$$\begin{aligned} \mathbf{v} &= f(\mathbf{v}, \theta) = \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][\mathbf{v}]^{-1} \mathbb{1}_n \\ &+ \frac{1}{4} \mathsf{S}^{-1}[\mathbf{v}]^{-1} |A|_L \mathsf{D}\left[h(\mathbf{v})\right] \left(\mathbb{1}_{|\mathcal{E}|} - \cos(A^{\mathsf{T}}\theta)\right), \end{aligned}$$

• Now plug in
$$\cos(z) = \sqrt{1 - \sin^2(z)!}$$

Skipping some details

$$Q_L = -4[v]\mathsf{S}(v - \mathbb{1}_n) + |A|_L \underbrace{\mathsf{D}}_{\text{Branch Stiff.}} [h(v)](\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)).$$

• Rearrange for *v*

$$\begin{aligned} \mathbf{v} &= f(\mathbf{v}, \theta) = \mathbb{1}_n - \frac{1}{4} \mathbf{S}^{-1}[Q_L][\mathbf{v}]^{-1} \mathbb{1}_n \\ &+ \frac{1}{4} \mathbf{S}^{-1}[\mathbf{v}]^{-1} |A|_L \mathbf{D} \left[h(\mathbf{v}) \right] \left(\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}} \theta) \right), \end{aligned}$$

Skipping some details

$$Q_L = -4[v]\mathsf{S}(v - \mathbb{1}_n) + |A|_L \mathsf{D}[h(v)](\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)).$$

• Rearrange for *v*

$$v = f(v, \theta) = \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} \mathsf{S}^{-1}[v]^{-1} |A|_L \mathsf{D}[h(v)] (\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)),$$

Skipping some details

$$Q_L = -4[v]\mathsf{S}(v - \mathbb{1}_n) + |A|_L \mathsf{D}[h(v)](\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)).$$

• Rearrange for v

$$v = f(v, \theta) = \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} \mathsf{S}^{-1}[v]^{-1} |A|_L \mathsf{D}[h(v)] (\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)),$$

Skipping some details

$$Q_L = -4[v]\mathsf{S}(v - \mathbb{1}_n) + |A|_L \mathsf{D}[h(v)](\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)).$$

• Rearrange for v

$$\begin{aligned} \mathbf{v} &= f(\mathbf{v}, \theta) = \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][\mathbf{v}]^{-1} \mathbb{1}_n \\ &+ \frac{1}{4} \mathsf{S}^{-1}[\mathbf{v}]^{-1} |A|_L \mathsf{D}\left[h(\mathbf{v})\right] \left(\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^\mathsf{T}\theta)\right), \end{aligned}$$

Skipping some details

$$Q_L = -4[v]\mathsf{S}(v - \mathbb{1}_n) + |A|_L \mathsf{D}[h(v)](\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^{\mathsf{T}}\theta)).$$

• Rearrange for v

$$\begin{aligned} \mathbf{v} &= f(\mathbf{v}, \theta) = \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][\mathbf{v}]^{-1} \mathbb{1}_n \\ &+ \frac{1}{4} \mathsf{S}^{-1}[\mathbf{v}]^{-1} |A|_L \mathsf{D}\left[h(\mathbf{v})\right] \left(\mathbb{1}_{|\mathcal{E}|} - \mathbf{cos}(A^\mathsf{T}\theta)\right), \end{aligned}$$

 $(\theta, V_L) \text{ is a power flow solution iff } (v, p_c) \text{ solves the FPPF}$ $v = f(v, p_c) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n$ $+ \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v, p_c),$ $\mathbb{0}_c = C^{\mathsf{T}} \operatorname{arcsin}(\psi(v, p_c)).$

where

$$\begin{split} u(v, p_c) &\triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi} \\ \psi(v, p_c) &= [h(v)]^{-1} \left(A^{\mathsf{T}} \mathsf{L}^{\dagger} P + \mathsf{D}^{-1} C p_c \right) \,, \end{split}$$

 (θ, V_L) is a power flow solution iff (v, p_c) solves the FPPF $v = f(v, p_c) \triangleq \mathbb{1}_n - \frac{1}{4}S^{-1}[Q_L][v]^{-1}\mathbb{1}_n$ $+ \frac{1}{4}S^{-1}[v]^{-1}|A|_L D[h(v)] u(v, p_c),$ $\mathbb{O}_c = C^{\mathsf{T}} \arcsin(\psi(v, p_c)).$

where

$$\begin{split} u(v, p_c) &\triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi} \\ \psi(v, p_c) &= [h(v)]^{-1} \left(A^{\mathsf{T}} \mathsf{L}^{\dagger} P + \mathsf{D}^{-1} C p_c \right) \,, \end{split}$$

 $\begin{aligned} (\theta, V_L) \text{ is a power flow solution iff } (v, p_c) \text{ solves the FPPF} \\ v &= f(v, p_c) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n \\ &\quad + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v, p_c), \end{aligned}$ $\mathcal{O}_c &= \mathcal{C}^{\top} \arcsin(\psi(v, p_c)). \end{aligned}$

where

$$\begin{split} u(v, p_c) &\triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi} \\ \psi(v, p_c) &= [h(v)]^{-1} \left(A^{\mathsf{T}} \mathsf{L}^{\dagger} P + \mathsf{D}^{-1} C p_c \right) \,, \end{split}$$

 $\begin{aligned} (\theta, V_L) \text{ is a power flow solution iff } (v, p_c) \text{ solves the FPPF} \\ v &= f(v, p_c) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n \\ &\quad + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v, p_c), \end{aligned}$ $\mathcal{O}_c &= \mathcal{C}^{\top} \arcsin(\psi(v, p_c)). \end{aligned}$

where

$$\begin{split} u(\mathbf{v}, \mathbf{p}_c) &\triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi] \psi} \\ \psi(\mathbf{v}, \mathbf{p}_c) &= [h(\mathbf{v})]^{-1} \left(A^{\mathsf{T}} \mathsf{L}^{\dagger} P + \mathsf{D}^{-1} C \mathsf{p}_c \right) \,, \end{split}$$

with the phase angles $A^{\mathsf{T}}\theta = \arcsin(\psi)$.

 $\begin{aligned} (\theta, V_L) \text{ is a power flow solution iff } (v, p_c) \text{ solves the FPPF} \\ v &= f(v, p_c) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n \\ &\quad + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v, p_c), \end{aligned}$ $\mathbb{O}_c &= C^{\top} \arcsin(\psi(v, p_c)). \end{aligned}$

where

$$\begin{split} u(v, p_c) &\triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi} \\ \psi(v, p_c) &= [h(v)]^{-1} \left(A^{\mathsf{T}} \mathsf{L}^{\dagger} P + \mathsf{D}^{-1} C p_c \right) \,, \end{split}$$

 (θ, V_L) is a power flow solution iff (v, p_c) solves the FPPF

$$\begin{aligned} \mathbf{v} &= f(\mathbf{v}, p_c) \triangleq \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][\mathbf{v}]^{-1} \mathbb{1}_n \\ &+ \frac{1}{4} \mathsf{S}^{-1}[\mathbf{v}]^{-1} |A|_L \mathsf{D}[h(\mathbf{v})] \, u(\mathbf{v}, p_c) \,, \end{aligned}$$
$$\begin{aligned} \mathbb{D}_c &= C^\mathsf{T} \mathrm{arcsin}(\psi(\mathbf{v}, p_c)) \,. \end{aligned}$$

where

$$\begin{split} u(v, p_c) &\triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi} \\ \psi(v, p_c) &= [h(v)]^{-1} \left(A^{\mathsf{T}} \mathsf{L}^{\dagger} P + \mathsf{D}^{-1} C p_c \right) \,, \end{split}$$

 (θ, V_L) is a power flow solution iff (v, p_c) solves the FPPF

$$\begin{aligned} \mathbf{v} &= f(\mathbf{v}, p_c) \triangleq \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][\mathbf{v}]^{-1} \mathbb{1}_n \\ &+ \frac{1}{4} \mathsf{S}^{-1}[\mathbf{v}]^{-1} |A|_L \mathsf{D}[h(\mathbf{v})] \, u(\mathbf{v}, p_c) \,, \end{aligned}$$
$$\begin{aligned} \mathbb{D}_c &= C^\mathsf{T} \mathrm{arcsin}(\psi(\mathbf{v}, p_c)) \,. \end{aligned}$$

where

$$\begin{split} u(\mathbf{v}, \mathbf{p}_c) &\triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi] \psi} \\ \psi(\mathbf{v}, \mathbf{p}_c) &= [h(\mathbf{v})]^{-1} \left(A^{\mathsf{T}} \mathsf{L}^{\dagger} P + \mathsf{D}^{-1} C \mathsf{p}_c \right) \,, \end{split}$$

with the phase angles $A^{\mathsf{T}}\theta = \arcsin(\psi)$.

 (θ, V_L) is a power flow solution iff (v, p_c) solves the FPPF

$$\begin{aligned} \mathbf{v} &= f(\mathbf{v}, p_c) \triangleq \mathbb{1}_n - \frac{1}{4} \mathbf{S}^{-1}[Q_L][\mathbf{v}]^{-1} \mathbb{1}_n \\ &+ \frac{1}{4} \mathbf{S}^{-1}[\mathbf{v}]^{-1} |A|_L \mathbf{D}[h(\mathbf{v})] u(\mathbf{v}, p_c), \end{aligned}$$
$$\mathbf{D}_c &= C^{\mathsf{T}} \operatorname{arcsin}(\psi(\mathbf{v}, p_c)). \end{aligned}$$

where

$$\begin{split} u(\mathbf{v}, \mathbf{p}_c) &\triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi} \\ \psi(\mathbf{v}, \mathbf{p}_c) &= [h(\mathbf{v})]^{-1} \left(A^{\mathsf{T}} \mathsf{L}^{\dagger} P + \mathsf{D}^{-1} C \mathsf{p}_c \right) \,, \end{split}$$

with the phase angles $A^{\mathsf{T}}\theta = \arcsin(\psi)$.

• The model says $v = f(v, p_c)$, and $sin(A^T \theta) = \psi(v, p_c)$.

• By construction, when $P = Q_L = 0$, a solution is

$$v = \mathbb{1}_n, \quad p_c = \mathbb{O}_c, \quad A^{\mathsf{T}}\theta = \mathbb{O}_{|\mathcal{E}|}.$$

$$\begin{aligned} A^{\mathsf{T}}\theta_{\mathrm{approx}} &= A^{\mathsf{T}}L^{\dagger}P\\ v_{\mathrm{approx}} &\simeq \mathbb{1}_{n} - \frac{1}{4}\mathsf{S}^{-1}Q_{L} + \frac{1}{8}\mathsf{S}^{-1}|A|_{L}\mathsf{D}[A^{\mathsf{T}}\mathsf{L}^{\dagger}P]A^{\mathsf{T}}\mathsf{L}^{\dagger}P\\ \rho_{\mathrm{c,approx}} &= 0 \end{aligned}$$

- The model says $v = f(v, p_c)$, and $\sin(A^{\mathsf{T}}\theta) = \psi(v, p_c)$.
- By construction, when $P = Q_L = 0$, a solution is

$$v = \mathbb{1}_n, \quad p_c = \mathbb{O}_c, \quad A^{\mathsf{T}}\theta = \mathbb{O}_{|\mathcal{E}|}.$$

$$\begin{aligned} A^{\mathsf{T}}\theta_{\mathrm{approx}} &= A^{\mathsf{T}}L^{\dagger}P\\ v_{\mathrm{approx}} &\simeq \mathbb{1}_{n} - \frac{1}{4}\mathsf{S}^{-1}Q_{L} + \frac{1}{8}\mathsf{S}^{-1}|A|_{L}\mathsf{D}[A^{\mathsf{T}}\mathsf{L}^{\dagger}P]A^{\mathsf{T}}\mathsf{L}^{\dagger}P\\ \rho_{\mathrm{c,approx}} &= 0 \end{aligned}$$

- The model says $v = f(v, p_c)$, and $sin(A^T \theta) = \psi(v, p_c)$.
- By construction, when $P = Q_L = 0$, a solution is

$$v = \mathbb{1}_n, \quad p_c = \mathbb{O}_c, \quad A^{\mathsf{T}}\theta = \mathbb{O}_{|\mathcal{E}|}.$$

$$A^{\mathsf{T}}\theta_{\mathrm{approx}} = A^{\mathsf{T}}L^{\dagger}P$$
$$v_{\mathrm{approx}} \simeq \mathbb{1}_{n} - \frac{1}{4}\mathsf{S}^{-1}Q_{L} + \frac{1}{8}\mathsf{S}^{-1}|A|_{L}\mathsf{D}[A^{\mathsf{T}}\mathsf{L}^{\dagger}P]A^{\mathsf{T}}\mathsf{L}^{\dagger}P$$
$$p_{c,\mathrm{approx}} = 0$$

- The model says $v = f(v, p_c)$, and $sin(A^T \theta) = \psi(v, p_c)$.
- By construction, when $P = Q_L = 0$, a solution is

$$v = \mathbb{1}_n, \quad p_c = \mathbb{O}_c, \quad A^{\mathsf{T}}\theta = \mathbb{O}_{|\mathcal{E}|}.$$

$$\begin{aligned} A^{\mathsf{T}}\theta_{\mathrm{approx}} &= A^{\mathsf{T}}L^{\dagger}P \\ v_{\mathrm{approx}} &\simeq \mathbb{1}_{n} - \frac{1}{4}\mathsf{S}^{-1}Q_{L} + \frac{1}{8}\mathsf{S}^{-1}|A|_{L}\mathsf{D}[A^{\mathsf{T}}\mathsf{L}^{\dagger}P]A^{\mathsf{T}}\mathsf{L}^{\dagger}P \\ p_{c,\mathrm{approx}} &= \mathbb{0} \end{aligned}$$

$$A^{\mathsf{T}}\theta_{\mathrm{approx}} = A^{\mathsf{T}}L^{\dagger}P$$

$$v_{\mathrm{approx}} \simeq \mathbb{1}_{n} - \frac{1}{4}S^{-1}Q_{L} + \frac{1}{8}S^{-1}|A|_{L}D[A^{\mathsf{T}}L^{\dagger}P]A^{\mathsf{T}}L^{\dagger}P$$

$$A^{\mathsf{T}}\theta_{\mathrm{approx}} = A^{\mathsf{T}}L^{\dagger}P$$
$$v_{\mathrm{approx}} \simeq \mathbb{1}_{n} - \frac{1}{4}\mathsf{S}^{-1}Q_{L} + \frac{1}{8}\mathsf{S}^{-1}|A|_{L}\mathsf{D}[A^{\mathsf{T}}\mathsf{L}^{\dagger}P]A^{\mathsf{T}}\mathsf{L}^{\dagger}P$$

Numerical results I

$$\delta_{\max} = \| \mathbf{v} - \mathbf{v}_{approx} \|_{\infty}, \quad \delta_{avg} = \frac{1}{n} \| \mathbf{v} - \mathbf{v}_{approx} \|_{1}$$

	Base Load			High Load	
Tost Casa	FPPF	$\delta_{ m max}$	δ_{avg}	FPPF	$\delta_{ m max}$
Test Case	Iters.	(p.u.)	(p.u.)	Iters.	(p.u.)
New England 39	4	0.006	0.004	8	0.086
57 bus system	5	0.011	0.003	8	0.118
RTS '96 (3 area)	4	0.003	0.001	8	0.084
118 bus system	3	0.001	0.000	7	0.054
300 bus system	6	0.022	0.004	8	0.059
PEGASE 1,354	5	0.011	0.001	8	0.070
Polish 2,383 wp	4	0.003	0.000	8	0.078
PEGASE 2,869	5	0.015	0.002	8	0.098
PEGASE 9,241	6	0.063	0.003	9	0.133

Numerical results II – convergence rates

• IEEE 300 bus system under heavy loading

Numerical results III - sensitivity to initialization

- perturb voltage magnitude initialization randomly
- IEEE 118 bus system, base case

IC Spread (α)	NR	FDLF	FPPF
0.05	0.98	0.98	1.00
0.10	0.53	0.53	1.00
0.15	0.18	0.18	1.00
0.2	0.03	0.03	1.00
0.3	0.00	0.00	1.00
0.5	0.00	0.00	1.00
0.7	0.00	0.00	0.99
0.9	0.00	0.00	0.99

• extreme insensitivity to initialization (contraction)

 (θ, V_L) is a power flow solution iff v is a fixed point of

 (θ, V_L) is a power flow solution iff v is a fixed point of $\boldsymbol{f}(\boldsymbol{v}) \triangleq \mathbb{1}_n - \frac{1}{4} \mathsf{S}^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} \mathsf{S}^{-1}[v]^{-1} |A|_L \mathsf{D}[h(v)] u(v) ,$

 (θ, V_L) is a power flow solution iff v is a fixed point of $f(v) \triangleq \mathbb{1}_n - \frac{1}{4}S^{-1}[Q_L][v]^{-1}\mathbb{1}_n + \frac{1}{4}S^{-1}[v]^{-1}|A|_L D[h(v)]u(v)$, where

$$u(v) \triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi}$$

$$\psi(v) = [h(v)]^{-1} \mathsf{D}^{-1} p$$

$$p = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} P$$

 (θ, V_L) is a power flow solution iff v is a fixed point of $f(v) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v)$,

where

$$u(\mathbf{v}) \triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi}$$

$$\psi(\mathbf{v}) = [h(\mathbf{v})]^{-1} \mathbb{D}^{-1} p$$

$$p = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} P$$

with the phase angles ${\sf A}^{\sf T} heta={\sf arcsin}(\psi)$.

 (θ, V_L) is a power flow solution iff v is a fixed point of $f(v) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v)$,

where

$$u(\mathbf{v}) \triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi}$$

$$\psi(\mathbf{v}) = [h(\mathbf{v})]^{-1} \mathsf{D}^{-1} p$$

$$p = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} P$$

 (θ, V_L) is a power flow solution iff v is a fixed point of $f(v) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v)$,

where

$$u(\mathbf{v}) \triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi}$$

$$\psi(\mathbf{v}) = [h(\mathbf{v})]^{-1}\mathsf{D}^{-1}p$$

$$p = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}P$$

 (θ, V_L) is a power flow solution iff v is a fixed point of $f(v) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v)$,

where

$$u(\mathbf{v}) \triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi}$$

$$\psi(\mathbf{v}) = [h(\mathbf{v})]^{-1} \mathbb{D}^{-1} p$$

$$p = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} P$$
Fixed-Point Power Flow: Radial Networks

 (θ, V_L) is a power flow solution iff v is a fixed point of $f(v) \triangleq \mathbb{1}_n - \frac{1}{4} S^{-1}[Q_L][v]^{-1} \mathbb{1}_n + \frac{1}{4} S^{-1}[v]^{-1} |A|_L D[h(v)] u(v)$,

where

$$u(\mathbf{v}) \triangleq \mathbb{1} - \sqrt{\mathbb{1} - [\psi]\psi}$$

$$\psi(\mathbf{v}) = [h(\mathbf{v})]^{-1} \mathsf{D}^{-1} p$$

$$p = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} P$$

with the phase angles $A^{\mathsf{T}}\theta = \operatorname{arcsin}(\psi)$.

On what invariant set is *f* a **contraction**?

PQ buses have one PV bus neighbor

 $\begin{array}{l} {\sf Sufficient} + {\sf Necessary} \\ {\sf Existence} + {\sf Uniqueness} \end{array}$

PQ buses have one PV bus neighbor

 $\begin{array}{l} {\sf Sufficient} + {\sf Necessary} \\ {\sf Existence} + {\sf Uniqueness} \end{array}$

PQ buses have many PV bus neighbors

Sufficient + Tight Existence + Uniqueness

PQ buses have one PV bus neighbor

 $\begin{array}{l} {\sf Sufficient} + {\sf Necessary} \\ {\sf Existence} + {\sf Uniqueness} \end{array}$

PQ buses have many PV bus neighbors

 $\begin{array}{l} {\sf Sufficient} + {\sf Tight} \\ {\sf Existence} + {\sf Uniqueness} \end{array}$

General interconnections

Sufficient Existence

1

 $\max_{i\in\mathcal{N}_L} \ \Delta_i + 4\Gamma_i^2 < 1$ $\max_{(i,j)\in\mathcal{E}^{gg}}\Gamma_{ij}<1\,,$

$$\mathsf{v}_{i,\pm} \triangleq \sqrt{rac{1}{2} \left(1 - rac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

 $egin{array}{l} \max_{i\in\mathcal{N}_L} \;\; \Delta_i + 4 \Gamma_i^2 < 1 \ & \ \max_{(i,j)\in\mathcal{E}^{\mathcal{B}\mathcal{B}}} \Gamma_{ij} < 1 \,, \end{array}$

$$\mathsf{v}_{i,\pm} \triangleq \sqrt{rac{1}{2} \left(1 - rac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

$$\mathsf{v}_{i,\pm} \triangleq \sqrt{rac{1}{2} \left(1 - rac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

$$\mathbf{v}_{i,\pm} \triangleq \sqrt{rac{1}{2} \left(1 - rac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

$$\mathbf{v}_{i,\pm} \triangleq \sqrt{rac{1}{2} \left(1 - rac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

$$\mathsf{v}_{i,\pm} \triangleq \sqrt{rac{1}{2} \left(1 - rac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

$$\mathbf{v}_{i,\pm} \triangleq \sqrt{rac{1}{2} \left(1 - rac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

$$v_{i,\pm} riangleq \sqrt{rac{1}{2}\left(1-rac{\Delta_i}{2}\pm\sqrt{1-(\Delta_i+4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

$$egin{array}{l} \max_{i \in \mathcal{N}_L} \;\; \Delta_i + 4 {\sf \Gamma}_i^2 < 1 \ & \ \max_{(i,j) \in \mathcal{E}^{\scriptscriptstyle {
m SS}}} {\sf \Gamma}_{ij} < 1 \,, \end{array}$$

$$\mathsf{v}_{i,\pm} riangleq \sqrt{rac{1}{2} \left(1 - rac{\Delta_i}{2} \pm \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}
ight)}$$

$$v_{i,+}^2 - v_{i,-}^2 = \sqrt{1 - (\Delta_i + 4\Gamma_i^2)}$$
.

Summary

Framework for studying Lossless Power Flow:

- Fixed-Point Power Flow
- Approximate solution

A Theory of Solvability for Lossless Power Flow Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE

- New conditions for power flow solvability:
- Ontractive iteration
- Existence/uniqueness
- 6 Generalizes known results
- What's unresolved?
- Lossless meshed case
- Output: Content of the second seco

Summary

Framework for studying Lossless Power Flow:

- Fixed-Point Power Flow
- Approximate solution

A Theory of Solvability for Lossless Power Flow Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE

New conditions for power flow solvability:

- Ontractive iteration
- Existence/uniqueness
- **o** Generalizes known results

What's unresolved?

- Lossless meshed case
- 2 Lossy meshed case; algorithms in Chen & JWSP 2022, but theory is hard

A Theory of Solvability for Lossless Power Flow Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member, IEEE

Summary

Framework for studying Lossless Power Flow:

- Fixed-Point Power Flow
- 2 Approximate solution

A Theory of Solvability for Lossless Power Flow Equations — Part I: Fixed-Point Power Flow

John W. Simpson-Porco, Member, IEEE

New conditions for power flow solvability:

- Ontractive iteration
- Existence/uniqueness
- **o** Generalizes known results

A Theory of Solvability for Lossless Power Flow Equations — Part II: Existence and Uniqueness

John W. Simpson-Porco, Member, IEEE

What's unresolved?

- Lossless meshed case
- Lossy meshed case; algorithms in Chen & JWSP 2022, but theory is hard

Final Thoughts

- Power engineers have incredible intuitive insight into how the grid works; put in the effort to work with them.
- Opportunity to embed practitioner knowledge and intuition within advanced optimization methods like moment-SOS hierarchy
- Oecades of literature on power flow theory, lots of important insights, still many poorly understood aspects

Final Thoughts

- Power engineers have incredible intuitive insight into how the grid works; put in the effort to work with them.
- Opportunity to embed practitioner knowledge and intuition within advanced optimization methods like moment-SOS hierarchy
- Oecades of literature on power flow theory, lots of important insights, still many poorly understood aspects

Final Thoughts

- Power engineers have incredible intuitive insight into how the grid works; put in the effort to work with them.
- Opportunity to embed practitioner knowledge and intuition within advanced optimization methods like moment-SOS hierarchy
- Oecades of literature on power flow theory, lots of important insights, still many poorly understood aspects

Questions

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

https://www.control.utoronto.ca/~jwsimpson/ jwsimpson@ece.utoronto.ca