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3.3. Paths and connectivity in digraphs 37

(a) A periodic digraph with period 2 (b) An aperiodic digraph with cycles of
length 1 and 2.

(c) An aperiodic digraph with cycles of
length 2 and 3.

Figure 3.6: Example periodic and aperiodic digraphs.

3.3.3 Condensation digraphs

[Strongly connected components] A subgraph H is a strongly connected component of G if H is strongly connected
and any other subgraph of G strictly containing H is not strongly connected.

[Condensation digraph] The condensation digraph of a digraph G, denoted by C(G), is de�ned as follows: the nodes
of C(G) are the strongly connected components of G, and there exists a directed edge in C(G) from node H1 to
node H2 if and only if there exists a directed edge in G from a node of H1 to a node of H2. The condensation
digraph has no self-loops. This construction is illustrated in Figure 3.7.

(a) An example digraph G (b) The strongly connected components of the di-
graph G

(c) The condensation di-
graph C(G)

Figure 3.7: An example digraph, its strongly connected components and its condensation digraph.

Lemma 3.2 (Properties of the condensation digraph). For a digraph G and its condensation digraph C(G),

(i) C(G) is acyclic,

(ii) G is weakly connected if and only if C(G) is weakly connected, and

(iii) the following statement are equivalent:

a) G contains a globally reachable node,

b) C(G) contains a globally reachable node, and

c) C(G) contains a unique sink.
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The 20th Century Bulk Power System is Changing
A control engineer’s view . . .

Classical paradigm Modern trend

Generation Bulk, centralized Small-scale, distrib.

Energy interface Sync. generators Power electronics

Net load uncertainty Low Renewable-driven

Information Centralized Distributed

Sensors/Actuators Low-bandwidth High-bandwidth
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Grid Modernization Design Spec’s for Control Engineers
Control engineer’s #1 goal: make things reliably boring!

1 Coordinated Control of Many (Heterogeneous) Resources

Real-time system optimization w/ performance guarantees

Scalability to thousands of sensors/actuators

2 Grid Architecture (sensors/actuators/IT/algorithms/CPS)

Hierarchical layering across spatial and temporal scales

Prefer localized use of measurements (min. latency)

3 Practical Constraints in Power Engineering

Seamless integration with legacy systems

Simple, and congruent w/ established power eng. principles
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Example #1: Voltage Regulation in PV-Heavy Feeders

Grid Model: v = π(u,w)

• u = controllable power

• w = uncontrollable power

minimize
u∈{Limits}

∥u − unom∥22

subject to v ∈ [0.95, 1.05]

Want: Online control, robust w.r.t. grid model π
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Example #2: Coordinated Voltage Control in Bulk Grid

Control resources:

Generators: v refg −→ qg

SVC’s: v refs −→ qs

Inverters: qrefi −→ qi

u = vector of references

q = vector of power outputs

Model:
ẋ = f (x , u,w)

(v , q) = h(x , u,w)

minimize
u∈{Limits}

∥q − qnom∥22

subject to v ∈ [0.95, 1.05]

q ∈ [qmin, qmax]
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ẋ = f (x , u,w)

(v , q) = h(x , u,w)

minimize
u∈{Limits}

∥q − qnom∥22

subject to v ∈ [0.95, 1.05]

q ∈ [qmin, qmax]

6 / 41



Example #2: Coordinated Voltage Control in Bulk Grid

Control resources:

Generators: v refg −→ qg

SVC’s: v refs −→ qs

Inverters: qrefi −→ qi

u = vector of references

q = vector of power outputs

Model:
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Example #3: Secondary Frequency Control in Bulk Grid

nominal frequency

ROCOF (max rate of change of frequency)

frequency nadir

restoration time

secondary control

inertial 

response
primary control

inter-area 

oscillations

f

Centralized secondary (integral) control drives ∆ω → 0

Power
System

{Ps
i }

P load
i

{∆ωi}
minimize
Ps
i ∈{limits}

∑n

i=1
Ci (P

s
i )

subject to ∆ωi = 0

(System dynamics)

Want: Fast resource-allocating control loops (architecture?)
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Offline vs. Online Optimization

System
Set-Points Outputs

Disturbances

Goal: Real-time regulation of
system to an optimal

constrained operating point.

Example: Optimal dispatch of generation in AC electric power systems,
subject to frequency and voltage regulation constraints.

Offline Optimization

System
Set-Points

Disturbances

Model-Based
Optimal Scheduling

Outputs

Online Optimization

System
Set-Points

Disturbances

Optimizing
Controller

Outputs
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Framework #1

“The optimization algorithm approach”

Key Ingredients: Convex analysis/opt, robust control.

1 IEEE CDC: “Towards robustness guarantees for feedback-based
optimization”

2 IEEE TPWRS: “Measurement-Based Fast Coordinated Voltage
Control for Transmission Grids . . . ”

3 IEEE CSS-L: “Low-Gain Stability of Projected Integral Control for

Input-Constrained Discrete-Time Nonlinear Systems”
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Feedback-Based Optimization of Memoryless Systems

π(uk ,wk)
uk yk

wk
• System π uncertain

• Disturbance w unmeasured

• Output y measured

(pk , qk) vk

Psolar
k

minimize
u∈U

f (u) + g(y)

subject to y = π(u,w)

Sample Assumptions:

U is closed convex

π is C 1 in u

f , g are C 2 cvx, Lipschitz ∇
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Feedback-Based Optimization of Memoryless Systems
The key steps on one slide.

minimize
u∈U

f (u) + g(y)

subject to y = π(u,w)
=⇒ minimize

u∈U
f (u) + g(π(u,w))

Offline Projected Gradient Descent:

uk+1 = ProjU
{
uk − α

(
∇f (uk) + ∂π(uk ,wk)

T∇g(π(uk ,wk))
)}

Approximate Offline Projected Gradient Descent:

uk+1 = ProjU
{
uk − α

(
∇f (uk) +ΠT∇g(π(uk ,wk))

)}
Approximate Online Projected Gradient Descent:

uk+1 = ProjU
{
uk − α

(
∇f (uk) +ΠT∇g(yk)

)}
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Example #2: Voltage Regulation in PV-Heavy Feeders

Punchline: Maintains voltage in limits, minimizes PV
curtailment, provably robust to large model variations

(pk , qk) vk

Psolar
k

C
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Convergence of Approx. Gradient Descent

uk+1 = ProjU
{
uk − αFw (uk)

}
Fw (uk) = ∇f (uk) +ΠT∇g(π(uk ,wk))

Theorem from VI Literature: Suppose
that Fw is ρ-strongly monotone and L-
Lipschitz continuous w.r.t. inner product
⟨x , y⟩P = xTPy with P ≻ 0. Then

α <
2ρ

L2
=⇒ Global exp. convergence

Problem: Fw (u) is uncertain. How can we
systematically check if Fw satisfies these assumptions?
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Convergence of Approx. Gradient Descent

Mapping: Fw (u) = ∇f (u) +ΠT∇g(π(u,w))

Jacobian: ∂Fw (u) = ∇2f (u) +ΠT∇2g(π(u,w))∂π(u,w)

Proposition: Given P ≻ 0, equivalent statements:

1 Fw is ρ-strongly mono. and L-Lipschitz w.r.t ⟨·, ·⟩P on U
2 the following matrix inequality holds:[
∂Fw (u)

I

]T([
2 −(ρ+ L)

−(ρ+ L) 2ρL

]
︸ ︷︷ ︸

:=Xρ,L

⊗P

)[
∂Fw (u)

I

]
⪯ 0, ∀ u ∈ U .

This didn’t seem to help. Robust control to the rescue!

Idea: Overbound the set ∂Fw (U) by a simpler set J !
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Robust Analysis for Approx. Gradient Descent

Robust Strong Monotonicity and Lipschitzness: Suppose we
have a set J of matrices such that ∂Fw (u) ⊆ J for all u ∈ U .
Then Fw (u) is ρ-strongly monotone and L-Lipschitz if[

J
I

]T
(Xρ,L ⊗ P)

[
J
I

]
⪯ 0, ∀ J ∈ J .

For some (very practical) types of sets J , this is tractable.

Linear Fractional Uncertainty

J = {A+ B∆(I − D∆)−1C : ∆ ∈ ∆}[
q
p

]T
Θ

[
q
p

]
≥ 0 ∀Θ ∈ Θ.

A B

C D

∆

q p

ηξ
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Robust Analysis of Approx. Grad Descent

∂Fw (u) = ∇2f (u) +ΠT∇2g(π(u,w))∂π(u,w)

Example: Suppose we had

• ∂π(u,w) ∈ {Π+∆π : ∥∆π∥2 ≤ γ}

∂Fw (u) ⊆ J =
{
∆f +ΠT∆g (Π+∆π)

∥∆π∥ ≤ γ,mf ⪯ ∆f ⪯ Lf , 0 ⪯ ∆g ⪯ Lg
}

A B

C D(
∆π

∆f
∆g

)q p

ηξ

Main Analysis SDP: Any map Fw with ∂Fw (u) ⊆ J is
ρ-strongly monotone and L-Lipschitz if ∃P ≻ 0,Θ ∈ Θ s.t.[
A B(Π)
I 0

]T
(Xρ,L⊗P)

[
A B(Π)
I 0

]
+

[
C D
0 I

]T
Θ

[
C D
0 I

]
⪯ 0.
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• ∂π(u,w) ∈ {Π+∆π : ∥∆π∥2 ≤ γ}

∂Fw (u) ⊆ J =
{
∆f +ΠT∆g (Π+∆π)

∥∆π∥ ≤ γ,mf ⪯ ∆f ⪯ Lf , 0 ⪯ ∆g ⪯ Lg
}

A B

C D(
∆π

∆f
∆g

)q p

ηξ

Main Analysis SDP: Any map Fw with ∂Fw (u) ⊆ J is
ρ-strongly monotone and L-Lipschitz if ∃P ≻ 0,Θ ∈ Θ s.t.[
A B(Π)
I 0

]T
(Xρ,L⊗P)

[
A B(Π)
I 0

]
+

[
C D
0 I

]T
Θ

[
C D
0 I

]
⪯ 0.
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Example #1: Voltage Regulation in PV-Heavy Feeders

minimize
(pi ,qi )∈Ci

∥ ( pq )−
(
p⋆

0

)
∥22︸ ︷︷ ︸

curtailment

+ γ
∑m

i=1
max(0, v i − vi , vi − v i )

2︸ ︷︷ ︸
Soft voltage constraint

subject to v = π(p, q,w) = PowerFlow(p, q,w)

Replace ∂π with any linearization Πnom of power flow equations

Model uncertainty via norm-bound from nominal Jacobian

∂π(u,w) ∈ {Πnom +∆ : ∥∆∥2 ≤ γ}.
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Provably Stable Coordinated Voltage Control

18 / 41



Example #2: Coordinated Voltage Control in Bulk Grid

minimize
v ref
g ,v ref

s ,qrefi

Cost(qg , qs , qi ) + Penalty(v) + Penalty(qg , qs)

subject to (qg , qs , v) = π(v refg , v refs , qrefi , Load)

(v refg , v refs , qrefi ) ∈ {Limits}
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Outlook for Theory of Feedback-Based Optimization

1 Enhanced transient performance via, e.g., loop shaping:

uk+1 = ProjU

{
uk − α

(
∇f (uk) + ΠT∇g(yk)

)
− ΓT(yk − yk−1)

}
2 Synthesis of Π for given information structure

minimize
Π,Θ

∥Π− Πnom∥

subject to Π ∈ Π[
A B(Π)
I 0

]T

(Xρ,L ⊗ P)

[
A B(Π)
I 0

]
+

[
C D
0 I

]T

Θ

[
C D
0 I

]
⪯ 0.

3 Gain-scheduling synthesis of Π

4 Hard output constraints via primal-dual

5 Learn gains Π online subject to robust stability constraints
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Framework #2

“The control-theoretic approach”

Key Ingredients: Tracking and regulation, convex opt.

1 IEEE TAC: “Linear-Convex Optimal Steady-State Control”

2 IEEE TAC: “Analysis and Synthesis of Low-Gain Integral Controllers
for Nonlinear Systems”

3 IEEE CDC: “Low-Gain Stabilizers for Linear-Convex Optimal

Steady-State Control”
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Theory of Tracking and Regulation for LTI Systems

Servo Stabilizer LTI Plant
η ur e y

−

w

Our goal: incorporate optimality and constraints.
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Optimal Steady-State Control

Optimality
Model

Integral
Ctrl.

Stabilizer Plant
e η u z

µ
w

Classical LTI output
regulation fused with

optimization.

Dynamic optimality model encodes KKT conditions

Integral control regulates KKT error to zero; stabilizer stabilizes

Today: The important case of exponentially stable LTI plants.
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OSS Control Problem Setup

ẋ = Ax + Bu + Bww

z = Cx + Du + Dww

u z

w

▶ A Hurwitz, w constant

▶ Gu ≜ −CA−1B + D

▶ Gw ≜ −CA−1Bw + Dw

Equilibrium I/O Map: z̄ = Guū + Gww

minimize
ū

f0(ū) + g0(z̄) (steady-state objective)

subject to z̄ = Guū + Gw w̄ (steady-state physics)

0 = Hzz + Huu + Hww (design constraints)

f0 : U → R convex, diff.
g0 : Z → R convex, diff.

strictly feasible, ∃ opt. solution

z and Hzz + Huu + Hww
measured

HzGu + Hu full row rank
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Optimality Models for OSS Control

An optimality model filters measurements to produce a proxy error ϵ
quantifying the KKT violation

Plant Optimality Model
u

w

z ϵ

µ = OM state

Steady-state requirement: if the plant and optimality model
are both in equilibrium and ϵ = 0, then z = z⋆(w).

“Internal Model” Interpretation: The loop gain
incorporates a model of the optimal solution set
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From OSS Control to Regulator Problem
Optimality model reduces OSS control to regulator/servomechanism problem

Optimality
Model

Integral
Ctrl.

Stabilizer Plant
ϵ η uz z

+

w = Const.

Optimality Model: creates proxy error signal ϵ

Integral Control: integrates ϵ

Stabilizing Controller: stabilizes the cascade

Theorem: Closed-Loop Stability =⇒ z(t) → z⋆(w)
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Sanity Check: Existence of Stabilizer for Quadratic Obj.

Optimality
Model

Integral
Ctrl.

Stabilizer Plant
ϵ η uz z

+

w = Const.

Convex quadratic objective [ zu ]
TQ [ zu ] + cT [ zu ]

Plant→OM→Integrator cascade is stabilizable/detectable ⇐⇒
1 plant stabilizable/detectable;

2 optimization problem has a unique solution;

3 HzGu + Hu full row rank;

4 full rank conditions on optimality model.
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Examples of Optimality Models

minimize
ū

f0(ū) + g0(z̄)

subject to z̄ = Gu ū + Gw w̄

0 = Hzz + Huu + Hww

Optimality
Model

Integral
Ctrl.

Stabilizer Plant
e η u z

µ
w

Optimality Models ≈ KKT conditions driven by measurements.

Optimality Model #1

Dualize engineering constraint

τ µ̇ = Hzz + Huu + Hww

e = ∇f0(u) + GT
u ∇g0(z)

+ (HzGu + Hu)
Tµ

Optimality Model #2

Parameterize intersection of
equality constraints in (z , u):

range

[
Tz

Tu

]
= null

[
Ir −Gu

Hz Hu

]
[
e1
e2

]
=

[
TT

u ∇f0(u) + TT
z ∇g0(z)

Hzz + Huu + Hww

]
.
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ū
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Stabilizers via Low-Gain Integral Control

ẋ = Ax + Bu + Bww

z = Cx + Du + Dww

τ µ̇ = F (µ, z , u)

e = H(µ, z , u)u
z

τ η̇ = −e
e η

We now aim to stabilize the cascade.

We look for simple stabilizers of the form u = k(η, z , µ).

Low-gain feedback: When τ >> 1, plant is fast compared to
controller; replace plant with equilibrium I/O map

Closed-loop stability determined by reduced dynamics

µ̇ = F (µ,Guu + Gww , u)

η̇ = −H(µ,Guu + Gww , u)

JWSP. “Analysis and Synthesis of Low-Gain Integral Controllers
for Nonlinear Systems”. TAC 2021
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Optimality Model #1: Primal-Dual Stabilizer

(PD) :

τ µ̇ = Hzz + Huu + Hww

e = ∇f0(u) + GT
u ∇g0(z) + (HzGu + Hu)

Tµ

τη̇ = −e

u = η

ẋ = Ax + Bu + Bww

z = Cx + Du + Dww

τ µ̇ = F (µ, z , u)

e = H(µ, z , u)

z
τ η̇ = −e

e η

Theorem: If u 7→ f0(u) + g0(Guu) is strongly convex on U ,
then there exists τ⋆ > 0 such that for all τ > τ⋆, the controller

(PD) solves the OSS control problem.
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Optimality Model #1: Inversion-Based Stabilizer

What if we directly solve for error-zeroing u:

0 = e = ∇f0(u) + GT
u ∇g0(z) + (HzGu + Hu)

Tµ

When is ∇f0 invertible? When f0 is strongly convex and essentially
smooth, i.e., it blows up at the boundary of U .

(Inv) :
τ µ̇ = Hzz + Huu + Hww

u = (∇f0)
−1(−GT

u ∇g0(z)− (HzGu + Hu)
Tµ)

Theorem: If f0 is strongly convex and essentially smooth on U ,
then there exists τ⋆ > 0 such that for all τ > τ⋆, the controller

(Inv) solves the OSS control problem.

31 / 41



Optimality Model #1: Inversion-Based Stabilizer

What if we directly solve for error-zeroing u:

0 = e = ∇f0(u) + GT
u ∇g0(z) + (HzGu + Hu)

Tµ

When is ∇f0 invertible? When f0 is strongly convex and essentially
smooth, i.e., it blows up at the boundary of U .

(Inv) :
τ µ̇ = Hzz + Huu + Hww

u = (∇f0)
−1(−GT

u ∇g0(z)− (HzGu + Hu)
Tµ)

Theorem: If f0 is strongly convex and essentially smooth on U ,
then there exists τ⋆ > 0 such that for all τ > τ⋆, the controller

(Inv) solves the OSS control problem.

31 / 41



Optimality Model #1: Inversion-Based Stabilizer

What if we directly solve for error-zeroing u:

0 = e = ∇f0(u) + GT
u ∇g0(z) + (HzGu + Hu)

Tµ

When is ∇f0 invertible? When f0 is strongly convex and essentially
smooth, i.e., it blows up at the boundary of U .

(Inv) :
τ µ̇ = Hzz + Huu + Hww

u = (∇f0)
−1(−GT

u ∇g0(z)− (HzGu + Hu)
Tµ)

Theorem: If f0 is strongly convex and essentially smooth on U ,
then there exists τ⋆ > 0 such that for all τ > τ⋆, the controller

(Inv) solves the OSS control problem.

31 / 41



Optimality Model #1: Inversion-Based Stabilizer

What if we directly solve for error-zeroing u:

0 = e = ∇f0(u) + GT
u ∇g0(z) + (HzGu + Hu)

Tµ

When is ∇f0 invertible? When f0 is strongly convex and essentially
smooth, i.e., it blows up at the boundary of U .

(Inv) :
τ µ̇ = Hzz + Huu + Hww

u = (∇f0)
−1(−GT

u ∇g0(z)− (HzGu + Hu)
Tµ)

Theorem: If f0 is strongly convex and essentially smooth on U ,
then there exists τ⋆ > 0 such that for all τ > τ⋆, the controller

(Inv) solves the OSS control problem.

31 / 41



Optimality Model #2: Two-Loop Stabilizer

Optimality Model:[
e1
e2

]
=

[
TT
u ∇f0(u) + TT

z ∇g0(z)
Hzz + Huu + Hww

]

Stabilizer:

(TL) :

τ1η̇1 = −e1

τ2η̇2 = −e2

u = K1η1 + K2η2

Plant
Optimality
Model #2

z

K2K1

τ2η̇2 = −e2

τ1η̇1 = −e1

u1 u
w

Theorem:
(i) Let N = HzGu + Hu

(ii) Choose K2 s.t. −NK2 Hurwitz

(iii) Let Π = I − K2(NK2)
−1N

(iv) Choose K1 s.t. ΠK1 = Tu

If

ξ 7→ f0(Tuξ) + g0(Tzξ)

is strongly convex, then (TL)
solves the OSS control problem
for all

τ1 >> τ2 >> 0.
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Optimality Model #2: Robust/Optimal Stabilizer

Optimality Model:[
e1
e2

]
=

[
TT
u ∇f0(u) + TT

z ∇g0(z)
Hzz + Huu + Hww

]
Stabilizer:

(RO) :

τ1η̇1 = −e1

τ2η̇2 = −e2

u = K1η1 + K2η2

The design of K1,K2 can be
formulated as a robust

state-feedback design problem
for the reduced dynamics.

• ∇f0 and ∇g0 are
monotone/slope-
restricted nonlinearities

• minimize induced L2

norm from w to (e1, e2)

• convexified via
“dualization lemma”

Theorem: An optimal selection of K1,K2 can be found by
solving an SDP; see paper. Under Lipschitz assumptions, the

SDP is always feasible, since (TL) is a feasible point.
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Simulation: 30 states, 7 inputs, 5 outputs
Objectives: (z1, z2) step tracking, min. control, constraints

minimize
[∑m

k=1

1
2
ū2
k + γB(ūk)

]
+ c P(z̄)

subject to z̄ = Gu ū + Gww

0 = zi − ri , i ∈ {1, 2}

B(uk) = log barrier fcn.

P(z̄3, z̄4, z̄5) = penalty fcn.

Inversion Stabilizer τ = 2 Optimal/Robust Stabilizer
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Application: Secondary Frequency Control in Bulk Grid

AC Power
System

u

w

{∆ωi}
minimize

u

∑n

i=1
Ci (ūi )

subject to ∆ω = 1
β1n(1

T
n ū + w)

∆ωn = 0

Note: the way one encodes the frequency regulation constraint can lead to different
controller architectures; this is just one possible choice.

Gu = 1
β

1n1T
n , Gw = 1

β
1n

Optimality Model #1

τ µ̇ = −∆ωn

ei = ∇Ci (ui )− µ

Optimality Model #2

null

[
In − 1

β
1n1T

n

eTn 0

]
= range

[
0
LT

]
[
e1
e2

]
=

[
L∇C(u)
∆ωn

]
.
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n ū + w)

∆ωn = 0

Note: the way one encodes the frequency regulation constraint can lead to different
controller architectures; this is just one possible choice.

Gu = 1
β

1n1T
n , Gw = 1

β
1n

Optimality Model #1

τ µ̇ = −∆ωn

ei = ∇Ci (ui )− µ

Optimality Model #2

null

[
In − 1

β
1n1T

n

eTn 0

]
= range

[
0
LT

]
[
e1
e2

]
=

[
L∇C(u)
∆ωn

]
.

35 / 41



Application: Secondary Frequency Control in Bulk Grid

AC Power
System

u

w

{∆ωi}
minimize

u

∑n

i=1
Ci (ūi )

subject to ∆ω = 1
β1n(1

T
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Application: Secondary Frequency Control in Bulk Grid
Both designs provably stable for large τ

1 Inversion-based controller

τ µ̇ = −∆ωn

ui = (∇Ci )
−1(µ)

2 Two-loop controller

τ1η̇i = −
n∑

j=1

aij(∇Ci (ui )−∇Cj(uj))

τ2η̇n = −∆ωn

ui = ηi
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Example #3: Secondary Frequency Control in Bulk Grid
Both designs provably stable for large τ

1 Distributed consensus-based approach:

τi η̇i = −∆ωi −
n∑

j=1

aij(ηi − ηj)

Ps
i = (∇Ci )

−1(ηi )
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Conclusions

Two frameworks for feedback-based optimization

1 Gradient-type algorithms (leverage opt. theory + robust ctrl)

2 Optimal steady-state control (leverage servomech. theory)

Opportunities at {control}∩{optimization}∩{power systems}∩ · · ·
1 High-performance optimizing designs (e.g., loop-shaping, feedforward,
anti-windup)

2 Hierarchical, competitive multi-agent, learning-based, . . .

Note: Open PhD position at University of Toronto for Fall 2023,
focusing on data-driven control and estimation for energy systems!
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Questions

https://www.control.utoronto.ca/~jwsimpson/

jwsimpson@ece.utoronto.ca
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