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Motivation & Contributions

Integral Control:

required for robust output regulation w/ constant exog. signals

often in practice, process is complex/uncertain but internally stable

in this case, low-gain integral control is effective & practical

Actuator Limits:

degrade perf., may prevent perfect asymptotic output regulation

Implicit Approach: Anti-windup, reference governors/modifiers

Explicit Approach: RHC, misc. nonlinear methods

Contribution: A constrained integral controller w/ proof of
low-gain stability for nonlinear systems.

1 / 8



Motivation & Contributions

Integral Control:

required for robust output regulation w/ constant exog. signals

often in practice, process is complex/uncertain but internally stable

in this case, low-gain integral control is effective & practical

Actuator Limits:

degrade perf., may prevent perfect asymptotic output regulation

Implicit Approach: Anti-windup, reference governors/modifiers

Explicit Approach: RHC, misc. nonlinear methods

Contribution: A constrained integral controller w/ proof of
low-gain stability for nonlinear systems.

1 / 8



Motivation & Contributions

Integral Control:

required for robust output regulation w/ constant exog. signals

often in practice, process is complex/uncertain but internally stable

in this case, low-gain integral control is effective & practical

Actuator Limits:

degrade perf., may prevent perfect asymptotic output regulation

Implicit Approach: Anti-windup, reference governors/modifiers

Explicit Approach: RHC, misc. nonlinear methods

Contribution: A constrained integral controller w/ proof of
low-gain stability for nonlinear systems.

1 / 8



Review: Low-Gain Integral Control

C (z) P(z)

Pd(z)
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−

P,Pd = DT LTI
exp. stable

d , r = constant

ηk+1 = ηk −
Ts

Ti
ek

uk = Kηk

Low-Gain Stability (Davison ’76): If −P(1)K is Hurwitz
stable, then ∃T ⋆

i > 0 s.t. ∀Ti ∈ (T ⋆
i ,∞) the closed-loop

system is exp. stable and limk→∞ ek = 0.
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Model Assumptions

x+ = f (x , u,w)

e = h(x , u,w)

Inputs u Error e

Disturbances/References w DT nonlinear system

sample period Ts

u ∈ Rm, e ∈ Rp

p ≤ m

Assumptions: There exist domains X ,U ,W such that

1 Model Regularity: f , h cts, f is C 1 in (x , u), f , h, ∂f
∂x

, ∂f
∂u

are Lipschitz
cts. in (x , u) uniformly in w ∈ W

2 Steady-State: ∃ a C1 map πx : U ×W → X which is Lipschitz on
U ×W and satisfies πx(u,w) = f (πx(u,w), u,w) for all (u,w)

3 Stability: the equilibrium πx(u,w) is locally exponentially stable,
uniformly in the inputs (u,w)

Equilibrium I/O Map: π(ū,w) ≜ h(πx(ū,w), ū,w).
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Constrained Error-Zeroing Specification

Let C ⊆ U be a closed, convex input constraint set

If uk = Kηk , then integral state η must live in

Γ ≜ {η ∈ Rp : Kη ∈ C} (also closed, convex)

Constrained Error-Zeroing Spec.
Find η̄ s.t.

∀η ∈ Γ : ⟨ē, η − η̄⟩P ≥ 0

where ē = π(K η̄,w)

spec. is a variational ineq.; could arise from minimization problem

if η̄ ∈ interior(Γ), then spec. is simply ē = 0
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∀η ∈ Γ : ⟨ē, η − η̄⟩P ≥ 0
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Damped-Projected Integral Control

Projection operator onto closed, convex set Γ in P-norm:

ProjPΓ : Rm → Γ, ProjPΓ (η) = argmin
ν∈Γ

∥η − ν∥P

The proposed damped-projected integral controller is

ηk+1 = (1− λ)ηk + λProjPΓ (ηk − Ts
Ti
ek)

uk = Kηk

where λ ∈ (0, 1) is the damping parameter

1 Equilibrium: closed-loop equil. ⇐⇒ error-zeroing spec.

2 Constraint Satisfaction: uk ∈ C for all k ≥ 0; wind-up impossible

3 Reduction: if no constraints, reduces to standard int. control
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Main Stability Result

x+ = f (x , u,w)

e = h(x , u,w)

η+ = (1− λ)η + λProjPΓ (η − Ts
Ti
e)K

e

η

u

w

▶ Assume: ∃P ≻ 0 and constants µ, L > 0 s.t. η 7→ π(Kη,w) is
µ-strongly monotone and L-Lipschitz continuous on Γ with respect
to ⟨·, ·⟩P , uniformly in w

▶ Pick any integral time Ti ∈ (TsL
2/2µ,∞)

Then ∃λ⋆ ∈ (0, 1) such that ∀λ ∈ (0, λ⋆),∀w ∈ W:

1 the C.L.S. possesses an exp. stable equil. point (x̄ , η̄) ∈ X × Γ

2 the pair (ē, η̄) = (π(K η̄,w), η̄) satisfies the error-zeroing spec.
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2 the pair (ē, η̄) = (π(K η̄,w), η̄) satisfies the error-zeroing spec.

6 / 8



Main Stability Result

x+ = f (x , u,w)

e = h(x , u,w)

η+ = (1− λ)η + λProjPΓ (η − Ts
Ti
e)K

e

η

u

w

▶ Assume: ∃P ≻ 0 and constants µ, L > 0 s.t. η 7→ π(Kη,w) is
µ-strongly monotone and L-Lipschitz continuous on Γ with respect
to ⟨·, ·⟩P , uniformly in w

▶ Pick any integral time Ti ∈ (TsL
2/2µ,∞)

Then ∃λ⋆ ∈ (0, 1) such that ∀λ ∈ (0, λ⋆),∀w ∈ W:

1 the C.L.S. possesses an exp. stable equil. point (x̄ , η̄) ∈ X × Γ
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Example: Four-Tank Process (Johannson, TCST, 2000)

state h ∈ R4
>0 = water levels in tanks

input u ∈ R2
≥0 = pump flow rates w/

constraints u1, u2 ∈ [0, 45], u1 + u2 ≤ 85

error e = (h1 − r1, h2 − r2) ∈ R2

7 / 8



Conclusions
1 A constraint-enforcing damped-projected integral controller

2 Proof of low-gain stability result for stable nonlinear systems

Future work:

1 Extension to PID-type control

2 Extension to general output-regulating designs in incr. form

3 Applications in power systems control

8 / 8



Conclusions
1 A constraint-enforcing damped-projected integral controller

2 Proof of low-gain stability result for stable nonlinear systems

Future work:

1 Extension to PID-type control

2 Extension to general output-regulating designs in incr. form

3 Applications in power systems control

8 / 8



Conclusions
1 A constraint-enforcing damped-projected integral controller

2 Proof of low-gain stability result for stable nonlinear systems

Future work:

1 Extension to PID-type control

2 Extension to general output-regulating designs in incr. form

3 Applications in power systems control

8 / 8


