Low-Gain Stability of Projected Integral Control for Input-Constrained Discrete-Time Nonlinear Systems

John W. Simpson-Porco

https://www.control.utoronto.ca/~jwsimpson/

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

Group Meeting, Summer 2022

Motivation & Contributions

Integral Control:

- required for robust output regulation w/ constant exog. signals
- often in practice, process is complex/uncertain but internally stable
- in this case, low-gain integral control is effective & practical

Actuator Limits:

- degrade perf., may prevent perfect asymptotic output regulation
- Implicit Approach: Anti-windup, reference governors/modifiers
- Explicit Approach: RHC, misc. nonlinear methods

Contribution: A constrained integral controller w/ proof of low-gain stability for nonlinear systems.

Motivation & Contributions

Integral Control:

- required for robust output regulation w/ constant exog. signals
- often in practice, process is complex/uncertain but internally stable
- in this case, low-gain integral control is effective & practical

Actuator Limits:

- degrade perf., may prevent perfect asymptotic output regulation
- Implicit Approach: Anti-windup, reference governors/modifiers
- Explicit Approach: RHC, misc. nonlinear methods

Contribution: A constrained integral controller w/ proof of low-gain stability for nonlinear systems.

Motivation & Contributions

Integral Control:

- required for robust output regulation w/ constant exog. signals
- often in practice, process is complex/uncertain but internally stable
- in this case, low-gain integral control is effective & practical

Actuator Limits:

- degrade perf., may prevent perfect asymptotic output regulation
- Implicit Approach: Anti-windup, reference governors/modifiers
- Explicit Approach: RHC, misc. nonlinear methods

Contribution: A constrained integral controller w/ proof of low-gain stability for nonlinear systems.

Review: Low-Gain Integral Control

• P, P_d = DT LTI exp. stable

Review: Low-Gain Integral Control

• P, P_d = DT LTI exp. stable

•
$$d, r =$$
constant

the transactions on automatic control, vol. ac-21, no. 1, february 1976

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, IEEE

$$\eta_{k+1} = \eta_k - rac{T_{
m s}}{T_{
m i}} e_k$$
 $u_k = K \eta_k$

Review: Low-Gain Integral Control

• P, P_d = DT LTI exp. stable

•
$$d, r =$$
constant

Low-Gain Stability (Davison '76): If -P(1)K is Hurwitz stable, then $\exists T_i^* > 0$ s.t. $\forall T_i \in (T_i^*, \infty)$ the closed-loop system is exp. stable and $\lim_{k\to\infty} e_k = 0$.

Model Assumptions

- DT nonlinear system
- sample period $T_{\rm s}$

•
$$u \in \mathbb{R}^m$$
, $e \in \mathbb{R}^p$

● p ≤ m

Assumptions: There exist domains $\mathcal{X}, \mathcal{U}, \mathcal{W}$ such that

- **1** Model Regularity: f, h cts, f is C^1 in (x, u), $f, h, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}$ are Lipschitz cts. in (x, u) uniformly in $w \in W$
- **3** Steady-State: \exists a C^1 map $\pi_x : U \times W \to X$ which is Lipschitz on $U \times W$ and satisfies $\pi_x(u, w) = f(\pi_x(u, w), u, w)$ for all (u, w)
- 3 Stability: the equilibrium π_x(u, w) is locally exponentially stable, uniformly in the inputs (u, w)

Equilibrium I/O Map: $\pi(\bar{u}, w) \triangleq h(\pi_x(\bar{u}, w), \bar{u}, w).$

Model Assumptions

- DT nonlinear system
- sample period $T_{\rm s}$

•
$$u \in \mathbb{R}^m$$
, $e \in \mathbb{R}^p$

● p ≤ m

Assumptions: There exist domains $\mathcal{X}, \mathcal{U}, \mathcal{W}$ such that

- Oddel Regularity: f, h cts, f is C¹ in (x, u), f, h, ∂f/∂u are Lipschitz cts. in (x, u) uniformly in w ∈ W
- **2** Steady-State: \exists a C^1 map $\pi_x : U \times W \to X$ which is Lipschitz on $U \times W$ and satisfies $\pi_x(u, w) = f(\pi_x(u, w), u, w)$ for all (u, w)
- Stability: the equilibrium π_x(u, w) is locally exponentially stable, uniformly in the inputs (u, w)

Equilibrium I/O Map: $\pi(\bar{u}, w) \triangleq h(\pi_x(\bar{u}, w), \bar{u}, w).$

- \bullet Let $\mathcal{C}\subseteq \mathcal{U}$ be a closed, convex input constraint set
- If $u_k = K \eta_k$, then integral state η must live in

 $\Gamma \triangleq \{\eta \in \mathbb{R}^p : K\eta \in \mathcal{C}\}$ (also closed, convex)

- \bullet Let $\mathcal{C}\subseteq \mathcal{U}$ be a closed, convex input constraint set
- If $u_k = K\eta_k$, then integral state η must live in

 $\Gamma \triangleq \{\eta \in \mathbb{R}^p : K\eta \in \mathcal{C}\}$ (also closed, convex)

- Let $\mathcal{C} \subseteq \mathcal{U}$ be a closed, convex input constraint set
- If $u_k = K\eta_k$, then integral state η must live in

 $\Gamma \triangleq \{\eta \in \mathbb{R}^p : K\eta \in \mathcal{C}\}$ (also closed, convex)

Constrained Error-Zeroing Spec. Find $\bar{\eta}$ s.t.

$$\forall \eta \in \mathsf{\Gamma} : \langle \bar{e}, \eta - \bar{\eta} \rangle_{\mathsf{P}} \geq 0$$

where $\bar{e} = \pi(K\bar{\eta}, w)$

- Let $\mathcal{C} \subseteq \mathcal{U}$ be a closed, convex input constraint set
- If $u_k = K\eta_k$, then integral state η must live in

 $\Gamma \triangleq \{\eta \in \mathbb{R}^p : K\eta \in \mathcal{C}\}$ (also closed, convex)

Constrained Error-Zeroing Spec. Find $\bar{\eta}$ s.t.

$$\forall \eta \in \mathsf{\Gamma} : \langle \bar{e}, \eta - \bar{\eta} \rangle_{\mathsf{P}} \geq 0$$

where $\bar{e} = \pi(K\bar{\eta}, w)$

- spec. is a variational ineq.; could arise from minimization problem
- if $\bar{\eta} \in \operatorname{interior}(\Gamma)$, then spec. is simply $\bar{e} = 0$

Damped-Projected Integral Control

• Projection operator onto closed, convex set Γ in *P*-norm:

$$\operatorname{Proj}_{\Gamma}^{P} : \mathbb{R}^{m} \to \Gamma, \quad \operatorname{Proj}_{\Gamma}^{P}(\eta) = \underset{\nu \in \Gamma}{\operatorname{argmin}} \|\eta - \nu\|_{P}$$

The proposed **damped-projected integral controller** is $\eta_{k+1} = (1 - \lambda)\eta_k + \lambda \operatorname{Proj}_{\Gamma}^{P}(\eta_k - \frac{T_s}{T_i}e_k)$ $u_k = K\eta_k$ where $\lambda \in (0, 1)$ is the damping parameter

- **②** Constraint Satisfaction: $u_k \in C$ for all $k \ge 0$; wind-up impossible
- ③ Reduction: if no constraints, reduces to standard int. control

Damped-Projected Integral Control

• Projection operator onto closed, convex set Γ in *P*-norm:

$$\operatorname{Proj}_{\Gamma}^{P}: \mathbb{R}^{m} \to \Gamma, \quad \operatorname{Proj}_{\Gamma}^{P}(\eta) = \underset{\nu \in \Gamma}{\operatorname{argmin}} \ \|\eta - \nu\|_{P}$$

The proposed damped-projected integral controller is

$$\eta_{k+1} = (1 - \lambda)\eta_k + \lambda \operatorname{Proj}_{\Gamma}^{P}(\eta_k - \frac{T_s}{T_i}e_k)$$
$$u_k = K\eta_k$$

where $\lambda \in (0,1)$ is the damping parameter

- ② **Constraint Satisfaction:** $u_k \in C$ for all $k \ge 0$; wind-up impossible
- ③ Reduction: if no constraints, reduces to standard int. control

Damped-Projected Integral Control

• Projection operator onto closed, convex set Γ in *P*-norm:

$$\operatorname{Proj}_{\Gamma}^{P}: \mathbb{R}^{m} \to \Gamma, \quad \operatorname{Proj}_{\Gamma}^{P}(\eta) = \underset{\nu \in \Gamma}{\operatorname{argmin}} \ \|\eta - \nu\|_{P}$$

The proposed damped-projected integral controller is

$$\eta_{k+1} = (1 - \lambda)\eta_k + \lambda \operatorname{Proj}_{\Gamma}^{P}(\eta_k - \frac{T_s}{T_i}e_k)$$
$$u_k = K\eta_k$$

where $\lambda \in (0,1)$ is the damping parameter

- **Q** Equilibrium: closed-loop equil. \iff error-zeroing spec.
- **2** Constraint Satisfaction: $u_k \in C$ for all $k \ge 0$; wind-up impossible
- **③** Reduction: if no constraints, reduces to standard int. control

Assume: ∃P ≻ 0 and constants µ, L > 0 s.t. η → π(Kη, w) is µ-strongly monotone and L-Lipschitz continuous on Γ with respect to ⟨·, ·⟩_P, uniformly in w

▶ Pick any integral time $T_i \in (T_s L^2/2\mu, \infty)$

Then $\exists \lambda^* \in (0,1)$ such that $\forall \lambda \in (0,\lambda^*), \forall w \in \mathcal{W}$:

() the C.L.S. possesses an exp. stable equil. point $(\bar{x}, \bar{\eta}) \in \mathcal{X} \times \Gamma$

② the pair $(\bar{e}, \bar{\eta}) = (\pi(K\bar{\eta}, w), \bar{\eta})$ satisfies the error-zeroing spec.

- Assume: ∃P ≻ 0 and constants µ, L > 0 s.t. η → π(Kη, w) is µ-strongly monotone and L-Lipschitz continuous on Γ with respect to ⟨·, ·⟩_P, uniformly in w
- Pick any integral time $T_{\rm i} \in (T_{\rm s} L^2/2\mu, \infty)$

Then $\exists \lambda^* \in (0,1)$ such that $\forall \lambda \in (0,\lambda^*), \forall w \in \mathcal{W}$:

- **(**) the C.L.S. possesses an exp. stable equil. point $(\bar{x}, \bar{\eta}) \in \mathcal{X} \times \Gamma$
- ② the pair $(\bar{e}, \bar{\eta}) = (\pi(K\bar{\eta}, w), \bar{\eta})$ satisfies the error-zeroing spec.

- Assume: ∃P ≻ 0 and constants µ, L > 0 s.t. η → π(Kη, w) is µ-strongly monotone and L-Lipschitz continuous on Γ with respect to ⟨·, ·⟩_P, uniformly in w
- Pick any integral time $T_{\rm i} \in (T_{\rm s} L^2/2\mu, \infty)$

Then $\exists \lambda^{\star} \in (0, 1)$ such that $\forall \lambda \in (0, \lambda^{\star}), \forall w \in \mathcal{W}$:

- **(**) the C.L.S. possesses an exp. stable equil. point $(\bar{x}, \bar{\eta}) \in \mathcal{X} \times \Gamma$
- ② the pair $(\bar{e}, \bar{\eta}) = (\pi(K\bar{\eta}, w), \bar{\eta})$ satisfies the error-zeroing spec.

- Assume: ∃P ≻ 0 and constants µ, L > 0 s.t. η → π(Kη, w) is µ-strongly monotone and L-Lipschitz continuous on Γ with respect to ⟨·, ·⟩_P, uniformly in w
- Pick any integral time $T_{\rm i} \in (T_{\rm s} L^2/2\mu, \infty)$

Then $\exists \lambda^* \in (0,1)$ such that $\forall \lambda \in (0,\lambda^*), \forall w \in \mathcal{W}$:

- **1** the C.L.S. possesses an exp. stable equil. point $(\bar{x}, \bar{\eta}) \in \mathcal{X} \times \Gamma$
- 2 the pair $(\bar{e}, \bar{\eta}) = (\pi(K\bar{\eta}, w), \bar{\eta})$ satisfies the error-zeroing spec.

- Assume: ∃P ≻ 0 and constants µ, L > 0 s.t. η ↦ π(Kη, w) is µ-strongly monotone and L-Lipschitz continuous on Γ with respect to ⟨·, ·⟩_P, uniformly in w
- Pick any integral time $T_{\rm i} \in (T_{\rm s} L^2/2\mu, \infty)$

Then $\exists \lambda^{\star} \in (0, 1)$ such that $\forall \lambda \in (0, \lambda^{\star}), \forall w \in \mathcal{W}$:

- **(**) the C.L.S. possesses an exp. stable equil. point $(\bar{x}, \bar{\eta}) \in \mathcal{X} \times \Gamma$
- 2 the pair $(\bar{e}, \bar{\eta}) = (\pi(K\bar{\eta}, w), \bar{\eta})$ satisfies the error-zeroing spec.

Example: Four-Tank Process (Johannson, TCST, 2000)

• state $h \in \mathbb{R}^4_{>0}$ = water levels in tanks

• input $u \in \mathbb{R}^2_{\geq 0}$ = pump flow rates w/ constraints $u_1, u_2 \in [0, 45], u_1 + u_2 \leq 85$

• error
$$e = (h_1 - r_1, h_2 - r_2) \in \mathbb{R}^2$$

Conclusions

- A constraint-enforcing damped-projected integral controller
- 2 Proof of low-gain stability result for stable nonlinear systems

Conclusions

- A constraint-enforcing damped-projected integral controller
- **2** Proof of low-gain stability result for stable nonlinear systems

Future work:

- Extension to PID-type control
- 2 Extension to general output-regulating designs in incr. form
- O Applications in power systems control

Conclusions

- A constraint-enforcing damped-projected integral controller
- 2 Proof of low-gain stability result for stable nonlinear systems

Future work:

- Extension to PID-type control
- 2 Extension to general output-regulating designs in incr. form
- Opplications in power systems control

