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Motivation & Contributions
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Integral Control:

@ required for robust output regulation w/ constant exog. signals
@ often in practice, process is complex/uncertain but internally stable

@ in this case, low-gain integral control is effective & practical

Actuator Limits:

o degrade perf., may prevent perfect asymptotic output regulation
e Implicit Approach: Anti-windup, reference governors/modifiers

@ Explicit Approach: RHC, misc. nonlinear methods

Contribution: A constrained integral controller w/ proof of
low-gain stability for nonlinear systems. J
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Review: Low-Gain Integral Control

e P,Py = DT LTI
u y exp. stable

> C(z) > P(z) >
@ d,r = constant
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Review: Low-Gain Integral Control

e P,Py = DT LTI
u y exp. stable

> C(2) > P(z) >
@ d,r = constant

[EEE TRANSACTIONS 0N AUTONATIC CONTROL, VOL. AG-21, No. 1, FEBRUARY 1976

T
Nk+1 = Mk — ?ek

i

Multivariable Tuning Regulators:
The Feedforward and Robust Control
of a General Servomechanism Problem - K
Uk = Rk

EDWARD J. DAVISON, MEMBER, IEEE

Low-Gain Stability (Davison '76): If —P(1)K is Hurwitz
stable, then 3T > 0 s.t. VT; € (T, 00) the closed-loop
system is exp. stable and limy_,, ex = 0.
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Model Assumptions

Disturbances/References w @ DT nonlinear system
l @ sample period Ty
Input t=
nputs u xT = f(x,u,w) Error e o ueR™ eeRP
e = h(x,u,w)
ep<m
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Model Assumptions

Disturbances/References w @ DT nonlinear system
l @ sample period T,
Input =
nputs u xT = f(x,u,w) Error e o ueR™ eeRP
e = h(x,u,w)
ep<m

Assumptions: There exist domains X, U/, W such that

@ Model Regularity: f, hcts, fis C'in (x,u), f,h, %, % are Lipschitz
cts. in (x, u) uniformly in w € W

@ Steady-State: 3 a C! map m, : U x W — X which is Lipschitz on
U x W and satisfies mx(u, w) = f(mx(u, w), u, w) for all (u, w)

© Stability: the equilibrium 7, (u, w) is locally exponentially stable,
uniformly in the inputs (u, w)

Equilibrium I/O Map: m(d, w) £ h(me(d, w), i, w).
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Constrained Error-Zeroing Specification

o Let C C U be a closed, convex input constraint set
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Constrained Error-Zeroing Specification

o Let C C U be a closed, convex input constraint set

o If up = Knj, then integral state n must live in

r£{neRf : Knec} (also closed, convex)

Constrained Error-Zeroing Spec. NE@) o
Find 7 s.t.
—:\~ _’”(Kﬁvw)

Vnerl: (&n—1ip>0

where & = (K7, w)

4

@ spec. is a variational ineq.; could arise from minimization problem

e if 77 € interior(I), then spec. is simply & =0
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Damped-Projected Integral Control

@ Projection operator onto closed, convex set I' in P-norm:

Projf : R™ =T, Proj’r’(n)zargn;in ln = vllp
ve
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Damped-Projected Integral Control

@ Projection operator onto closed, convex set I' in P-norm:

Projr : R™ =T, Projf(n) = argmin [In— vl
ve

The proposed damped-projected integral controller is

M1 = (1= A)mk + APTojf (i — T2ex)
U = K

where A € (0,1) is the damping parameter
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Damped-Projected Integral Control

@ Projection operator onto closed, convex set I' in P-norm:
Proer R™ =T, Projﬁ(n) = argmin ||n —v|p
vel
The proposed damped-projected integral controller is

M1 = (1= Ak + AProjf (m — Fex)
ug = Kng

where A € (0,1) is the damping parameter

@ Equilibrium: closed-loop equil. <= error-zeroing spec.
@ Constraint Satisfaction: uy € C for all k > 0; wind-up impossible

© Reduction: if no constraints, reduces to standard int. control
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Main Stability Result

K 1" = (1= \)n+ AProjf (n — Jre)

» Assume: 3P > 0 and constants p, L > 0 s.t. n — w(Kn, w) is
p-strongly monotone and L-Lipschitz continuous on I with respect
to (-,-)p, uniformly in w
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Main Stability Result

K 1" = (1= \)n+ AProjf (n — Jre)

» Assume: 3P > 0 and constants p, L > 0 s.t. n — w(Kn, w) is
p-strongly monotone and L-Lipschitz continuous on I with respect
to (-,-)p, uniformly in w

» Pick any integral time T; € (T,L?/2p,0)

Then 3A* € (0,1) such that YA € (0, \*), Yw € W:
© the C.L.S. possesses an exp. stable equil. point (X,7) € X x T
@ the pair (é,7) = (7(K1, w), 1) satisfies the error-zeroing spec.
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Example: Four-Tank Process (Johannson, TCST, 2000)

o state h € R, = water levels in tanks

e input u € RZ, = pump flow rates w/
constraints uy, up € [0,45], ug + uy < 85

e error e = (hy —r,ho — ) € R?
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vy vy
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Conclusions
@ A constraint-enforcing damped-projected integral controller

@ Proof of low-gain stability result for stable nonlinear systems
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