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Optimal Steady-State Control
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w

Classical LTI output
regulation fused with

optimization.

Dynamic optimality model encodes KKT conditions

Integral control regulates KKT error to zero; stabilizer stabilizes

New Contribution: Low-gain stabilizer designs for important
case of exponentially stable LTI plants.

2 / 14



Optimal Steady-State Control

Optimality
Model

Integral
Ctrl.

Stabilizer Plant
e η u z

µ
w

Classical LTI output
regulation fused with

optimization.

Dynamic optimality model encodes KKT conditions

Integral control regulates KKT error to zero; stabilizer stabilizes

New Contribution: Low-gain stabilizer designs for important
case of exponentially stable LTI plants.

2 / 14



Optimal Steady-State Control

Optimality
Model

Integral
Ctrl.

Stabilizer Plant
e η u z

µ
w

Classical LTI output
regulation fused with

optimization.

Dynamic optimality model encodes KKT conditions

Integral control regulates KKT error to zero; stabilizer stabilizes

New Contribution: Low-gain stabilizer designs for important
case of exponentially stable LTI plants.

2 / 14



Optimal Steady-State Control

Optimality
Model

Integral
Ctrl.

Stabilizer Plant
e η u z

µ
w

Classical LTI output
regulation fused with

optimization.

Dynamic optimality model encodes KKT conditions

Integral control regulates KKT error to zero; stabilizer stabilizes

New Contribution: Low-gain stabilizer designs for important
case of exponentially stable LTI plants.

2 / 14



OSS Control Problem Setup

ẋ = Ax + Bu + Bww

z = Cx + Du + Dww

u z

w

▶ A Hurwitz, w constant

▶ Gu ≜ −CA−1B + D

▶ Gw ≜ −CA−1Bw + Dw

Equilibrium I/O Map: z̄ = Guū + Gww

minimize
ū

f0(ū) + g0(z̄) (steady-state objective)

subject to z̄ = Guū + Gw w̄ (steady-state physics)

0 = Hzz + Huu + Hww (design constraints)

f0 : U → R convex, diff.
g0 : Z → R convex, diff.

strictly feasible, ∃ opt. solution

z and Hzz + Huu + Hww
measured

HzGu + Hu full row rank
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Examples of Optimality Models

minimize
ū

f0(ū) + g0(z̄)

subject to z̄ = Gu ū + Gw w̄

0 = Hzz + Huu + Hww

Optimality
Model

Integral
Ctrl.

Stabilizer Plant
e η u z

µ
w

Optimality Models ≈ KKT conditions driven by measurements.

Optimality Model #1

Dualize engineering constraint

τ µ̇ = Hzz + Huu + Hww

e = ∇f0(u) + GT
u ∇g0(z)

+ (HzGu + Hu)
Tµ

Optimality Model #2

Parameterize intersection of
equality constraints in (z , u):

range

[
Tz

Tu

]
= null

[
Ir −Gu

Hz Hu

]
[
e1
e2

]
=

[
TT

u ∇f0(u) + TT
z ∇g0(z)

Hzz + Huu + Hww

]
.
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Stabilizers via Low-Gain Integral Control

ẋ = Ax + Bu + Bww

z = Cx + Du + Dww

τ µ̇ = F (µ, z , u)

e = H(µ, z , u)u
z

τ η̇ = −e
e η

We now aim to stabilize the cascade.

We look for simple stabilizers of the form u = k(η, z , µ).

Low-gain feedback: When τ >> 1, plant is fast compared to
controller; replace plant with equilibrium I/O map

Closed-loop stability determined by reduced dynamics

µ̇ = F (µ,Guu + Gww , u)

η̇ = −H(µ,Guu + Gww , u)

JWSP. “Analysis and Synthesis of Low-Gain Integral Controllers
for Nonlinear Systems”. TAC 2021
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Optimality Model #1: Primal-Dual Stabilizer

(PD) :

τ µ̇ = Hzz + Huu + Hww

e = ∇f0(u) + GT
u ∇g0(z) + (HzGu + Hu)

Tµ

τη̇ = −e

u = η

ẋ = Ax + Bu + Bww

z = Cx + Du + Dww

τ µ̇ = F (µ, z , u)

e = H(µ, z , u)

z
τ η̇ = −e

e η

Theorem: If u 7→ f0(u) + g0(Guu) is strongly convex on U ,
then there exists τ⋆ > 0 such that for all τ > τ⋆, the controller

(PD) solves the OSS control problem.
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Optimality Model #1: Inversion-Based Stabilizer

What if we directly solve for error-zeroing u:

0 = e = ∇f0(u) + GT
u ∇g0(z) + (HzGu + Hu)

Tµ

When is ∇f0 invertible? When f0 is strongly convex and essentially
smooth, i.e., it blows up at the boundary of U .

(Inv) :
τ µ̇ = Hzz + Huu + Hww

u = (∇f0)
−1(−GT

u ∇g0(z)− (HzGu + Hu)
Tµ)

Theorem: If f0 is strongly convex and essentially smooth on U ,
then there exists τ⋆ > 0 such that for all τ > τ⋆, the controller

(Inv) solves the OSS control problem.
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Optimality Model #2: Two-Loop Stabilizer

Optimality Model:[
e1
e2

]
=

[
TT
u ∇f0(u) + TT

z ∇g0(z)
Hzz + Huu + Hww

]

Stabilizer:

(TL) :

τ1η̇1 = −e1

τ2η̇2 = −e2

u = K1η1 + K2η2

Plant
Optimality
Model #2

z

K2K1

τ2η̇2 = −e2

τ1η̇1 = −e1

u1 u
w

Theorem:
(i) Let N = HzGu + Hu

(ii) Choose K2 s.t. −NK2 Hurwitz

(iii) Let Π = I − K2(NK2)
−1N

(iv) Choose K1 s.t. ΠK1 = Tu

If

ξ 7→ f0(Tuξ) + g0(Tzξ)

is strongly convex, then (TL)
solves the OSS control problem
for all

τ1 >> τ2 >> 0.
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Optimality Model #2: Robust/Optimal Stabilizer

Optimality Model:[
e1
e2

]
=

[
TT
u ∇f0(u) + TT

z ∇g0(z)
Hzz + Huu + Hww

]
Stabilizer:

(RO) :

τ1η̇1 = −e1

τ2η̇2 = −e2

u = K1η1 + K2η2

The design of K1,K2 can be
formulated as a robust

state-feedback design problem
for the reduced dynamics.

• ∇f0 and ∇g0 are
monotone/slope-
restricted nonlinearities

• minimize induced L2

norm from w to (e1, e2)

• convexified via
“dualization lemma”

Theorem: An optimal selection of K1,K2 can be found by
solving an SDP; see paper. Under Lipschitz assumptions, the

SDP is always feasible, since (TL) is a feasible point.
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• minimize induced L2

norm from w to (e1, e2)

• convexified via
“dualization lemma”

Theorem: An optimal selection of K1,K2 can be found by
solving an SDP; see paper. Under Lipschitz assumptions, the

SDP is always feasible, since (TL) is a feasible point.
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Simulation: 30 states, 7 inputs, 5 outputs
Objectives: (z1, z2) step tracking, min. control, constraints

minimize
[∑m

k=1

1
2
ū2
k + γB(ūk)

]
+ c P(z̄)

subject to z̄ = Gu ū + Gww

0 = zi − ri , i ∈ {1, 2}

B(uk) = log barrier fcn.

P(z̄3, z̄4, z̄5) = penalty fcn.

Inversion Stabilizer τ = 2 Optimal/Robust Stabilizer
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0 = zi − ri , i ∈ {1, 2}

B(uk) = log barrier fcn.

P(z̄3, z̄4, z̄5) = penalty fcn.

Inversion Stabilizer τ = 2

Optimal/Robust Stabilizer

10 / 14



Simulation: 30 states, 7 inputs, 5 outputs
Objectives: (z1, z2) step tracking, min. control, constraints

minimize
[∑m

k=1

1
2
ū2
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]
+ c P(z̄)

subject to z̄ = Gu ū + Gww

0 = zi − ri , i ∈ {1, 2}

B(uk) = log barrier fcn.

P(z̄3, z̄4, z̄5) = penalty fcn.

Inversion Stabilizer τ = 2 Optimal/Robust Stabilizer

10 / 14



Application: Secondary Frequency Control in Bulk Grid

AC Power
System

u

w

{∆ωi}
minimize

u

∑n

i=1
Ci (ūi )

subject to ∆ω = 1
β1n(1

T
n ū + w)

∆ωn = 0

Note: the way one encodes the frequency regulation constraint can lead to different
controller architectures; this is just one possible choice.

Gu = 1
β

1n1T
n , Gw = 1

β
1n

Optimality Model #1

τ µ̇ = −∆ωn

ei = ∇Ci (ui )− µ

Optimality Model #2

null

[
In − 1

β
1n1T

n

eTn 0

]
= range

[
0
LT

]
[
e1
e2

]
=

[
L∇C(u)
∆ωn

]
.
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Ci (ūi )

subject to ∆ω = 1
β1n(1

T
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Application: Secondary Frequency Control in Bulk Grid
Both designs provably stable for large τ

1 Inversion-based controller

τ µ̇ = −∆ωn

ui = (∇Ci )
−1(µ)

2 Two-loop controller

τ1η̇i = −
n∑

j=1

aij(∇Ci (ui )−∇Cj(uj))

τ2η̇n = −∆ωn

ui = ηi
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Conclusions

1 Optimal steady-state (OSS) control is a feedback optimization method

2 Constructive design techniques based on low-gain integral control

3 Only model information required is plant DC gain

Open directions

1 Nonlinear systems

2 Robustness of the
optimization

3 Time-varying disturbances

Plant
Optimality
Model #2

z

K2K1

τ2η̇2 = −e2

τ1η̇1 = −e1

u1 u
w

Note: Open PhD position at University of Toronto for Fall 2023,
focusing on data-driven control and estimation for energy systems!
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Questions

https://www.control.utoronto.ca/~jwsimpson/

jwsimpson@ece.utoronto.ca
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