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@ Dynamic optimality model encodes KKT conditions

@ Integral control regulates KKT error to zero; stabilizer stabilizes

New Contribution: Low-gain stabilizer designs for important
case of exponentially stable LTI plants. J
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w
l » A Hurwitz, w constant
u % = Ax + Bu+ Byw 5 > G, 2 —-CA'B+D
—] >
z=Cx+ Du+ D, w

» G, 2 —-CA 1B, + D,

Equilibrium 1/0 Map:

minimize fo(7) + go(2)

(steady-state objective)
subject to z = G, + G,w

(steady-state physics)

0=H,z+ Hyu+ H,w (design constraints)

@ fy: U — R convex, diff.

@ zand H;z+ Hyu+ H,w
@ g : Z — R convex, diff.

measured
@ strictly feasible, 3 opt. solution

@ H,G, + H, full row rank
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0= H,z+ H,u+ H,w A A

Optimality Models ~ KKT conditions driven by measurements. J

Optimality Model #1 Optimality Model #2
@ Dualize engineering constraint @ Parameterize intersection of
Th = Hez + Hyu + Hyw equality constraints in (z, u):
T. I =G
e = Vf, G,V | = ’ u
O(U) + go(Z) range |:Tu:| null [Hz H, :|

+ (H.Gy + H,)"
( ) u al  [TIVH(u) + TTVe(z2)
el| H,z+ H,u+ H,w ’
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@ We now aim to stabilize the cascade.
@ We look for simple stabilizers of the form u = k(n, z, 11).

o Low-gain feedback: When 7 >> 1, plant is fast compared to
controller; replace plant with equilibrium 1/0 map

@ Closed-loop stability determined by reduced dynamics
= F(u, Gyu+ Gyw, u)
17 =—H(u, Gyu+ Gyw, u)

JWSP. “Analysis and Synthesis of Low-Gain Integral Controllers
for Nonlinear Systems”. TAC 2021 J
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Optimality Model #1: Primal-Dual Stabilizer

T = Hy;z+ Hyu+ Hy,w

(PD) :
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Optimality Model #1: Primal-Dual Stabilizer

T = Hy;z+ Hyu+ Hy,w
e =Viy(u)+ G Veo(z) + (H.G, + H,) 1w

(PD) - .
™ = —e
u=mnm
x=Ax+Bu+Byw| z |tp=F(u,z,u) | e ) n
> Eary > Tn=—¢ >
z=Cx+ Du+ Dyw e = H(u,z,u)

Theorem: If u — fy(u) + go(Gyu) is strongly convex on U,
then there exists 7* > 0 such that for all 7 > 7*, the controller
(PD) solves the OSS control problem.
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T = Hy;z+ Hyu+ Hy,w

(Inv): u= (V) Y= G6TVeo(z) — (Hy Gy + Ha)T )

v

Theorem: If f; is strongly convex and essentially smooth on U,
then there exists 7% > 0 such that for all 7 > 7*, the controller
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Optimality Model #2: Two-Loop Stabilizer

Optimality Model:

-

|

T, Vio(u) + T Vgo(2)
H,z+ H,u+ H,w

|

(TL) :

Stabilizer:
TN = —€1
Tollp = —€2

u= Kim + Komp

w
u z [ Optimality
Viodel #2

Theorem:

(i) Let N=H.G, + H,

(il) Choose K> s.t. —NK> Hurwitz
(iii) Let M=1— Ko(NK2)"'N
(iv) Choose Ki s.t. MKy = T,

If

5 = fO(Tug) + gO(TzE)

is strongly convex, then (TL)
solves the OSS control problem
for all

1 >> 19 > 0.
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Optimality Model #2: Robust/Optimal Stabilizer

Optimality Model:

el] _ [Ty Viho(u)+ T Veo(z)
e| | Hyz+ Hyu+ H,w

Stabilizer:

TN = —e1
(RO): mip=-e
u= Kim + Komp
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Optimality Model #2: Robust/Optimal Stabilizer

Optimality Model: The design of Ki, K2 can be
formulated as a robust

1| _ TJ—VfO(U) —+ TzTVgO(Z) state-feedback design problem
el H,z+ H,u+ H,w for the reduced dynamics.

® Vfy and Vg are

Stabilizer: monotone/slope-
restricted nonlinearities
i = —€a ® minimize induced %
(RO): maip = —e norm from w to (e, &)

® convexified via
“dualization lemma”

u= Kim + Kom

Theorem: An optimal selection of Ki, K> can be found by
solving an SDP; see paper. Under Lipschitz assumptions, the
SDP is always feasible, since (TL) is a feasible point.
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Simulation: 30 states, 7 inputs, 5 outputs

o Objectives: (z1, zp) step tracking, min. control, constraints
minimize  [>" 13 +4B(@)] + cP(2)

subject to Z = G,u+ Guw
0:2,‘—!‘;, i€{1,2}

B(uk) = log barrier fcn.

P(Z3, Z4, Zs) = penalty fcn.
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Application: Secondary Frequency Control in Bulk Grid

|w

minimize Zn Ci(ay)
u i=1

u AC Power
System

LA:U"} subject to Aw = %1,,(11& + w)

Aw, =0

@ Note: the way one encodes the frequency regulation constraint can lead to different
controller architectures; this is just one possible choice.
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Application: Secondary Frequency Control in Bulk Grid

|w

u AC Power
System

minimize Zn . Ci(ay)
u 1=
LA:U"} subject to Aw = %1,,(11& + w)

Aw, =0

@ Note: the way one encodes the frequency regulation constraint can lead to different
controller architectures; this is just one possible choice.

_ 1 T _ 1
° G, =11,1], G, =131,

Optimality Model #1 Optimality Model #2

T = —Awy,

€ = VC,'(U,‘) -

I —51a1; 0
null LT ﬁO } = range L—T}

n

2= 5]

o
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Application: Secondary Frequency Control in Bulk Grid

Both designs provably stable for large 7

@ Inversion-based controller

T = —Awp
uj = (VG) () J :
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Application: Secondary Frequency Control in Bulk Grid

Both designs provably stable for large 7

@ Inversion-based controller

T = —Awp
ui = (VC) () J T

@ Two-loop controller

: A
mni = — ) aj(VG(ui) — VG(y))) e :
j; i jlYj J .
7'27.7n = —Auwp )t"'é 4' '
ui =mi 23 T
5 5




Conclusions

© Optimal steady-state (OSS) control is a feedback optimization method
@ Constructive design techniques based on low-gain integral control

© Only model information required is plant DC gain
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Conclusions
© Optimal steady-state (OSS) control is a feedback optimization method
@ Constructive design techniques based on low-gain integral control

© Only model information required is plant DC gain

Open directions

w
Uy u z | Optimality
Viode 43

@ Nonlinear systems

@ Robustness of the
optimization

© Time-varying disturbances

Note: Open PhD position at University of Toronto for Fall 2023,
focusing on data-driven control and estimation for energy systems! J
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