

Controls & Communications Modeling

Section 5 of Task Force Report for "Microgrid dynamic modeling"

Section Lead: John W. Simpson-Porco, University of Toronto

Contributors: Enrique Espina, Roberto Cardenas, Daniel Olivares, Zhiyuan Tang

Background and Motivation

• System-level MG controllers coordinate heterogeneous DERs

Architectures? Designs? Time-Scales?

• Controllers are implemented **digitally** and use **communication**

Discretization? Sampling rates? Comm. Issues?

Section Objective: Discuss, analyze, and illustrate the impact of these factors on MG dynamic stability and performance

System-Level MG Controls

Secondary Control (Slow)

- **Objective**: f/V regulation, power sharing, energy management, ...
- Architecture: centralized or distributed
- **Time Constant:** ≈ 5-10s
- **Typical Design:** various: integral control, optimization, MPC, ...

May impact MG stability!

Primary Control (Fast)

- **Objective**: stabilize MG frequency and voltage
- Architecture: decentralized
- Time Constant: ≈ 1 second
- Typical Design: P/f and Q/V droop control
- Extras: virtual impedance loops for IBG

 $\omega_i = \omega^* - m_i(P_i - P_i^*) + u_{\omega i}$ $V_i = V^* - n_i(Q_i - Q_i^*) + u_{Vi}$

Impacts short-term stability

Tertiary Control (Very Slow)

- **Objective**: coordination with utility or other MGs
- Architecture: centralized
- Time Constant: ≈ minutes to hours

No impact on MG stability.

Centralized vs. Distributed Control

 $A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

IEEE

Distributed control is often expressed in the language of graph theory

Centralized Sec. Control

- Central processor collects data and computes control actions
- Advantages: simple, enables complex functionality (EMS)
- Weaknesses: single point of failure, lack of scalability

Distributed Sec. Control

- Distributed processors share information to compute
- Advantages: resilience to failure, scalability
- Weaknesses: complex functionality difficult

Our focus: centralized vs. distributed secondary freq. and volt. control

Secondary Freq. and Volt. Controllers

Characteristics of good sec. control systems

- No interaction with primary control loops
- Adjustable time-constants
- Designed using zero or little model information

 $A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Centralized integral control

Distributed integral control

$$e_{\omega} = -\Delta\omega_{MG}, \qquad u_{\omega_{-}i} = PI(e_{\omega}), \qquad e_{\omega i} = -\Delta\omega_{i} - \sum_{i=1}^{N} a_{ij} (\Delta P_{i} - \Delta P_{j}), \qquad u_{\omega i} = PI(e_{\omega i}).$$

$$e_{V} = -\frac{1}{N} \sum_{i=0}^{N} \Delta V_{i}, \qquad u_{V_{-}i} = PI(e_{V}), \qquad e_{Vi} = -\beta_{i} \Delta V_{i} - b_{i} \sum_{i=1}^{N} a_{ij} (\Delta Q_{i} - \Delta Q_{j}), \qquad u_{Vi} = PI(e_{Vi}).$$
Commands broadcasted out

Centralized error signal

Local error

Communication between neighbouring controllers

Analog vs. Digital Control

- Practical secondary control systems are digital control systems
 - Emulation Design: design an analog controller, then discretize
 - **Direct Design**: directly design a discrete controller

Key Issues

- 1. Sampling period
 - $\omega_s \geq 10\omega_b$
- 2. Anti-aliasing filters
 - Ensures data quality

Communications Modelling

Туре	Technology	Cost	Scalability	Distance	Latency	Control level		
			complexity	coverage		Ρ	S	т
Wired	Optical fiber	$\checkmark\checkmark\checkmark$	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$	\checkmark	~	✓	
	Twisted pairs	$\checkmark\checkmark$	$\sqrt{\sqrt{\sqrt{1}}}$	\checkmark	√	~	✓	
	Power line	\checkmark	$\checkmark\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$			\checkmark
Wireless	Wi-Fi	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	ZigBee	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$			\checkmark
	Bluetooth	$\checkmark \checkmark$	\checkmark	\checkmark	$\checkmark\checkmark$			\checkmark
	Cellular 3G	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark \checkmark$	$\checkmark\checkmark$			\checkmark
	Cellular 4G	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark \checkmark$	$\checkmark\checkmark$			\checkmark
	Cellular 5G	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark \checkmark$	\checkmark			\checkmark
	LoRa	$\checkmark \checkmark$	\checkmark	$\checkmark \checkmark$	$\checkmark \checkmark \checkmark$			\checkmark

Technological Factors

- Wired vs. wireless
- Short range vs. long range
- Low-latency vs. high-latency

PES

Power & Energy Society*

IEEE

- Capital costs
- Maintenance costs
- Security

Standard	Comments	Application		
IEC 61850 (61850-7-420)	Communication between devices in transmission, distribution, and substation automation system	DER/microgrid		
IEC 61968	Data exchange between device and networks in the power distribution domain	Energy management system		
IEEE 1547.x	Interconnecting DERs with Electric Power System	DER/microgrid		
IEEE 1646	Communication requirements	Substation automation		

Critical Issues for Control

- Delays
- Reliability and data loss

Case Study: CIGRE Microgrid

Test System Overview

• IBG units operating w/ inner loops in grid-forming mode

ower & Energy Society

- Primary controller bandwidth \approx 5Hz
- Communication links between IBGs
- **Objective:** focus on distributed secondary control effects

Case Studies for Distributed Secondary Control

- 1. Effect of controller sampling period
- 2. Effect of communication delays
- 3. Effect of communication failure

Communication Delays (0s, 0.5s, 2s)

Conclusions for Control & Comms.

- Secondary control impacts MG dynamics •
- Centralized and distributed controllers are possible; trade-offs!
- Communication technology may or may not bottleneck control capabilities •
- Interacting factors influence dynamic response •
 - desired bandwidth 1.
 - 2. control design and architecture
 - 3. sampling periods for digital implementation
 - communication delays for digital implementation 4.

Questions, Comments, or Feedback? jwsimpson@ece.utoronto.ca

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO