Power Systems Operations and Control: An Overview

Prof. John W. Simpson-Porco https://www.control.utoronto.ca/~jwsimpson/

The Edward S. Rogers Sr. Department
 of Electrical & Computer Engineering
 UNIVERSITY OF TORONTO

DISC Summer School on Control in Power and Energy Systems Noordwijkerhout, The Netherlands, September 12-15, 2023

September 15, 2023

Prof. J. W. Simpson-Porco: Control Theory

jwsimpson@ece.utoronto.ca

Feedback-Based Optimization

Nonlinear Systems

Network Dynamics & Control

Prof. J. W. Simpson-Porco: Energy Systems

jwsimpson@ece.utoronto.ca

Power Flow Analysis & Algorithms

Microgrid Control & Optimization

Renewable Energy Integration

Next-Generation Hierarchical Control

Overview of the Bulk Power System

Generation Transmission Medium-voltage Low-voltage distribution distribution

	Classical paradigm	wodern trend
Generation	Bulk, centralized	Small-scale, distrib.
Energy interface	Sync. generators	Power electronics
Net load uncertainty	Low	Renewable-driven
Information	Centralized	Distributed
Sensors/Actuators	Low-bandwidth	High-bandwidth

The time is **now** for advanced control to have **real impact**.

- Coordinated Control of Many (Heterogeneous) Resources
 - Real-time system optimization w/ performance guarantees
 - Scalability to thousands of sensors/actuators

② Grid Architecture (sensors/actuators/IT/algorithms/CPS)

- Hierarchical layering across spatial and temporal scales
- Prefer localized use of measurements (min. latency)

Practical Constraints in Power Engineering

- Seamless integration with legacy systems
- Simple, and congruent w/ established power eng. principles

- **1** Coordinated Control of Many (Heterogeneous) Resources
 - Real-time system optimization w/ performance guarantees
 - Scalability to thousands of sensors/actuators

② Grid Architecture (sensors/actuators/IT/algorithms/CPS)

- Hierarchical layering across spatial and temporal scales
- Prefer localized use of measurements (min. latency)

Practical Constraints in Power Engineering

- Seamless integration with legacy systems
- Simple, and congruent w/ established power eng. principles

- Ocoordinated Control of Many (Heterogeneous) Resources
 - Real-time system optimization w/ performance guarantees
 - Scalability to thousands of sensors/actuators

② Grid Architecture (sensors/actuators/IT/algorithms/CPS)

- Hierarchical layering across spatial and temporal scales
- Prefer localized use of measurements (min. latency)

Practical Constraints in Power Engineering

- Seamless integration with legacy systems
- Simple, and congruent w/ established power eng. principles

- Ocoordinated Control of Many (Heterogeneous) Resources
 - Real-time system optimization w/ performance guarantees
 - Scalability to thousands of sensors/actuators

② Grid Architecture (sensors/actuators/IT/algorithms/CPS)

- Hierarchical layering across spatial and temporal scales
- Prefer localized use of measurements (min. latency)
- OPACTICAL CONSTRAINTS IN POWER Engineering
 - Seamless integration with legacy systems
 - Simple, and congruent w/ established power eng. principles

The Power System Control Zoo

Figure: J. Chow and J.J. Sanchez-Gasca. Power System Modeling, Computation, and Control

Purpose of control is to main

- power quality
- 2 power security
- efficiency of operation

Types of control

- component-level loop designs
- frequency / voltage control
- wide-area damping control
- HVDC control
- economic dispatch / OPF
- energy and service markets
- unit commitment

• . . .

Hierarchical Architecture of Power Systems Controls

Figure: G. Andersson, C. A. Bel, C. Cañizares. Frequency and Voltage Control

Hierarchical Architecture of Power Systems Controls

Many Excellent (And Recently Updated) Textbooks

Topics, Disclaimers, Excuses, Etc.

This is a huge, diverse set of topics. What will we cover?

- Coverage biased by my own interests and knowledge
- Mix of theory and practice, key control insights
- Trying to present a viewpoint you can't find in textbooks

Power Flow and Dispatch

- power flow equations
- Ioad flow problem
- the power flow Jacobian
- dispatch / optimal power flow
- contingency analysis

Stability & Control

- power system stability (brief)
- primary frequency control
- automatic generation control
- fast frequency control

Core Ideas in Power Systems Operations/Control

• Active power P

- (i) is used as a control variable to regulate frequency
- (ii) can be transmitted long distances with little loss
- (iii) is the primary variable of economic importance

• Reactive power Q

- (i) is used as a control variable to regulate voltage magnitude
- (ii) is absorbed by inductance; can be transmitted only short distances
- (iii) is important for maintaining efficient transport of active power

• Frequency Δf

- (i) is spatially homogeneous in steady-state
- (ii) is maintained close to 50/60Hz through a hierarchy of control systems

• Voltage magnitude V

- (i) is spatially heterogeneous in steady-state
- (ii) generally allowed to float between operational bounds
- (iii) primarily governed by local controllers

Steady-State AC Power Flow, Economic Dispatch, and Optimal Power Flow

Power Flow in the Transmission Grid

Figure: U.S. Energy Information Administration, based on Energy Velocity.

The transmission grid is effectively a **giant electrical circuit**, through which power is routed from generation to load.

(i) alternating current: (roughly) constant 50Hz or 60Hz

$$v(t) = \operatorname{Re}(Ve^{\mathbf{j}\theta}e^{\mathbf{j}\omega t}), \qquad V \ge 0, \quad \theta \in [0, 2\pi]$$

(ii) **three-phase**: each transmission line is really three lines (a, b, c)

$$v_a(t) = \operatorname{Re}(V_a e^{\mathbf{j}\theta_a} e^{\mathbf{j}\omega t}), \qquad v_b(t) = \cdots,$$

(iii) balanced: $V_a = V_b = V_c$, $\theta_b = \theta_a - \frac{2\pi}{3}$, $\theta_c = \theta_a + \frac{2\pi}{3}$

Power Flow in the Transmission Grid

- Under these (and some other mild¹) conditions
 - (i) inductance and capacitance become impedance/admittance
 - (ii) all phases are **decoupled**; no interactions

We can use single-phase phasor AC circuit analysis.

We must describe

- bus-branch interconnections
- 2 transmission line models
- ophysics (KCL, KVL, Ohm)
- generation model
- Ioad model

 $^{^1 {\}rm Sources}$ and loads wye-connected, no mutual inductances between phases.

Power Flow in the Transmission Grid

 \bullet Circuit described by a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$

(i) node/buses
$$\mathcal{N} = \{1, \ldots, n+m\}$$

(ii) edges/branches $\mathcal{E} \subset \mathcal{N} \times \mathcal{N}$

• Edge $(i, j) \in \mathcal{E}$ models a transmission line with series admittance²

$$y_{ij} = g_{ij} + \mathbf{j}b_{ij}$$

- For each bus $i \in \mathcal{N}$ we have
 - (i) a (complex) potential \tilde{V}_i
 - (ii) a (complex) external current injection I_i
 - (iii) a shunt admittance $y_{s,i}$ (typically, capacitive)

²Extends fairly easily to more complex line models.

Power Flow in the Transmission System

- Ohm's Law: $I_{i \rightarrow j} = y_{ij} (\tilde{V}_i \tilde{V}_j)$, $I_{{
 m s},i} = y_{{
 m s},i} \tilde{V}_i$
- Current balance using KCL

$$I_{i} = \sum_{j \neq i} I_{i \rightarrow \mathbf{j}} + I_{\mathbf{s},i}$$
$$= \sum_{j \neq i} y_{ij} (\tilde{V}_{i} - \tilde{V}_{j}) + y_{\mathbf{s},i} \tilde{V}_{i}$$
$$\triangleq \sum_{j} Y_{ij} \tilde{V}_{j}$$

The matrix $Y \in \mathbb{C}^{N \times N}$ is known as the admittance matrix $Y_{ij} = \begin{cases} y_{\mathrm{s},i} + \sum_{j \neq i} y_{ij} & \text{if } i = j \\ -y_{ij} & \text{if } i \neq j \end{cases}$ • conductance matrix $G = \operatorname{Re}(Y)$ • susceptance matrix $B = \operatorname{Im}(Y)$

• The complex power $S_i = P_i + \mathbf{j}Q_i$ is given by

$$S_i = \tilde{V}_i I_i^* = \tilde{V}_i \sum_j Y_{ij}^* \tilde{V}_j^* \quad \Longleftrightarrow \quad S = \operatorname{diag}(\tilde{V})(Y\tilde{V})^*$$

The Power Flow Equations

These equations can be written in **many** equivalent ways.

- Rectangular form: $S_i = \tilde{V}_i \sum_j Y_{ij}^* \tilde{V}_j^*$
 - nonlinear quadratic equations, useful for analysis and optimization
- **"SDP" form:** S_i = ∑_j Y^{*}_{ij}W_{ij} with W_{ij} = V_iV^{*}_j
 useful for semidefinite programming representation of OPF
- Fixed-point form: $\tilde{V} = F(\tilde{V})$ for some function F
 - useful for analysis (existence/uniqueness of solns)
- Polar form: $\tilde{V}_i = V_i e^{\mathbf{j}\theta_i}$ and $S_i = P_i + \mathbf{j}Q_i$

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}) + \sum_{j} V_{i} V_{j} G_{ij} \cos(\theta_{i} - \theta_{j})$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}) + \sum_{j} V_{i} V_{j} G_{ij} \sin(\theta_{i} - \theta_{j})$$

The AC Power Flow Problem

- We now incorporate generation and load models into the picture
- *n* Loads, m-1 Generators, 1 Slack $\mathcal{N} = \mathcal{N}_L \cup \mathcal{N}_G \cup \mathcal{N}_s$

Bus Type	Fixed Vars.	Free Vars.
Load (PQ) Bus	P_i, Q_i	$ heta_i, V_i$
Generator (PV) Bus	P_i, V_i	$ heta_i, Q_i$
Slack Bus	$\theta_i = 0, V_i$	P_i, Q_i

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}) + \sum_{j} V_{i} V_{j} G_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}) + \sum_{j} V_{i} V_{j} G_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L}$$

Power Flow Problem: Solve, if possible, the above 2n + m - 1 equations for the n + m - 1 unknowns $\{\theta_i\}_{i \in \mathcal{N}_L \cup \mathcal{N}_G}$ and the n unknowns $\{V_i\}_{i \in \mathcal{N}_L}$.

Comments on the AC Power Flow Problem

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}) + \sum_{j} V_{i} V_{j} G_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}) + \sum_{j} V_{i} V_{j} G_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L}$$

- The most ubiquitous problem in power system operations
- Solution approximates the operating equilibrium voltages/angles of the real dynamic grid
- The slack bus is a mathematical simplification; provides or extracts real power to balance out the system and enable feasibility of the nonlinear equations.

Many, Many Extensions

- Voltage-dependent loads
- "Distributed slack bus" (models real generator response)
- Transfer constraints between areas
- Remote regulation of PQ bus voltages
- Multiple generators per bus
- Generator Q limit switching

Intuition on Transmission Grid Power Flow Solutions

- Normally there is a unique high-voltage solution with the following nice properties
 - (i) If V_i ≈ 1 p.u. for generators i ∈ N_G ∪ N_s, then V_i ≈ 1 − ε p.u. for loads i ∈ N_L
 (ii) |θ_i − θ_j| ≪ 1 for all (i, j) ∈ E
- Just like in undergrad, AC circuits are subject to maximum power transfer limits; you can only send so much power from point A to B
- Lightly loaded systems have many solutions
- Heavily loaded systems may have no solutions; solutions will coalesce and disappear in saddle-node bifurcations as maximum power transfer is reached.

[Hiskens & Davy]

Newton's Method:
$$x_{k+1} = x_k - \left(\frac{\partial f}{\partial x}(x_k)\right)^{-1} f(x_k)$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

• With $x = (\theta, V_L)$ the ACPF equations can be expressed as 0 = f(x)

Newton's Method:
$$x_{k+1} = x_k - \left(\frac{\partial f}{\partial x}(x_k)\right)^{-1} f(x_k)$$

• If convergent, may converge to "wrong" solution

- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

Newton's Method:
$$x_{k+1} = x_k - \left(\frac{\partial f}{\partial x}(x_k)\right)^{-1} f(x_k)$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

Newton's Method:
$$x_{k+1} = x_k - \left(\frac{\partial f}{\partial x}(x_k)\right)^{-1} f(x_k)$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

Newton's Method:
$$x_{k+1} = x_k - \left(\frac{\partial f}{\partial x}(x_k)\right)^{-1} f(x_k)$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

Newton's Method:
$$x_{k+1} = x_k - \left(\frac{\partial f}{\partial x}(x_k)\right)^{-1} f(x_k)$$

- If convergent, may converge to "wrong" solution
- If non-convergent, several possibilities:
- (a) No power flow solution exists
- (b) Numerical instability (conditioning)
- (c) x^0 not in any region of convergence

A Closer Look at the Power Flow Jacobian

 High-voltage transmission lines have little resistance; and dropping the conductance terms from the PFE is a very common approximation

$$P_{i} = \sum_{j} V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$
$$Q_{i} = -\sum_{j} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), i \in \mathcal{N}_{L}$$

Jacobian matrix

$$\begin{bmatrix} \Delta P \\ \Delta Q_L \end{bmatrix} = \begin{bmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V_L} \\ \frac{\partial Q_L}{\partial \theta} & \frac{\partial Q_L}{\partial V_L} \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V_L \end{bmatrix}$$

• Decoupled Jacobian matrix

$$\begin{bmatrix} \Delta P \\ \Delta Q_L \end{bmatrix} \approx \begin{bmatrix} \frac{\partial P}{\partial \theta} & \mathbf{0} \\ \mathbf{0} & \frac{\partial Q_L}{\partial V_L} \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V_L \end{bmatrix}$$

Near high-voltage solution

$$|V_i| \approx 1, \ |\theta_i - \theta_j| \ll 1$$

$$\frac{\partial P_i}{\partial V_k} \propto \sin(\theta_i - \theta_k) \approx 0$$
$$\frac{\partial Q_i}{\partial \theta_k} \propto \sin(\theta_i - \theta_k) \approx 0$$

Using an approximated Jacobian in Newton = fast decoupled load flow

Typical Convergence of Newton and FDLF

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part I," in IEEE Trans. on Control of Network Syst., 2018.

Doing all these computations efficiently is very practically important; lots of sparse linear algebra and matrix decompositions used in practice.

Primer: Some Matrix Theory

- A matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ is
- a Z-matrix if $a_{ij} \leq 0$ for all $i \neq j$
- ► a nonsingular *M*-matrix if *A* is a *Z*-matrix and A = sI - Bwhere $b_{ij} \ge 0$ and $s \ge \rho(B)$
- weakly diagonally dominant if $|a_{ii}| \ge \sum_{j \ne i} |a_{ij}|$ for all i
- irreducible if the directed graph induced by A is strongly connected
- irreducibly diagonally dominant if it is irreducible and weakly diagonally dominant but with strict inequality for at least one $i \in \{1, ..., n\}$

- A irreducibly diagonally dominant Z-Matrix \implies A irreducible nonsingular M-matrix
- ② A (irreducible) nonsingular M-matrix ⇐⇒ A⁻¹ nonnegative (strictly positive)

Primer: Some Matrix Theory

• A Z-Matrix

$$\begin{bmatrix} -5 & -3 & 0 \\ 0 & 0 & -1 \\ 0 & -2 & 2 \end{bmatrix}$$

• A reducible weakly diagonally dominant Z-matrix

$$\begin{bmatrix} 3 & -3 & 0 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \end{bmatrix}$$

• An irreducible weakly diagonally dominant Z-matrix

$$\begin{bmatrix} 3 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & -2 & 3 \end{bmatrix}$$

• An irreducibly diagonally dominant Z-matrix

$$\begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & -2 & 3 \end{bmatrix}$$

with strictly positive inverse

$$\begin{bmatrix} 1 & 9 & 3 \\ 1 & 12 & 4 \\ 1 & 11 & 4 \end{bmatrix}$$

• An irreducible nonsingular *M*-matrix

$$\begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & -1 \\ -1 & -2 & 2.9 \end{bmatrix}$$

which is not diagonally dominant

A Closer Look: The Active Power Flow Jacobian

• Decoupled Jacobian matrix $\begin{bmatrix} \Delta P \\ \Delta Q_L \end{bmatrix} \approx \begin{bmatrix} \frac{\partial P}{\partial \theta} & \mathbf{0} \\ \mathbf{0} & \frac{\partial Q_L}{\partial V_L} \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V_L \end{bmatrix} \quad P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), i \in \mathcal{N}_L \cup \mathcal{N}_G$ $Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j), i \in \mathcal{N}_L$

• Set $w_{ij} = V_i V_j B_{ij} \cos(\theta_i - \theta_j)$ for $i \neq j$. Note $w_{ij} = w_{ji}$. Then $\begin{pmatrix} \frac{\partial P}{\partial \theta} \end{pmatrix}_{ij} = \begin{cases} -w_{ij} & \text{if } i \neq j \\ \sum_{j \neq i} w_{ij} & \text{if } i = j \end{cases} \implies \Delta P_i = \sum_{j \neq i} w_{ij} (\Delta \theta_i - \Delta \theta_j)$

• If $|\theta_i - \theta_j| < \frac{\pi}{2}$, then $w_{ij} \ge 0$, and strictly if (i, j) or $(j, i) \in \mathcal{E}$; $\frac{\partial P}{\partial \theta}$ is a Z-Matrix

- By network connectivity, $\frac{\partial P}{\partial \theta}$ is irreducible*, weakly diagonally dominant
- Slack bus \Longrightarrow strict diagonal dominance in (at least) one row
- Under normal conditions, ^{∂P}/_{∂θ} is a (symmetric) irreducible non-singular M-matrix! It is pos. def., D-stable, (^{∂P}/_{∂θ})⁻¹ is entry-wise positive.

Main Point: Angle controls active power (or active power controls angle!)

The "DC Power Flow"

- A crude but very useful power flow approximation.
- If $V_i pprox 1$ for all buses, and $| heta_i heta_j| \ll 1$, then

$$P_i = \sum_{j=1}^{n+m} V_i V_j B_{ij} \sin(\theta_i - \theta_j) \approx \sum_{j=1}^{n+m} \underbrace{B_{ij}(\theta_i - \theta_j)}_{\text{flow from } i \text{ to } j}, \quad i \in \{1, \dots, n+m\}$$

Laplacian Matrix:

DC Power Flow

$$L_{ij} = \begin{cases} -B_{ij} & i \neq j \\ \sum_{j \neq i} B_{ij} & i = j \end{cases} \begin{bmatrix} P \\ P_{s} \end{bmatrix} = \begin{bmatrix} \mathsf{L} & L_{s} \\ L_{s}^{\mathsf{T}} & L_{ss} \end{bmatrix} \begin{bmatrix} \theta \\ \theta_{s} \end{bmatrix}$$

• Since $\theta_s \equiv 0$ by definition, $P = L\theta$; a simple linear relationship

• With $p_{ij} = B_{ij}(\theta_i - \theta_j)$ the line power flows, can also be expressed as

$$P = A_{\mathrm{r}}p, \qquad p = \mathrm{diag}(B_{ij})_{(i,j)\in\mathcal{E}}A_{\mathrm{r}}^{\mathsf{T}}\theta, \qquad \mathsf{L} = A_{\mathrm{r}}\mathrm{diag}(B_{ij})_{(i,j)\in\mathcal{E}}A_{\mathrm{r}}^{\mathsf{T}}.$$

where $A_{\rm r}$ is the reduced incidence matrix of the graph.

A Closer Look: The Reactive Power Flow Jacobian

The Q/V Jacobian is more subtle to understand.

• Decoupled Jacobian matrix $\begin{bmatrix} \Delta P \\ \Delta Q_L \end{bmatrix} \approx \begin{bmatrix} \frac{\partial P}{\partial \theta} & \mathbf{0} \\ \mathbf{0} & \frac{\partial Q_L}{\partial V_L} \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V_L \end{bmatrix} \quad P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j), i \in \mathcal{N}_L \cup \mathcal{N}_G$ $Q_i = -V_i \sum_j V_j B_{ij} \cos(\theta_i - \theta_j), i \in \mathcal{N}_L$

• Let
$$\tilde{B}_{ij} = B_{ij} cos(\theta_i - \theta_j)$$
 for $i \in \mathcal{N}_L$ and $j \in \mathcal{N}$. Then

$$\left(\frac{\partial Q_L}{\partial V_L}\right)_{ij} = \begin{cases} -V_i \tilde{B}_{ij} & \text{if } i \in \mathcal{N}_L, \, j \in \mathcal{N} \setminus \{i\} \\ -V_i \tilde{B}_{ii} - \sum_{j=1}^{n+m} \tilde{B}_{ij} V_j & \text{if } i \in \mathcal{N}_L, \, i = j \end{cases}$$

• Under normal conditions³ the elements of *B* satisfy

(i)
$$B_{ij} \ge 0$$
 for $i \ne j$, with $B_{ij} > 0$ if (i, j) or $(j, i) \in \mathcal{E}$;
(ii) $B_{ii} = -\sum_{j \ne i} B_{ij} + B_{s,i} < 0$ with $B_{s,i} \ge 0$ if shunt capacitance.

³No significant series capacitance.
A Closer Look: The Reactive Power Flow Jacobian

• Under normal operating conditions $V_i \approx 1$ and $| heta_i - heta_j| \approx 0$, thus

$$\left(\frac{\partial Q_L}{\partial V_L}\right)_{ij} \approx \begin{cases} -B_{ij} & \text{if } i \in \mathcal{N}_L, \ j \in \mathcal{N} \setminus \{i\}\\ \sum_{j \neq i} B_{ij} - 2B_{\mathrm{s},i} & \text{if } i \in \mathcal{N}_L, \ i = j \end{cases}$$

For simplicity only: assume that \mathcal{N}_L induces a connected subgraph.

Inductive shunts $B_{s,i} \leq 0$

- $\frac{\partial Q_L}{\partial V_L}$ is symmetric, irreducible*
- Z-mat, weakly diag. dominant
- strict d.d. in at least 1 row

$$\begin{array}{l} \frac{\partial Q_L}{\partial V_L} \text{ is an } M\text{-matrix!} \\ \\ \frac{\partial V_i}{\partial Q_i} \geq \frac{\partial V_i}{\partial Q_j} > 0 \end{array}$$

Capacitive shunts $B_{\mathrm{s},i} \ge 0$

- $\frac{\partial Q_L}{\partial V_L}$ is symmetric, irreducible*
- Z-mat, **not** weakly diag. dominant!
- But **might** still be an *M*-matrix!

If
$$\frac{\partial Q_L}{\partial V_L}$$
 is an *M*-matrix
 $\frac{\partial V_i}{\partial Q_i} \nleq \frac{\partial V_i}{\partial Q_j} > 0$

Main Point: Voltage controls reactive power (or reactive power controls voltage!)

Other Power Flow-Related Sensitivities

JWSP and F. Bullo, "Distributed Monitoring of Voltage Collapse Sensitivity Indices," in IEEE Trans. on Smart Grid, 2016.
 Can also look at other sensitivities coming from the full Jacobian matrix

$$\begin{pmatrix} \Delta P \\ \Delta Q_L \\ \Delta Q_G \end{pmatrix} = \begin{pmatrix} \frac{\partial P}{\partial \theta} & \frac{\partial P}{\partial V_L} & \frac{\partial P}{\partial V_G} \\ \frac{\partial Q_L}{\partial \theta} & \frac{\partial Q_L}{\partial V_L} & \frac{\partial Q_L}{\partial V_G} \\ \frac{\partial Q_G}{\partial \theta} & \frac{\partial Q_G}{\partial V_L} & \frac{\partial Q_G}{\partial V_G} \end{pmatrix} \begin{pmatrix} \Delta \theta \\ \Delta V_L \\ \Delta V_G \end{pmatrix} \, .$$

• For example: If I as the grid operator adjust the generator voltages, what will the effect be on voltages at load buses? Just set $\Delta P = \Delta Q_L = 0$, and eliminate to obtain

$$\Delta V_L = \underbrace{\left[\frac{\partial Q_L}{\partial V_L} - \frac{\partial Q_L}{\partial \theta} \left(\frac{\partial P}{\partial \theta}\right)^{-1} \frac{\partial P}{\partial V_L}\right]^{-1} \left[\frac{\partial Q_L}{\partial V_G} - \frac{\partial Q_L}{\partial \theta} \left(\frac{\partial P}{\partial \theta}\right)^{-1} \frac{\partial P}{\partial V_G}\right]}_{\triangleq \frac{\partial V_L}{\partial V_G}} \Delta V_G$$

• Intuitively, raising all generator voltages 1% should raise all load voltages close to 1% as well. So we expect $\left(\frac{\partial V_L}{\partial V_G}\right)_{ij} \geq 0$ and $\sum_j \left(\frac{\partial V_L}{\partial V_G}\right)_{ij} \approx 1$ for all i.

This is the basis for various classical power system monitoring indices.

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

Given data: network topology, impedances, generation & loads
Q: ∃ "stable high-voltage" solution? unique? properties?

Many approaches over 45+ years of literature:

- [Weedy '67]: Jacobian singularity
- [Korsak '72]: Multiple "stable" solutions
- [Wu & Kumagai '77, '80, '82]: Fixed-point analysis of existence
- [Araposthatis, Sastry & Varaiya, '81]: Jacobian analysis
- [Baillieul and Byrnes '82]: Counting # of solutions, Bezout/Morse analysis
- [Ilic '86, '92]: "no-gain" results, nonlinear resistive networks
- [Makarov, Hill & Hiskens '00]: Solution insights for general quadratic equations
- [Dörfler, Chertkov & Bullo '12]: Existence/uniqueness for lossless P/θ problem
- [JWSP, Dörfler & Bullo '15]: Existence/uniqueness for lossless Q/V problem
- [Bolognani & Zampieri '16, Nguyen et al. '17, Wang et al. '17, ...]: Distribution networks
- [JWSP '16, '17]: Lossy P/θ , coupled power flow conditions
- [Delabays, Jafarpour, Bullo '21]: Effect of cycles in P/θ problem

• . . .

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

Given data: network topology, impedances, generation & loads Q: ∃ "stable high-voltage" solution? unique? properties?

Many approaches over 45+ years of literature:

- [Weedy '67]: Jacobian singularity
- [Korsak '72]: Multiple "stable" solutions
- [Wu & Kumagai '77, '80, '82]: Fixed-point analysis of existence
- [Araposthatis, Sastry & Varaiya, '81]: Jacobian analysis
- [Baillieul and Byrnes '82]: Counting # of solutions, Bezout/Morse analysis
- [Ilic '86, '92]: "no-gain" results, nonlinear resistive networks
- [Makarov, Hill & Hiskens '00]: Solution insights for general quadratic equations
- [Dörfler, Chertkov & Bullo '12]: Existence/uniqueness for lossless P/θ problem
- [JWSP, Dörfler & Bullo '15]: Existence/uniqueness for lossless Q/V problem
- [Bolognani & Zampieri '16, Nguyen et al. '17, Wang et al. '17, ...]: Distribution networks
- [JWSP '16, '17]: Lossy P/θ , coupled power flow conditions
- [Delabays, Jafarpour, Bullo '21]: Effect of cycles in P/θ problem

Ο ...

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

Given data: network topology, impedances, generation & loads
Q: ∃ "stable high-voltage" solution? unique? properties?

Many approaches over 45+ years of literature:

Main insight: stiffness vs. loading

- $\textbf{0} \quad \mathsf{Stiff network} + \mathsf{light loading} \Rightarrow \mathsf{feasible}$
- 2 Weak network + heavy loading \Rightarrow infeasible

This intuition can be built upon into a partial theory of solvability for **lossless** systems. We will just look at a simple example.

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

Given data: network topology, impedances, generation & loads
Q: ∃ "stable high-voltage" solution? unique? properties?

Many approaches over 45+ years of literature:

Main insight: stiffness vs. loading

- $\textbf{0} \quad \mathsf{Stiff network} + \mathsf{light loading} \Rightarrow \mathsf{feasible}$
- 2 Weak network + heavy loading \Rightarrow infeasible

This intuition can be built upon into a partial theory of solvability for **lossless** systems. We will just look at a simple example. Voltage

Simplest model of a **perfect generator** feeding a **voltage-independent load** through a **lossless** transmission line.

Active Power at PQ Bus: $-P = VV_0 b \sin(\theta - 0)$ Reactive Power at PQ Bus: $-Q = bV^2 - bVV_0 \cos(\theta - 0)$

Even the simplest case is a nasty trionometric/quadratic nonlinear equation! Remarkably, it is analytically solvable.

 $-P = VV_0 b\sin(\theta)$ $-Q = bV^2 - bVV_0\cos(\theta)$

O Change Variables

$$v := \frac{V}{V_0} \qquad \Gamma := \frac{P}{bV_0^2} \qquad \Delta := \frac{Q}{\frac{1}{4}bV_0^2}$$

② Square equations, add, and solve quadratic in v^2

$$v_{\pm} = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{2} \pm \sqrt{1 - (4\Gamma^2 + \Delta)} \right)}$$

Nec. & Suff. Condition

$$4\Gamma^2 + \Delta < 1$$

 $-P = VV_0 b\sin(\theta)$ $-Q = bV^2 - bVV_0\cos(\theta)$

O Change Variables

$$v := \frac{V}{V_0} \qquad \Gamma := \frac{P}{bV_0^2} \qquad \Delta := \frac{Q}{\frac{1}{4}bV_0^2}$$

② Square equations, add, and solve quadratic in v^2

$$v_{\pm} = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{2} \pm \sqrt{1 - (4\Gamma^2 + \Delta)} \right)}$$

Nec. & Suff. Condition

$$4\Gamma^2 + \Delta < 1$$

 $-P = VV_0 b\sin(\theta)$ $-Q = bV^2 - bVV_0\cos(\theta)$

O Change Variables

$$v := \frac{V}{V_0} \qquad \Gamma := \frac{P}{bV_0^2} \qquad \Delta := \frac{Q}{\frac{1}{4}bV_0^2}$$

② Square equations, add, and solve quadratic in v^2

$$v_{\pm} = \sqrt{\frac{1}{2} \left(1 - \frac{\Delta}{2} \pm \sqrt{1 - (4\Gamma^2 + \Delta)} \right)}$$

$$4\Gamma^2 + \Delta < 1$$

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

$$\Gamma = v \sin(-\theta)$$
$$\Delta = -4v^2 + 4v \cos(-\theta)$$

$$v := \frac{V}{V_0} \quad \Gamma := \frac{P}{bV_0^2} \quad \Delta := \frac{Q}{\frac{1}{4}bV_0^2}$$
$$4\Gamma^2 + \Delta < 1$$

- High-voltage solution $v_+ \in [\frac{1}{2}, 1)$
- **2** Low-voltage solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$
- Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$
 - Small-angle solution $-\theta_{-} \in [0, \pi/4)$
 - 2 Large-angle solution $-\theta_+ \in [0, \pi/2)$

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

$$\Gamma = v \sin(-\theta)$$
$$\Delta = -4v^2 + 4v \cos(-\theta)$$

$$v := \frac{V}{V_0} \quad \Gamma := \frac{P}{bV_0^2} \quad \Delta := \frac{Q}{\frac{1}{4}bV_0^2}$$
$$4\Gamma^2 + \Delta < 1$$

- High-voltage solution $v_+ \in [\frac{1}{2}, 1)$
- **2** Low-voltage solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$

Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$

- Small-angle solution $-\theta_{-} \in [0, \pi/4)$
- 2 Large-angle solution $-\theta_+ \in [0, \pi/2)$

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

$$\Gamma = v \sin(-\theta)$$
$$\Delta = -4v^2 + 4v \cos(-\theta)$$

$$\begin{aligned} v &:= \frac{V}{V_0} \quad \Gamma &:= \frac{P}{bV_0^2} \quad \Delta &:= \frac{Q}{\frac{1}{4}bV_0^2} \\ & 4\Gamma^2 + \Delta < 1 \end{aligned}$$

- High-voltage solution $v_+ \in [\frac{1}{2}, 1)$
- Solution Low-voltage solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$

Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$

- Small-angle solution $-\theta_{-} \in [0, \pi/4)$
- 2 Large-angle solution $-\theta_+ \in [0, \pi/2)$

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

$$\Gamma = v \sin(-\theta)$$
$$\Delta = -4v^2 + 4v \cos(-\theta)$$

$$\begin{split} v &:= \frac{V}{V_0} \quad \Gamma := \frac{P}{bV_0^2} \quad \Delta := \frac{Q}{\frac{1}{4}bV_0^2} \\ & 4\Gamma^2 + \Delta < 1 \end{split}$$

- High-voltage solution $v_+ \in [\frac{1}{2}, 1)$
- **2** Low-voltage solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$

Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$

Small-angle solution $-\theta_{-} \in [0, \pi/4)$

2 Large-angle solution $-\theta_+ \in [0, \pi/2)$

JWSP, "A Theory of Solvability for Lossless Power Flow Equations Part II," in IEEE Trans. on Control of Network Syst., 2018.

$$\Gamma = v \sin(-\theta)$$
$$\Delta = -4v^2 + 4v \cos(-\theta)$$

$$\begin{split} v &:= \frac{V}{V_0} \quad \Gamma := \frac{P}{bV_0^2} \quad \Delta := \frac{Q}{\frac{1}{4}bV_0^2} \\ & 4\Gamma^2 + \Delta < 1 \end{split}$$

- High-voltage solution $v_+ \in [\frac{1}{2}, 1)$
- **2** Low-voltage solution $v_{-} \in [0, \frac{1}{\sqrt{2}})$
- Angle: $\sin(\eta_{\mp}) = \Gamma/v_{\pm}$
 - Small-angle solution $-\theta_{-} \in [0, \pi/4)$
 - 2 Large-angle solution $-\theta_+ \in [0, \pi/2)$

Summary and Open Questions

Summary:

- ACPF (roughly) determines the grid operating point
- Solved numerically using Newton's method
- "Usually" one unique high-voltage small-angle solution
- Jacobian matrix provides insights into static grid behaviour

Open Problems:

- Incomplete theory of ACPF solution space
- Incomplete matrix theory of ACPF Jacobian
- Implications of theory for behaviour of numerical methods
- Lack of *provably* robust high-performance numerical algorithms

Exercise: Solve ACPF in MATPOWER

Ownload MATPOWER v7.1 https://matpower.org/download/

2 Run install_matpower.m; choose option 2

```
1 define_constants; %useful acronyms
2 mpc = loadcase('case9'); %load the 9-bus test case
3 runpf(mpc) %run power flow and print summary
4 results = runpf(mpc); %run power flow and store results
5 plot(results.bus(:,BUS_I),results.bus(:,VM));
```

Exercise: Modify the case9 file to answer the following security analysis question: if the line (4, 9) is tripped, will V_9 remain above 0.95 p.u.?

From Power Flow to Dispatch and OPF

- In the ACPF problem, generator powers and voltages are givens
- In reality, given the installed generation, operators must decide
 - (i) which generators will be used (unit commitment)
 - (ii) the power and voltage set-points for those generators (dispatch)
- These problems could be considered for a single block of time, or could be multi-period with inter-period constraints taken into account over a rolling horizon
- For example: unit commitment is solved roughly 24 hours in advance, while dispatch is recomputed every 5 to 15 minutes.
- Once set-points are computed, they are sent as feedforward commands to the generation units, and local controllers are responsible for ensuring tracking

We won't focus heavily here on optimization, but getting a sense for dispatch is important, so we will consider some of the simplest instances. We consider the centralized dispatch case; market mechanisms discussed by other speakers.

Classical Economic Dispatch

Figure: U.S. Energy Information Administration, based on Energy Velocity.

Goal: Find the cheapest selection of generation such that power flows through the network to satisfy the load.

- There are some potential challenges in achieving this:
 - (i) The network is described by AC power flow, which is hard.
 - (ii) We may encounter various operational limits (voltage, current, power, ...)
 - (iii) We don't actually know the load
- The simplest possible way to proceed is to
 - (i) Ignore the network; assume everything is **lumped** (the "copper plate" grid)
 - (ii) Ignore the limits
 - (iii) Use our best guess of what the load will be

Classical Economic Dispatch

- Assign to each generator $i \in \mathcal{N}_G$ a cost $C_i : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$; for simplicity here, assume this is convex and twice continuously differentiable
- The classical E.D. problem, ignoring limits, is

$$\underset{\{P_i^{\text{set}}\}}{\text{minimize}} \sum_{i \in \mathcal{N}_G} C_i(P_i^{\text{set}}) \quad \text{subject to} \quad \sum_{i \in \mathcal{N}_G} P_i^{\text{set}} = P_{\text{load}}$$

• Analysis is via Lagrange duality. Introduce the Lagrangian function

$$\mathcal{L}(P^{\text{set}}, \lambda) = \sum_{i \in \mathcal{N}_G} C_i(P_i^{\text{set}}) - \lambda \left(\sum_{i \in \mathcal{N}_G} P_i^{\text{set}} - P_{\text{load}} \right), \quad \lambda \in \mathbb{R},$$

Optimal points are characterized by the KKT conditions

$$0 = \sum_{i \in \mathcal{N}_G} P_i^{\text{set}} - P_{\text{load}}, \qquad \frac{\mathrm{d}C_i}{\mathrm{d}P_i^{\text{set}}}(P_i^{\text{set}}) = \lambda$$

 The second condition says that for optimality, the individual marginal cost dC_i dP_i^{set} should be equal for all generators!

Classical Economic Dispatch

Solving, we find that

$$\underbrace{P_{\text{load}} = \sum_{i \in \mathcal{N}_G} \left(\frac{\mathrm{d}C_i}{\mathrm{d}P_i^{\text{set}}}\right)^{-1}(\lambda)}_{\text{demand-supply matching}}, \qquad \underbrace{P_i^{\text{set}} = \left(\frac{\mathrm{d}C_i}{\mathrm{d}P_i^{\text{set}}}\right)^{-1}(\lambda)}_{\text{price determines dispatch}}$$

• λ can also be interpreted as a system-wide marginal cost

• If
$$C(P^{\text{set}}) = \sum_{i \in \mathcal{N}_G} C_i(P_i^{\text{set}})$$
, then
$$\frac{\mathrm{d}C(P_{\text{set}})}{\mathrm{d}P_{\text{load}}} = \sum_{i \in \mathcal{N}_G} \frac{\mathrm{d}C_i}{\mathrm{d}P_i^{\text{set}}} \frac{\mathrm{d}P_i^{\text{set}}}{\mathrm{d}P_{\text{load}}} = \sum_{i \in \mathcal{N}_G} \lambda \frac{\mathrm{d}P_i^{\text{set}}}{\mathrm{d}P_{\text{load}}} = \lambda.$$

• Extensions: generator limits, power losses, less restrictive cost functions, etc.

Optimal Power Flow

• Optimal Power Flow (OPF) extends E.D. by including the network, e.g.,

$$\begin{split} & \underset{P_i,V_i}{\text{minimize}} & \sum_{i\in\mathcal{N}_G} C_i(P_i) + \tilde{C}_i(Q_i) \\ & \text{subject to} & P_i = \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) & i\in\mathcal{N}_L\cup\mathcal{N}_G \,, \\ & Q_i = -\sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) & i\in\mathcal{N}_L\cup\mathcal{N}_G \,, \\ & V_i^{\min} \leq V_i \leq V_i^{\max} & i\in\mathcal{N}_L\cup\mathcal{N}_G \,, \\ & S_i^{\min} \leq |P_i + \mathbf{j}Q_i| \leq S_i^{\max} & i\in\mathcal{N}_G \,, \\ & s_{ij}^{\min} \leq |p_{i\to j} + \mathbf{j}q_{i\to j}| \leq s_{ij}^{\max} & (i,j)\in\mathcal{E} \,, \end{split}$$

- An inherently non-convex optimization problem
- Extensions: lossess, binary decisions, multi-period,
- Convex relaxations: DC OPF, SOCP, SDP/moment hierarchy,
- Uncertainty management: robust versions, stochastic versions,

DC Optimal Power Flow

 In practice, most (but not all) transmission grid operators clear their markets using an approximate OPF model based on the DC Power Flow

 $\begin{array}{ll} \underset{\{P_i\}_{i \in \mathcal{N}_G}}{\text{minimize}} & \sum_{i \in \mathcal{N}_G} C_i(P_i) \\ \text{subject to} & P_i - P_i^{\text{load}} = \sum_j B_{ij}(\theta_i - \theta_j) \\ & P_i^{\min} \leq P_i \leq P_i^{\max} \\ & p_{ij}^{\min} \leq |B_{ij}(\theta_i - \theta_j)| \leq p_{ij}^{\max} \end{array}$

- This is often a linear program; can be solved very quickly. Operators
 - (i) Solve the DC OPF to obtain generation profile
 - Plug generation into ACPF and solve to verify constraint satisfaction (possibly with outer loops to adjust generator voltage setpoints, etc.)
 - (iii) Adjust DC OPF constraints and repeat as necessary
- This is does not have much theoretical sex-appeal, but it definitely "works".

Why Does Power Systems Optimization "Work"?

- ACPF, Economic Dispatch, OPF are based on many assumptions, such as
 - (i) the grid operates in balanced synchronous steady-state
 - (i) generators will do what you want them to
 - (ii) you accurately know grid parameters, load forecasts, ...
- By itself, is a recipe for "garbage in, garbage out"!
- In reality
 - (i) a variety of feedback mechanisms maintain grid stability
 - (ii) local feedback controllers make generators follow commands
 - (iii) system-level feedback controllers correct for OPF's mistakes

Power system optimization is effective because it sits on top of an elaborate set of control mechanisms based on (1) traditional control engineering principles, and (2) deep insight into component and grid behaviour.

Overview of Power System Stability

Classification of Bulk Power System Stability (2004)

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 19, NO. 2, MAY 2004

1387

Definition and Classification of Power System Stability

IEEE/CIGRE Joint Task Force on Stability Terms and Definitions

Prabha Kundur (Canada, Convener), John Paserba (USA, Secretary), Venkat Ajjarapu (USA), Göran Andersson (Switzerland), Anjan Bose (USA), Claudio Canizares (Canada), Nikos Hatziangyriou (Greece), David Hill (Australia), Alex Stankovic (USA), Carson Taylor (USA), Thierry Van Clusem (Belgium), and Vijay Vittal (USA)

Classification of Bulk Power System Stability (2021)

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 4, JULY 2021

3271

Definition and Classification of Power System Stability – Revisited & Extended

Nikos Hatziargyriou[®], Fellow, IEEE, Jovica Milanovic[®], Fellow, IEEE, Claudia Rahmann[®], Senior Member, IEEE, Venkataramana Ajjarapu, Fellow, IEEE, Claudio Canizars[®], Fellow, IEEE, Istvan Erlich[®], Senior Member, IEEE, David Hill[®], Fellow, IEEE, Ian Hiskens[®], Fellow, IEEE, Istvan Erlich[®], Senior Member, IEEE, Dikash Pal[®], Fellow, IEEE, Pouyan Pourbeik[®], Fellow, IEEE, Jana Sanchez-Gasca, Fellow, IEEE, Aleksandar Stankovic[®], Fellow, IEEE, Thierry Van Cutse[®], Fellow, IEEE, Vijay Vittal[®], Fellow, IEEE, and Costas Vournas[®], Fellow, IEEE

Constrained Swing Dynamics
Gen :
$$\begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \\ \text{Load} : \begin{cases} 0 = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ 0 = Q_i + \sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases}$$

Challenge: Characterize equilibria, stability, basin of attraction

Constrained Swing Dynamics

$$Gen: \begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \\ \text{Load}: \begin{cases} 0 = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ 0 = Q_i + \sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases}$$

Challenge: Characterize equilibria, stability, basin of attraction

Constrained Swing Dynamics
Gen :
$$\begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \\ \text{Load} : \begin{cases} 0 = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ 0 = Q_i + \sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases}$$

Challenge: Characterize equilibria, stability, basin of attraction

Constrained Swing Dynamics

$$\begin{aligned} \mathsf{Gen} &: \begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \mathsf{Load} &: \begin{cases} 0 = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ 0 = Q_i + \sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases} \end{aligned}$$

Challenge: Characterize equilibria, stability, basin of attraction

Constrained Swing Dynamics

$$\begin{aligned} \mathsf{Gen} &: \begin{cases} \dot{\theta}_i = \omega_i \\ M_i \dot{\omega}_i = -D_i \omega_i + P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ \mathsf{Load} &: \begin{cases} 0 = P_i - \sum_j V_i V_j B_{ij} \sin(\theta_i - \theta_j) \\ 0 = Q_i + \sum_j V_i V_j B_{ij} \cos(\theta_i - \theta_j) \end{cases} \end{aligned}$$

Challenge: Characterize equilibria, stability, basin of attraction

$${Equilibria} = {Power Flow Solutions}$$

Voltage Instability

- Complex instability involving multiple components and time-scales
- 2004 blackout in Greece (Figure from Van Cutsem)

Power System Frequency Control

The Power System Control Zoo

Figure: J. Chow and J.J. Sanchez-Gasca. Power System Modeling, Computation, and Control

Purpose of control is to main

- power quality
- 2 power security
- efficiency of operation

Types of control

- component-level loop designs
- frequency / voltage control
- wide-area damping control
- HVDC control
- economic dispatch / OPF
- energy and service markets
- unit commitment

Time-scale separation the essential idea for managing complexity.

Key General Ideas in Power Systems Control

- The control architecture is hierarchical, meaning the control loops are nested.
- Higher-level controllers provide commands to lower-level controllers
- Lower-level control loops are faster than higher-level control loops; this allows higher-level loops to be designed based on equilibrium models of lower-level control loops (i.e., minor loop design, or singular perturbation theory)
- These control loops may be
 - **1** Local: local measurement and actuation, no communication
 - **2** Wide-Area: coordinated control using geographically dispersed measurements
 - **6** Centralized: communication to, and calculations performed at, one point
 - Oistributed: communication and computation dispersed
- Frequency control is an ancillary service, and is provisioned through a market.
- Voltage control has poor stand-alone economics, and is instead tacked on as requirements in generation contracts.
Figure: F. Dörfler

- Inertial response: fast response of rotating machines Time scale: immediate/seconds
- Primary control: turbine-governor control for stabilization Time scale: seconds
- Automatic Generation Control (AGC): multi-area control which eliminates generation-load mismatch within each area Time scale: minutes

Figure: F. Dörfler

- Inertial response: fast response of rotating machines Time scale: immediate/seconds
- Primary control: turbine-governor control for stabilization Time scale: seconds
- Automatic Generation Control (AGC): multi-area control which eliminates generation-load mismatch within each area Time scale: minutes

Figure: F. Dörfler

- Inertial response: fast response of rotating machines Time scale: immediate/seconds
- Primary control: turbine-governor control for stabilization Time scale: seconds
- Automatic Generation Control (AGC): multi-area control which eliminates generation-load mismatch within each area Time scale: minutes

Figure: F. Dörfler

- Inertial response: fast response of rotating machines Time scale: immediate/seconds
- Primary control: turbine-governor control for stabilization Time scale: seconds
- Automatic Generation Control (AGC): multi-area control which eliminates generation-load mismatch within each area Time scale: minutes

Fundamentals of Frequency Control

• Let's return to the linearized generator model from Prof. Schiffer's lecture

$$\frac{\mathrm{d}}{\mathrm{d}t}\Delta f = \frac{1}{2H}(\Delta P_{\mathrm{m}} - \Delta P_{\mathrm{e}})$$

- Lossless transmission: electrical power change $\Delta P_{\rm e}$ must equal load change $\Delta P_{\rm L}$
- Model $\Delta P_{\rm L}$ as constant + frequency-dependent, i.e., $\Delta P_{\rm L} = \Delta d + D\Delta f$
- If the mechanical power provided is constant, then $\Delta P_{\rm m}=0$, and

Fundamentals of Frequency Control

Figure: G. Andersson, C. A. Bel, C. Cañizares. Frequency and Voltage Control

- We need to control the resulting frequency deviation, so we will use feedback.
- Must increase mechanical power ΔP_m

$$\frac{\mathrm{d}}{\mathrm{d}t}\Delta f = \frac{1}{2H}(\Delta P_{\mathrm{m}} - \Delta P_{\mathrm{e}})$$

Turbines

Figure: J. Chow and J.J. Sanchez-Gasca. Power System Modeling, Computation, and Control

- Traditional fossil fuel-fired or nuclear plants boil water to produce steam which drives a steam turbine, and this provides torque to the generator.
- Steam turbines typically have multiple stages to increase efficiency

Figure 12.1 Steam turbine configurations: (a) a non-reheat unit and (b) a single-reheat unit.

• Turbines for hydro-electric facilities and gas generators have different models

Simplest Steam Turbine Model

Figure: J. Chow and J.J. Sanchez-Gasca. Power System Modeling, Computation, and Control

An approximate model is therefore

$$\frac{\Delta P_{\rm m}(s)}{\Delta G(s)} \approx \frac{F_{\rm HP}T_{\rm RH}s + 1}{T_{\rm RH}s + 1}$$

- Think of the turbine as your **actuator**, and the actuator is, well ... kinda slow.
- For typical parameters, this is a lag-type filter; the (stable) zero at s = -¹/_{FHP}T_{RH} can have a major impact on the dynamics.

Primary Control (Speed Governor)

- We now adjust the control valve position based on frequency deviation feedback
- The simplest local control loop, called primary control, is just proportional frequency deviation feedback

$$\Delta G = -\frac{1}{R} \Delta f, \qquad R = \text{``droop''}$$

• Typically R = 0.05 in p.u. Smaller R means larger feedback gain.

• Note the initial slope of decline is independent of R, depends only on H!

Frequency Excursion in WECC after Generator Trip

Figure: NERC Balancing and Frequency Control

Frequency Excursion in El after Generator Trip

2020/04/23 15:01:00(UTC) El(5-point median filter) 60.008 60,006 60.004 60.002 60,000 59,998 59.996 59.994 59.992 59.990 59.988 59,986 59.984 N 59.982 59,980 59.978 59.976 59.974 59.972 59.970 59.968 59,966 59.964 59.962 59.960 59.958 59.956 59.954 THEUNIVER 59.952 59.950 59.948 59,946 18 15:01: 15:01: ŝ Time (UTC)

Supply-Demand Balance ... Literally

Figure: E. Mallada

Supply-Demand Balance ... Literally

Figure: E. Mallada

Supply-Demand Balance ... Literally

Figure: E. Mallada

Steady-State Analysis: Frequency Deviation

• From our simple dynamic model so far, the sensitivity function is

$$\frac{\Delta f(s)}{\Delta d(s)} = S(s) = \frac{T_{\rm RH}s + 1}{(2Hs + D)(T_{\rm RH}s + 1) + \frac{1}{R}(F_{\rm HP}T_{\rm RH}s + 1)}$$

- It's second-order, so this *particular* model is closed-loop stable for all values of parameters; this is **definitely not** true in general.
- If Δd is a step load change, then the final value theorem gives that

$$\Delta f_{\rm ss} = S(0)\Delta d_{\rm ss} = \frac{1}{D + \frac{1}{R}}\Delta d_{\rm ss} = \frac{1}{\beta}\Delta d_{\rm ss}$$

- The quantity β = D + ¹/_R is known as the *frequency response characteristic* of the system, and has units of p.u. power / p.u. frequency.
- A "stiff" system has a large β , and its frequency is insensitive to load changes.

The droop gain R primarily determines the steady-state frequency deviation after a disturbance. (Duh, it's the proportional gain).

Governor Deadband

- The purpose of primary control is to maintain the grid frequency within a (ENTSO-E/NSERC prescribed) operating band.
- However, there are constant small load variations in the system which cause the frequency to bounce around. Implementation of the feedback with deadzone

$$\Delta G = -rac{1}{R}$$
deadzone $(\Delta f),$ e.g., \pm 36 mHz

stops the governor from chasing small deviations

Comments on Turbine-Governor Models

- The previous steam turbine + governor model is known as TGOV1
- There are several more accurate models available, e.g., IEEEG1

- Note: Deadband and saturation elements within these models
- See IEEE PES-TR1: Dynamic Models for Turbine-Governors in Power System Studies for much, much more.

The Case of Multiple Generators: Frequency Deviation

Figure: P. Kundur Power System Stability and Control

- Let's now consider a system where there are multiple generators feeding a load
- Ignoring interactions temporarily, the generators will be coherent, and can be modelled as an equivalent inertia driven by the sum of all mechanical powers

Figure 11.16 System equivalent for LFC analysis

• The effect of all generators will combine, yielding a steady-state response

$$\Delta f_{\rm ss} = -\frac{1}{\sum_{i \in \mathcal{N}_G} \frac{1}{R_i} + D} \Delta d_{\rm ss}, \qquad R_{\rm eq} = \frac{1}{\sum_{i \in \mathcal{N}_G} \frac{1}{R_i}}$$

More proportional feedback leads to tighter frequency control. Duh.

Basic Dynamics of Two-Generator System

• Let's now look in a bit more detail at the dynamics of two generators with governors

• The individual dynamics of each generator $i \in \{1, 2\}$ are

$$\begin{aligned} \Delta \dot{\theta}_i &= f_0 \cdot \Delta f_i \\ 2H_i \Delta \dot{f}_i &= \Delta P_{\mathrm{m},i} - \Delta P_{\mathrm{e},i \to j} - (D_i \Delta f_i + \Delta d_i) \\ T_i \Delta \dot{P}_{\mathrm{m},i} &= -\Delta P_{\mathrm{m},i} - \frac{1}{R_i} (\Delta f_i + F_i T_i \Delta \dot{f}_i) \end{aligned}$$

• Lossless interconnection with susceptance -B, we use the DCPF:

$$\Delta P_{\mathrm{e},1\to2} = -\Delta P_{\mathrm{e},2\to1} \approx B(\Delta\theta_1 - \Delta\theta_2)$$

• Let's see how this responds to disturbances

Simulation: Two Identical Generators

• $\Delta d_1 = 0.01$ p.u. at t = 0, then $\Delta d_2 = 0.01$ p.u. at t = 30s

• strong coupling B = 0.2 p.u.

- Frequency drops faster near the disturbance
- Electromechanical oscillations occur during the transient period; the two inertias are oscillating against one another, mediated by the electrical power transfer
- Synchronization of frequencies after the transient

Simulation: Two Identical Generators

- Power ramps up first near the disturbance
- Other generator helps out shortly thereafter
- Why doesn't generated power match total disturbance of 0.02 p.u.?
- How is the power allocation between generators determined?

This model can be used to analytically study some interesting cases, e.g., (i) strongly coupled generators, (ii) weakly coupled generators, (iii) one very small inertia, one very large inertia, ...

Steady-State Analysis: Power Sharing

• For each generator, our turbine-governor model is

$$\Delta P_{\mathrm{m},i,\mathrm{ss}}(s) = -\frac{1}{R_i} \frac{F_i T_i s + 1}{T_i s + 1} \Delta f_i$$

• After a disturbance, in steady-state it therefore holds that

$$\Delta P_{\mathrm{m},i,\mathrm{ss}} = -\frac{1}{R_i} \Delta f_{\mathrm{ss}} = \frac{1}{R_i} \frac{1}{\sum_{k \in \mathcal{N}_G} \frac{1}{R_k} + D} \Delta d_{\mathrm{ss}}$$
$$\approx \underbrace{\frac{R_i^{-1}}{\sum_{k \in \mathcal{N}_G} R_k^{-1}}}_{\stackrel{\Delta}{\underline{\sum_{k \in \mathcal{N}_G} R_k^{-1}}}} \Delta d_{\mathrm{ss}}$$

• Supply = Demand: $\sum_{i} \Delta P_{m,i,ss} = \sum_{i} c_i \Delta d_{ss} = \Delta d_{ss} (\sum_{i} c_i) = \Delta d_{ss}$

• The generators share the load proportionally with their (inverse) droop gains

$$\frac{\Delta P_{\mathrm{m},i,\mathrm{ss}}}{\Delta P_{\mathrm{m},j,\mathrm{ss}}} = \frac{R_i^{-1}}{R_j^{-1}}$$

Multi-Machine Generalization of Previous Model

We can generalize to an arbitrary network, and add a generator set-point change

$$\begin{split} \Delta \dot{\theta}_i &= f_0 \cdot \Delta f_i \\ 2H_i \Delta \dot{f}_i &= \Delta P_{\mathrm{m},i} - \sum_j \Delta P_{\mathrm{e},i \to j} - (D_i \Delta f_i + \Delta d_i) \\ T_i \Delta \dot{P}_{\mathrm{m},i} &= -\Delta P_{\mathrm{m},i} - \frac{1}{R_i} (\Delta f_i + F_i T_i \Delta \dot{f}_i) + \Delta P_i^{\mathrm{set}} \\ \Delta P_{\mathrm{e},i \to j} &= b_{ij} (\Delta \theta_i - \Delta \theta_j) \end{split}$$

• When vectorized ($F_i = 0$ for simplicity), the model becomes

$$\begin{bmatrix} \frac{1}{f_0}I & 0 & 0\\ 0 & 2\boldsymbol{H} & 0\\ 0 & 0 & \boldsymbol{T} \end{bmatrix} \begin{bmatrix} \Delta \dot{\boldsymbol{\theta}}\\ \Delta \dot{\boldsymbol{f}}\\ \Delta \dot{\boldsymbol{P}}_{\mathrm{m}} \end{bmatrix} = \begin{bmatrix} 0 & I & 0\\ -\mathsf{L} & -\boldsymbol{D} & I\\ 0 & \boldsymbol{R}^{-1} & -I \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{\theta}\\ \Delta \boldsymbol{f}\\ \Delta \boldsymbol{P}_{\mathrm{m}} \end{bmatrix} + \begin{bmatrix} 0\\ \Delta \boldsymbol{d}\\ \Delta \boldsymbol{P}^{\mathrm{set}} \end{bmatrix}$$

Exercise: Prove the steady-state relationship

$$\Delta \boldsymbol{f}_{\rm ss} = \mathbb{1} \frac{1}{\beta} (\mathbb{1}^{\mathsf{T}} \Delta \boldsymbol{P}_{\rm ss}^{\rm set} - \mathbb{1}^{\mathsf{T}} \Delta \boldsymbol{d}_{\rm ss}) \quad \text{where} \quad \beta = D + \sum_{i \in \mathcal{N}_G} \frac{1}{R_i}.$$

Critical Examination of Primary Control Response

Primary control is purely local proportional feedback; measure local frequency, adjust local power production

- Problem #1: We have steady-state error in frequency (Why? Do we care?)
- Problem #2: The response is global; all generators will respond to all disturbances, according to their droop gains. Why? Is this good or bad? Do we care?

A change in load "will be taken care of, but it may be taken care of by any of the governor-regulated machines then in operation on the system. Therein lies the nub of the load control problem." – N. Cohn, *Power Flow Control – Basic Concepts for*

Secondary Frequency Control

- If you have steady-state error in a controlled variable in response to a constant disturbance/model error, then you use integral control to remove the error
- At the simplest and most naive level, secondary frequency control just means "add an integral control loop"
- However, I claim there are a lot of questions without immediate answers!
 - Should this be a local control? a wide-area control?
 - If it's wide-area, should the implementation be distributed? centralized?
 - Should the resulting response be global, local, somewhere inbetween?
 - What model information can we rely on for tuning?
 - O How much should each generator participate in this process?
 - Is frequency all that matters?

Our goal is now to pick this problem apart.

Fundamentals of Integral Control

Assume P stable, $P(0) \neq 0$. What are the basic facts and tuning principles?

The Integral Control Dichotomy: Either

(a) the closed-loop is BIBO stable and $\lim_{t\to\infty} e(t)=0,$ or

Fundamentals of Integral Control

Assume P stable, $P(0) \neq 0$. What are the basic facts and tuning principles?

The Integral Control Dichotomy: Either

- (a) the closed-loop is BIBO stable and $\lim_{t\to\infty} e(t)=0,$ or
- (b) the closed-loop is unstable.

Fundamentals of Integral Control

Assume P stable, $P(0) \neq 0$. What are the basic facts and tuning principles?

The Integral Control Dichotomy: Either

- (a) the closed-loop is BIBO stable and $\lim_{t\to\infty} e(t)=0,$ or
- (b) the closed-loop is unstable.

Integral Control and Model Uncertainty

• Integral control forces e to zero; there is no other option (robust)

• Integral control tends to destabilize stable plants

- (i) 90 degrees of phase lag
- (ii) infinite gain at low frequencies
- Except for special circumstances (e.g., passive systems), there is a maximum gain $k^{\star}(P)$ above which the loop is unstable
- **Problem:** $k^{\star}(P)$ depends strongly on ... well ... P. If you don't know P very well, you need to be conservative and use low integral gains

An Aside on Power System Model Uncertainty

But certainly operators know their own grid models ... right?

- Well, they certainly *build* high-fidelity dynamic models, but mostly for running security studies. These generally are not used for frequency control design.
- Challenges in actually maintaining accurate dynamic models for control are
 - (i) Time-variation from unit commitment, dispatch, seasonality, ...
 - (ii) Proliferation of black-box IBRs
 - (iii) Lack of governor response and turbine-governor data
 - (iv) Generally poor dynamic load models
- Two observations (draw your own conclusions):
 - (i) Balancing areas under NERC simply estimate β as 1% of peak load ...
 - (ii) secondary control time constants on the order of 60s-100s (low gain)
- From a model-based design standpoint, this is all disappointing. From a data-driven design standpoint, there are huge opportunities for improvement

•
$$P, P_d = LTI$$

exp. stable

•
$$P, P_d = LTI$$

exp. stable

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, PERBUARY 1976

EDWARD J. DAVISON, MEMBER, IEEE

$$\begin{split} \dot{\eta} &= e \\ u &= -\varepsilon K \eta \\ K &= P(0)^{\dagger} \end{split}$$

•
$$P, P_d = LTI$$

exp. stable

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, PERBUARY 1976

EDWARD J. DAVISON, MEMBER, IEEE

$$\begin{split} \dot{\eta} &= e \\ u &= -\varepsilon K \eta \\ K &= P(0)^{\dagger} \end{split}$$

•
$$P, P_d = LTI$$

exp. stable

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, FEBRUARY 1976

EDWARD J. DAVISON, MEMBER, IEEE

$$\dot{\eta} = e$$
$$u = -\varepsilon K \eta$$
$$K = P(0)^{\dagger}$$

$$\begin{array}{rl} -P(0)K \mbox{ Hurwitz} & \Longleftrightarrow & \exists \varepsilon^{\star} > 0 \mbox{ s.t. } \forall \varepsilon \in (0, \varepsilon^{\star}) \\ \mbox{ C.L.S. exp. stable \& } e(t) \to 0 \end{array}$$

•
$$P, P_d = LTI$$

exp. stable

•
$$d, r =$$
constant

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

TRANSACTIONS ON AUTOMATIC CONTROL, YOL, AC-21, NO. 1, FEBRUARY 1976

EDWARD J. DAVISON, MEMBER, IEEE

$$\begin{split} \dot{\eta} &= e \\ u &= -\varepsilon K \eta \\ K &= P(0)^{\dagger} \end{split}$$

$$\begin{array}{rl} -P(0)K \; {\sf Hurwitz} & \Longleftrightarrow & \exists \varepsilon^{\star} > 0 \; {\sf s.t.} \; \forall \varepsilon \in (0, \varepsilon^{\star}) \\ {\sf C.L.S. \; exp. \; stable \; \& \; e(t) \to 0} \end{array}$$

Only required model information is the DC gain!

Key Theoretical Insights into Secondary Frequency Control

• $\Delta f_{ss} \in Im(\mathbb{1}_n) \implies$ if you reach steady-state, you synchronize.

- $\mathbb{1}^{\mathsf{T}} \Delta \boldsymbol{P}_{\mathrm{ss}}^{\mathrm{set}} = \sum_{i} \Delta P_{i,\mathrm{ss}}^{\mathrm{set}} \implies$ only sum of power set-points impacts steady-state
- $\operatorname{rank}(P(0)) = 1 \implies$ there does not exist K such that -P(0)K is Hurwitz.

The last point says you are <u>not allowed</u> to individually integrate different frequency measurements and feed them back, it's always unstable.
Centralized Secondary Control in Isolated Systems

• We only get to use one integrator, so let's integrate $\Delta f_{avg} = \frac{1}{2}(\Delta f_1 + \Delta f_2)$

• Centralized control: Send $\Delta f_1, \Delta f_2$ to a central controller, average and integrate

$$\tau \dot{\eta} = -\beta \Delta f_{\text{avg}}, \qquad \begin{aligned} \Delta P_1^{\text{set}} &= \alpha_1 \eta \\ \Delta P_2^{\text{set}} &= \alpha_2 \eta \end{aligned}$$

• $\alpha_1, \alpha_2 \ge 0$ are called *participation factors*, $\alpha_1 + \alpha_2 = 1$

• Note: By Davison's theory ...

$$-P(0)K = -\frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \frac{1}{\beta} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = -\frac{1}{\beta} < 0 \quad (\mathsf{Hurwitz!})$$

so loop is stable for large τ

Centralized Secondary Control in Isolated Systems

• $\Delta d_1 = 0.02$ disturbance, $\alpha_1 = 0.5$, $\alpha_2 = 0.5$, $\tau = 80$ s

Participation Factors from Economic Dispatch

Recall: generation set-points are scheduled via economic dispatch

 $\underset{\{P_i^{\text{set}}\}}{\text{minimize}} \sum_{i \in \mathcal{N}_G} C_i(P_i^{\text{set}}) \quad \text{subject to} \quad \sum_{i \in \mathcal{N}_G} P_i^{\text{set}} = P_{\text{load}}$

with stationarity conditions

$$P_{\text{load}} = \sum_{i \in \mathcal{N}_G} \left(\frac{\mathrm{d}C_i}{\mathrm{d}P_i^{\text{set}}}\right)^{-1} (\lambda), \qquad \underbrace{P_i^{\text{set}} = \left(\frac{\mathrm{d}C_i}{\mathrm{d}P_i^{\text{set}}}\right)^{-1} (\lambda)}_{\text{price determines dispatch}}$$

• If P_{load} changes a bit, then

$$\Delta P_{\text{load}} \approx \sum_{i \in \mathcal{N}_G} \frac{1}{C_i''} \Delta \lambda, \qquad \Delta P_i^{\text{set}} \approx \frac{1}{C_i''} \Delta \lambda$$

and so

$$\Delta P_i^{\text{set}} \approx \underbrace{\frac{\frac{1}{C_i^{\prime\prime}}}{\sum_{k \in \mathcal{N}_G} \frac{1}{\overline{C_k^{\prime\prime}}}}}_{\triangleq \alpha_i} \Delta P_{\text{load}}$$

Distributed Secondary Control in Isolated Systems

J. W. Simpson-Porco, "On Stability of Distributed-Averaging Proportional-Integral Frequency Control" in IEEE L-CSS, 2021.

- You can also implement single-area secondary control in a **distributed** fashion, where each generator has a controller, and the controllers communicate in a peer-to-peer manner
- Key idea is to combine integral action and distributed averaging

$$\begin{aligned} \tau \dot{\eta}_1 &= -\beta \Delta f_1 - k(\eta_1 - \eta_2), & \Delta P_1^{\text{set}} &= \alpha_1 \eta_1 \\ \tau \dot{\eta}_2 &= -\beta \Delta f_2 - k(\eta_2 - \eta_1), & \Delta P_1^{\text{set}} &= \alpha_2 \eta_2 \end{aligned}$$

• Doesn't this violate the "only one integrator" rule. Nope! Let

$$\eta = \frac{\eta_1 + \eta_2}{2}, \qquad \delta = \frac{\eta_1 - \eta_2}{2}$$

leading to

$$\tau \dot{\eta} = -\beta \Delta f_{\text{avg}}, \qquad \tau \dot{\delta} = -k\delta - \frac{\beta}{2}(\Delta f_1 - \Delta f_2)$$

so we are actually only integrating $\Delta f_{\rm avg}!$

 Is this stable? We can't directly apply Davison's result, because it's not pure integral control anymore.

Distributed Secondary Control in Isolated Systems

J. W. Simpson-Porco, "On Stability of Distributed-Averaging Proportional-Integral Frequency Control," in IEEE L-CSS, 2021.

 Let's again use time-scale separation. If τ is very large, the controller is very slow, so the grid+primary control will settle into a quasi steady-state:

$$\Delta f_{\text{avg}} = \Delta f_{\text{ss}} = \frac{1}{\beta} (\Delta P_1^{\text{set}} + \Delta P_2^{\text{set}}) - \frac{1}{\beta} (\Delta d_1 - \Delta d_2)$$
$$= \frac{1}{\beta} (\alpha_1 \eta_1 + \alpha_2 \eta_2) - \frac{1}{\beta} (\Delta d_1 - \Delta d_2)$$
$$= \frac{1}{\beta} (\eta + (\alpha_1 - \alpha_2)\delta) - \frac{1}{\beta} (\Delta d_1 + \Delta d_2)$$

Substituting, we have the slow time-scale dynamics

$$\tau\dot{\eta} = -\eta - (\alpha_1 - \alpha_2)\delta - (\Delta d_1 + \Delta d_2), \qquad \tau\dot{\delta} = -k\delta$$

which is a cascade of two linear systems, and thus stable.

We again conclude that if the integral time constant τ is sufficiently large, the distributed controller will robustly regulate frequency as desired.

Centralized vs. Distributed Secondary Control

Can be extended to nonlinear grid models and can include power set-point limits

Centralized control

$$\tau \dot{\eta} = -\beta \Delta f_{\text{avg}}$$

$$\Delta P_i^{\text{set}} = \alpha_i \eta$$

Centralized vs. Distributed Secondary Control

Can be extended to nonlinear grid models and can include power set-point limits

Centralized control

$$\tau \dot{\eta} = -\beta \Delta f_{\text{avg}}$$

$$\Delta P_i^{\text{set}} = \alpha_i \eta$$

Oistributed control

$$\tau \dot{\eta}_i = -\beta \Delta f_i - \sum_j a_{ij} (\eta_i - \eta_j)$$
$$\Delta P_i^{\text{set}} = \alpha_i \eta_i$$

Integral Control of Nonlinear Systems

JWSP, "Analysis and Synthesis of Low-Gain Integral Controllers for Nonlinear Systems," in IEEE TAC, 2021.

Yes, the previous ideas extend to nonlinear systems.

- Plant is "exponentially stable"
- Input-to-output equilibrium mapping $\bar{e} = \pi(\bar{u}, \bar{w})$ generalizes DC gain P(0)
- Small ε induces time-scale separation
- Closed-loop stability ensured under *monotonicity* or *contraction* condition on composed mapping

 $\pi(k(\eta),w)$

Interconnected power systems - Motivation

- Interconnection of power systems has advantages in reliability and economy
 - Power support in emergencies
 - Cross-border power transfers and trading
 - → Fundamental prerequisite for international electricity market
- Two power systems can be coupled
 - Synchronously = AC connection (e.g., continental Europe)
 - Asynchronously = DC connection (e.g., UK)

Synchronous grids in Europe, ©Kimdime

Interconnected power systems - ENTSO-E

Source: ENTSO-E

- European Network of Transmission System Operators for Electricity (ENTSO-E)
- 41 transmission system operators
- 34 countries, 450 mio. people
- 1,000 GW generation capacity

15/89

Commercial elect. flows, Europe May-July 2014 [GWh] Net exporter Net importer No data 1489 208 103 2132 Source: ENTSO-E Source: European Commission, Quarterly Report on European Electricity Markets 16/89

Balancing Authorities

• In North America, so-called *balancing authorities* are the "control areas".

"After transients, you take care of your disturbance, I'll take care of mine"

Secondary Control Localizes and Rejects Disturbances

Figures: ENTSO-E, S. Dhople

- Primary control causes (i) frequency to stabilize (ii) power flow from supporting areas to contingent area
- Secondary control rebalances the system so that disturbance is compensated locally
- Tertiary control (e.g., OPF) re-optimizes all the generation later to globally minimize cost

Automatic Generation Control

Rebalancing supply and demand in interconnected systems

- BA-wise decentralized control
- Deployed since 1940's
- Eliminates generation-load mismatch within each BA
- Operates slowly compared to primary control
- Perhaps the first large-scale distributed control system

Automatic Generation Control

Rebalancing supply and demand in interconnected systems

- BA-wise decentralized control
- Deployed since 1940's
- Eliminates generation-load mismatch within each BA
- Operates slowly compared to primary control
- Perhaps the first large-scale distributed control system

A change in load "will be taken care of, but it may be taken care of by any of the governor-regulated machines then in operation on the system. Therein lies the nub of the load control problem." – N. Cohn, *Power Flow Control* – *Basic Concepts for Interconnected Systems*, 1950.

- Areas $k \in \mathcal{A} = \{1, \dots, N\}$, generators \mathcal{G}_k with set-points $\Delta P_{ki}^{\text{set}}$ for $i \in \mathcal{G}_k$
- Model each area $k \in \mathcal{A}$ as **coherent**; lumped inertia with several turbine/gov's

$$2H_k \Delta \dot{f}_k = \sum_{i \in \mathcal{G}_k} \Delta P_{\mathrm{m},ki} - \sum_{j \in \mathcal{A}} \Delta P_{\mathrm{e},k \to j} - (D_k \Delta f_k + \Delta d_k)$$

Net Interchange $\triangleq \Delta NI_k$

$$T_{ki}\Delta \dot{P}_{\mathrm{m},ki} = -\Delta P_{\mathrm{m},ki} - \frac{1}{R_{ki}}\Delta f_k + \Delta P_{ki}^{\mathrm{set}}$$

• Define the area control error with bias $b_k > 0$

$$\mathsf{ACE}_k = \underbrace{\Delta\mathsf{NI}_k}_{\text{local flow error}} + \underbrace{b_k \Delta f_k}_{\text{global imbalance}}, \qquad i \in \mathcal{A}_i$$

• AGC is now simply area-wise decentralized integral control on the ACE:

Integrate error: $\tau_k \dot{\eta}_k = -\mathsf{ACE}_k, \quad k \in \mathcal{A}$ Dispatch generators: $\Delta P_{ki}^{\mathrm{set}} = \alpha_{ki} \eta_k, \quad i \in \mathcal{G}_k$

with $\sum_i \alpha_{ki} = 1$ for each $k \in \mathcal{A}$

- Areas $k \in \mathcal{A} = \{1, \dots, N\}$, generators \mathcal{G}_k with set-points $\Delta P_{ki}^{\text{set}}$ for $i \in \mathcal{G}_k$
- Model each area $k \in A$ as coherent; lumped inertia with several turbine/gov's

$$2H_k \Delta \dot{f}_k = \sum_{i \in \mathcal{G}_k} \Delta P_{\mathrm{m},ki} - \sum_{j \in \mathcal{A}} \Delta P_{\mathrm{e},k \to j} - (D_k \Delta f_k + \Delta d_k)$$

Net Interchange $\triangleq \Delta NI_k$

$$T_{ki}\Delta \dot{P}_{\mathrm{m,}ki} = -\Delta P_{\mathrm{m,}ki} - \frac{1}{R_{ki}}\Delta f_k + \Delta P_{ki}^{\mathrm{set}}$$

• Define the area control error with bias $b_k > 0$

$$\mathsf{ACE}_k = \underbrace{\Delta\mathsf{NI}_k}_{\text{local flow error}} + \underbrace{b_k \Delta f_k}_{\text{global imbalance}}, \qquad i \in \mathcal{A}_i$$

• AGC is now simply area-wise decentralized integral control on the ACE:

 $\begin{array}{ll} \text{Integrate error:} & \tau_k \dot{\eta}_k = -\mathsf{ACE}_k, & k \in \mathcal{A} \\ \text{Dispatch generators:} & \Delta P_{ki}^{\text{set}} = \alpha_{ki} \eta_k, & i \in \mathcal{G}_k \end{array}$

with
$$\sum_i \alpha_{ki} = 1$$
 for each $k \in \mathcal{A}$

• Assuming stability, for constant inputs $(\Delta d_k, \Delta P_{ki}^{set})$, at equilibrium we have

• Let $\Delta P_k^{\rm set} = \sum_{i \in \mathcal{G}_k} \Delta P_{ki}^{\rm set}$ be total set-point change for area k

• Easy algebra to find that

$$\Delta f_{\rm ss} = \frac{1}{\beta} \left(\sum_{k \in \mathcal{A}} \Delta P_k^{\rm set} - \sum_{k \in \mathcal{A}} \Delta d_k \right), \qquad \qquad \beta_k = D_k + \sum_{i \in \mathcal{G}_k} \frac{1}{R_{ki}}$$
$$\Delta \mathsf{NI}_{k,\rm ss} = (\Delta P_k^{\rm set} - \Delta d_k) - \sum_{j \in \mathcal{A}} \frac{\beta_k}{\beta} (\Delta P_j^{\rm set} - \Delta d_j), \qquad \beta = \sum_{k \in \mathcal{A}} \beta_k$$

Let's do a steady-state and a dynamic analysis.

• Assuming stability, for constant inputs $(\Delta d_k, \Delta P_{ki}^{set})$, at equilibrium we have

• Let $\Delta P_k^{\rm set} = \sum_{i \in \mathcal{G}_k} \Delta P_{ki}^{\rm set}$ be total set-point change for area k

Easy algebra to find that

$$\Delta f_{\rm ss} = \frac{1}{\beta} \left(\sum_{k \in \mathcal{A}} \Delta P_k^{\rm set} - \sum_{k \in \mathcal{A}} \Delta d_k \right), \qquad \qquad \beta_k = D_k + \sum_{i \in \mathcal{G}_k} \frac{1}{R_{ki}}$$
$$\Delta \mathsf{NI}_{k, \rm ss} = (\Delta P_k^{\rm set} - \Delta d_k) - \sum_{j \in \mathcal{A}} \frac{\beta_k}{\beta} (\Delta P_j^{\rm set} - \Delta d_j), \qquad \beta = \sum_{k \in \mathcal{A}} \beta_k$$

Let's do a steady-state and a dynamic analysis.

Steady-State Analysis of AGC

JWSP and N. Monshizadeh "Diagonal Stability of Systems With", IEEE TCONS, 2022.

 Cohn's insight was that each area can independently measure the ACE and drive it to zero, and that this will achieve system-wide rebalancing

Theorem: For any bias constants $b_k > 0$ (i) $\Delta P_k^{\text{set}} = \Delta d_k$ for all areas $k \in \mathcal{A}$ iff (ii) $\Delta f_k = 0$ and $\Delta NI_k = 0$ for all areas $k \in \mathcal{A}$ iff (iii) $ACE_k = 0$ for all areas $k \in \mathcal{A}$.

- This result was known roughly by 1950
- Statement (i) is the objective; you want each area to match its disturbance
- Statement (iii) is how you can do it; you can drive the ACE to zero
- Does this mean the bias b_k doesn't matter? No. More soon.

Dynamic Analysis of AGC via Time-Scale Separation

JWSP and N. Monshizadeh "Diagonal Stability of Systems With", IEEE TCONS, 2022.

Substitute steady-state grid quantities into AGC equations

$$\begin{bmatrix} \tau_1 \dot{\eta}_1 \\ \tau_2 \dot{\eta}_2 \\ \vdots \\ \tau_N \dot{\eta}_N \end{bmatrix} = -\frac{1}{\beta} \begin{bmatrix} \beta + b_1 - \beta_1 & b_1 - \beta_1 & \cdots & b_1 - \beta_1 \\ b_2 - \beta_2 & \beta + b_2 - \beta_2 & \cdots & \cdots \\ \vdots & \ddots & \vdots & b_{N-1} - \beta_{N-1} \\ b_N - \beta_N & \cdots & b_N - \beta_N & \beta + b_N - \beta_N \end{bmatrix} \begin{bmatrix} \eta_1 - \Delta d_1 \\ \eta_2 - \Delta d_2 \\ \vdots \\ \eta_N - \Delta d_N \end{bmatrix}$$

or simply

$$\boldsymbol{\tau}\dot{\boldsymbol{\eta}} = -\boldsymbol{\mathcal{B}}(\boldsymbol{\eta} - \Delta \boldsymbol{d}), \qquad \boldsymbol{\mathcal{B}} = -I_N + \frac{1}{\beta}(\boldsymbol{\beta} - \boldsymbol{b})\mathbb{1}_N^\mathsf{T}.$$

- Slow time-scale dynamics of AGC governed by simple LTI system
- B is Hurwitz! It has

(i)
$$N-1$$
 eigenvalues at -1
(ii) one eigenvalue at $-1 + \mathbb{1}_N^{\mathsf{T}} \frac{1}{\beta} (\boldsymbol{\beta} - \boldsymbol{b}) = -\frac{\sum_k b_k}{\sum_k \beta_k} < 0$

• Even stronger, can prove that \mathcal{B} is diagonally stable: there exists $C = \operatorname{diag}(c_1, \ldots, c_N)$ such that $\mathcal{B}^{\mathsf{T}}C + C\mathcal{B} \prec 0$.

Automatic Generation Control

- BA-wise decentralized control
- Deployed since 1940's
- Eliminates generation-load mismatch within each BA
- Operates slowly compared to primary control
- Perhaps the first large-scale distributed control system

Theorem: For all sufficiently large AGC time constants $\tau_k > 0$, closed-loop system is internally stable and $\lim_{t\to\infty} ACE_k(t) = 0$ for all areas $k \in A$.

- Result is **independent** of bias tunings $b_k > 0$; any biasing works.
- Consistent with practice; no coordination required for stable tuning
- Rigorous justification for engineering practice.

Insights into Dynamic Performance of AGC

JWSP and N. Monshizadeh "Diagonal Stability of Systems With \ldots ", IEEE TCONS, 2022.

The previous analysis provides a reduced LTI model of AGC dynamics

$$oldsymbol{ au} oldsymbol{ au} = -oldsymbol{\mathcal{B}}(oldsymbol{\eta} - \Delta oldsymbol{d}) \qquad oldsymbol{\mathcal{B}} = -I_N + rac{1}{eta}(oldsymbol{eta} - oldsymbol{b})\mathbb{1}_N^\mathsf{T}$$

ACE = $oldsymbol{\mathcal{B}}(oldsymbol{\eta} - \Delta oldsymbol{d})$

• If $b_k < \beta_k$ the tuning is called underbiased, $b_k > \beta_k$ is overbiased

- (i) Underbiased tunings degrade the stability margin of $-{oldsymbol{\mathcal{B}}}$
- (ii) If $\tau_k = \tau > 0$, then the sensitivity function is

$$S_{ij}(s) = \frac{\mathsf{ACE}_i(s)}{\Delta d_j(s)} = -\frac{\tau s}{\tau s + 1} \left[\delta_{ij} - \frac{1}{\beta} (\beta_i - b_i) \frac{\tau s}{\tau s + \frac{1}{\beta} \sum_k b_k} \right]$$

Simulation on Two-Area "Kundur" System

- A classic system for various power system stability tests
- Three-phase Simscape Electrical model with high-order machine models, turbine/governors, exciters, limiters, SVCs, ...

Simscape Electrical (SimPowerSystems)

- My Opinion: Beyond toy models, you should not code your own power system simulations. People do their whole PhDs building power system simulation software.
- MATLAB has decent tools for doing simulations on small to medium-sized systems

Exercise: AGC in Kundur System

Investigate the following questions:

- **()** How small can the AGC time constants $\tau = \tau_1 = \tau_2$ be before the closed-loop system becomes unstable?
- 2 How does increasing the bias constant b_2 impact the closed-loop response?
- **(3)** How does decreasing the bias constant b_2 impact the closed-loop response?

Why is Frequency Control Slow?

AGC is necessarily slow because

- (i) operates over large geographic regions (delay tolerance)
- designed with zero knowledge of primary control dynamics
- (iii) slow actuators (turbine/governor systems)

How can the main idea of disturbance estimation be modernized?

(i) use fast communication / smaller geographic areas

- (ii) integrate some crude model information for improved dynamic performance
- (iii) use of fast inverter-based resources (IBRs)

Why is Frequency Control Slow?

AGC is necessarily slow because

- (i) operates over large geographic regions (delay tolerance)
- designed with zero knowledge of primary control dynamics
- (iii) slow actuators (turbine/governor systems)

How can the main idea of disturbance estimation be modernized?

- (i) use fast communication / smaller geographic areas
- (ii) integrate some crude model information for improved dynamic performance

(iii) use of fast inverter-based resources (IBRs)

Why is Frequency Control Slow?

AGC is necessarily slow because

- (i) operates over large geographic regions (delay tolerance)
- designed with zero knowledge of primary control dynamics
- (iii) slow actuators (turbine/governor systems)

How can the main idea of disturbance estimation be modernized?

- (i) use fast communication / smaller geographic areas
- (ii) integrate some crude model information for improved dynamic performance
- (iii) use of fast inverter-based resources (IBRs)

Towards a Rigorous Modernization of AGC

"The advent of modern control theory in the sixties and early seventies did little to change these very successful AGC practices. However, it has provided, and will continue to provide, a more careful understanding of the entire problem. By doing so, a possible new generation AGC may emerge. Such an AGC will have to retain the simplicity of classical AGC but with improved overall performance."

Model-Based Fast Frequency Control

E. Ekomwenrenren et al., "Hierarchical Coordinated Fast Frequency Control ...," in IEEE TPWRS, 2021.

• IBRs have local droop curve

$$T_{k,i}\Delta \dot{P}_{k,i} = -\Delta P_{k,i} - \frac{\Delta f_{k,i}}{R_{k,i}} + \Delta P_{k,i}^{\text{set}}$$

 Inverter controls ensure T_{k,i} is small (e.g., 200ms)

• Assume simple dynamic model for area dynamics

$$\Delta \dot{x}_k = A_k \Delta x_k + B_k (\Delta P_k^{\text{set}} - \Delta d_k + \Delta \mathsf{NI}_k)$$

- Fictitious disturbance model $\Delta d_k = 0$
- Extended-state Luenberger observer

$$\begin{bmatrix} \Delta \dot{\hat{x}}_k \\ \Delta \dot{\hat{d}}_k \end{bmatrix} = \begin{bmatrix} A_k & -B_k \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \hat{x}_k \\ \Delta \hat{d}_k \end{bmatrix} + \begin{bmatrix} B_k \\ 0 \end{bmatrix} (\Delta P_k^{\text{set}} + \Delta \mathsf{NI}_k) + L_k (\Delta f_k - \Delta \hat{f}_k)$$
$$\Delta \hat{f}_k = C_k \Delta \hat{x}_k$$

Model-Based Fast Frequency Control

E. Ekomwenrenren et al., "Hierarchical Coordinated Fast Frequency Control ...," in IEEE TPWRS, 2021.

• IBRs have local droop curve

$$T_{k,i}\Delta \dot{P}_{k,i} = -\Delta P_{k,i} - \frac{\Delta f_{k,i}}{R_{k,i}} + \Delta P_{k,i}^{\text{set}}$$

 Inverter controls ensure T_{k,i} is small (e.g., 200ms)

Assume simple dynamic model for area dynamics

$$\Delta \dot{x}_k = A_k \Delta x_k + B_k (\Delta P_k^{\text{set}} - \Delta d_k + \Delta \mathsf{NI}_k)$$

- Fictitious disturbance model $\Delta \dot{d}_k = 0$
- Extended-state Luenberger observer

$$\begin{bmatrix} \Delta \dot{\hat{x}}_k \\ \Delta \dot{\hat{d}}_k \end{bmatrix} = \begin{bmatrix} A_k & -B_k \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \hat{x}_k \\ \Delta \hat{d}_k \end{bmatrix} + \begin{bmatrix} B_k \\ 0 \end{bmatrix} (\Delta P_k^{\text{set}} + \Delta \mathsf{NI}_k) + L_k (\Delta f_k - \Delta \hat{f}_k)$$
$$\Delta \hat{f}_k = C_k \Delta \hat{x}_k$$

Case Study: Three-LCA System

E. Ekomwenrenren et al., "Hierarchical Coordinated Fast Frequency Control ...," in IEEE TPWRS, 2021.

Scenario: 63 MW Disturbance, Area 2

E. Ekomwenrenren et al., "Hierarchical Coordinated Fast Frequency Control ...," in IEEE TPWRS, 2021.

Five-Area IEEE68 Bus Test System

E. Ekomwenrenren et al., "Hierarchical Coordinated Fast Frequency Control ...," in IEEE TPWRS, 2021.

Scenario: 450MW Load Change in NYPS Area

E. Ekomwenrenren et al., "Hierarchical Coordinated Fast Frequency Control ...," in IEEE TPWRS, 2021.

Conclusions

A narrow and biased look at some grid operation/control basics

- Power flow / dispatch sets the grid operating point
- Frequency control maintains operating point between redispatch
- Neglected: Voltage control, stability enhancement, FACTS,

Opportunities at $\{control\} \cap \{power systems\} \cap \cdots$

- Hierarchical feedback design
- Data-driven and learning-based control w/ guarantees ...

Parting thoughts:

- Nothing more practical than a good theory
- Run semi-serious simulations (e.g., in Simscape Electrical)
- Make a power engineer / power electronics friend

Conclusions

A narrow and biased look at some grid operation/control basics

- Power flow / dispatch sets the grid operating point
- Frequency control maintains operating point between redispatch
- Neglected: Voltage control, stability enhancement, FACTS,

Opportunities at $\{control\} \cap \{power systems\} \cap \cdots$

- Hierarchical feedback design
- \bullet Data-driven and learning-based control w/ guarantees \ldots

Parting thoughts:

- Nothing more practical than a good theory
- Run semi-serious simulations (e.g., in Simscape Electrical)
- Make a power engineer / power electronics friend

Conclusions

A narrow and biased look at some grid operation/control basics

- Power flow / dispatch sets the grid operating point
- Frequency control maintains operating point between redispatch
- Neglected: Voltage control, stability enhancement, FACTS,

Opportunities at $\{control\} \cap \{power systems\} \cap \cdots$

- Hierarchical feedback design
- \bullet Data-driven and learning-based control w/ guarantees \ldots

Parting thoughts:

- Nothing more practical than a good theory
- Run semi-serious simulations (e.g., in Simscape Electrical)
- Make a power engineer / power electronics friend

Questions

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

https://www.control.utoronto.ca/~jwsimpson/ jwsimpson@ece.utoronto.ca

Questions

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

https://www.control.utoronto.ca/~jwsimpson/ jwsimpson@ece.utoronto.ca appendix