The Return of the Tuning Regulator

John W. Simpson-Porco

https://www.control.utoronto.ca/~jwsimpson/

9th Meeting on System and Control Theory

University of Waterloo

May 4, 2023

- Process complex / nonlinear / unknown but stable and responsive to inputs
- Design criteria
 - (i) want to track and reject
 - (ii) use minimal model info.
 - (iii) robustness \gg performance

- Process complex / nonlinear / unknown but stable and responsive to inputs
- Design criteria
 - (i) want to track and reject
 - (ii) use minimal model info.
 - iii) robustness \gg performance

- Process complex / nonlinear / unknown but stable and responsive to inputs
- Design criteria
 - (i) want to track and reject
 - (ii) use minimal model info.
 - iii) robustness >> performance

- Process complex / nonlinear / unknown but stable and responsive to inputs
- Design criteria
 - (i) want to track and reject
 - (ii) use minimal model info.
 - (iii) robustness \gg performance

- Process complex / nonlinear / unknown but stable and responsive to inputs
- Design criteria
 - (i) want to track and reject
 - (ii) use minimal model info.

(iii) robustness \gg performance

Problem falls within the well-studied topic of **output** regulation or servomechanism design

- Process complex / nonlinear / unknown but stable and responsive to inputs
- Design criteria
 - (i) want to track and reject
 - (ii) use minimal model info.

(iii) robustness \gg performance

Problem falls within the well-studied topic of **output** regulation or servomechanism design

Objective: Design low-order, easily tuned, and (nearly) model-free regulation loops for stable MIMO systems

My Motivating Applications

Renewable Energy Integration

Analysis of Optimization Algorithms

$$\begin{array}{l} \underset{x \in \mathbb{R}^n}{\operatorname{minimize}} f(x) \quad \text{s.t.} \quad Ax = b \\ x_{k+1} = x_k - \alpha(\nabla f(x_k) + A^{\mathsf{T}}\lambda_k) \\ \tilde{x}_k = x_k + \gamma(x_{k+1} - x_k) \\ \lambda_{k+1} = \lambda_k + \beta \left(A\tilde{x}_k - b\right), \end{array}$$

This Talk

Data-Driven Output Regulation using Single-Gain Tuning Regulators

Liangjie Chen and John W. Simpson-Porco

Fundamentals of Integral Control

Assume P stable, $P(0) \neq 0$. What are the basic facts and tuning principles?

The Integral Control Dichotomy: Either (a) the closed-loop is BIBO stable and $\lim_{t\to\infty} e(t) = 0$, or

Fundamentals of Integral Control

Assume P stable, $P(0) \neq 0$. What are the basic facts and tuning principles?

The Integral Control Dichotomy: Either

(a) the closed-loop is BIBO stable and $\lim_{t\to\infty} e(t) = 0$, or

(b) the closed-loop is unstable.

Fundamentals of Integral Control

Assume P stable, $P(0) \neq 0$. What are the basic facts and tuning principles?

The Integral Control Dichotomy: Either

- (a) the closed-loop is BIBO stable and $\lim_{t\to\infty} e(t) = 0$, or
- (b) the closed-loop is unstable.

•
$$P, P_d = LTI$$

exp. stable

•
$$d, r =$$
constant

•
$$P, P_d = LTI$$

• $\frac{exp. stable}{d.r = constant}$

THE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, PERSUARY 1976

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, IEEE

$$\dot{\eta} = e$$

 $u = -\varepsilon K \eta$
 $K = P(0)^{\dagger}$

•
$$P, P_d = LTI$$

• $\frac{exp. stable}{d.r = constant}$

THE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, PERSUARY 1976

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, IEEE

$$\dot{\eta} = e$$

 $u = -\varepsilon K \eta$
 $K = P(0)^{\dagger}$

•
$$P, P_d = LTI$$

• $\frac{exp. stable}{d.r = constant}$

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, IEEE

$$\dot{\eta} = e$$
$$u = -\varepsilon K \eta$$
$$K = P(0)^{\dagger}$$

$$-P(0)K \text{ Hurwitz} \implies \exists \varepsilon^* > 0 \text{ s.t. } \forall \varepsilon \in (0, \varepsilon^*)$$

C.L.S. exp. stable & $e(t) \to 0$

•
$$P, P_d = LTI$$

• $\underline{exp. stable}$
• $d, r = constant$

$$-P(0)K \text{ Hurwitz} \implies \exists \varepsilon^* > 0 \text{ s.t. } \forall \varepsilon \in (0, \varepsilon^*) \\ \text{C.L.S. exp. stable & } e(t) \to 0$$

Only required model information is the DC gain!

Assumptions: There exist state and input sets \mathcal{X} and \mathcal{I} such that Model Regularity: f and $\frac{\partial f}{\partial x}$ are Lipshitz on \mathcal{X} uniformly in $(u, w) \in \mathcal{I}$, Steady-State: $\exists \pi_x : \mathcal{I} \to \mathcal{X}$ s.t. $0 = f(\pi_x(u, w), u, w)$ for all $(u, w) \in \mathcal{I}$, Stability: $\bar{x} = \pi_x(u, w)$ is locally exponentially stable, uniformly in $(u, w) \in \mathcal{I}$, Integral Gain: k is class C^1 and Lipschitz.

Assumptions: There exist state and input sets \mathcal{X} and \mathcal{I} such that Model Regularity: f and $\frac{\partial f}{\partial x}$ are Lipshitz on \mathcal{X} uniformly in $(u, w) \in \mathcal{I}$, Steady-State: $\exists \pi_x : \mathcal{I} \to \mathcal{X}$ s.t. $0 = f(\pi_x(u, w), u, w)$ for all $(u, w) \in \mathcal{I}$, Stability: $\bar{x} = \pi_x(u, w)$ is locally exponentially stable, uniformly in $(u, w) \in \mathcal{I}$, Integral Gain: k is class C^1 and Lipschitz.

Equilibrium I/O Map: $\pi(\bar{u},w) \triangleq h(\pi_x(\bar{u},w),\bar{u},w)$ $= P(0)\bar{u} + P_w(0)w \text{ for LTI}$

Equivalent

- **1** ε is small
- integral action is slow
- oprocess is fast

Equivalent

- **1** ε is small
- integral action is slow
- oprocess is fast

Reduced Dynamics

$$\frac{1}{\varepsilon}\dot{\eta} = -\pi(k(\eta), w) \triangleq F_w(\eta)$$
$$= -P(0)K\eta - P_w(0)w$$

Equivalent

- **1** ε is small
- integral action is slow
- oprocess is fast

Reduced Dynamics

$$\frac{1}{\varepsilon}\dot{\eta} = -\pi(k(\eta), w) \triangleq F_w(\eta)$$
$$= -P(0)K\eta - P_w(0)w$$

Equivalent

- **1** ε is small
- integral action is slow
- oprocess is fast

Want to ensure stability of reduced dynamics independent of the particular disturbance w

Equivalent

- **1** ε is small
- integral action is slow
- oprocess is fast

Want to ensure stability of reduced dynamics independent of the particular disturbance w

Reduced Dynamics Infinitesimally Contracting $\sup_{\eta,w} \mu\left(\frac{\partial F_w}{\partial \eta}(\eta)\right) < 0$

 $\exists \varepsilon^* > 0 \text{ s.t. } \forall \varepsilon \in (0, \varepsilon^*)$

C.L.S. has exp. stable equil.
$$(\bar{x}, \bar{\eta}) \& e(t) \rightarrow 0$$

Contraction is an incremental stability concept which furnishes nonlinear systems $\dot{x} = f(x)$ with linear-like stability properties.

Contraction is an incremental stability concept which furnishes nonlinear systems $\dot{x} = f(x)$ with linear-like stability properties.

• Given norm $\|\cdot\|$ on \mathbb{R}^n , the matrix measure or induced log norm is the map $\mu: \mathbb{R}^{n \times n} \to \mathbb{R}$ defined by $\mu(A) = \lim_{h \to 0^+} \frac{\|I + hA\| - 1}{h}$

Contraction is an incremental stability concept which furnishes nonlinear systems $\dot{x} = f(x)$ with linear-like stability properties.

• Given norm $\|\cdot\|$ on \mathbb{R}^n , the matrix measure or induced log norm is the map $\mu: \mathbb{R}^{n \times n} \to \mathbb{R}$ defined by $\mu(A) = \lim_{h \to 0^+} \frac{\|I + hA\| - 1}{h}$

• Example: If
$$||x|| = \sqrt{x^{\mathsf{T}} P x}$$
, then $\mu(A) = \lambda_{\max}(A^{\mathsf{T}} P + P A)$

Contraction is an incremental stability concept which furnishes nonlinear systems $\dot{x} = f(x)$ with linear-like stability properties.

- Given norm $\|\cdot\|$ on \mathbb{R}^n , the matrix measure or induced log norm is the map $\mu: \mathbb{R}^{n \times n} \to \mathbb{R}$ defined by $\mu(A) = \lim_{h \to 0^+} \frac{\|I+hA\|-1}{h}$
- Example: If $||x|| = \sqrt{x^{\mathsf{T}} P x}$, then $\mu(A) = \lambda_{\max}(A^{\mathsf{T}} P + P A)$

Suppose $f \in C^1$ is globally infinitesimally contracting, i.e.,

$$\sup_{x\in\mathbb{R}^n}\mu(\tfrac{\partial f}{\partial x}(x))<0.$$

Then $\dot{x} = f(x)$ has a **unique globally exponentially stable** equilibrium point \bar{x} .

$$\sup_{\eta,w} \mu\left(\frac{\partial F_w}{\partial \eta}(\eta)\right) < 0$$

Equivalent

- **1** ε is small
- integral action is slow
- oprocess is fast

Want to ensure stability of reduced dynamics independent of the particular disturbance w

 $\exists \varepsilon^* > 0 \text{ s.t. } \forall \varepsilon \in (0, \varepsilon^*)$

C.L.S. has exp. stable equil.
$$(\bar{x}, \bar{\eta}) \& e(t) \rightarrow 0$$

Rebalancing supply and demand in interconnected systems

Rebalancing supply and demand in interconnected systems

• Area Control Error (ACE)

$$\mathsf{ACE}_k(t) \coloneqq \underbrace{\Delta \mathsf{NI}_k(t)}_{} + \underbrace{b_k \Delta f_k(t)}_{}$$

Net Interchange Frequency Biasing

• Area-based integral controller

$$\tau_k \dot{\eta}_k = -\mathsf{ACE}_k$$
$$u_k = u_k^\star + \eta_k$$

Rebalancing supply and demand in interconnected systems

• Area Control Error (ACE)

$$\mathsf{ACE}_k(t) \coloneqq \underbrace{\Delta \mathsf{NI}_k(t)}_{} + \underbrace{b_k \Delta f_k(t)}_{}$$

Net Interchange Frequency Biasing

• Area-based integral controller

$$\tau_k \dot{\eta}_k = -\mathsf{ACE}_k$$
$$u_k = u_k^\star + \eta_k$$

• Decentralized; eliminates generation-load mismatch

Rebalancing supply and demand in interconnected systems

Area Control Error (ACE)

$$\mathsf{ACE}_k(t) \coloneqq \underbrace{\Delta \mathsf{NI}_k(t)}_{} + \underbrace{b_k \Delta f_k(t)}_{}$$

Net Interchange Frequency Biasing

Area-based integral controller

 $\tau_k \dot{\eta}_k = -\mathsf{ACE}_k$ $u_k = u_k^\star + \eta_k$

- Decentralized; eliminates generation-load mismatch
- Operating continuously in North America since about 1950; 70+ years of research literature contained no formal dynamic analysis

Rebalancing supply and demand in interconnected systems

Area Control Error (ACE)

$$\mathsf{ACE}_k(t) \coloneqq \underbrace{\Delta \mathsf{NI}_k(t)}_{} + \underbrace{b_k \Delta f_k(t)}_{}$$

Net Interchange Frequency Biasing

Area-based integral controller

 $\tau_k \dot{\eta}_k = -\mathsf{ACE}_k$ $u_k = u_k^\star + \eta_k$

- Decentralized; eliminates generation-load mismatch
- Operating continuously in North America since about 1950; 70+ years of research literature contained no formal dynamic analysis
- Definitive analysis enabled by previous result, and some advances in theory of diagonal stability; see paper in Trans. Control Network Systems

Designing Low-Gain Integral Controllers

Contraction of $\dot{\eta} = -\pi(k(\eta), w)$ is the design goal.

Designing Low-Gain Integral Controllers

Contraction of $\dot{\eta} = -\pi(k(\eta), w)$ is the design goal.

(i) Invert The DC Gain: In most reference tracking problems

$$e = \pi(u, w) = \pi_1(u) + \pi_2(w).$$

If π_1 is surjective, choose $k = \pi_1^{\dagger}$ (cf. $K = P(0)^{\dagger}$)

Designing Low-Gain Integral Controllers

Contraction of $\dot{\eta} = -\pi(k(\eta), w)$ is the design goal.

(i) Invert The DC Gain: In most reference tracking problems

$$e = \pi(u, w) = \pi_1(u) + \pi_2(w).$$

If π_1 is surjective, choose $k = \pi_1^{\dagger}$ (cf. $K = P(0)^{\dagger}$)

(ii) **Robust Design**: If you can represent/encapsulate $\pi(u, w)$ in a linear fractional model

$$e = Fu + G\mathbf{p} + E_1 w$$

$$\mathbf{q} = Hu + J\mathbf{p} + E_2 w$$

$$\mathbf{p} = \Delta(\mathbf{q})$$

where Δ satisfies incremental quadratic constraints; can immediately apply SDP-based robust/optimal design methods

Davison's Tuning Regulator

THE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, FEBRUARY 19

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, IEEE

Tuning Regulators generalize low-gain integral control to more general **multi-modal disturbances**.

Davison's Tuning Regulator

THE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, FEBRUARY 19

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, IEEE

Tuning Regulators generalize low-gain integral control to more general **multi-modal disturbances**.

$$\dot{x} = Ax + Bu + B_d d$$

$$e = Cx + Du + D_d d$$

$$eig(A) \in \mathbb{C}_-$$

$$\mathsf{T}.\mathsf{F}. \ \hat{P}(s) \in \mathbb{C}^{r \times m}$$

$$\dot{w} = Sw$$

$$\mathcal{E}: \quad d = Ew$$

$$\operatorname{eig}(S) \subset j\mathbb{R}$$

Davison's Tuning Regulator

THE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-21, NO. 1, FEBRUARY 19

Multivariable Tuning Regulators: The Feedforward and Robust Control of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, IEEE

Tuning Regulators generalize low-gain integral control to more general **multi-modal disturbances**.

$$\dot{x} = Ax + Bu + B_d d$$

$$e = Cx + Du + D_d d$$

$$eig(A) \subset \mathbb{C}_-$$

$$\mathsf{T}.\mathsf{F}. \ \hat{P}(s) \in \mathbb{C}^{r \times m}$$

$$\dot{w} = Sw$$
$$\mathcal{E}: \quad d = Ew$$
$$\operatorname{eig}(S) \subset j\mathbb{R}$$

For Simplicity:MinPoly_S(s) = $s(s^2 + \omega_1^2) \cdots (s^2 + \omega_\ell^2)$ Necessarily:rank $\hat{P}(\lambda) = r$ for all $\lambda \in eig(S)$.

• \bigcirc : Gains F_k set based on sampled frequency response data

O: Gains F_k set based on sampled frequency response data
 O: Must sequentially tune ℓ + 1 gains ε_k

- \odot : Gains F_k set based on sampled frequency response data
- \odot : Must sequentially tune $\ell + 1$ gains ϵ_k
- © ©: Must re-identify freq. response after each tuning step

We want a solution which (i) uses only **open-loop** frequency response data and (ii) has a **single tuning parameter** ϵ .

We want a solution which (i) uses only **open-loop** frequency response data and (ii) has a **single tuning parameter** ϵ .

SGTR:
$$\dot{\eta} = \Phi \eta + Ge$$

 $u = -F(\epsilon)\eta$

The gain $F : \mathbb{R}_{\geq 0} \to \mathbb{R}^{m \times r(2\ell+1)}$ is continuous and $\mathcal{O}(\epsilon)$ as $\epsilon \to 0$.

We want a solution which (i) uses only **open-loop** frequency response data and (ii) has a **single tuning parameter** ϵ .

SGTR:
$$\dot{\eta} = \Phi \eta + Ge$$

 $u = -F(\epsilon)\eta$ The gain $F : \mathbb{R}_{\geq 0} \to \mathbb{R}^{m \times r(2\ell+1)}$ is
continuous and $\mathcal{O}(\epsilon)$ as $\epsilon \to 0$.Closed-Loop Matrix: $\mathcal{A}(\epsilon) \coloneqq \begin{bmatrix} A & -BF(\epsilon) \\ GC & \Phi - GDF(\epsilon) \end{bmatrix}$

We want a solution which (i) uses only **open-loop** frequency response data and (ii) has a **single tuning parameter** ϵ .

SGTR:
$$\dot{\eta} = \Phi \eta + Ge$$

 $u = -F(\epsilon)\eta$ The gain $F : \mathbb{R}_{\geq 0} \to \mathbb{R}^{m \times r(2\ell+1)}$ is
continuous and $\mathcal{O}(\epsilon)$ as $\epsilon \to 0$.Closed-Loop Matrix: $\mathcal{A}(\epsilon) \coloneqq \begin{bmatrix} A & -BF(\epsilon) \\ GC & \Phi - GDF(\epsilon) \end{bmatrix}$

• Want: Adjusting ϵ adjusts dominant closed-loop poles

We want a solution which (i) uses only **open-loop** frequency response data and (ii) has a **single tuning parameter** ϵ .

SGTR:
$$\dot{\eta} = \Phi \eta + Ge$$

 $u = -F(\epsilon)\eta$ The gain $F : \mathbb{R}_{\geq 0} \to \mathbb{R}^{m \times r(2\ell+1)}$ is
continuous and $\mathcal{O}(\epsilon)$ as $\epsilon \to 0$.Closed-Loop Matrix: $\mathcal{A}(\epsilon) \coloneqq \begin{bmatrix} A & -BF(\epsilon) \\ GC & \Phi - GDF(\epsilon) \end{bmatrix}$

- Want: Adjusting ϵ adjusts dominant closed-loop poles
- **Definition:** $\mathcal{A}(\epsilon)$ is *low-gain stable* if there exist $c, \epsilon^* > 0$ such that $\operatorname{Re}(\lambda) \leq -c\epsilon$ for all $\lambda \in \operatorname{eig}(\mathcal{A}(\epsilon))$ and all $\epsilon \in [0, \epsilon^*)$.

$$\begin{aligned} \mathcal{A}(\epsilon) &\coloneqq \begin{bmatrix} A & -BF(\epsilon) \\ GC & \Phi - GDF(\epsilon) \end{bmatrix} & \longleftrightarrow & \mathcal{A}_{red}(\epsilon) = \Phi - G\mathscr{L}(F(\epsilon)) \\ &\text{is low-gain stable} \end{aligned}$$

$$\text{where } \mathscr{L} : \mathbb{R}^{m \times rq} \to \mathbb{R}^{r \times rq} \qquad \qquad \mathscr{L}(F) = C \operatorname{Syl}^{-1}(BF) + DF \\ &\operatorname{Syl}(X) = X\Phi - AX \end{aligned}$$

• This is a time-scale separation result; the s.s. loop-gain operator $\mathscr{L}(F(\epsilon))$ is the steady-state model of the plant on the $\eta \rightarrow e$ channel

$$\begin{aligned} \mathcal{A}(\epsilon) &\coloneqq \begin{bmatrix} A & -BF(\epsilon) \\ GC & \Phi - GDF(\epsilon) \end{bmatrix} & \longleftrightarrow & \mathcal{A}_{red}(\epsilon) = \Phi - G\mathscr{L}(F(\epsilon)) \\ &\text{is low-gain stable} \end{aligned}$$

$$\text{where } \mathscr{L} : \mathbb{R}^{m \times rq} \to \mathbb{R}^{r \times rq} \qquad \qquad \mathscr{L}(F) = C \operatorname{Syl}^{-1}(BF) + DF \\ &\operatorname{Syl}(X) = X\Phi - AX \end{aligned}$$

• This is a time-scale separation result; the s.s. loop-gain operator $\mathscr{L}(F(\epsilon))$ is the steady-state model of the plant on the $\eta \rightarrow e$ channel

Observation: " $\Phi - G\mathscr{L}(F(\epsilon))$ " looks a lot like "A – BK"

$$\begin{aligned} \mathcal{A}(\epsilon) &\coloneqq \begin{bmatrix} A & -BF(\epsilon) \\ GC & \Phi - GDF(\epsilon) \end{bmatrix} & \longleftrightarrow & \mathcal{A}_{red}(\epsilon) = \Phi - G\mathscr{L}(F(\epsilon)) \\ &\text{is low-gain stable} \end{aligned}$$

$$\text{where } \mathscr{L} : \mathbb{R}^{m \times rq} \to \mathbb{R}^{r \times rq} \qquad \qquad \mathscr{L}(F) = C \operatorname{Syl}^{-1}(BF) + DF \\ &\operatorname{Syl}(X) = X\Phi - AX \end{aligned}$$

• This is a time-scale separation result; the s.s. loop-gain operator $\mathscr{L}(F(\epsilon))$ is the steady-state model of the plant on the $\eta \rightarrow e$ channel

Observation: " $\Phi - G\mathscr{L}(F(\epsilon))$ " looks a lot like "A – BK"

Idea: Place poles of (Φ, G) with feedback gain $K(\epsilon)$, then solve linear operator equation $\mathscr{L}(F) = K = \text{for } F$.

• But John, is $\mathscr{L}(F) = K$ solvable?

• But John, is $\mathscr{L}(F) = K$ solvable?

• But John, is $\mathscr{L}(F) = K$ solvable?

• But John, $\mathscr{L}(F)$ requires all plant information!

$$\mathscr{L}(F) = C \operatorname{Syl}^{-1}(BF) + DF$$

Syl(X) = X\Phi - AX

• But John, is $\mathscr{L}(F) = K$ solvable?

• But John, $\mathscr{L}(F)$ requires all plant information!

$$\mathscr{L}(F) = C \operatorname{Syl}^{-1}(BF) + DF$$

Syl(X) = X\Phi - AX

$$\mathscr{L}(F) = \hat{P}(0)F\boldsymbol{X}_0 + 2\sum_{k=1}^{\ell} \operatorname{Re}\{\hat{P}(\mathbf{j}\omega_k)F\boldsymbol{X}_k\}.$$

where matrix X_k comes from eigen. decomp. of Φ .

Summary

$$\begin{array}{c} \downarrow d \\ \downarrow \\ u \\ e = Ax + Bu + B_d \\ e = Cx + Du + D_d \\ \downarrow \\ F(\epsilon) \\ \hline \eta \\ \dot{\eta} = \Phi \eta + Ge \end{array}$$

Frequency response data $\hat{P}(0)$ and $\hat{P}(\mathbf{j}\omega_k)$ can be inferred from measurements; full plant model irrelevant

Design Procedure:

- Obesign $K(\epsilon)$ such that $\Phi GK(\epsilon)$ is low-gain stable; this is a state-feedback problem (pole placement, robust, optimal, ...)
- 2 Solve linear equation $\mathscr{L}(F(\epsilon)) = \mathsf{K}(\epsilon)$
- **3** Tune ϵ up from 0

Summary

$$\begin{array}{c} \downarrow d \\ \downarrow \\ x = Ax + Bu + B_d \\ e = Cx + Du + D_d \\ \hline \\ F(\epsilon) \\ \uparrow \\ \eta \\ \dot{\eta} = \Phi \eta + Ge \end{array}$$

Frequency response data $\hat{P}(0)$ and $\hat{P}(\mathbf{j}\omega_k)$ can be inferred from measurements; full plant model irrelevant

Design Procedure:

- Obesign $K(\epsilon)$ such that $\Phi GK(\epsilon)$ is low-gain stable; this is a state-feedback problem (pole placement, robust, optimal, ...)
- 2 Solve linear equation $\mathscr{L}(F(\epsilon)) = \mathsf{K}(\epsilon)$
- **3** Tune ϵ up from 0

Full design authority over slow time-scale dynamics.

Example: Four-Tank Process (Johannson, TCST, 2000)

Time (minutes)

Conclusions

- Low-complexity easily-tuned robust data-driven design
- Integral controllers for nonlinear systems
- Improvement to tuning regulators for LTI systems

Conclusions

- Low-complexity easily-tuned robust data-driven design
- Integral controllers for nonlinear systems
- Improvement to tuning regulators for LTI systems

Ongoing Work

- PID + feedforward designs
- Onlinear extensions
- Grid modernization

Conclusions

- Low-complexity easily-tuned robust data-driven design
- Integral controllers for nonlinear systems
- Improvement to tuning regulators for LTI systems

Ongoing Work

- PID + feedforward designs
- Onlinear extensions
- Grid modernization

Note: Open PhD position at University of Toronto for Fall 2023, focusing on data-driven control and estimation for energy systems.

Questions

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

https://www.control.utoronto.ca/~jwsimpson/ jwsimpson@ece.utoronto.ca