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Introduction

Disturbances @ Process complex / nonlinear /
l unknown but stable and
Inputs Measure responsive to inputs
»|  Process

@ Design criteria
(i) want to track and reject

Control ’ (i) use minimal model info.

(iii) robustness > performance

Problem falls within the well-studied topic of output
regulation or servomechanism design J

Objective: Design low-order, easily tuned, and (nearly)
model-free regulation loops for stable MIMO systems J
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My Motivating Applications

Feedback-Based Optimization

Analysis of Optimization Algorithms

Disturbances

Inputs

Process

Measurements

Optimization Alg.
w1 = Proje (uk — oV f(ur, yr))

minimize f(z) st. Az =>
zeR™

T+l = Tk — Oé(Vf(:Ek) + AT)\k)
Zp = g +Y(The1 — Tr)
>\k+1 = Ak + ,B(Ai’k —b) s

Renewable Energy Integration

Next-Generation Grid Control
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---- Measurement

--- Control
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Fundamentals of Integral Control
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The Integral Control Dichotomy: Either
(a) the closed-loop is BIBO stable and lim;_,« e(t) = 0, or

(b) the closed-loop is unstable.
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the basic facts and
tuning principles?
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N Pa(s)
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@ d,r = constant
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Multivariable Tuning Regulators:
The Feedforward and Robust Control u=-cKn
of a General Servomechanism Problem t
K =P(0)

Je*>0s.t. Ve e (0,e7)

-P(0)K Hurwit
OE iz = o) o exp. stable & e(t) - 0

Only required model information is the DC gain!
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Low-Gain Integral Control of Nonlinear Systems
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Disturbances/References w

u &= f(:r,u,w) €
l e = h(z,u,w)
Inputs u i = f(z,u,w) Error e
= h(z,u,w) 7
o= hzw k() [ = e

Assumptions: There exist state and input sets X’ and Z such that
@ Model Regularity: f and % are Lipshitz on X uniformly in (u,w) € Z,
@ Steady-State: 37, :Z > X s.t. 0= f(ms(u,w),u,w) for all (u,w) €z,
© Stability: T = 7, (u,w) is locally exponentially stable, uniformly in (u,w) € Z,

@ Integral Gain: k is class C' and Lipschitz.
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Disturbances/References w u |&=flz,u,w) e
l e = h(z,u,w)
Inputs u i = f(z,u,w) Error e
= h(z,u,w) 7
€=, k(n) | 1=-ce

Assumptions: There exist state and input sets X’ and Z such that
@ Model Regularity: f and % are Lipshitz on X uniformly in (u,w) € Z,
@ Steady-State: 37, :Z > X s.t. 0= f(ms(u,w),u,w) for all (u,w) €z,
© Stability: T = 7, (u,w) is locally exponentially stable, uniformly in (u,w) € Z,

@ Integral Gain: k is class C' and Lipschitz.

m(u,w) = h(mg(u,w),a,w)

Equilibri 1/0O Map:
quilibrium 1/0 Map = P(0)t + P, (0)w for LTI
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Jw
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A Brief Aside on Contraction

Contraction is an incremental stability concept which furnishes
nonlinear systems & = f(x) with linear-like stability properties. J

@ Given norm || - | on R™, the matrix measure or induced log norm is

the map p: R™"™ - R defined by pu(A) = limy_o+ w

o Example: If |z = V2T Pz, then p(A) = Apax(ATP + PA)
Suppose f € C! is globally infinitesimally contracting, i.e.,
0
sup (3L (x)) < 0.
zeR"™

Then & = f(x) has a unique globally exponentially stable
equilibrium point z.
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Low-Gain Integral Control of Nonlinear Systems
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Application: Automatic Generation Control

Rebalancing supply and demand in interconnected systems

@ Area Control Error (ACE)

ACEk (t) = Ale(t) + bkAfk (t)
— —_—
Net Interchange  Frequency Biasing

@ Area-based integral controller

TNk = —ACEy

*
Uk = U + Nk

@ Decentralized; eliminates generation-load mismatch

@ Operating continuously in North America since about 1950; 70+ years of
research literature contained no formal dynamic analysis

@ Definitive analysis enabled by previous result, and some advances in theory of

diagonal stability; see paper in Trans. Control Network Systems
10/20
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Designing Low-Gain Integral Controllers

Contraction of 1 = —w(k(n),w) is the design goal. |

(i) Invert The DC Gain: In most reference tracking problems
e=m(u,w) =m(u)+m(w).

If 71 is surjective, choose k = WJ{ (cf. K = P(0))

(i) Robust Design: If you can represent/encapsulate 7(u,w) in a linear
fractional model

e=Fu+Gp+ Ejw

- A
q=Hu+Jp+ Eyw P=a)

where A satisfies incremental quadratic constraints; can
immediately apply SDP-based robust/optimal design methods
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Multivariable Tuning Regulators:
The Feedforward and Robust Control
of a General Servomechanism Problem

EDWARD J. DAVISON, MEMBER, 1EEE

Tuning Regulators generalize low-gain integral control to more
general multi-modal disturbances. J

& =Ax+ Bu+ Bgd

e=Czx+ Du+ Dyd B sz?w
eig(A) c C_ FoamEe
N eig(S) cjR
T.F. P(s) eC™™
For Simplicity: ~ MinPolyg(s) = s(s + w?)-(s* + w?)
Necessarily: rank P(\) = r for all \ € eig(5).
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Architecture of Davison's Tuning Regulator

Idea: Sub-controllers handle each disturbance mode |

4

Nk = Prmp + Ge
Ck :
ug = —€x Py

@ ©: Gains F}, set based on sampled frequency response data

@ ®: Must sequentially tune ¢+ 1 gains ¢

o ®®: Must re-identify freq. response after each tuning step
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The Single-Gain Tuning Regulator

We want a solution which (i) uses only open-loop frequency
response data and (ii) has a single tuning parameter . J

SGTR:

n=®n+Ge The gain F': Ryo — R (26+1) g
u=-F(e)n continuous and O(¢) as € - 0.

Closed-Loop Matrix: A(e) = [GAC d :gFD(J?(e)]

@ Want: Adjusting e adjusts dominant closed-loop poles

o Definition: A(e) is low-gain stable if there exist ¢,e* > 0 such that
Re(\) < —ce for all X eeig(A(e)) and all €€ [0,€").
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is low-gain stable is low-gain stable

ZL(F)=CSyl"Y(BF) + DF

where .Z : R"™"9  R"™"1
Syl(X) = X® - AX

v,

@ This is a time-scale separation result; the s.s. loop-gain operator
Z(F(€)) is the steady-state model of the plant on the 17 — e channel

Observation: “® - G.Z(F(€))" looks a lot like “A — BK" |

Idea: Place poles of (®,G) with feedback gain K(¢), then solve
linear operator equation .Z(F') = K = for F. J
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The Operator Equation .Z(F) =K

e But John, is Z(F') = K solvable?

rank P(\) =r

& surjective — _
for all X € eig(S9)

e But John, Z(F) requires all plant information!
Z(F)=CSyl’Y(BF)+ DF
Syl(X) = X® - AX
ZL(F) = P(0)FXo+2Y:_ Re{P(jwp)FX}}.

where matrix X, comes from eigen. decomp. of ®.
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Summary

yd
w |Z=Ax+ Bu+ Bygd e
e=Cx+ Du+ Dgd

Frequency response data P(0)
and P(jwy) can be inferred from
measurements; full plant model
Fe) 5 =dn+Ge irrelevant

Design Procedure:

@ Design K(¢) such that ® - GK (¢) is low-gain stable; this is a
state-feedback problem (pole placement, robust, optimal, ...)

@ Solve linear equation Z(F(e)) = K(e)
© Tune € up from 0
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Summary

Yd

w |Z=Ax+ Bu+ Bygd
e=Cx+ Du+ Dgd

F(e) [«

n=&n+Ge

Design Procedure:

Frequency response data P(0)
and P(jwy) can be inferred from
measurements; full plant model

irrelevant

@ Design K(¢) such that ® - GK (¢) is low-gain stable; this is a
state-feedback problem (pole placement, robust, optimal, ...)

@ Solve linear equation Z(F(e)) = K(e)
© Tune € up from 0

Full design authority over slow time-scale dynamics. J
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Example: Four-Tank Process (Johannson, TCST, 2000)
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Conclusions

@ Low-complexity easily-tuned robust data-driven design

@ Integral controllers for nonlinear systems

© Improvement to tuning regulators for LTI systems

yd

w |&=Ax+ Bu+ Byd
e=Cx+ Du+ Dyd

F(e)

1
|-

n=>on+Ge
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Conclusions

@ Low-complexity easily-tuned robust data-driven design
@ Integral controllers for nonlinear systems

© Improvement to tuning regulators for LTI systems

. yd
Ongomg Work w |T=Ar+Bu+Bgd | e
@ PID + feedforward designs e=Cz+Du+Dyd

@ Nonlinear extensions

7
) . Fle) fdn=an+G
@ Grid modernization (€) i = on+ Ge

Note: Open PhD position at University of Toronto for Fall 2023,
focusing on data-driven control and estimation for energy systems. J
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@ | of Electrical & Computer Engineering
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https://www.control.utoronto.ca/~jwsimpson/
jwsimpson@ece.utoronto.ca
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