
Robust Feedback-Based Nash Equilibrium Seeking

by

Anurag Agarwal

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Department of The Edward S. Rogers Sr. Department of Electrical & Computer
Engineering

University of Toronto

© Copyright 2022 by Anurag Agarwal

Robust Feedback-Based Nash Equilibrium Seeking

Anurag Agarwal
Master of Applied Science

Department of The Edward S. Rogers Sr. Department of Electrical & Computer Engineering
University of Toronto

2022

Abstract

We consider the problem of distributed Nash equilibrium seeking over networks. Each agent desires

to play a game while constraining a system output generated by a process affected by the agents’

control actions as well as some unknown, exogenous disturbances. Each self-interested agent seeks

to minimize their cost function within this game, while ensuring that the output obeys the given

constraints. We outline the limitations of forecasting the output and the relevant external distur-

bances, which motivates our feedback-based approach, using measurements to lift the forecasting

requirements. We then develop two algorithms: one that makes a nominal, constant approxima-

tion of the system’s input-output sensitivities a priori, and another that estimates sensitivities in a

model-free manner. We exploit operator-theoretic properties to show our algorithms’ convergence

robust to model uncertainty and unknown disturbances. We then test the developed techniques

using academic and real-world examples, validating and outlining the convergence properties of our

algorithm.

ii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Literature Review . 2

1.3 Contributions . 3

1.4 Organization . 4

2 Background 6

2.1 Mathematical Notations and Linear Algebra . 6

2.2 Sets and Set Projection . 7

2.3 Functions and Continuity . 8

2.4 Operator Theory . 10

2.5 Graph Theory . 12

2.6 Linear Fractional Representation . 13

2.6.1 Examples of Linear Fractional Transformation 14

3 Generalized Nash Equilibrium Problems 18

3.1 Game Formulation and Nash Equilibria . 18

3.2 Distributed vGNE-seeking Algorithm . 20

3.2.1 Forward-Backward Algorithm . 22

4 Games Played with Output Mappings 25

4.1 Problem Formulation . 25

4.1.1 Feedforward Forecast-Based Optimization . 26

4.1.2 Online Feedback-Based Optimization . 27

4.2 Generalized Nash Equilibrium with Output Mapping 28

4.3 Online Approximate vGNE-seeking Algorithm . 31

4.3.1 Forward-Backward Algorithm . 33

4.3.2 Convergence Analysis . 37

5 Monotonicity and Lipschitz Continuity of Uncertain Operators 41

5.1 Semidefinite Programming Methods to Verify Monotonicity and Lipschitz Continuity 41

5.2 Linear Fractional Representation of Uncertain Operators 43

5.2.1 Recipes for LFR Modelling . 45

5.3 Feedback Optimization Example . 46

iii

6 Jacobian-Free Algorithm 52

6.1 Limitations of a Fixed Jacobian . 52

6.2 Quasi-Stochastic Approximation of Jacobian . 54

6.2.1 Convergence Analysis . 57

6.3 Choice of Perturbation Signal . 61

7 Simulations and Results 63

7.1 Academic Example . 63

7.2 Academic Example with Jacobian Estimation . 65

7.2.1 Discussion of Simulation Results . 67

7.3 2-Robot Game with Double Integrator Dynamics . 67

7.4 Application: Distribution Feeder . 70

7.5 Application: Distribution Feeder without Global Information-Sharing 73

8 Conclusion and Future Work 75

8.1 Future Work . 76

A Maximal Monotonicity of Operators 77

B Analysis of the Extraction Operator 78

C Matrix Inequality Proofs 80

C.1 Equivalence of Semidefinite Inequalities . 80

C.2 Sector-Bounded Nonlinearity . 82

D PD Controller Tracking 84

iv

List of Figures

2.1 A block diagram of the feedback loop of the LTI and the uncertainty in the LFT

representation. 14

4.1 Illustration of a forecast-based optimizer. 27

4.2 Depiction of online feedback-based vGNE-seeking algorithm. Each agent communi-

cates with each other agent through the communication and interference graphs, and

locally updates its decision. 33

5.1 The soft constraint function and its derivative with thresholds set to y
¯i

= −2 and

ȳi = 2. 47

6.1 Each robot moves from the marked ‘O’ to the marked arrowhead along the blue

trajectory. The black arrows represent the vector ui − u−i. 53

7.1 The 2-player game’s decision trajectories over 600 iterations for 50 randomly generated

initial conditions. The symbols and trajectories are explained in the following section. 66

7.2 The results of the simulations with the three algorithms and the “ideal” target positions. 69

7.3 The results of the simulations with the three algorithms and unfavourable target

positions. 70

7.4 IEEE 37-node feeder [1]. Node 1 is the Point of Common Coupling (PCC). All other

nodes are connected to a load and a voltage sensor. The square nodes are equipped

with PV systems. The black lines denote electrical connections between nodes of the

distribution feeder. The red lines denote the communication graph that nodes use to

communicate multipliers. 71

7.5 Comparison of the distributed algorithm vs. no control. 73

7.6 Comparison of the distributed algorithm vs. no control. 74

D.1 Block diagram of the PD controller. 84

v

List of Tables

3.1 Action sets for the Prisoner’s Dilemma. 19

7.1 Player actions and their corresponding costs, as calculated by the 4 different algorithms. 67

vi

Chapter 1

Introduction

Game theory studies the strategic interaction between multiple, self-interested agents, each opti-

mizing a cost that is coupled with each other agent’s actions. The study of games revolves around

seeking a Nash equilibrium, where each agent has chosen an action profile from which no single agent

can unilaterally deviate for a better cost or payoff. Consider, for example, the simple case of traffic

flow through a city. Each driver would like to minimize the time it takes to reach a destination, but

each driver’s time taken would depend on each other driver’s path too. Thus a Nash equilibrium

(NE) would be when each driver chooses a path such that, given each other drivers’ paths, no driver

could deviate from their path and reach their destination faster.

This problem formulation, illustrated by the simple cases of traffic flow across a city, can

be extended to large classes of problems where the decision-makers (henceforth referred to as

agents/players) have access to sensors, information, and control inputs such that they can be set

up in a distributed manner, e.g. power systems, networks, smart cities, and so on. Such problems

however, often involve complex coupling and interaction between players’ actions, exogenous distur-

bances, and their impact on system constraints and/or safety requirements. For example, consider

an extension of the aforementioned traffic flow problem: each agent in the network is a self-driving

car, each capable of communicating with one another, trying to minimize their travel time to their

destination. The travel time is affected by other agents’ path selection, hence a game-theoretic

framework is applicable. It is also affected by weather, traffic from cars not connected to the net-

work, accidents, traffic signals at intersections, construction, and so on. To account for those factors,

we want to develop our optimization techniques to be robust to various externalities, accounting for

them without having a perfect forecast for their behaviour.

Thus this thesis studies problems at intersection of game theory and robust control, and leverages

both to implement a distributed optimization framework. With game theory, our framework enables

agents to learn in an environment that is altered by other agents’ learning and responses. With robust

control, our framework enables agents to learn in an environment while accounting for factors that

they do not have a perfect model for.

1

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

Classical methods of solving optimization are often offline, referring to the significant amount of a

priori knowledge and modelling effort needed to correctly represent the behaviour of the relevant

costs, and any other factors that affect them. These methods are not well-suited for solving prob-

lems pertaining to large, complex, and uncertain systems, as they impose stringent, often infeasible,

information requirements, and demand accurate forecasting and modelling of the system. Recent

development in the area of centralized, online optimization algorithms [1–4] aims to address that

gap by providing a framework for feedback-based optimization, lowering these informational require-

ments. This research has applications in the areas of communication networks [5], power systems

[6–9], and transportation [10]. The advantage of using online optimization techniques over offline

ones is the same as that of using feedback over feedforward control: feedback-based optimization

techniques tend to be more robust to model uncertainty, and are better able to attenuate or reject

exogenous disturbances [1, 3].

The applications discussed above often involve the regulation of outputs that are affected by the

actions of several different agents within the same system (e.g. multiple loads in a power distribu-

tion system), and thus a centralized, feedback-based optimization algorithm adds communication

overhead. A distributed method that enables agents to solve these problems locally, with reduced

communication overhead, would allow the development of efficient and scalable optimization tech-

niques, relevant to larger classes of complex problems. We aim to utilize the non-cooperative nature

of game theory to develop these distributed optimization techniques. The key difference between

a game-theoretic setup (as opposed to a classical distributed reinforcement learning setup) is the

dependence of agents’ costs on each other agents’ actions. This creates a learning environment that

evolves as the agents learn, where each self-interested agent is now interested in finding the best

possible outcome while being aware that each other agent aims to do the same, to which they re-

spond accordingly [11]. This has led to recent interest in studying the application of game-theoretic

techniques to distributed control problems [12] with applications such as swarm robotics [13–15],

wireless communication [16, 17], etc.

We propose a novel model to combine game theoretic NE-seeking techniques with robust feedback-

based optimization. We consider the case where each player in a game is concerned with an input-to-

output mapping (for example, the equilibrium mapping of a dynamical system) affected by unknown

external disturbances. Each player seeks to minimize a cost function that represents its goal within

the game, while ensuring that the output obeys certain constraints (such as safety constraints in

a power system). This thesis’ goal is to develop an algorithm to perform this minimization in a

distributed, game-theoretic manner, robust to model uncertainties and exogenous disturbances. We

then further restrict the information available to each agent, and study the application of model-free

techniques to game-theoretic problems.

1.2 Literature Review

Our work primarily builds off of the robust, feedback-based optimization framework in [1]. We extend

recent work done in the area of similar online optimization methods [1–4]. As mentioned before, the

main benefit of these methods over classical optimization methods is their robustness to external

CHAPTER 1. INTRODUCTION 3

factors and model uncertainty [3], and they can be applied to a wide variety of engineering problems

[5, 6, 10]. Research in this area primarily considers centralized, cooperative decision-making, but

often studies systems with distributed learning dynamics (such as the bulk power grid) [1, 18].

In [7], although the decision-making is done in a distributed optimization framework, the focus is

on cooperative decision-making. This thesis expands on prior work in this area by leveraging the

non-cooperative decision-making that game theory enables, which leads into our novel distributed

optimization framework.

Our work is thus also related to the literature on generalized Nash equilibrium (GNE) seeking

techniques. Prior works primarily consider games where the cost is impacted solely by the players’

actions and their coupling constraints [19–21]. In [13], the effects of cost functions dictated by outputs

from a dynamical system are considered, but this is done without any coupling constraints and with

the assumption that the agents’ equilibrium output mappings are decoupled. Our work differs from

[13] in that we allow agents to have inter-dependent output mappings. We also introduce coupling

constraints and consensus dynamics, building off the operator-theoretic framework developed in [19].

Finally, our work relates to recent research in model-free optimization. Model-free (or zero-

order) techniques have been an ongoing area of research in optimization, control, and machine

learning. This thesis primarily builds off the methods developed in [18]. Recent work in this area

includes [22–24]. The techniques developed in these works involve the use of stochastic exploration

signals, generated from independent, identically distributed random variables, to use two function

evaluations per iteration to predict the gradient(s) of the cost function(s). These stochastic models

are inspired by the Simultaneous Perturbation Stochastic Approximation technique developed in

[25, 26]. Model-free techniques are particularly helpful when agents are optimizing while account

for unknown (or difficult to model) factors that affect their costs (and thus their learning). Recent

work in the area uses quasi-stochastic exploration signals, rather than stochastic ones, to reduce

noise from the perturbations [27]. Similar to [18], we develop a constant step-size method for time-

varying optimization problems. Our main extension to this framework is that we use a two-function

evaluation to estimate the sensitivity of the output mapping to the control inputs, rather than the

gradient of the overall cost function. We note that this isolates the uncertainty of the output’s

sensitivity, allowing quasi-stochastic, model-free optimization to be utilized within a game-theoretic

framework with milder assumptions.

1.3 Contributions

Our problem formulation can be viewed as an extension of robust control and feedback-optimization

techniques to non-cooperative, multi-agent decision-making problems. It can also be viewed as ex-

tending the techniques of solving N -player games with affine constraints to games played in systems

where each agent is concerned with constraining a measured output generated by an unmodelled

process, affected by unknown exogenous disturbances. Thus our overarching contribution is a uni-

fied framework for feedback-based, robust, game-theoretic optimization. The following provides an

outline of our specific contributions:

• We show that under assumptions of strong monotonicity and Lipschitz continuity on the

games’ “pseudogradient” (a generalization of the gradient which we formalize later on), we

can use forward-backward operator splitting techniques to find an approximate GNE which is

CHAPTER 1. INTRODUCTION 4

a bounded distance away from a true KKT point of the game [19, 28]. We discuss how, similar

to [1], a KKT point is a candidate for a local/global optimum if the system admits one. We

also discuss what further assumptions can be made to ensure that the game admits a GNE,

which would then correspond to the KKT point found by our algorithm. Our analysis is a

unification of [1] and [19], by combining the former’s online, feedback-based framework and

approximate gradient dynamics with the latter’s non-cooperative, game-theoretic framework.

• We outline how the above assumptions on the pseudogradient can be hard to verify for an

unknown model. We thus leverage a linear fractional transformation (LFT) to parametrize

the model [29]. This enables the use of a semidefinite programming approach to numerically

verify the criteria outlined above. We provide a specific example of a common class of cost

functions, and outline how to use the above matrix inequalities.

• We illustrate the advantages of our framework over offline methods in our simulation results.

We show that, even for a simple, academic example, the convergence of simplistic forecasting

methods cannot be guaranteed. We compare the online methods to various perfect forecasts

and note the numerical verification of our theoretical convergence bounds.

• Since the focus is on developing an information-light framework to robustly control uncertain

systems in a distributed manner, our work naturally extends to further relaxing assumptions

on the information available to agents. We discuss and explore the possibility of model-free

optimization being merged with this framework. We develop a model-free technique, and

utilize similar operator-theoretic techniques to prove its convergence to a limit set around a

vKKT point of the system.

• We discuss the advantages and disadvantages of the two frameworks developed within this

work. We illustrate, with examples, how some systems favour one framework over another,

and note that both outperform simplistic forecast based methods.

1.4 Organization

This thesis is organized as follows:

• Chapter 2: Background

Relevant notations and definitions from control theory, graph theory, operator theory are pre-

sented. Mathematical preliminaries about sets, functions, vectors, and matrices are outlined.

The linear fraction transformation is introduced, and simple examples illustrating its use are

provided.

• Chapter 3: Generalized Nash Equilibrium Problems

An outline of prior work in game theory is provided, as a point to build off of for this thesis’

focus. We define a relevant solution concept for a game, the generalized Nash equilibrium

(GNE). We outline the GNE-seeking algorithm that our thesis seeks to extend. Note that [19]

solves the problem without the output mapping, and our later problem formulation is thus a

generalization of this framework. We provide intuition for why this algorithm converges, using

concepts from operator theory.

CHAPTER 1. INTRODUCTION 5

• Chapter 4: Games Played with Output Mappings

We introduce the main problem that this thesis explores. We motivate our goal of unifying

game-theoretic concepts with the framework from [1] by outlining an offline method, and

discussing its limitations. We discuss the difficulty of solving the problem in an online manner,

due to the unknown nature of the output model and any disturbances that affect it, leading to

a nominal approximation of the Jacobian of the output mapping. We develop a new solution

concept for our problem, the online approximate variational GNE (OA vGNE) and discuss its

relevance as an approximation of one of the system’s optimal points (or candidates for such a

point), chosen to penalize all players “fairly”. We show the existence and uniqueness of the

OA vGNE, and develop an algorithm to find the OA vGNE, extending from the one presented

in Chapter 4. We prove the algorithm’s convergence as a forward-backward operator splitting

technique, and provide error bounds comparing the algorithm’s limit point to candidate optima.

• Chapter 5: Monotonicity and Lipschitz Continuity of Uncertain Operators

The formulation in the prior chapter considers outputs generated by an uncertain system,

affected by unknown externalities. This uncertainty makes verifying the criteria for the algo-

rithm’s convergence inherently harder. We propose a method to represent the output map-

ping as a set-valued, uncertain operator and use that to parametrize its Jacobian as a linear

fractional transformation (LFT). We combine the LFT parametrization with semidefinite pro-

gramming methods to outline conditions on the Jacobian that are sufficient to verify the

convergence criteria presented in Chapter 4.

• Chapter 6: Jacobian-Free Algorithm

In this chapter, we start with a motivating example from swarm robotics that outlines how a

nominal Jacobian (as used in Chapter 4) may not be sufficient for certain classes of problems.

In short, we outline how the sensors available for output measurement could cause the “true”

Jacobian (one computed with a perfect model) to be heavily perturbed over time. In this case,

the error between an OA vGNE and a true KKT point could be large enough to the point of

being a bad candidate for an optimal operating point. We then outline a model-free framework

that estimates the Jacobian during runtime, and show that a quasi-stochastic perturbation is

sufficient for the algorithm to converge to a limiting point. We outline the convergence of this

algorithm to a set within finite bounds of a true vKKT point of the problem.

• Chapter 7: Simulation and Results

Simulation results are provided for various problems. We start with an academic problem that

illustrates the advantages of online frameworks over offline ones. We then outline a swarm

robotics example with a discussion on various cases, some of which perform better when

optimized with the OA vGNE algorithm from Chapter 4, and others which perform better

with the Jacobian-free algorithm from Chapter 6. Finally we use data gathered from real-time

operation of a distribution feeder, and show robust convergence of the OA vGNE algorithm

over the course of a long runtime with varying disturbances.

• Chapter 8: Conclusion and Future Work

We conclude the thesis with a summary of the work done, concluding remarks, and directions

for future research.

Chapter 2

Background

In this section, we introduce the notation and mathematical background required to develop the

theoretical foundation of this work. Section 2.1 introduces basic mathematical notation. Section 2.2

introduces projections, convex sets, and cones. Section 2.3 outlines the preliminaries of functions,

continuity, and relevant properties of functions that we utilize to prove convergence. Section 2.4

outlines similarly useful properties of operators, a generalization of functions. Section 2.5 discusses

graphs and their algebraic representation, which are necessary to codify the communication between

players within a game-theoretic setting. Finally in Section 2.6, we discuss a framework from robust

control theory that allows the parametrization of nonlinearities and uncertainties in terms of a linear

system with an uncertain feedback path. We utilize this parametrization to isolate the unknown

elements of the problem classes that we study in Chapters 4 and 5, to develop tractable methods to

verify if these problems are solvable.

2.1 Mathematical Notations and Linear Algebra

In this section we define vectors, matrices, and preliminary concepts from linear algebra [30]. We

also introduce some notation that we use throughout this work.

The sets R,R+ denote the sets of real numbers and nonnegative real numbers respectively.

The sets Rn,Rn
+ denote n-dimensional Euclidean space and the corresponding nonnegative space

respectively. For a vector x ∈ Rn (matrix A ∈ Rn×m), x⊤ (A⊤) denotes its transpose. Given

a symmetric positive definite matrix P ≻ 0, the operator ⟨·, ·⟩P : Rn × Rn → R denotes the

inner product ⟨x, y⟩P = x⊤Py and ∥ · ∥P : Rn → R+ denotes the corresponding induced norm

∥x∥P =
√
x⊤Px. If P is omitted, it is assumed that P = I, the identity matrix, inducing the

Euclidean 2-norm ∥ · ∥2. A block diagonal matrix A with matrices A1, . . . , AN along its diagonal is

denoted A = diag(A1, . . . , AN). Denote col(x1, . . . , xN) as the column vector obtained by stacking

vectors x1 , . . . , xN . Given a matrix A ∈ Rn×m, denote [aij] or [A]ij to be the component in its ith

row and jth column. We denote the n-dimensional vector of ones as 1n = col(1, . . . , 1) ∈ Rn, the

n-dimension vector of zeroes as 0n = col(0, . . . , 0) ∈ Rn and the n-dimensional identity matrix as

In = diag(1n) ∈ Rn×m. We denote the zero matrix 0n×m ∈ Rn×m, with each element equal to zero.

We sometimes omit the dimensional subscript for these vectors and matrices.

6

CHAPTER 2. BACKGROUND 7

Lemma 2.1 (Cauchy-Schwarz Inequality, [31]). Given any two vectors a, b ∈ Rn and some P ≻ 0:

|⟨a, b⟩P | ≤ ∥a∥P ∥b∥P .

2.2 Sets and Set Projection

In this section we define sets, cones, and projections onto a set. The following are from [32–34].

We deal with sets when talking about the players’ action sets in Chapters 3, 4.1, and 6, and the

structure of these sets and their projections is often a consideration for showing their convergence.

We also use these definitions throughout this work as foundations for other, more complex concepts.

Given two sets Ω and Φ, we denote the union of the sets as Ω∪Φ and we denote their intersection

as Ω ∩ Φ. If Φ ⊂ Ω, we denote Ω\Φ = {x : x ∈ Ω, x /∈ Φ} as the set of all elements in Ω except for

those also in Φ. We denote the empty set as ∅ = {}.
An open ball of radius δ centred at point p ∈ Rn is defined as Bnδ (p) = {x ∈ Rn : ∥x− p∥ < δ}.

A point p ∈ Ω ⊂ Rn is a limit point of the set Ω if for all δ > 0 there exists x ∈ Bnδ (p) such that

x ̸= p, x ∈ Ω. The set Ω is closed if it contains all its limit points. The set Ω is bounded in Rn if

there exists p ∈ Rn and δ > 0 such that Ω ⊂ Bnδ (p). A set is compact if and only if it is closed and

bounded. The set Ω is convex if for all θ ∈ [0, 1] and for all x, y ∈ Ω, θx+(1− θ)y ∈ Ω. The interior

of the set Ω is defined as intΩ = {x ∈ Ω : ∃δ > 0, Bnδ (x) ⊂ Ω}.

Definition 2.1 (Cones). Given a set Ω ⊂ Rn,

• the set Ω is a cone if for any x ∈ Ω, γx ∈ Ω for all γ > 0, and

• the normal cone of Ω at a point x ∈ Rn is defined as

NΩ(x) =

{y ∈ Rn|y⊤(x′ − x) ≤ 0 ∀x′ ∈ Ω}, x ∈ Ω

∅, x /∈ Ω
.

Definition 2.2 (Projection). We define the projection of a point x ∈ Rn to the closed, convex set

Ω ⊂ Rn as PΩ(x) = argminx′∈Ω ∥x− x′∥.

It should be noted that, by Moreau’s Decomposition Theorem [34], x = PΩ(x) + v, for some

v ∈ NΩ(x). Later in this work, we develop optimum-seeking algorithms for which each iteration is

expressed in an operator-theoretic framework by using this decomposition.

Definition 2.3 (Variational Inequality (VI) Def. 1.1.1. [35]). Given a closed, convex set Ω ⊂ Rn

and a function F : Ω → Rn, the variational inequality, denoted VI(Ω, F), w.r.t. ⟨·, ·⟩P is to find a

vector x ∈ Ω such that

⟨F (x), x′ − x⟩P ≥ 0, ∀x′ ∈ Ω.

Notice that by rearranging the above equation, we obtain ⟨−F (x), x′−x⟩ ≤ 0. Thus a variational

inequality is solved by a vector x ∈ Ω such that −F (x) is in the normal cone of Ω at x. We use this

concept in Chapter 4 to characterize the error bounds for the solution of our problem.

Definition 2.4 (Power Set [36]). Given a set Ω ⊆ Rn, its power set, denoted 2Ω, is the set of all

subsets of Ω, including the empty set ∅ and the set Ω itself.

The notion of a power set is utilized in the definition of set-valued operators later in this work.

CHAPTER 2. BACKGROUND 8

2.3 Functions and Continuity

In this section we review notions of continuity, Lipschitz continuity, and monotonicity. The following

are from [28, 32, 37].

Definition 2.5 (Continuity, [32]). Consider a function F : S → Rm, where S ⊆ Rn. The function

F is

1. continuous at x0 ∈ S if for all δ > 0 there exists ϵ > 0 such that ∀x ∈ S, x ∈ Bnδ (x0) =⇒
F (x) ∈ Bmϵ (F (x0)),

2. continuous if it is continuous for all points in S,

3. Lipschitz continuous at x0 ∈ S, w.r.t. ⟨·, ·⟩P , if there exist δ, L > 0 such that ∀x, y ∈
Bnδ (x0), ∥F (x)− F (y)∥P ≤ L∥x− y∥P ,

4. locally Lipschitz on S if it is Lipschitz for all points in S,

5. Lipschitz on D ⊆ S, w.r.t. ⟨·, ·⟩P , if there exists L > 0 such that ∀x, y ∈ D, ∥F (x)−F (y)∥P ≤
L∥x− y∥P , and

6. globally Lipschitz if D = S.

Continuity and Lipschitz continuity are standard assumptions made for analyzing optimization

problems.

Definition 2.6 (Cocoercivity, Def. 4.4 [28]). Let F : Ω ⊂ Rn → Rn. The function F is µ-cocoercive,

µ > 0, w.r.t. ⟨·, ·⟩P if

⟨x− y, F (x)− F (y)⟩P ≥ µ∥F (x)− F (y)∥2P ∀x, y ∈ Ω.

Definition 2.7 (Monotone Functions, [28]). A function F : S → Rn where S ⊆ Rn is said to be

1. monotone w.r.t. ⟨·, ·⟩P if ⟨x− y, F (x)− F (y)⟩P ≥ 0, for all x, y ∈ S, and

2. ρ-strongly monotone w.r.t. ⟨·, ·⟩P if there exists ρ > 0 such that ⟨x − y, F (x) − F (y)⟩P ≥
ρ∥x− y∥2P , for all x, y ∈ S.

Definition 2.8 (Convex Functions, [28]). A function F : S → R where S ⊆ Rn is said to be

1. convex if F (αx+(1−α)y) ≤ αF (x)+ (1−α)F (y), for all x, y ∈ S, and for all α ∈ (0, 1), and

2. ρ-strongly convex if there exists ρ > 0 such that F (αx + (1 − α)y) ≤ αF (x) + (1 − α)F (y) −
ρ
2α(1− α)∥x− y∥2, for all x, y ∈ S, and for all α ∈ (0, 1).

We use the notions of monotonicity and convexity to show that a game admits a solution.

Additionally, strong monotonicity is an important property in proving the convergence of many

game-theoretic algorithms, and we use this in Chapter 4.

CHAPTER 2. BACKGROUND 9

Definition 2.9 (Differentiable Functions, [28]). Consider a function f : S → V where S ⊆ Rn and

V ⊆ Rm. The function f is said to be differentiable at x ∈ S if there exists a map Df : Rn → Rm

(the Fréchet derivative) of f at x such that

lim
∥y∥→0

∥f(x+ y)− f(x)−Df(x)y∥
∥y∥

= 0.

If f is differentiable for all x ∈ S then f is said to be differentiable. If the derivative of f is

continuous, then f is said to be continuously differentiable, denoted C1. If the first n derivatives of

f are continuous, it is said to be Cn.

Let f : S → V be a differentiable function where S ∈ Rn and V ∈ Rm. Denote the i-th component

of the the function f as fi, and denote the natural basis of Rn as {e1, . . . , en}. Then, for any

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} we define

∂fi(x)

∂xj
= lim

t→0

fi(x+ tei)− fi(x)

t
.

If the limit exists, this function is termed the j-th partial derivative of fi at x [32]. In finite-

dimensional spaces, the Fréchet derivative can be represented in coordinate form with the partial

derivatives.

Definition 2.10 (Jacobian Matrix). Given a vector-valued function f : S → Rm, C1 on its domain

S ⊆ Rn, its Jacobian matrix at x is defined as

∂f(x) :=


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)

 .

Each row of the Jacobian matrix can be denoted ∇xf
⊤
i (x), i ∈ {1, . . . ,m}, termed the gradient of

the scalar-valued function fi : S → R at x.

When expressing the gradient ∇xf(x) we sometimes omit the subscript and denote it ∇f(x). In
such instances, we simply mean that the gradient is taken across the entire vector of arguments to

the function f . We similarly omit the subscript for ∂F (x) when referencing the Jacobian of F . We

next generalize the concept of the Jacobian to functions that are not C1. We use this to analyze

uncertain functions where the derivatives cannot be computed precisely.

Definition 2.11 (Clarke Generalized Jacobian, [37]). Given a closed, convex set S ⊆ Rn, and a

map F : S → Rn such that F is locally Lipschitz on S, the Clarke generalized Jacobian of F at

x ∈ S is defined as the set

∂CF (x) = co

J ∈ Rn×n : J = lim
xi→x

F (xi)differentiable

∂xi
F (xi)

 ,

where co denotes the convex hull operator, which is the minimum convex set that encloses all the

points in its argument [38].

CHAPTER 2. BACKGROUND 10

Next, we introduce the relationship between monotonicity and convexity in differentiable func-

tions.

Proposition 2.1. Let F : Ω→ R be C1 where Ω ⊆ Rn is an open, convex set. Then

1. F is convex if and only if ∇xF (x) is monotone for all x ∈ Ω (Prop. 17.10 [28]), and

2. F is ρ-strongly convex if and only if ∇xF is ρ-strongly monotone for all x ∈ Ω (Ex. 22.3 [28]).

We do not directly use the above relation between monotonicity and convexity in our optimization

framework. Rather, our goal is to optimize games (a term we will formalize in Chapter 3), where

this notion is not applicable. Finally, analogous to how the gradient is a generalization of the

first derivative to multivariate functions, we introduce a generalization to the notion of the second

derivative.

Definition 2.12 (Hessian Matrix). Given a C2 function F : S → R where S ⊆ Rn, its Hessian is

defined as the Jacobian of its gradient, denoted

∇2F (x) = ∂x (∇xF (x)) (x).

2.4 Operator Theory

This section outlines the notation and results from monotone operator theory that are used through-

out this thesis. We use the material from this section to prove the convergence of distributed GNE-

seeking algorithms in Chapters 4 and 6 by representing the game as a sum of operators with some

of the outlined properties. For a thorough reading, we refer the reader to [28].

Let A : Rn → 2R
n

be a set-valued operator. The domain of A is denoted domA = {x : Ax ̸= ∅}.
The range of A is denoted ranA = {y : ∃x s.t. y ∈ Ax}. The graph of A is denoted graA = {(x, u) :
u ∈ Ax}, and the inverse of A is defined through its graph as gra(A−1) = {(u, x) : (x, u) ∈ graA}.
The zero set of A (also known as the kernel) is zerA = {x : 0 ∈ Ax}. We denote the identity

operator as Id where x = Id(x), ∀x ∈ dom Id. In addition to the notions of Lipschitz continuity and

(strong) monotonicity which we defined for functions in the previous section, a monotone operator

A is maximally monotone if graA is not strictly contained is not strictly contained in the graph of

any other monotone operator.

Proposition 2.2 (Minty’s Theorem, (Theorem 21.1 [28])). Let A : Ω→ 2Ω be a monotone operator.

Then A is maximally monotone if and only if ran(Id+A) = Ω.

One particular operator whose maximal monotonicity is relevant to the work within this thesis

is the normal cone operator NΩ defined in Definition 2.1.

Lemma 2.2 ([39, 40]). For a closed, convex set Ω ∈ Rn, the normal cone operator NΩ is maximally

monotone.

Definition 2.13 (Resolvent). Given an operator A : Rn → 2R
n

, the resolvent of A is

RA = (Id+A)−1.

CHAPTER 2. BACKGROUND 11

Lemma 2.3 (Proposition 23.2, [28]). Given a maximally monotone operator A : Rn → 2R
n

, the

resolvent of A is single-valued and domRA = Rn.

Definition 2.14 (Nonexpansive Operators). An operator T : Ω ⊂ Rm → Rm is nonexpansive

w.r.t. P ≻ 0, if it is 1-Lipschitz w.r.t. to ⟨·, ·⟩P , i.e., ∥T (x) − T (y)∥P ≤ ∥x − y∥P , ∀x, y ∈ Ω.

Given α ∈ (0, 1), T is α-averaged if there exists a nonexpansive operator T ′ such that T = (1 −
α) Id+αT ′. Denote the class of α-averaged operators as A(α). If T ∈ A(12), then T is also called

firmly nonexpansive.

Lemma 2.4 (Proposition 4.25, [28]). Given any operator T : Rn → 2R
n

, α ∈ (0, 1), and P ≻ 0 then

T ∈ A(α) w.r.t. ⟨·, ·⟩P is equivalent to any of the following statements:

1. ∥Tx− Ty∥2P ≤ ∥x− y∥2P − 1−α
α ∥x− y − (Tx− Ty)∥2P , ∀x, y ∈ Ω;

2. ∥Tx− Ty∥2P + (1− 2α)∥x− y∥2P ≤ 2(1− α)⟨x− y, Tx− Ty⟩P ,∀x, y ∈ Ω.

Following from Lemma 2.4 (ii), T ∈ A
(
1
2

)
if and only if

∥Tx− Ty∥2P ≤ ⟨x− y, Tx− Ty⟩P , ∀x, y ∈ Ω.

Given β > 0, T is called β-cocoercive if βT ∈ A
(
1
2

)
, i.e.

β∥Tx− Ty∥2P ≤ ⟨x− y, Tx− Ty⟩P , ∀x, y ∈ Ω. (2.1)

Lemma 2.5 (Proposition 23.7, [28]). If an operator A : Rn → 2R
n

is maximally monotone, then its

resolvent T = (Id+A)−1 is firmly nonexpansive.

We noted in Section 2.2 that any point can be viewed as the sum of its projection onto a closed,

convex set and a vector from that projected point’s normal cone. The next lemma follows from that

observation.

Lemma 2.6 (Proposition 6.46, [28]). The projection of a point x ∈ Rn onto a set Ω can be expressed

in terms of the normal cone operator as

PΩ(x) = (Id+NΩ)
−1(x).

Following from Definition 2.13, the projection operator is the resolvent of the normal cone op-

erator. From 2.3, we know that the projection operator is thus also single-valued. Next, we define

the notion of a fixed point. Solutions to the algorithm presented in Chapter 4 are characterized as

fixed points of appropriately defined operators.

Definition 2.15. For a single-valued operator T : Rn → Rn, x ∈ Rn is a fixed point of T if Tx = x.

The composition of two operators is denoted A ◦B and is defined via its graph gra (A ◦B) =

{(x, z) : ∃y ∈ ranB, (x, y) ∈ graB, (y, z) ∈ graA}. The sum of two operators is denoted A+B and

defined gra(A+B) = {(x, y + z) : (x, y) ∈ graA, (x, z) ∈ graB}.

Lemma 2.7 ([41]). Given two maximally monotone operators A : Rn → 2R
n

and B : Rn → 2R
n

,

their sum A+B is maximally monotone if domA∩domB ̸= ∅, i.e., the intersection of their domains

is not the empty set.

CHAPTER 2. BACKGROUND 12

2.5 Graph Theory

In this section we outline some basic elements from graph theory. We use these concepts to describe

the communication of players over a network while playing the game. The material in this section

is from [42–44].

A weighted, directed graph is a 3-tuple G = (N , E , {wij}), with node (vertex) setN = {1, . . . , N}
(where N is the number of nodes), and edge set E ⊆ N × N . Each edge ek ∈ E is an or-

dered pair ek = (i, j) that represents a connection between nodes. For an undirected graph

(i, j) ∈ E ⇔ (j, i) ∈ E . Each wij > 0 represents a weight for an edge (i, j) ∈ E , i ̸= j. In an

undirected graph wij = wji ∀(i, j) ∈ E . In the game-theoretic setting we use graphs to describe

information sharing between player: each player is a node, and communication between players is

represented as an edge. Note that in this work, we assume the communication between agents is

always two way, thus we are only concerned with undirected graphs.

The neighbour set of node i, defined as NG(i) = {j : (i, j) ∈ E}, is the set of all nodes that

node i has an edge to. For an undirected graph, the weighted degree of a node i s defined as

di =
∑

j∈NG(i) wij .

Definition 2.16 (Adjacency Matrix). Given a weighted, undirected graph G = (N , E , {wij}), the
adjacency matrix Adj ∈ RN×N is defined as

[Adj]ij =

wij (i, j) ∈ E

0 (i, j) /∈ E .

Definition 2.17 (Degree Matrix). Given a weighted, undirected graph G = (N , E , {wij}), the degree

matrix Deg ∈ RN×N is defined as Deg = diag(d1, . . . , dN).

Together, the adjacency and degree matrices describe the connectivity of the graph G. We define

the notion of a Laplacian to express these in a mathematically compact and useful manner.

Definition 2.18 (Laplacian Matrix). Given a weighted, undirected graph G = (N , E , {wij}), the

Laplacian matrix L ∈ RN×N is defined as

[L]ij =


di i = j

−wij (i, j) ∈ E

0 otherwise.

Equivalently, the Laplacian can be written as L = Deg −Adj.

A path from node i to node j is a sequence of distinct nodes such that consecutive nodes are

connected by an edge, i.e., a set of nodes {v1, . . . , vl} ⊆ N connected by edges, i.e.,

{(v1, v2), (v2, v3), . . . , (vl−1, vl) : v1 = i, vl = j} ⊆ E .

A graph is connected if there exists a path between every pair of nodes. A graph is complete if

every pair of nodes is connected by an edge.

When G is undirected and connected, 0 is a simple eigenvalue of L with corresponding eigenvector

1N (Theorem 2.1 (c), [45]). It follows from this property, and from L being a symmetric matrix for

CHAPTER 2. BACKGROUND 13

undirected graphs, that L1N = 1⊤L = 0.

2.6 Linear Fractional Representation

In this section, we present the Linear Fractional Transformation (LFT), a framework to parameterize

nonlinearities and uncertainties. It is often helpful to express uncertainties and nonlinearities as set-

valued operators that perturb a linear, deterministic system. Such a framework enables the isolation

of these factors, separate from a linear component of the system. The material from this section is

from [29, 46, 47].

Consider an input-output representation of a mapping, ζ = M(ξ), where M : Rn → Rl. Assume

that there are factors within the system that make the output uncertain, i.e., the output ζ is not

known precisely for any given input ξ. We then aim to parametrize the input-output relation as a

set of mappings, rather than a deterministic mapping.

Definition 2.19 (Linear Fractional Transformation). Given an input-to-output mapping ζ = M(ξ),

where M : Rn → Rl, a linear fractional transformation (LFT) of the mapping is the following

relation: [
ζ

q

]
=

[
M B

C D

][
ξ

p

]
p = ∆q,

(2.2)

where M ∈ Rl×n, B ∈ Rl×s, C ∈ Rz×n, and D ∈ Rz×s are fixed matrices. The matrix ∆ ∈ ∆ ⊂
Rs×z is referred to as the parameter block of the system. We assume I −D∆ is invertible.

Note here that our definition of the linear fractional transformation applies only to static maps

M. In general, the operator M can represent a dynamical system, and then the matrices in the LFT

become transfer matrices of a linear, time-invariant system. We do not need the general framework

for this thesis, since we only use this to parametrize a static map in Chapter 5.

Figure 2.1 illustrates the LFT representation. Note how the uncertainty is isolated entirely on

the feedback path, and ∆ = 0z×s recovers a deterministic, linear mapping. Thus the parame-

ter block represents the uncertainties and nonlinearities within the mapping M. We use the LFT

parametrization in Chapter 5 to develop a matrix inequality to verify convergence criteria for opti-

mization problems with uncertainties in their cost function gradients.

Given the matrices outlined in Definition 2.19, we can write an input-output representation of

the LFT parametrization by using the fundamentals of feedback loop decomposition:

ζ = Mξ +Bp (2.3)

q = Cξ +Dp (2.4)

p = ∆q. (2.5)

CHAPTER 2. BACKGROUND 14

Figure 2.1: A block diagram of the feedback loop of the LTI and the uncertainty in the LFT
representation.

By combining the second and third lines of (2.3), we get

q = Cξ +D∆q

(Iz −D∆)q = Cξ

q = (Iz −D∆)−1Cξ.

Combining this result with the first and third lines of (2.3), we conclude

ζ =
[
M +B∆(Iz −D∆)−1

]
ξ. (2.6)

Thus the uncertain operator M can be represented as an input-output relation between a linear

operator defined by matrices M, B, C, D, connected in feedback with a nonlinear and/or uncertain

operator ∆ ∈∆. Note that this input-output relation is a set-valued operator, parametrized by the

set of matrices ∆. The set-valued nature of this operator will be used in Chapter 5 to develop matrix

inequalities for characterizing strong monotonicity and Lipschitz continuity of uncertain operators.

2.6.1 Examples of Linear Fractional Transformation

In this section, we illustrate the LFT parametrization introduced in Definition 2.19 with simple

examples, to help build the necessary intuition for the complex use case presented in Chapter 5.

Example 1.

ζ =

[
−1 2δ1

1 + δ1 −2

]
ξ,

where δ1 ∈ [−1, 1].

Note that in this example there is only one scalar uncertainty in a mapping M : R2 → R2. We

CHAPTER 2. BACKGROUND 15

parametrize the uncertainty as a matrix

∆ =

[
δ1 0

0 δ1

]
.

We can refer to (2.6) and immediately choose

M =

[
−1 0

1 −2

]
,

since it isolates the constant term with no dependence on the uncertainty matrix. For simplicity, we

can assume that

D =

[
0 0

0 0

]
.

This simplifies the second term in the equation to

B∆C =

[
0 2δ1

δ1 0

]
.

We can achieve this by choosing one of the following two for B and C:

B =

[
2 0

0 1

]
, C =

[
0 1

1 0

]
,

B =

[
0 1

1 0

]
, C =

[
1 0

0 2

]
.

With that we have an LFT parametrization for the problem in Example 1. Note that this example

illustrated that, depending on the nature of the uncertainties, we have some freedom to choose the

matrices within the LFT. A good choice would usually end up with smaller matrices. We refer the

reader to Section 6.2 in [29] for a detailed outline on how to iteratively choose a linear fractional

transformation for a given matrix.

Example 2. This example is borrowed from [29].

ζ =

[
−1 2δ1
−1

1+δ1
−4 + 3δ2

]
ξ,

Note that we immediately notice that choosing D as a matrix of zeroes is no longer a valid

option, since this function is not affine in ∆. We refer to the matrix in this example as F (δ), where

δ = (δ1, δ2) for convenience of notation. We note that each element of F (δ) is a rational function

in δ. We start by expressing F (δ) such that it is decomposed into a polynomial on each side of the

CHAPTER 2. BACKGROUND 16

equality:

ζ =

[
1 0

0 1
1+δ1

][
−1 2δ1

−1 (−4 + 3δ2)(1 + δ1)

]
ξ[

1 0

0 1 + δ1

]
ζ =

[
−1 2δ1

−1 (−4 + 3δ2)(1 + δ1)

]
ξ.

At this point, we begin isolating the terms from δ iteratively, and then express a relation between p

and q that isolates them to the feedback path. Noting that ζ = (ζ1, ζ2), on the left side we have[
1 0

0 1 + δ1

]
ζ =

[
1 0

0 1

]
ζ +

[
0

1

]
δ1ζ2 =

[
1 0

0 1

]
ζ +

[
0

1

]
p1,

where p1 = δ1q1 and q1 = ζ2. Similarly, with ξ = (ξ1, ξ2), the right side can be decomposed as[
−1 2δ1

−1 (−4 + 3δ2)(1 + δ1)

]
ξ =

[
−1 0

−1 −4 + 3δ2

]
ξ +

[
2

−4 + 3δ2

]
p2,

where p2 = δ1q2 and q2 = ξ2. We repeat the process for each of the matrices on the right hand side:[
−1 0

−1 −4 + 3δ2

]
ξ +

[
2

−4 + 3δ2

]
p2 =

[
−1 0

−1 −4

]
ξ +

[
2

−4

]
p2 +

[
0

3

]
p3,

where p3 = δ2q3 and q3 = ξ2 + p2. Finally we isolate for ζ again using these decomposed matrices:[
1 0

0 1

]
ζ +

[
0

1

]
p1 =

[
−1 0

−1 −4

]
ξ +

[
2

−4

]
p2 +

[
0

3

]
p3

ζ =

[
−1 0

−1 −4

]
ξ −

[
0

1

]
p1 +

[
2

−4

]
p2 +

[
0

3

]
p3

=

[
−1 0

−1 −4

]
ξ +

[
0 2 0

−1 −4 3

]
p

:= Mξ +Bp.

We next solve for the C and D by looking at the equations we set out for each element of q above,

and obtain

q =

 ζ2

ξ2

ξ2 + p2



=

−1 4

0 1

0 1

 ξ +

−1 −4 3

0 0 0

0 1 0

 p

:= Cξ +Dp.

Finally we have the relation p = ∆q, with ∆ = diag(δ1, δ1, δ2). Note here, the repetition of δ1 along

CHAPTER 2. BACKGROUND 17

the diagonal. This is a pattern which can be observed with minimal LFTs of matrices F (δ) when

they are rational function of δ. This notion is formalized in Theorem 6.4 of [29]. This concludes our

introduction of LFTs, and with that we have the necessary background required to move on to the

problems studied within this thesis.

Chapter 3

Generalized Nash Equilibrium

Problems

In this chapter, we define what a game is and describe a relevant solution concept for games, a

generalized Nash equilibrium (GNE). Conditions for the existence and uniqueness of GNEs are

outlined. Some of the material in this chapter is from [19, 21, 35, 48–51].

3.1 Game Formulation and Nash Equilibria

In this section, we formulate the core game-theoretic problem that this thesis studies, and define the

concept of a Nash equilibrium (NE), which we later generalize later as a GNE. We denote a game as

G(N , fi,Ωi), where N = {1, . . . , N} is the set of N players (agents) involved. Each player chooses

an action ui ∈ Ωi, where Ωi ⊆ Rni is the action set for the player. Note that each player may have

a different dimension ni for their action set. We can then denote Ω =
∏

i∈N Ωi to be the overall

action set for all players in the game, where Ω ⊆ Rn, Ωi ⊆ Rni , and n =
∑

i∈N ni. The function

fi : Ω→ R is a cost function that relates all players’ actions to player i’s goals in the game.

Let u = col(u1, . . . , uN) ∈ Ω denote the overall action profile for the players. We often denote

u = (ui,u−i), where ui ∈ Ωi is player i’s action, and u−i ∈ Ω−i is the vector of all other players’

actions, where the set Ω−i =
∏

i∈N\{i} Ωi is the set of all other players’ possible actions.

Definition 3.1 (Nash Equilibrium). Given a game G(N , fi,Ωi), an action profile u∗ ∈ Ω is a Nash

Equilibrium (NE) of G if

fi(u
∗
i ,u

∗
−i) ≤ fi(ui,u

∗
−i) ∀ui ∈ Ωi, ∀i ∈ N .

At a Nash Equilibrium, no player can deviate unilaterally for a lower cost. Note that this does

not necessarily correspond to a perfect outcome for any of the players, it is simply a best-case

cost reduction such that no player “regrets” the choice they made. As an example, consider the

classic Prisoner’s Dilemma (Example 4.2, [52]). The setup involves 2 criminals (players), with no

communication, given the choice to keep quiet or squeal when questioned on the other’s involvement

in a crime. If one of the players confesses, they will be set free and the other sentenced for 5 years. If

neither confesses, both will be sentenced for 3 years, but if both confess they will both be sentenced

18

CHAPTER 3. GENERALIZED NASH EQUILIBRIUM PROBLEMS 19

1 2
1 {3,3} {5,0}
2 {0,5} {4,4})

Table 3.1: Action sets for the Prisoner’s Dilemma.

to 4 years. Table 3.1 outlines the costs for each player as pairs, indexed by each player’s action.

We can relate this to our above notation by indexing the players as N = {1, 2}, and enumerating

the keep quiet action as ui = 1 and the squeal action as ui = 2. Then each entry of Table 3.1

corresponds to the costs {f1(u1, u2), f2(u1, u2)}, where u1 and u2 are respectively read from the

column and row headers.

The Nash equilibrium in this case is the action (2,2) for a cost of {4, 4}, i.e., both players squeal.

If the action profile was (1,1), each player wishes they had chosen the action 2 to get the lowest

possible cost, and if the outcome was (1,2) or (2,1), the player that chose 2 wishes to have deviated

and chosen 1 for a lower cost. Note how this is not a “socially optimal” outcome, in that it’s not

the happiest possible outcome for any of the players. It is simply the one in which neither player

could have done better unilaterally.

We now generalize this concept to the case where there are affine coupling constraints defining a

relationship between the players’ actions. We denote these constraints as u ∈ U , where

U =

{
u ∈ Ω :

∑
i∈N

Aiui ≥
∑
i∈N

bi, bi ∈ Rm, Ai ∈ Rm×ni

}
. (3.1)

Note that the conditions in the set U represent m global, affine constraints: Au ≥ b where A =

[A1, ... ,AN] and b =
∑

i∈N bi. We denote a game G(N , fi,Ωi) with constraints U as G(N , fi,Ωi,U).
We then generalize Definition 3.1 as follows.

Definition 3.2 (Generalized Nash Equilibrium). Given a game G(N , fi,Ωi,U), an action profile

u∗ ∈ U is a Generalized Nash Equilibrium (GNE) of G if

fi(u
∗
i ,u

∗
−i) ≤ fi(ui,u

∗
−i) ∀ui ∈ Ui(u∗

−i), ∀i ∈ N ,

where Ui(u∗
−i) =

{
ui ∈ Ωi : (ui,u

∗
−i) ∈ U

}
.

In other words, a GNE is defined as an action profile with the optimal cost for the player on the

feasible set Ui(u∗
−i). We focus on Generalized Nash Equilibrium Problems for the rest of this work.

Assumption 1. For each player i ∈ N , fi(ui,u−i) is a differentiable, convex function with respect

to ui ∈ Ωi for any fixed u−i ∈ Ω−i. The action set Ωi is a closed, convex set, and the feasible sets,

U and Ui(u−i), given any fixed u−i ∈ Ω−i, have a nonempty interior.

Let u∗ be a GNE for a game G(N , fi,Ωi,U). For player i, their chosen action u∗
i is the optimal

solution to the following convex optimization problem:

min
ui

fi(ui,u
∗
−i), s.t. ui ∈ Ωi, Aiui ≥ b−

∑
j∈N\{i}

Aju
∗
j . (3.2)

We can define a Lagrangian function for player i as Li(ui, λi;u−i) = fi(ui,u−i)+λ⊤
i (b−Au). When

u∗
i is an optimum of (3.2), there exists a multiplier λ∗

i ∈ Rm
+ such that the following KKT conditions

CHAPTER 3. GENERALIZED NASH EQUILIBRIUM PROBLEMS 20

are satisfied:
0 ∈ ∇uifi(ui,u

∗
−i)−A⊤

i λ
∗
i +NΩi(u

∗
i),

0 ∈ (Au∗ − b) +NRm
+
(λ∗

i).
(3.3)

Denote λ = col(λ1, . . . , λN). When u∗, λ∗ satisfies the KKT conditions (3.3) for all i ∈ N , the

action profile u∗ is a GNE of the game G (Theorem 4.6, [21]).

For a given GNE of G, the Lagrange multipliers may be different, that is, λi ̸= λj may be true

for one or more pairs of players i, j, i ̸= j. In this thesis, we are concerned with seeking a GNE

such that λ1 = . . . = λN , referred to as a variational GNE (vGNE). This ensures a more “socially

stable” equilibrium, by penalizing players equally for violating the constraints. From [21] (Theorem

4.8), we know that a vGNE of G is a solution u∗ ∈ U of the variational inequality VI(F,U), as
defined in Definition 2.3, where F denotes the pseudogradient of the players’ cost functions, defined

as

F (u) = col(∇u1f1(u1,u−1), . . . ,∇uN
fN (uN ,u−N)). (3.4)

From Definition 2.3, an action profile u∗ ∈ U solves VI(F,U) if and only if u∗ is an optimal solution

to

min
u∈Ω
⟨F (u∗),u⟩ s.t. u ∈ Ω, Au ≥ b

Hence u∗ solves VI(F,U) if and only if there exists a multiplier λ∗ ∈ Rm such that the following

KKT conditions are met [35]:

0 ∈ ∇uifi(ui,u
∗
−i)−A⊤

i λ
∗ +NΩi(u

∗
i), i ∈ N ,

0 ∈ (Au∗ − b) +NRm
+
(λ∗).

(3.5)

Theorem 3.1 (Variational Generalized Nash Equilibrium, Theorem 4.8, [21]). Suppose Assump-

tion 1 holds. Then every solution u∗ of the variational inequality VI(F,U) is a GNE of the game

G(N , fi,Ωi,U). Further, given that u∗ and λ∗ satisfy the VI KKT conditions (3.5), u∗ together

with λ∗
1 = · · · = λ∗

N = λ∗ satisfy the GNE KKT conditions (3.3).

3.2 Distributed vGNE-seeking Algorithm

This section develops and outlines an algorithm that can be used to find a variational GNE of the

GNE problem described in Section 3.1. For a detailed proof and convergence analysis, refer to [19].

The idea of the proof is to view a point satisfying the KKT conditions (3.5) as a zero of the sum of

monotone operators. The algorithm then takes the form of a forward-backward operator-splitting

method [28]. In Chapter 4 we adapt this algorithm to cases where agents are concerned with a

measured output which they do not have an a priori model for.

Notice in the KKT conditions (3.5), that we can stack all i ∈ N elements of the first condition

as

0 ∈ F (u)−A⊤λ+NΩ(u).

We can then define the following two operators:

A : col(u, λ) 7→ col(F (u),−b)

B : col(u, λ) 7→ col(−A⊤λ+NΩ(u), Au+NRm
+
(λ)).

(3.6)

CHAPTER 3. GENERALIZED NASH EQUILIBRIUM PROBLEMS 21

The KKT conditions (3.5) can then be expressed as col(u∗, λ∗) ∈ zer(A + B). Note that B is a

maximally monotone operator (proof in Appendix A), so we can place assumptions on F to ensure

that solving VI(F,U) can be expressed as a problem of finding zeros of a sum of monotone operators.

Assumption 2. The pseudogradient F (u) defined in (3.4) is η-strongly monotone and θ-Lipschitz

continuous.

Remark 1. Assumption 2 guarantees the existence of a unique solution to VI(F,U) [19, 48, 53].

This ensures that the game has a unique variational GNE even if it may not have a unique GNE. The

algorithm from [19] thus aims to find this unique variational GNE, enforcing the coupling constraint.

We next outline the algorithm from [19], and analyze its convergence properties. Each player has

access to its local cost function fi and, for a given col(ui,u−i) they can evaluate the gradient ∇uifi.

As in [19, 48, 49, 53], we assume that the player has access to any other player’s decision that its

cost is dependent on, obtained via an interference graph (i.e., we assume u−i is known precisely).

However, we assume that the global constraint set is not fully known, instead each player only knows

its local block of the constraints, i.e., Ωi, Ai, bi.

Agent i controls its local decision ui ∈ Rni and a local copy of the multiplier λi ∈ Rm
+ . It has a

local auxiliary variable zi ∈ Rm which it uses to coordinate with its neighbours in order to achieve

consensus on λi, as needed to satisfy the vGNE KKT conditions (3.5). We specify two graphs, Gf and

Gλ. The interference graph Gf is defined as in [48], [50]: each agent has an edge connecting it to each

other agent whose decision or output directly affects its costs, i.e., Gf = (N , Ef , {wij}), (j, i) ∈ Ef
if fi(ui,u−i) explicitly depends on uj . Agent i has the ability to compute its respective gradients

as described above, observing the relevant values through Gf . Agents communicate their values

for λi and zi through Gλ, defined as having an edge between two agents if they communicate their

multiplier estimate to one another during the algorithm.

Assumption 3. The weighted communication graph Gλ is undirected and connected.

The auxiliary variables zi are introduced in the problem to help agents arrive to a consensus

on the Lagrange multipliers λi. We noted in Remark 1 that we are seeking the variational GNE

of the problem, where the Lagrange multipliers are all equal, which motivates the inclusion of our

consensus variables. Each zi can be viewed as player i’s estimate of the other players’ contribution

to the constraint satisfaction.

CHAPTER 3. GENERALIZED NASH EQUILIBRIUM PROBLEMS 22

Algorithm 1 Distributed GNE-seeking algorithm

Initialization: ui,0 ∈ Ωi, λi ∈ Rm
+ , and zi,0 ∈ Rm

+

Iteration: Player i

Step 1: Primal Step and Consensus - Receives uj,k, j ∈ NGf
(i), λj,k, j ∈ NGλ

(i)

and updates:

ui,k+1 ←PΩi

(
ui,k − τi(∇ui,k

fi(ui,k,u−i,k)−A⊤
i λi,k)

)
zi,k+1 ← zi,k + νi

∑
j∈NGλ

(i)

wij(λi,k − λj,k)

Step 2: Consensus and Dual Step - Receives zj,k+1, j ∈ NGλ
(i) and updates:

λi,k+1 ←PRm
+

(
λi,k − σi[Ai(2ui,k+1 − ui,k)− bi +

∑
j∈NGλ

(i)

wij [2(zi,k+1 − zj,k+1)

− (zi,k − zj,k)] +
∑

j∈NGλ
(i)

wij(λi,k − λj,k)

)

Step 1 of the algorithm consists of two parts: the first is simply the primal step of a projected

gradient algorithm, and the second is a consensus estimation step, where each agent uses data from

its neighbours to update its estimate of other players’ contributions to the coupling constraints. Step

2 is a dual step that updates the Lagrange multipliers while accounting incorporating the impact of

other agents’ contributions through the consensus values from the previous step.

3.2.1 Forward-Backward Algorithm

In this section we outline the development of the distributed GNE-seeking algorithm, Algorithm 1.

For a detailed reading, we refer the reader to [19].

We first define some notation to express Algorithm 1 in a compact manner. Define uk =

col(u1,k, . . . , uN,k), λk = col(λ1,k, . . . , λN,k), with zk and b defined similarly. Let Λ = diag(A1, . . .

, AN) and L=L⊗Im. Finally, let τ = diag(τ1In1 , . . . , τNInN
) and τ−1 = diag(1

τ1
In1 , . . . ,

1
τN

InN
),

with ν, σ, ν−1, σ−1 defined similarly. With this, we can rewrite each step of the algorithm as

uk+1 = PΩ[uk − τ̄(F (uk)− Λ⊤λ̄k)], (3.7a)

z̄k+1 = z̄k + ν̄L̄λ̄k, (3.7b)

λ̄k+1 = PRmN
+
{λ̄k − σ̄[Λ(2uk+1 − uk)− b̄+ L̄λ̄k + L̄(2z̄k+1 − z̄k)]}. (3.7c)

By Lemma 2.6, PΩ(x) = (Id+NΩ)
−1, so (3.7a) can be rewritten as

(Id+NΩ)
−1[uk − τ̄(F (uk)− Λ⊤λ̄k)] = uk+1

uk − τ̄(F (uk)− Λ⊤λ̄k) ∈ uk+1 +NΩ(uk+1)

−F (uk) + Λ⊤λ̄k + Λ⊤(λ̄k+1 − λ̄k+1) ∈ τ̄−1(uk+1 − uk) +NΩ(uk+1)

−F (uk) ∈ NΩ(uk+1)− Λ⊤λ̄k+1 + τ̄−1(uk+1 − uk) + Λ⊤(λ̄k+1 − λ̄k).

(3.8)

CHAPTER 3. GENERALIZED NASH EQUILIBRIUM PROBLEMS 23

With similar arguments, (3.7c) can be rewritten as

−[L̄λ̄k− b̄] ∈ NRmN
+

(λ̄k+1)+Λuk+1+ L̄z̄k+1+Λ(uk+1−uk)+ L̄(z̄k+1− z̄k)+ σ̄−1(λ̄k+1− λ̄k) (3.9)

We define two matrices

Φ =

τ̄
−1 0 Λ⊤

0 ν̄−1 L̄

Λ L̄ σ̄−1

 , Ψ =

0 0 −Λ⊤

0 0 −L̄
Λ L̄ 0

 . (3.10)

Note that Φ is symmetric (Φ = Φ⊤) and Ψ is skew-symmetric (Ψ = −Ψ⊤). Denote ϖ = col(u, z̄, λ̄).

Then (3.7b), (3.8), (3.9) can be expressed as

−Ā(ϖk) ∈ B̄(ϖk+1) + Φ(ϖk+1 −ϖk), (3.11)

with
Ā : ϖ 7→ col(F (u),0, L̄λ̄− b̄)

B̄ : ϖ 7→ NΩ(u)× 0×NRmN
+

(λ̄) + Ψϖ.
(3.12)

Rearranging (3.11), we obtain

ϖk+1 = (Id+Φ−1B̄)−1(Id−Φ−1Ā)(ϖk). (3.13)

The iteration (3.13) is a compact representation of a single step of Algorithm 1, referred to as

Picard’s iteration [19]. We go into more detail about this iteration later, in the proof for Lemma

4.1. Each iteration can be viewed as having a forward step evaluating Ā and a backward step

evaluating the resolvent of B̄, hence the algorithm being referred to as a forward-backward operator-

splitting algorithm. For more background on this class of algorithms, refer to [28]. The traditional

forward-backward algorithm presented therein uses Φ = I, and evaluates a cocoercive operator in

the forward step and the resolvent (Definition 2.13) of a monotone operator in the backward step.

The key problem is that the resolvent cannot be computed without computing the inverse of Ψ,

which contains the constraint matrix and thus cannot be computed in a distributed manner (since

we assume each agent only knows a local block of the constraints). This difficulty is resolved by

introducing the metric matrix Φ, which enables the distributed evaluation of the backward step

using local information as in (3.7c).

We do not present the rest of the convergence analysis in this section, as we would repeat large

parts of it for the proof in the convergence analysis we perform for our later adaptation of this

algorithm. For a full treatment, refer to [19], or to the later Sections 4.3.1 and 4.3.2 where we

outline the application of this proof to our developed algorithm. Intuitively, the convergence of the

algorithm relies on these key factors:

1. The operators Ā and B̄ are higher dimensional augmentations of the operators A and B

described in (3.6), introducing the auxiliary variables z̄ ∈ RmN , and the augmented variables

and matrices defined at the beginning of this section.

2. A limiting point of Algorithm 1 corresponds to a zero of the sum of the operators Ā and B̄,

which also corresponds to a point satisfying the variational KKT conditions (3.5).

CHAPTER 3. GENERALIZED NASH EQUILIBRIUM PROBLEMS 24

3. The convergence of Algorithm 1 to a limiting point can be guaranteed by the choice of specific

step sizes and assumptions that ensure that each iteration is a sum of maximally monotone,

nonexpansive operators.

This forms the basis for the problem space that this thesis intends to explore, which we introduce

in the following chapter. Following Theorem 3 in [19], we know that the algorithm converges to

a limiting point that corresponds to the unique vGNE of the game G. This provides theoretical

guarantees of finding an optimum of the game obeying the global coupling constraints, with each

agent only having local knowledge of those constraints.

Chapter 4

Games Played with Output

Mappings

In this chapter, we introduce the primary class of problems that this thesis addresses. We begin from

the GNE problem introduced in Section 3.1, and modify the problem to account for an input-output

mapping, akin to the one in [1]. We briefly discuss offline methods of solving optimization problems

and the limitations of these methods, before detailing our online approach for the GNE problem.

We redefine our solution concept as a variational KKT point, rather than a vGNE (discussed in

Chapter 3), since the unknown nature of the output mapping makes the existence of a vGNE hard

to guarantee. Then we reformulate Algorithm 1 for the newly defined class of problems, and provide

a detailed convergence analysis.

4.1 Problem Formulation

Consider the GNE problem from Section 3.1. We extend that formulation, and assume that each

player i ∈ N is endowed with an output yi ∈ Rli , generated by some unknown input-to-output

relation. Suppose that they wish to constrain this output while attempting to achieve their respective

goals (described via the cost function fi introduced in Section 3.1). The output is a function of all

the players’ actions u ∈ Ω and of an unmeasured, exogenous disturbance w ∈ W ⊆ Rp. We define

the output via

yi := πi(ui,u−i, w) (4.1)

where πi : Ω×W → Rli is the input-to-output mapping outlined above [1]. We assume that each πi

is C1 in u. The dependence of the mapping on u reflects the fact that, as they attempt to optimize

fi, players will cause fluctuations in the system output. We denote y = col(y1, . . . , yN) as the

overall system output, with dimension l =
∑

i∈N li. Further, for compactness we denote the stacked

output mapping as

y = π(u, w) := col(π1(u1,u−1, w), . . . , πN (uN ,u−N , w)).

We consider GNE problems where the players are playing within a system with specific out-

put constraints. Suppose that the players are expected to play the game while constraining the

25

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 26

system output to y ∈ Y (for example, a set of safety constraints for voltage levels in a dis-

tributed power system). Then for any player, the output constraint can be expressed as Yi(y∗
−i) =

{yi ∈ Ωi : (yi,y−i) ∈ Y}, and each player is interested in solving an optimization problem of the

form
minimize
ui∈Rni

fi(ui,u−i)

subject to ui ∈ Ui(u−i) ⊂ Rni

yi ∈ Yi(y−i) ⊂ Rli

yi = πi(ui,u−i, w),

(4.2)

where each player’s goal in the game is encoded by the cost function fi : Ωi → R. Problems of the

form (4.2) are a useful representation of problems in many engineering disciplines, such as traffic

control, networks, power systems, etc. These problems generally tend to be hard to solve. The

mapping π is often non-convex (and nonlinear), and involves many outputs with interdependence on

a large number of inputs and disturbances. Offline models of such systems usually require precise

knowledge of the mapping π and the disturbance w, which is often not available.

4.1.1 Feedforward Forecast-Based Optimization

In real-world applications, we can often assume that each player has access to a linearized model of

the output system:

yi ≈ Πiu+Πw,iw, (4.3)

where Πi, Πw,i are fixed matrices extracted from a linearized model of the mapping in question. We

also assume that the players have access to a forecast or guess for the disturbance, denoted ŵ. The

player then periodically solves for yi and attempts to solve the following optimization problem:

minimize
ui∈Rni

fi(ui,u−i)

subject to ui ∈ Ui(u−i) ⊂ Rni

ŷi ∈ Yi(y−i) ⊂ Rli

ŷi = Πiu+Πw,iŵ.

(4.4)

This optimization problem is analogous to a feedforward control law applied to a dynamical system.

Figure 4.1 illustrates the algorithm visually. Note that (4.2) is a non-convex optimization problem,

and the feedforward approach in (4.4) is a convex relaxation of it, since the cost function is convex

and the constraints are affine. Such relaxations are very useful as they enable the optimization of

various otherwise intractable problems.

A limitation of this technique is that the linearization is usually only accurate enough when

the system stays close to the point around which it was linearized. Large deviations can cause the

algorithm to have an inaccurate estimation of the outputs, and this sometimes limits the usefulness of

these techniques. As a particular example, consider the use of this technique over the course of long

runtime (e.g. the distribution feeder considered in Section 7.4) with large variation in disturbances).

A forecast of the output based on the linearized model would be relatively accurate for portions of

the runtime where the system is close to the point of linearization, but there is no guarantee of its

behaviour when far from that point.

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 27

Player 1 Player N

Forecasted
Disturbance

Figure 4.1: Illustration of a forecast-based optimizer.

Further, note the stringent informational requirements of this problem. Suppose that we ap-

proach this problem using Algorithm 1. Then each agent needs to receive a forecast for each it-

eration of the algorithm. The more accurate a forecast we need, the more complex a system we

would need to generate it. This presents a dilemma where a designer has to choose between accurate

convergence, and the implementability of the optimization algorithm.

The use of output feedback can help alleviate some of these concerns. The agent does not

need to be able to predict the disturbance or the output if it can, instead, measure the output

(or a related quantity). Using the measurement, we can develop decentralized, feedback-based

optimization schemes to approach a solution of (4.2).

4.1.2 Online Feedback-Based Optimization

We outlined the reasons for using measurements of yi instead of a forecast above. In this section we

outline our output-feedback based method. First, we address the problem of actually constraining

the output to the set Yi(y−i). We achieve this by encoding the safety constraint in some appropri-

ately chosen cost function. The cost function can be chosen as a soft constraint (e.g. a quadratic

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 28

function penalizing point-to-set distance from Yi(y−i)) or a hard constraint (e.g. a logarithmic bar-

rier function). A soft constraint can be justified in a variety of applications where the system can

tolerate small deviations outside the safety set.

Each player is then interested in solving the following optimization problem:

minimize
ui∈Rni

fi(ui,u−i) + gi(yi,y−i)

subject to yi = πi(ui,u−i, w)

ui ∈ Ui(u−i) ⊂ Rni ,

(4.5)

where fi is the cost function encoding each player’s goals in the game, and gi is an appropriately

chosen cost function penalizing them for disobeying the output constraint yi ∈ Yi(y−i). Games of

this form are decentralized versions of the problem described in [1]. The game formulation enables

non-cooperative decision-making, allowing more decentralized implementations of controllers and a

potential reduction in the communication overhead.

Assumption 4. For each player i ∈ V, the cost function gi(yi,y−i) is C1 and convex with respect

to y = (yi,y−i).

Note here that we do not yet place any assumptions on the output mapping π or the disturbance

w. Later in this chapter, we parametrize our optimum as a function of the unknown disturbance

w, and in Chapter 5 we present structural constraints on π(u, w) that ensure that our algorithm is

applicable to the system.

4.2 Generalized Nash Equilibrium with Output Mapping

A solution u∗ ∈ Rn to (4.5) is a GNE, as described in Section 3.1. We thus follow the same

procedure to define the KKT conditions for this game. For player i, their chosen action u∗
i is the

optimal solution to the following optimization problem:

minimize
ui

fi(ui,u
∗
−i) + gi(yi,y−i)

subject to ui ∈ Ωi,

yi = πi(ui,u
∗
−i, w),

Aiui ≥ b−
∑

j∈N\{i}

Aju
∗
j .

(4.6)

We now define a Lagrangian function for player i as

Li(ui, λi;u−i, w) = fi(ui,u−i) + gi(πi(ui,u−i, w), π−i(ui,u−i, w)) + λ⊤
i (b−Au).

Note that this Lagrangian explicitly denotes the dependence on ui, and is parametrized by the

disturbance w and the actions u−i of all other agents. Applying the chain rule, we know that the

gradient of the Lagrangian can be expressed as

∇uiLi(ui, λi;u−i, w) = ∇uifi(ui,u−i) +

N∑
j=1

∂uiπj(ui,u−i, w)
⊤∇yjgi(yi,y−i)−A⊤

i λi,

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 29

where y = π(u, w). We can combine this with the results from Section 3.1 to find the variational

KKT conditions for the game. We first define the cost functions for each agent as

hi,w(ui,u−i) = fi(ui,u−i) + gi(πi(ui,u−i, w), π−i(ui,u−i, w)).

We can then define the pseudogradient of these cost functions as

Hw(u) = col(∇u1
h1,w(u1,u−1), . . . ,∇uN

hN,w(uN ,u−N)).

Here, the subscript w indicates the implicit dependence on the disturbance. We can compactly

express the operator Hw as

Hw(u) = F (u) + E
(
∂uπ(u, w)

⊤∂yg(y)
⊤), (4.7)

where F (u) is the pseudogradient of the agents’ cost functions fi, and the function g(y) =

col(g1(y1,y−1), . . . , gN (yN ,y−N)) is the stacked vector of the output-constraint penalties. Note

again that y = π(u, w), hence why the function Hw is only in u. The operator E : Rn×N → Rn is a

bounded linear operator (we provide a proof for this in Appendix B) that aligns the relevant entries

of the Jacobians with the pseudogradient, defined as

E(M) =

N∑
k=1

∑
l∈Nk

(e⊤l Mek)el, (4.8)

where Nk =
{
1 +

∑k−1
i=1 ni , · · · ,

∑k
i=1 ni

}
.

Remark 2. The set Nk defined as part of the extraction operator E is a set that contains indices

chosen in a way to align the relevant entries of the Jacobian product ∂uπ(u, w)
⊤∂yg(y)

⊤. As an

example, in a 3-player game where players 1 and 3 choose an action in R2 and player 2 chooses an

action in R3, the sets would be defined as

N1 = {1, 2},

N2 = {3, 4, 5},

N2 = {6, 7}.

This is meant to reflect the fact that in the overall action vector u, the first two entries correspond

to u1 ∈ R2, the next three correspond to u2 ∈ R3, and the final two correspond to u3 ∈ R2.

An action profile u∗ solves VI(Hw,U) if and only if the following KKT conditions are met:

0 ∈ ∇ui
fi(u

∗
i ,u

∗
−i) +

N∑
j=1

∂ui
πj(ui,u−i, w)

⊤∇yj
gi(y

∗
i ,y

∗
−i)−A⊤

i λ
∗ +NΩi

(u∗
i), i ∈ N ,

0 ∈ (Au∗ − b) +NRm
+
(λ∗),

(4.9)

where y∗ = π(u∗, w). The existence of a KKT point that satisfies these variational KKT conditions

(a vKKT point, for short) is guaranteed under Assumptions 1 and 4 by Corollary 2.2.5 in [35].

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 30

Remark 3. Due to the potential non-convexity of g ◦ π in (4.5), we cannot guarantee the existence

of of a (v)GNE. Instead, we focus on finding vKKT points that satisfy the conditions (4.9). These

points are candidates to be local vGNEs [51]. Under Assumptions 1 and 4, if we additionally assume

that π is an affine mapping, then gi ◦ π will be convex in ui for a fixed u−i. Then, by Theorem 4.8

of [21], this point would be a vGNE of (4.5).

Note that to develop Algorithm 1, we made additional assumptions on the pseudogradient op-

erator to ensure that the problem could be formulated as finding the zeros of a sum of monotone

operators. However, this assumption cannot immediately be made regarding the operator Hw, as

the mapping π and the disturbance w are unknown. We next make an approximation to alleviate

this problem.

The expression for Hw in (4.7) contains both the mapping π and its Jacobian ∂uπ. In our

treatment of the algorithm, we replace the former with a direct measurement of the output variables

yi = π(ui,u−i, w). However, the Jacobian may not be known exactly, and may depend on the

unmeasured disturbance w. To obtain an implementable algorithm, we approximate the Jacobian

at some nominal operating point. In [1, 7, 9], algorithms for various online, optimal power flow

problems are formulated with an approximate Jacobian, and shown to converge robustly to near-

optimal solutions. We consider the simplest approximation of the Jacobian,

∂uπ(u, w) ≈ Π, ∀u ∈ U , ∀w ∈ W (4.10)

where Π ∈ Rl×n is an appropriately chosen nominal Jacobian matrix. The choice of an “appropriate”

matrix is problem-dependent: it can be a linearization of the system with respect to u or a Jacobian

computed experimentally at some nominal operating point. In Chapter 7, where we introduce various

applications and simulations, we illustrate methods for computing such Jacobians for the problems

we choose. Each entry of the matrix can be viewed as an approximation of the sensitivity of one of

the outputs to an agent’s control input, and thus we interchangeably refer to this Jacobian as the

approximate sensitivity matrix. We can then redefine the pseudogradient operator (4.7) as

Hw,Π(u) = F (u) + E
(
Π⊤∂yg(y)

⊤). (4.11)

It should be noted that approximating the Jacobian as a constant is the same as assuming that

the output mapping has the form π(u, w) = Πu+πw(w), i.e., it is affine in the agents’ control inputs

u and has some unknown relation πw(w) with the disturbance w. As we noted earlier in Remark

3, assuming that π is affine in u guarantees that a vGNE exists under Theorem 4.8 of [21], since

each πi ◦ gi would then be convex. Thus, even though the potential non-convexity of π means that

we cannot guarantee the existence of a vGNE for the game (4.5), there is a point which would be a

vGNE of the game if the mapping π(u, w) = Πu+ πw(w) were locally accurate. To formally define

this “vGNE-like” point, we first rewrite our KKT conditions (4.9) in terms of the approximated

pseudogradient operator (4.11). An action profile ŭ solves VI(Hw,Π,U) if and only if the following

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 31

KKT conditions are met for some λ̆ ∈ Rm
+ :

0 ∈ ∇ui
fi(ŭi, ŭ−i) +

N∑
j=1

Π⊤
ij∇yj

gi(y̆i, y̆−i)−A⊤
i λ̆+NΩi

(ŭi), i ∈ N ,

0 ∈ (Aŭ− b) +NRm
+
(λ̆),

(4.12)

where y̆ = π(ŭ, w) and each Πij ≈ ∂uiπj is a submatrix of the nominal Jacobian Π ≈ ∂uπ.

Definition 4.1. Given Π ∈ Rl×n and a disturbance w ∈ Rp, a vector ŭ = ŭ(w) ∈ Rn is an online

approximate variational GNE (OA vGNE) of the game (4.5) if

y̆ = π(ŭ, w)

ŭ ∈ U

λ̆ ∈ Rm
+

A⊤λ̆−Hw,Π(ŭ) ∈ NU (ŭ)

b−Aŭ ∈ NRm
+
(λ̆).

(4.13)

Note that the fourth line of (4.13) is a vectorized form of the first line of (4.12). Accordingly,

the point satisfies the vKKT conditions, quantified by the approximate pseudogradient (4.11). In-

tuitively, this means an OA vGNE is a point which would be a vKKT point if the model of the

Jacobian were locally accurate, and would further be a vGNE if g ◦ π were convex in ui (Remark

3). Additionally, the approximation resembles a vGNE in that if each agent believes the nominal

model of the input-output sensitivity, no agent has any incentive to deviate. Note the dependence

of the optimum ŭ on the disturbance w; the larger the impact of the latter, the further the distance

of the OA vGNE from a true vKKT point of the original game. We formalize the error between the

OA vGNE and a true vKKT point later in this chapter.

Following the logic in Section 3.2, we can compactly express the KKT conditions (4.12) as

col(ŭ, λ̆) ∈ zer(A+B) where

A : col(u, λ) 7→ col(Hw,Π(u),−b)

B : col(u, λ) 7→ col(−A⊤λ+NΩ(u), Au+NRm
+
(λ)).

(4.14)

With this, we now introduce our OA vGNE seeking algorithm extended from Algorithm 1.

4.3 Online Approximate vGNE-seeking Algorithm

With the approximated Jacobian, our game has KKT conditions of the same form as discussed in

Section 3.1. We thus need an equivalent of Assumption 2 on the pseudogradient operator (4.11).

Assumption 5. The pseudogradient Hw,Π(u) defined in (4.11) is η̄-strongly monotone and θ̄-

Lipschitz continuous.

The operator Hw,Π, specifically through the ∂yg(y) embedded in it, has a dependence on an

unknown disturbance w. To verify the monotoncity and Lipschitz continuity of this operator, we

can treat it as an uncertain operator, and utilize a semidefinite programming approach to verify

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 32

the conditions. We describe and prove this approach in Chapter 5. For now, we assume that these

prerequisites are verifiable, and present the algorithm.

We now outline the notations used in the algorithm. As in Algorithm 1, we assume that each

player has access to its local cost function data fi and gi and can compute the gradients ∇uifi

and ∇yjgi. Each player additionally knows Πi1, . . . ,ΠiN , which are submatrices of the nominal

sensitivity matrix Π. All of the remaining notation is identical to that outlined for Algorithm 1,

except that we assume that the interference graph Gf also communicates the outputs yj , j ∈ NGf
(i)

for each agent i. Figure 4.2 depicts the decentralized nature of the algorithm.

Algorithm 2 Distributed Online Approximate vGNE-seeking algorithm

Initialization: ui,0 ∈ Ωi, λi ∈ Rm
+ , and zi,0 ∈ Rm

+

Iteration: Player i

Step 1: Approximate Primal Step and Consensus - Receives uj,k, yj,k, j ∈ NGf
(i),

λj,k, j ∈ NGλ
(i), yi,k and updates:

ui,k+1 ← PΩi

(
ui,k − τi(∇ui,k

fi(ui,k,u−i,k) +
∑

Nj∈Gf
(i)

Π⊤
ij∇yj

gi(yi,k,y−i,k)−A⊤
i λi,k)

)
zi,k+1 ← zi,k + νi

∑
j∈NGλ

(i)
wij(λi,k − λj,k)

Step 2: Consensus and Dual Step - Receives zj,k+1, j ∈ NGλ
(i) and updates:

λi,k+1 ← PRm
+

(
λi,k − σi

[
Ai(2ui,k+1 − ui,k)− bi +

∑
j∈NGλ

(i)

wij [2(zi,k+1 − zj,k+1)− (zi,k

− zj,k)] +
∑

j∈NGλ
(i)

wij(λi,k − λj,k)
])

Remark 4. The algorithm presented in [19] and this thesis make the assumption that Gf has an

edge for each cost dependence. This assumption is adopted in [48, 49, 53] as well. However, if

there is too much dependence between agents’ cost functions, this graph becomes very large, and

could even be a complete graph as in [54]. Distributed GNE-seeking with only partial or incomplete

information obtained from the interference graph is an area of future research [20]. In this thesis,

we only consider the impact of the global coupling constraints being optimized via local knowledge

of the constraints’ structure as well as partial information on the neighbours’ estimates, hence the

assumption on Gλ being connected rather than complete.

The main difference between Algorithm 2 and Algorithm 1 is the impact of the output mapping

on the update. At any given update step, the agent is using a measurement to calculate the cost

function penalizing it for disobeying its output, and using the nominal Jacobian to quantify each

agents’ contribution to any changes in that measurement. For simplicity, we can assume that the

measurement itself is accurate, however the Jacobian is inexact, since we initially assumed that the

output mapping π can be nonlinear in the agents’ actions. Further, the impact of the disturbance

on the output mapping is not known to any agent. From these sources of uncertainty, we would

intuitively expect the quality of the approximation to be dependent on the relation between the

approximated Jacobian and the “true” Jacobian of the system (computed at the optimum). Addi-

tionally, the more heavily this Jacobian varies with the unknown disturbance, the worse we expect

the quality of the approximation to be. The following proposition encodes that mathematically.

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 33

Player 1 Player N

Figure 4.2: Depiction of online feedback-based vGNE-seeking algorithm. Each agent communicates
with each other agent through the communication and interference graphs, and locally updates its
decision.

Proposition 4.1. If Hw,Π, defined in (4.11), is η-strongly monotone, then

∥ŭ− u∗∥ ≤ 1

η

∥∥∥E([Π− ∂uπ(ŭ, w)]
⊤
∂yg(π(ŭ, w))

⊤
)∥∥∥

where ŭ is the unique OA vGNE as defined in Definition 4.1, and u∗ is a point satisfying the vKKT

conditions (4.9).

Proof. We note that ŭ solves the variational inequality VI(Hw,Π,U) and u∗ solves the variational

inequality VI(Hw,U). Thus, the above follows from Theorem 1.14 in [55].

4.3.1 Forward-Backward Algorithm

In this section we show that a limiting point of Algorithm 2 corresponds to an OA vGNE as defined

in Definition 4.1. The proof is a modification of the proof in [19], which we provided an abridged,

intuitive version of in Section 3.2.1.

We first follow the notation defined in Section 3.2.1 to write the algorithm in a compact manner:

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 34

uk+1 = PΩ[uk − τ̄Hw,Π(uk)− Λ⊤λ̄k)], (4.15a)

z̄k+1 = z̄k + ν̄L̄λ̄k, (4.15b)

λ̄k+1 = PRmN
+
{λ̄k − σ̄[Λ(2uk+1 − uk)− b̄+ L̄λ̄k + L̄(2z̄k+1 − z̄k)]}. (4.15c)

Following the same arguments as (3.8) and (3.9),

−Hw,Π(u) ∈ NΩ(uk+1)− Λ⊤λ̄k+1 + τ̄−1(uk+1 − uk) + Λ⊤(λ̄k+1 − λ̄k) (4.16a)

−[L̄λ̄k − b̄] ∈ NRmN
+

(λ̄k+1) + Λuk+1 + L̄z̄k+1 + Λ(uk+1 − uk) + L̄(z̄k+1 − z̄k) + σ̄−1(λ̄k+1 − λ̄k)

(4.16b)

As in (3.10), we define the symmetric matrix Φ and skew-symmetric matrix Ψ:

Φ =

τ̄
−1 0 Λ⊤

0 ν̄−1 L̄

Λ L̄ σ̄−1

 , Ψ =

0 0 −Λ⊤

0 0 −L̄
Λ L̄ 0

 . (4.17)

Denote ϖ = col(u, z̄, λ̄). Then (4.15b), (4.16a), (4.16b) can be expressed as

−Ā(ϖk) ∈ B̄(ϖk+1) + Φ(ϖk+1 −ϖk), (4.18)

with
Ā : ϖ 7→ col(Hw,Π(u),0, L̄λ̄− b̄)

B̄ : ϖ 7→ NΩ(u)× 0×NRmN
+

(λ̄) + Ψϖ.
(4.19)

As noted in Section 3.2.1 Ā and B̄ can be viewed as extensions of the operators A and B described

in (4.14), augmenting λ ∈ Rm to λ̄ ∈ RmN and introducing auxiliary variables z̄ ∈ RmN . The local

auxiliary variables zi can be viewed as each player i estimating the contribution of the other players

to the constraint, helping players reach consensus over λi.

The formulation in (4.18) is a forward-backward splitting method [28], as we outlined in Section

3.2.1, using the metric matrix Φ in a similar manner, to enable distributed evaluation of the backward

step. We relate the zeroes of Ā+B̄ and A+B to a an OA vGNE of the game, as defined in Definition

4.1.

Theorem 4.1. Suppose that Assumptions 1 and 3-5 hold. Consider the operators Ā and B̄ in

(4.19), and A and B in (4.14). Then the following statements hold:

1. Given a col(ŭ, ˘̄z, ˘̄λ) ∈ zer(Ā+ B̄), ŭ solves the variational inequality VI(Hw,Π,u), thus ŭ is an

online approximate variational GNE of the game, as per Definition 4.1. Further, col(ŭ, λ̆) ∈
zer(A+B), i.e., ŭ and λ̆1 = · · · = λ̆N = λ̆ satisfy the KKT conditions (4.12).

2. zer(A+B) ̸= ∅ and zer(Ā+ B̄) ̸= ∅ .

Proof. This proof is a modification of the proof of Theorem 2 in [19].

1. Suppose that ŭ, ˘̄z, ˘̄λ ∈ zer(Ā + B̄). By the definition in (4.19) we can add the two operators

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 35

and obtain 0 0 −Λ⊤

0 0 −L̄
Λ L̄ L̄


ŭ˘̄z
˘̄λ

+

Hw,Π(ŭ) +NΩ(ŭ)

0

NRmN
+

(˘̄λ)− b̄

 =

00
0

 , (4.20)

with Hw,Π as defined in (4.11). From the second line of (4.20) and the definition of L̄ in Section

3.2.1, we have −L̄˘̄λ = −L⊗ Im
˘̄λ = 0mN . By Assumption 3 L is the weighted Laplacian of the

connected graph Gλ, thus ˘̄λ = 1N ⊗ λ̆, λ̆ ∈ Rm.

Then, combining the first line of (4.20) with the definitions Λ⊤ = diag(A⊤
1 , . . . , A⊤

N) and

A = [A1 ··· AN], and with λ̆1 = · · · = λ̆N = λ̆, we have 0n ∈ −A⊤λ̆ + Hw,Π(ŭ) + NΩ(ŭ).

Equivalently, we can write this per agent as

0ni
∈ −A⊤

i λ̆+∇ui
hi,w,Π(ŭi, ŭ−i) +NΩi

(ŭi), i ∈ N , (4.21)

where each hi,w,Π denotes agent i’s cost function, defined as

hi,w,Π(ui,u−i) = fi(ui,u−i) + gi(πi(ui,u−i), π−i(ui,u−i)),

and the subscript Π denotes that when applying the chain rule in the second term while taking

the gradient, we use the nominal Jacobian. Given −L̄˘̄λ = 0mN from the second line of (4.20),

the third line simplifies to

0mN ∈ Λŭ− b̄+ L̄˘̄z +NRmN
+

(˘̄λ).

This implies that there exist vectors v1, . . . , vN ∈ NRm
+
(˘̄λ) such that

0mN = Λŭ− b̄+ (L⊗ Im)˘̄z + col(v1, . . . , vN).

Multiplying both sides of the equation by 1⊤
N ⊗ Im and noting that 1⊤L = 0⊤ we obtain

0m = (1⊤
N ⊗ Im)(Λŭ− b̄+ (L⊗ Im)˘̄z + col(v1, . . . , vN))

=
∑
i∈N

Aiŭi −
∑
i∈N

bi +
∑
i∈N

vi

0m ∈
∑
i∈N

Aiŭi −
∑
i∈N

bi +
∑
i∈N

NRm
+
(λ̆)

By Corollary 16.39 of [28], if int(Ωi) ̸= ∅,
∑

i∈N NΩi
= N∩i∈NΩi

, thus

0m ∈
∑
i∈N

Aiŭi −
∑
i∈N

bi +N∩i∈NRm
+
(λ̆)

∈
∑
i∈N

Aiŭi −
∑
i∈N

bi +NRm
+
(λ̆)

(4.22)

Thus, by (4.21) and (4.22), a point col(ŭ, ˘̄λ, ˘̄z) ∈ zer(Ā+ B̄) satisfies the VI KKT conditions

(4.12) for ŭ with λ̆. Thus, by Theorem 3.1, ŭ is an online approximate variational GNE of the

game, as defined in Definition 4.1. Note further that col(ŭ, λ̆) ∈ zer(A+B).

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 36

2. Under Assumptions 1, 4 and 5, the game has a unique OA vGNE ŭ, and there exists a bounded

λ̆ such that the vKKT conditions (4.12) are satisfied, i.e., col(ŭ, λ̆) ∈ zer(A +B), defined in

(4.14) [56]. Therefore zer(A+B) ̸= ∅. We similarly need to show that there exists col(ŭ, ˘̄λ, ˘̄z)

such that (4.20) holds.

Consider ˘̄λ = 1N ⊗ λ̆. Since L1N = 0, the second line of (4.20) is satisfied. From col(ŭ, λ̆) ∈
zer(A + B) we know that 0 ∈ Hw,Π(ŭ) − A⊤λ̆ + NΩ(ŭ). Using λ̆1 = · · · = λ̆N = λ̆ and

Λ⊤ ˘̄λ = A⊤λ̆, we conclude that the first line of (4.20) is satisfied.

Finally, we need to show that there exists ˘̄z ∈ RmN such that the third line of (4.20) is

satisfied. Consider a v∗ ∈ NRmN
+

(λ̆) such that 0 = Aŭ − b + v∗. Since ˘̄λ = 1N ⊗ λ̆ and

NRmN
+

(˘̄λ) =
∏

i∈N NRm
+
(λ̆), take v∗1 = · · · = v∗N = 1

N v∗ ∈ NRm
+
. Then (1⊤

N ⊗ Im)(Λŭ −

b̄ + L̄˘̄λ + col(v∗1 , . . . , v∗N) =
∑

i∈N Aiu
∗
i +

∑
i∈N bi + v∗ = Aŭ − b + v∗ = 0m. Thus

Λŭ − b + L̄˘̄λ + col(v∗1 , . . . , v∗N) ∈ Null(1⊤
N ⊗ Im). By the fundamental theorem of linear

algebra, we know that Null(1⊤
N ⊗ Im) = Range(1N ⊗ Im)⊥ and similarly, since L̄ is symmetric,

Null(L̄) = Range(L̄)⊥. Notice that, since L̄(1N ⊗ λ̆) = 0mN , Null(L̄) = Range(1N ⊗ Im).

Hence Λŭ− b̄+ L̄˘̄λ+col(v∗1 , . . . , v∗N) ∈ Range(L̄). Since col(v∗1 , . . . , v∗N) ∈ NRmN
+

(˘̄λ), there

exists ˘̄z ∈ RmN such that the third line of (4.20) is satisfied. Thus zer(Ā+ B̄) ̸= ∅.

Having shown that the zeroes of the sum of the augmented operators, we now show that the

algorithm can be viewed as a forward-backward splitting method for finding zeros.

Lemma 4.1. Suppose that Assumptions 1, and 3-5 hold. Suppose that Φ in (4.17) is positive

definite, and the operators Ā and B̄ in (4.19) are maximally monotone. Suppose Φ−1Ā and Φ−1B̄

are maximally monotone. Denote T1 = Id−Φ−1Ā and T1 = (Id+Φ−1Ā)−1 Then any limiting point,

col(ŭ, ˘̄z, ˘̄λ), of Algorithm 2 or (4.18) is a zero of Ā+ B̄ and a fixed point of T2 ◦ T1

Proof. This proof follows from the proof for Lemma 1 in [19], applied to our modified definitions

for Ā and B̄. Consider the compact form (4.18) of Algorithm 2. Since Φ is symmetric and positive

definite, we can rewrite (4.18) as

ϖk − Φ−1Ā(ϖk) ∈ ϖk+1 +Φ−1B̄(ϖk+1)

(Id−Φ−1Ā)(ϖk) ∈ (Id+Φ−1B̄)(ϖk+1)
(4.23)

Since Φ−1B̄ is maximally monotone, (Id+Φ−1B̄)−1 is a single-valued operator (Lemma 2.3). Thus

we can rewrite (4.23) as

ϖk+1 = (Id+Φ−1B̄)−1(Id−Φ−1Ā)(ϖk). (4.24)

We denote T2 := (Id+Φ−1B̄)−1 and T1 := (Id−Φ−1Ā). Suppose that Algorithm 2 (i.e., (4.18) or

(4.24)) converges to a limiting point ϖ̆. Then from (4.18) we conclude that ϖ̆ ∈ zer(Ā+ B̄). It also

follows that ϖ̆ = T2 ◦T1ϖ̆. Thus any limiting point ϖ̆ of Algorithm 1 is a zero of Ā+ B̄ and a fixed

point of T2 ◦ T1.

As in (3.13), the iteration (4.24) is Picard’s iteration for computing fixed points of T2 ◦ T1.

Algorithm 2 is thus a forward-backward operator splitting algorithm, similar to Algorithm 1. Con-

vergence of the algorithm to a vKKT point of the game thus requires showing that the prerequisites

for Lemma 4.1 are satisfied.

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 37

4.3.2 Convergence Analysis

This section focuses on showing that the prerequisites for Lemma 4.1 can be satisfied for suitable

step sizes, and then prove the convergence of Algorithm 2 based on its treatment as a fixed point

iteration, outlined in the previous section. We begin by outlining some preliminary lemmas that

support the proof of the convergence. These results are taken from [19], and their proofs can be

seen in detail there. We present the proof for Lemma 4.4, because the steps taken in the proof are

relevant to a proof we do later in the thesis. We omit the proofs for Lemmas 4.2 and 4.3.

Lemma 4.2. Suppose that Assumptions 1 and 3-5 hold. Then operators Ā and B̄, w.r.t. to the

Euclidean norm ∥ · ∥2, satisfy:

1. Ā is β-cocoercive with β ∈
(
0,min

{
1

2d∗ ,
η̄
θ̄2

})
, where d∗ is the maximal weighted degree of Gλ,

and η̄, θ̄ are the monotonicity and Lipschitz parameters from Assumption 5.

2. B̄ is maximally monotone.

Lemma 4.3. Given any δ > 0, if each player chooses fixed step sizes τi, νi, σi in Algorithm 2

satisfying:

0 < τi ≤

(
max

j=1,...,ni

{
m∑

k=1

|[A⊤
i]jk|

}
+ δ

)−1

, (4.25)

0 < νi ≤

(
max

j=1,...,m

{
ni∑
k=1

|[Ai]jk|

}
+ 2diδ

)−1

, (4.26)

0 < τi ≤ (2di + δ)
−1

, (4.27)

then Φ in (4.17) is positive definite, and Φ− δIn+2mN is positive semi-definite.

Lemma 4.4. Suppose Assumptions 1 and 3-5 hold. Take 0 < β ≤ min
{

1
2d∗ ,

η̄
θ̄2

}
, where d∗ is

the maximal weighted degree of Gλ, and η̄, θ̄ are the monotonicity and Lipschitz parameters from

Assumption 5. Take δ > 1
2β . Suppose that τi, νi, σi are chosen to satisfy (4.25). Then the operators

Φ−1Ā and Φ−1B̄ defined as in (4.17) and (4.19) and the operators T1, T2 defined as in Lemma 4.1

satisfy the following properties w.r.t. to the induced norm ∥ · ∥Φ:

1. Φ−1Ā is βδ-cocercive and T1 ∈ A
(

1
2δβ

)
;

2. Φ−1B̄ is maximally monotone and T2 ∈ A
(
1
2

)
.

Proof. 1. By the definition of cocoercivity in (2.1), we need to prove ⟨Φ−1Ā(x) − Φ−1Ā(y), x −
y⟩Φ ≥ βδ∥Φ−1Ā(x) − Φ−1Ā(y)∥2Φ, ∀x, y ∈ Ω̄. Given the choice of the step sizes, we know

from Lemma 4.3 that Φ− δIn+2mN is positive semidefinite. Let σmax(Φ) and σmin(Φ) be the

maximal and minimal eigenvalues of Φ respectively, then σmax(Φ) ≥ σmin(Φ) ≥ δ. Further,

since ∥Φ∥2 = σmax(Φ),
1

∥Φ−1∥2
= σmin(Φ), we know that ∥Φ−1∥2 ≤ 1

δ . Since Ā is single-valued

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 38

and Φ−1 is nonsingular, we know that for any x, y ∈ Ω̄,

∥Φ−1Ā(x)− Φ−1Ā(y)∥2Φ
=
[
Φ−1

(
Ā(x)− Ā(y)

)]⊤
Φ
[
Φ−1

(
Ā(x)− Ā(y)

)]
=
(
Ā(x)− Ā(y)

)⊤
Φ−1

(
Ā(x)− Ā(y)

)
= ∥Ā(x)− Ā(y)∥2Φ−1

≤ 1

δ
∥Ā(x)− Ā(y)∥22.

Combining this with Lemma 4.2 (Ā is β-cocoercive), we get:

⟨Φ−1Ā(x)− Φ−1Ā(y), x− y⟩Φ

=
[
Φ−1

(
Ā(x)− Ā(y)

)]⊤
Φ (x− y)

=
[
Ā(x)− Ā(y)

]⊤
(x− y)

= ⟨Ā(x)− Ā(y), x− y⟩

≥ β∥Ā(x)− Ā(y)∥22
≥ βδ∥Φ−1Ā(x)− Φ−1Ā(y)∥2Φ.

Thus Φ−1Ā is βδ-cocoercive under norm ∥ · ∥Φ, and thus βδΦ−1Ā is firmly nonexpansive by

(2.1). By the definition of nonexpansive operators (Definition 2.14), there exists a nonexpansive

T̂ such that βδΦ−1Ā = 1
2 T̂ + 1

2 Id. Then

T1 = Id−Φ−1Ā

=

(
1− 1

2βδ

)
Id+

1

2βδ
(−T̂).

Since δ > 1
2β ⇒ 1 < 2βδ, and −T̂ nonexpansive, this implies T1 ∈ A

(
1

2βδ

)
by Definition 2.14.

2. Φ is positive definite and nonsingular. For any (x, u) ∈ graΦ−1B̄ and (y, v) ∈ graΦ−1B̄, we

know Φu ∈ ΦΦ−1B̄(x) ∈ B̄(x) and Φv ∈ ΦΦ−1B̄(y) ∈ B̄(y). Then

⟨x− y, u− v⟩Φ
= ⟨x− y,Φ(u− v)⟩2
≥ 0, ∀x, y ∈ domB,

because B̄ is monotone under ∥ · ∥2 by Lemma 4.2. Thus Φ−1B̄ is monotone under ∥ · ∥Φ.

Take (y, v) ∈ Ω̄× Rn+2mN and ⟨x− y, u− v⟩Φ ≥ 0 for any other (x, u) ∈ graΦ−1B̄. For any

(x, ũ) ∈ gra B̄, we have (x,Φ−1ũ) ∈ graϕ−1B̄. Thus ⟨x−y,Φ(Φ−1ũ−v) ≥ 0⟩, or equivalently,
⟨x − y, ũ − Φv⟩ ≥ 0. Since B̄ is maximally monotone by Lemma 4.2, (y,Φv) ∈ gra B̄. Thus

v ∈ Φ−1B̄(y), and Φ−1B̄ is maximally monotone. By Lemma 2.5, T2 = (Id+Φ−1B̄)−1 is

firmly nonexpansive w.r.t. ∥ · ∥Φ.

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 39

Theorem 4.2. Suppose Assumptions 1 and 3-5 hold. Take 0 < β ≤ min
{

1
2d∗ ,

η̄
θ̄2

}
, where d∗ is

the maximal weighted degree of Gλ, and η̄, θ̄ are the monotonicity and Lipschitz parameters from

Assumption 5. Take δ > 1
2β . Suppose that τi, νi, σi are chosen to satisfy (4.25). Then with

Algorithm 2, each player’s local strategy ui,k converges to its corresponding component of an Online

Approximate variational GNE as defined in 4.1, and their local multipliers λi,k converge to the

multiplier corresponding to the vKKT conditions (4.12), i.e., limk→∞ ui,k = ŭi and limk→∞ = λ̆,

i ∈ N .

Proof. This proof is an adaptation of the proof for Theorem 3 in [19]. Following from Lemmas 4.2

and 4.3, we can use Lemma 4.1 to rewrite Algorithm 2 as (4.24), so ϖk+1 = T2 ◦ T1ϖk, and any

limiting point is also a fixed point of T2 ◦ T1. Note that, under Lemmas 2.4 and 4.4, T1, T2 are

averaged and nonexpansive operators under ∥ · ∥Φ. Take any zero ϖ̆ ∈ zer(Ā + B̄) , i.e., any fixed

point ϖ̆ = T2T1ϖ̆. Then, following from Lemma 4.1 and (4.24),

∥ϖk+1 − ϖ̆∥Φ = ∥T2T1ϖk − T2T1ϖ̆∥Φ ≤ ∥T1ϖk − T1ϖ̆∥Φ ≤ ∥ϖk − ϖ̆∥Φ. (4.28)

Thus the sequence {∥ϖk − ϖ̆∥Φ} is nonincreasing and bounded from below, and it is bounded and

converges for any ϖ̆ ∈ zer(Ā+ B̄). By Lemma 4.4, T1 ∈ A (α) , T2 ∈ A
(
1
2

)
, where α = 1

2βδ ∈ (0, 1).

By applying Lemma 2.4 (i) to T2 ∈ A(12) in the equality in (4.28), we have

∥ϖk+1 − ϖ̆∥2Φ ≤ ∥T1ϖk − T1ϖ̆∥2Φ − ∥(T1ϖk − T1ϖ̆)− (T2T1ϖk − T2T1ϖ̆)∥2Φ
≤ ∥ϖk − ϖ̆∥2Φ − ∥(T1ϖk − T1ϖ̆)− (T2T1ϖk − T2T1ϖ̆)∥2Φ (4.29)

− 1− α

α
∥(ϖk − ϖ̆)− (T1ϖk − T1ϖ̆)∥2Φ,

where the second step follows from applying Lemma 2.4 (i) to T1 ∈ A(α) in the right side of the

first step. Denote the sum of the last two terms as

Ξ := ∥(T1ϖk − T1ϖ̆)− (T2T1ϖk − T2T1ϖ̆)∥2Φ +
1− α

α
∥(ϖk − ϖ̆)− (T1ϖk − T1ϖ̆)∥2Φ,

Letting

x := (T1ϖk − T1ϖ̆)− (T2T1ϖk − T2T1ϖ̆), and

y := (ϖk − ϖ̆)− (T1ϖk − T1ϖ̆),

it follows from α∥x∥2 + (1− α)∥y∥2 ≥ α(1− α)∥x− y∥2 that

Ξ ≥ (1− α)∥(ϖk − ϖ̆)− (T2T1ϖk − T2T1ϖ̆)∥2Φ = (1− α)∥ϖk −ϖk+1∥2Φ. (4.30)

Note that in both (4.29) and (4.30), the term Ξ occurs on the greater side. We add both inequalities

to obtain, for all k ≥ 0,

∥ϖk+1 − ϖ̆∥2Φ ≤ ∥ϖk − ϖ̆∥2Φ − (1− α)∥ϖk −ϖk+1∥2Φ. (4.31)

CHAPTER 4. GAMES PLAYED WITH OUTPUT MAPPINGS 40

This inequality holds for each iterate k. We sum each of the k iterates to obtain

k∑
l=0

∥ϖl+1 − ϖ̆∥2Φ ≤
k∑

l=0

∥ϖl − ϖ̆∥2Φ − (1− α)

k∑
l=0

∥ϖl −ϖl+1∥2Φ

∥ϖk+1 − ϖ̆∥2Φ ≤ ∥ϖ0 − ϖ̆∥2Φ − (1− α)

k∑
l=0

∥ϖl −ϖl+1∥2Φ.

Since ∥ϖk+1 − ϖ̆∥2Φ converges and is bounded from below by 0, taking the limit as k →∞ yields

0 ≤ lim
k→∞

∥ϖk+1 − ϖ̆∥2Φ ≤ ∥ϖ0 − ϖ̆∥2Φ − (1− α)

∞∑
l=0

∥ϖl −ϖl+1∥2Φ.

Rearranging we obtain

(1− α)

∞∑
l=0

∥ϖl −ϖl+1∥2Φ ≤ ∥ϖ0 − ϖ̆∥2Φ.

Since 1− α > 0, the second term must converge, and thus limk→∞ ϖk −ϖk+1 = 0.

Since the sequence {∥ϖk − ϖ̆∥Φ} is bounded and converges, {ϖk} is bounded and there exists

a subsequence {ϖnk
} that converges to some ϖ̃. Thus from ϖnk+1

= T2T1ϖnk
and the Lipschitz

continuity of T2 ◦ T1, we have that ϖ̃ = T2T1ϖ̃, i.e., it is a fixed point of T2 ◦ T1. Letting ϖ̆ = ϖ̃ in

(4.28) yields that {∥ϖk − ϖ̃∥Φ} is bounded and converges. Since there exists a subsequence {ϖnk
}

that converges to ϖ̃, it follows that {∥ϖk − ϖ̃∥Φ} converges to 0.

Since the iterates ϖk converge to a fixed point ϖ̆ of T2 ◦ T1, we know from Lemma 4.1 that ϖ̆

is a zero of Ā + B̄. Then we can invoke Theorem 4.1: ϖ̆ = col(ŭ, λ̆) satisfies the variational KKT

conditions 4.12, and is an online approximate variational GNE of the game as per Definition 4.1.

This concludes the convergence analysis, and thus this chapter . We showed that Algorithm 2 is a

fixed-point iteration of averaged operators, and converges to a zero of a sum of monotone operators.

We also showed that this zero corresponds to a variational GNE of our approximate game.

Chapter 5

Monotonicity and Lipschitz

Continuity of Uncertain Operators

The focus of this chapter is developing numerical guarantees such that Assumption 5 is satisfied.

The operator Hw,Π, defined in (4.11), is an approximation of the operator Hw in (4.7), which is

an uncertain operator due to its dependence on the Jacobian of the unknown mapping π, and

its dependence on the disturbance w. We make a nominal approximation of the Jacobian while

running the online approximate algorithm, as discussed in the last chapter, but providing numerical

guarantees of convergence would require a proper treatment of the uncertainty within the operator.

We parametrize the uncertainty of the pseudogradient by representing it as a set of operators, rather

than a precisely known one. This allows us to develop techniques based on linear matrix inequalities

(LMI) to test for the Lipschitz continuity and strong monotonicity of the pseudogradient operator.

5.1 Semidefinite Programming Methods to Verify Monotonic-

ity and Lipschitz Continuity

For this section, we assume we have access to the precisely known Clarke generalized Jacobian

∂CF (Definition 2.11) of an operator F . Note that this is a restrictive assumption, and is relaxed

in the following section, but is necessary to begin the development of techniques to verify strong

monotonicity and Lipschitz continuity for uncertain operators. Building on [1, 46], we aim to

present semidefinite programming methods based on linear matrix inequalities (LMIs) to verify

these conditions.

Proposition 5.1. Let Ω ⊂ Rn be a closed convex set and let F be locally Lipschitz continuous

operator on Ω. Given P ≻ 0, F is ρ-strongly monotone and θ-Lipschitz w.r.t. ⟨·, ·⟩P on Ω if

[
J

In

]⊤
(Xρ,θ ⊗ P)

[
J

In

]
⪯ 0 (5.1)

41

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 42

for all J ∈ ∂CF (u) and all u ∈ Ω, where

Xρ,L :=

[
2 −(ρ+ θ)

−(ρ+ θ) 2ρθ

]

and where ∂CF (u) is the Clarke generalized Jacobian of F , as per Definition 2.11.

Proof. We assume that the matrix inequality (5.1) holds for some P ≻ 0, and ρ, θ > 0. We can

expand the matrix inequality and write it out as

2J⊤PJ − (ρ+ θ)
[
J⊤P + PJ

]
+ 2ρθP ≼ 0.

This matrix inequality (5.1) is equivalent to

∥F (x)− F (y)∥2P − (ρ+ θ)⟨F (x)− F (y), x− y⟩P + ρθ∥x− y∥2P ≤ 0. (5.2)

This equivalence is proved in Appendix C.1. Following from (5.2) we can prove monotonicity by

rearranging it:

(ρ+ θ)⟨F (x)− F (y), x− y⟩P ≥ ∥F (x)− F (y)∥2P + ρθ∥x− y∥2P ≥ 0 (5.3)

⟨F (x)− F (y), x− y⟩P ≥ 0. (5.4)

Monotonicity implies that we can apply the Cauchy-Schwarz inequality (Lemma 2.1):

⟨F (x)− F (y), x− y⟩P
= |⟨F (x)− F (y), x− y⟩P |

≤ ∥F (x)− F (y)∥P ∥x− y∥P .

Subtracting a more positive number makes the result more negative. Thus we can replace the second

term in (5.2) to obtain

∥F (x)− F (y)∥2P − (ρ+ θ)∥F (x)− F (y)∥P ∥x− y∥P + ρθ∥x− y∥2P ≤ 0

[∥F (x)− F (y)∥P − ρ∥x− y∥P] [∥F (x)− F (y)∥P − θ∥x− y∥P] ≤ 0.

We can assume, without loss of generality, that θ ≥ ρ > 0. Then the above is a sector-bounded

nonlinearity (proof in Appendix C.2) and is thus equivalent to

ρ∥x− y∥P ≤ ∥F (x)− F (y)∥P ≤ θ∥x− y∥P . (5.5)

The right side of (5.5) immediately corresponds to F being θ-Lipschitz continuous, as per Defi-

nition 2.5. We now return to the inequality (5.3), and use the left side of (5.5) to obtain

(ρ+ θ)⟨F (x)− F (y), x− y⟩P ≥ ρ2∥x− y∥2P + ρθ∥x− y∥2P
≥ ρ(ρ+ θ)∥x− y∥)P 2

⟨F (x)− F (y), x− y⟩P ≥ ρ∥x− y∥2P .

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 43

This corresponds to F being ρ-strongly monotone as per Definition 2.7 and concludes the proof.

5.2 Linear Fractional Representation of Uncertain Operators

To apply the techniques developed in Section 5.1, we stated that the Clarke generalized Jacobian

∂CHw,Π is known precisely. This assumption is not reasonable since the output mapping π and

the disturbance w are both unknown. We aim to solve this by describing some set J such that

∂CHw,Π(u) ⊂ J , ∀u ∈ Rn, i.e., we overbound the Clarke generalized Jacobian with some uncertainty

set. Thus if we verify the conditions (5.1) for the uncertainty set, that is sufficient to verify that the

conditions apply for ∂CHw,Π and thus the pseudogradient Hw,Π is strongly monotone and Lipschitz

continuous.

For this purpose, we utilize the linear fractional representation from literature on robust control

[29, 47, 57], which we presented in Section 2.6. While this method can be less intuitive and presents

a sharper learning curve than simpler methods (for example, bounding the uncertainty within a

polytope), it has two key advantages:

1. It can be used to parametrize larger, more general classes of uncertainty.

2. It allows the development of a single matrix inequality that sufficiently verifies the conditions

in (5.1), as opposed to needing to verify it for a large number of Jacobians in the overbounded

set. This is outlined later in this section.

With access to a good model of the operator ∂CHw,Π(u), we could use (2.2) and the techniques

outlined in Section 2.6 to represent the operator as a linear fractional transformation, with ∆

quantifying the variation caused by u and w. An example of such a parametrization applied to

verify our criteria is presented in Section 7.1 too. However, we wish to develop a technique to verify

these criteria without the significant modelling effort it takes to find a precise representation. As

such, our goal is to find a linear fractional transformation that contains our mapping ∂CHw,Π(u)

with as little conservatism as possible.

Consider, for example, if we were analyzing a system whose precise uncertainty can be quantified

as in Example 2. One could use the following overbound: the term −1
1+δ1

is simply some third

uncertainty δ3 with an appropriately adjusted range (for example, if δ1 ∈ [0, 1] then δ3 ∈ [−1,− 1
2]).

This model now covers a larger set of uncertainties than the precise model presented in Example

2 (constraining δ3 to be a rational function of δ1 is akin to taking a slice out of the larger model).

However, this is a model one could easily develop from some quick experimentation on the system

dictated by these uncertainties, and if we could simply verify our convergence criteria on the more

conservative model rather than a precise one, it would make our framework more general, faster to

verify, and lighter on overhead. This motivates our goal in the rest of this section: to use (2.2) to

overbound the mapping ζ = ∂CHw,Π(u)ξ within a more conservative representation. We work with

the following LFT representation where ∆ is no longer a precise parametrization of the uncertainties

of the mapping ∂CHw,Π: [
ζ

q

]
=

[
M B

C D

][
ξ

p

]
p = ∆q,

(5.6)

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 44

where M ∈ Rl×n, B ∈ Rl×s, C ∈ Rz×n, D ∈ Rz×s, and ∆ ∈ ∆ ⊂ Rs×z. Solving (5.6) for q we

obtain

q = Cξ +Dp

q = Cξ +D∆q

q = (Iz −D∆)−1Cξ.

Note that Definition 2.19 requires that (I −D∆) is invertible. Substituting the above line into the

first row of the matrix equation in (5.6) yields

ζ = Mξ +Bp

ζ = Mξ +B∆q

ζ =
[
M +B∆(Iz −D∆)−1C

]
ξ.

Further, we assume that we have access to a convex cone of matrices Θ ⊂ R(s+z)×(s+z) such that

p = ∆q, ∆ ∈∆ =⇒

[
q

p

]⊤
Θ

[
q

p

]
≥ 0, ∀Θ ∈ Θ. (5.7)

This assumption is unintuitive as presented, but is key to the relaxation that we use to develop

a more tractable matrix inequality later. We can now define the uncertainty set that overbounds

the operator Hw,Π.

Definition 5.1 (Jacobian Uncertainty Set). The uncertainty set of an operator H : Rn → Rn is

defined as the set

Hlft = {H : ∂CH(u) ⊆ J lft, ∀u ∈ Ω}, (5.8)

where the Jacobian set J lft is defined as

J lft := {M +B∆(Iz −D∆)−1C : ∆ ∈∆}. (5.9)

The matrices M,B,C,D,∆ are defined as per (5.6), and there exists a convex cone of matrices

Θ ⊂ R(s+z)×(s+z) such that ∆ satisfies (5.7).

Thus to verify the strong monotonicity and Lipschitz continuity of the operator Hw,Π defined

in (4.11), it is sufficient to construct the set Hlft such that Hw,Π ∈ Hlft (by following the above

procedure), and to then show that all operators H ∈ Hlft fulfill those conditions.

Proposition 5.2. Given P ≻ 0, any operator H ∈ Hlft is ρ-strongly monotone and θ-Lipschitz

continuous w.r.t. ⟨·, ·⟩P on Rn if there exists Θ ∈ Θ such that

[
M B

In 0

]⊤
(Xρ,θ ⊗ P)

[
M B

In 0

]
+

[
C D

0 Is

]⊤
Θ

[
C D

0 Is

]
≼ 0 (5.10)

where Xρ,θ is defined as in Proposition 5.1.

Proof. Given an arbitrary x ∈ Rn and ∆ ∈ ∆, define q = Cx + Dp and p = ∆q. Pre and post

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 45

multiplying (5.10) by col(x, p) we obtain

[
x

p

]⊤ [
M B

In 0

]⊤
P

[
M B

In 0

][
x

p

]
+

[
q

p

]⊤
Θ

[
q

p

]
≤ 0 (5.11)

where P = Xρ,L ⊗ P . Since p = ∆q, (5.7) implies that the first term in (5.11) must be nonpositive.

Therefore [
Mx+Bp

x

]⊤
P

[
Mx+Bp

x

]
≤ 0, ∀x ∈ Rn (5.12)

From p = ∆q and q = Cx+Dp we conclude that p = ∆(Iz −D∆)−1Cx. Substituting this into

(5.12), we find that [
J∆

In

]⊤
P

[
J∆

In

]
⪯ 0

where J∆ = M +B∆(Iz −D∆)−1C ∈ J lfr. Therefore, we conclude that all elements of J lft satisfy

(5.1), and thus all operators H ∈ Hlft are ρ-strongly monotone and L-Lipschitz continuous w.r.t.

⟨·, ·⟩P .

Note that in Assumption 5, we verify the conditions with regards to the Euclidean norm, and

thus we use P = In when evaluating these inequalities.

5.2.1 Recipes for LFR Modelling

In this section we outline recipes to select a convex cone Θ that satisfies the conditions outlined in

Proposition 5.2. These recipes are taken from [1], from where we borrowed the idea of using a single

matrix inequality to tackle the problem of verifying strong monotonicity and Lipschitz continuity.

1. Unstructured, Norm-Bounded Uncertainty:

Given γ ≥ 0, let ∆(γ) := {∆ ∈ Rs×z : ∥∆∥2 = σmax(∆) ≤ γ} be the set of unstructured

matrices with induced 2-norm less than or equal to γ. Then a cone Θ that achieves the

positivity condition (5.7) is

Θ =

{
θ

[
Iz 0

0 − 1
γ2 Is

]
: θ ≥ 0

}

2. Repeated Scalar, Norm-Bounded Uncertainty:

Given γ ≥ 0, let ∆(γ) := {∆ = δI : δ ∈ R, |δ| ≤ γ} denote the set of diagonal matrices with

each diagonal entry bounded in magnitude by γ. Then a cone that achieves the positivity

condition is

Θ =

{
Θ =

[
Φ Ψ

Ψ⊤ − 1
γ2Φ

]
: Φ ≽ 0, Ψ = −Ψ⊤

}
.

3. Unstructured monotone and Lipschitz uncertainty:

Given µ,L ∈ R such that 0 ≤ µ ≤ L <∞, let ∆ := {∆ ∈ Rs×s : µI ≼ ∆ ≼ LI}. A cone that

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 46

works in this case is

Θ =

{
Θ = φ

[
−2µL µ+ L

µ+ L −2

]
⊗ Is : φ ≥ 0

}
.

4. Repeated scalar monotone and Lipschitz uncertainty:

Given Given µ,L ∈ R such that 0 ≤ µ ≤ L < ∞, let ∆ := {∆ ∈ Rs×s : ∆ = δIs, µ ≤ δ ≤ L.

A cone that works in this case is

Θ =

{
Θ = φ

[
−2µL µ+ L

µ+ L −2

]
⊗ Φ : φ ≥ 0, Φ ≽ 0

}
.

5. Block-structured uncertainty:

Consider the block-diagonal uncertainty set defined as

∆ := {∆ = blkdiag(∆1, . . . ,∆r)} ,

where each block satisfies one of the previous criteria. We can then construct a cone of matrices

by using the previous individually for their corresponding blocks. We provide an example of

this construction in Section 5.3.

It should be noted that the more we know about the structure of the parameter block ∆ (i.e., the

less conservatism we have in our uncertainty parametrization), the lighter the restrictions we have

to impose on the constraints of our convex cone. For example, with case 1 we are restricted to

identity matrices along the main diagonal, and zeroes along the anti-diagonal. With case 2 we can

consider all positive semidefinite matrices along the main diagonal, and any choice of anti-diagonal

that makes the matrix skew-symmetric. This means that the optimization problem performed to

find a minimal (maximal) θ (ρ) fulfilling Proposition 5.2 would have a larger feasible set and thus is

likelier to find relatively tight estimates for these values, which in turn helps with tuning appropriate

step sizes as per Lemma 4.3. This ties back to what we led this discussion with: that we are trying to

bound the Clarke-generalized Jacobian of the pseudogradient with as little conservatism as possible,

while still not relying on a precise model.

5.3 Feedback Optimization Example

In this section, we go through the process of developing an LFT for a common class of feedback

optimization problems. Consider the output y ∈ Rl and the goal of constraining it with vectors

y
¯
, ȳ ∈ Rl such that yj ∈

[
y
¯j
, ȳj

]
, ∀j ∈ {1, . . . , l}. For each agent i, denote their output constraint

vectors as y
¯i

and ȳi, stacked similarly to how y = col(y1, . . . , yN). Now we consider the class of

problems where each agent is trying to reduce a cost function of the form

min
ui∈Ωi

u⊤
i Qiui + q⊤i ui +

1

2
αi

l∑
j=1

[
max(0,y

¯j
− yj ,yj − ȳj

]2
subject to y = π(u, w).

(5.13)

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 47

The max function encodes yj ∈
[
y
¯j
, ȳj

]
as a soft constraint, penalizing the point-to-set distance

between y and a rectangular box in Rl. The hyperparameter αi forces agents to obey the constraint

more stringently if it is set to a larger value. The matrices Qi ∈ Rni×ni and the vectors qi ∈ Rni

are fixed matrices and vectors that impose a quadratic cost on each agent’s action. For example, if

each agent were concerned with driving the system state towards some set-point (uref)i ∈ Rni , then

the cost would be quantified by

∥(uref)i − ui∥2 = [(uref)i − ui]
⊤
[(uref)i − ui] = u⊤

i ui − 2(uref)
⊤
i ui + (uref)

⊤
i (uref)i.

For the above cost, we can omit the final constant term since it has no effect on minimization, and

then express it as (5.13) with Qi = Ini
and qi = 2(uref)i.

Note that we formulate this problem without coupling constraints, as the Algorithm 2 converges

obeying any coupling constraints imposed on the actions, so long as Assumption 5 is satisfied.

Therefore we focus on verifying the criteria using the techniques developed in the previous section.

Figure 5.1 shows a visualization of the soft constraint. Note that the function is C1.

-4 -2 2 4

5

-4 -2 2 4

5

Figure 5.1: The soft constraint function and its derivative with thresholds set to y
¯i

= −2 and ȳi = 2.

Next, we attempt to compute the gradients of the cost function. Player i’s action cost function

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 48

is a simple quadratic form, and thus

fi(u) = u⊤
i Qiui + q⊤i ui

∂ufi(u) =
[
(Qi +Q⊤

i)ui + qi
]⊤

. (5.14)

Thus the gradient ∇ui
fi(u) can be expressed as

∇ui
fi(u) =

[
0 · · · Qi +Q⊤

i · · · 0
]
ui + qi. (5.15)

For the output cost functions:

gi(y) =
1

2
αi

l∑
j=1

[
max(0,y

¯j
− yj ,yj − ȳj)

]2
∇uigi(π(u, w)) =

N∑
k=1

∂uiπk(u, w)
⊤∇yk

gi(y) (5.16a)

= αi

[
∂ui

π1(u, w)
⊤ . . . ∂ui

πN (u, w)⊤
]
sy
¯
,ȳ(y). (5.16b)

The function sy
¯
,ȳ(y) denotes the vectorized soft-thresholding function, defined for each entry of

y ∈ Rl. For all j ∈ {1, . . . , l}

sy
¯j

,ȳj (yj) =


yj − y

¯j
yj < y

¯j

0 y
¯j
≤ yj ≤ ȳj

yj − ȳj ȳj < yj

(5.17)

We can now make an approximation for the Jacobian ∂uπ to apply the techniques developed

in Chapter 4 and this chapter. We assume we have access to an experimentally obtained nominal

Jacobian with an error bound γ ∈ R such that

∂uπ(u, w) = Πnom +∆π, ∥∆π∥ ≤ γ, ∀u ∈ Ω, w ∈ W, (5.18)

i.e., the nominal Jacobian is within a bounded error of the instantaneous Jacobian of the system

for all possible actions and disturbances. In (5.16b), we replace the true Jacobians ∂ui
πj with

submatrices of the fixed approximation Π = Πnom ≈ ∂uπ and thus

∇uigi(y) = αi

[
Π⊤

i1 . . . Π⊤
iN

]
sy
¯
,ȳ(y). (5.19)

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 49

We can then construct the pseudogradient as follows:

Hw,Π =


Q1 +Q⊤

1 0 · · · 0

0 Q2 +Q⊤
2 · · · 0

...
...

. . .
...

0 0 · · · QN +Q⊤
N



u1

u2

...

uN

+


q1

q2
...

qN



+


Π⊤

11 Π⊤
1N

Π⊤
21 Π⊤

2N

...
...

...
...

Π⊤
N1 Π⊤

NN




sy
¯1

,ȳ1 (y1)

sy
¯2

,ȳ2
(y2)

...

sy
¯N

,ȳN
(yN)


Hw,Π := Qu+ h+Π⊤sy

¯
,ȳ (y) . (5.20)

We now wish to characterize the Clarke generalized Jacobian ∂CHw,Π, and then apply the tech-

niques developed within Section 5.2 to overbound it in a tractable manner. We start by differentiating

(5.20), and by applying the chain rule to the final term, we obtain:

∂uHw,Π = Q+Π⊤∂usy
¯
,ȳ (π(u, w))

∂uHw,Π = Q+Π⊤∂ysy
¯
,ȳ (π(u, w)) ∂uπ(u, w). (5.21)

The two terms ∂ysy
¯
,ȳ (π(u, w)) and ∂uπ(u, w) are the sources of uncertainty in the Jacobian that

we seek to characterize. First, we note that the j-th element of sy
¯
,ȳ (π(u, w)) is only dependent on

the output yj and not any of the others, so its derivative for all other other outputs would simply

be zero. For the aligned output, we can differentiate the piecewise soft-thresholding function (5.17)

to obtain

∂
(
sy
¯
,ȳ (yj)

)
∂yj

=

1, yj ∈
(
−∞,y

¯j

)⋃
(ȳj ,∞)

0, yj ∈ [y
¯j
, ȳj]

, ∀j ∈ {1, . . . , l}.

The elements of the Jacobian thus vary discontinuously within the set {0, 1}. Within the LFT

framework, we instead vary the uncertainty continuously in the range [0, 1] (note how the true

Jacobian is now a subset of the LFT parametrization, since it will never take values in the range

(0, 1)). We thus define the following uncertainty matrix to represent the Jacobian ∂ysy
¯
,ȳ (π(u, w)):

∆q =


δ1 0 · · · 0

0 δ2 · · · 0

...
...

. . .
...

0 0 · · · δl

 , δi ∈ [0, 1] ∀i ∈ {1, . . . , l}. (5.22)

We approximate the uncertain Jacobian ∂uπ using (5.18). Then the Jacobian (5.21), can be

overbounded as per Definition 5.1 for all u ∈ Rn by the set of Jacobians:

∂CHw,Π(u) ∈ J lft :=
{
Q+Π⊤∆q (Πnom +∆π) : ∆q ∈ Dl, 0 ≼ ∆q ≼ Im, ∥∆π∥ ≤ γ

}
, (5.23)

where Dl is the set of l × l diagonal matrices. Note that the semi-definiteness constraints on ∆q

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 50

constrain the diagonal elements to range in [0, 1].

We now try to represent this as a linear fractional transformation as in (5.6). For that, we require

matrices M,B,C,D,∆ such that M +B∆(Iz −D∆)−1C = Q+Π⊤∆q(Πnom +∆π). We let

∆ =

[
∆q 0

0 ∆π

]
.

It immediately follows that M = Q as the affine term that is not dependent on the uncertainties.

Then we let B∆ correspond to the “left term” in the rest of the parametrization. It follows that

B∆ =
[
Π⊤∆q 0

]
B =

[
Π⊤ 0

]
.

To obtain B∆(Iz −D∆)−1C = Q+Π⊤∆q(Πnom +∆π) we then need

(Iz −D∆)−1C =

[
Πnom +∆π

∗

]
,

where the ∗ indicates that the term can take any value (since it gets zeroed out when multiplied).

Note here that z = l + n. We fix the following matrices:

C =

[
Πnom

In

]
, D =

[
0 Il

0 0

]
.

Using these matrices in the expression (Iz −D∆)−1C yields

(Iz −D∆)−1C

=

[
Il −∆π

0 In

]−1 [
Πnom

In

]

=

[
Il ∆π

0 In

][
Πnom

In

]

=

[
Πnom +∆π

In

]

Thus every element J ∈ J lft, with the set as defined (5.23), can be written as J = M +B∆(Il+n −
D∆)−1C where [

M B

C D

]
=

 Q Π⊤ 0

Πnom 0 Il

In 0 0

, ∆ =

[
∆q 0

0 ∆π

]
. (5.24)

Remark 5. In (5.24), we distinguish Πnom and Π, even though in this specific instance we simply

used Π = Πnom. This is to explicitly show the fact that the latter term came from the constant

approximation we make in the cost function itself, while the former term appears while parametrizing

the uncertainty for the LFT. In this case they were the same matrix, but this may not necessarily be

true in general.

CHAPTER 5. MONOTONICITY AND LIPSCHITZ CONTINUITY OF UNCERTAIN OPERATORS 51

We can now utilize the recipes from the previous section to characterize our uncertainties. We

have a block-structured uncertainty with the first block ∆q being composed of scalars along the

diagonal, each of which can be represented as a matrix in R1×1 fulfilling the repeated monotone

and Lipschitz criteria with ρ = 0 and θ = 1. The matrix ∆π is an unstructured, norm-bounded

uncertainty. We can thus construct the set

Θ :=


l∑

j=1

Θj : φj ≥ 0, θ ≥ 0

 , (5.25)

Θj :=


0 0 φjeje

⊤
j 0

0 θ
l In 0 0

φjeje
⊤
j 0 −2φjeje

⊤
j 0

0 0 0 − θ
lγ2 Il

 , (5.26)

where ej is the jth canonical vector in Rl. Thus, combining this LFT parametrization with Propo-

sition 5.2, we can verify the convergence of Algorithm 2.

This example concludes this chapter. We developed a semidefinite programming based approach

to verify the convergence criteria from the previous chapter, and introduced conservatism to reduce

informational requirements and a priori overhead. The final section was designed to illustrate a

realistic example of introducing conservatism while developing the LFT representation, and to show

a specific choice of the convex cone of matrices.

Chapter 6

Jacobian-Free Algorithm

6.1 Limitations of a Fixed Jacobian

In this section, we motivate the reasoning behind estimating the Jacobian in an online manner. In

Section 4.2, we approximated the Jacobian using a fixed matrix as per (4.10). While this approxima-

tion has been shown to robustly converge in large classes of problems, its accuracy can be insufficient

or unreliable in cases where the instantaneous Jacobian at any given time-step is heavily perturbed

from its linear, approximate counterpart. Proposition 4.1 gives us the error bound between the

result of the OA vGNE algorithm and a true candidate for an optimum, dependent on the error

between the nominal and true Jacobian. We motivate the problem by exploring the case where that

error becomes unreasonably large.

We consider a simple problem without disturbances or coupling constraints to demonstrate this.

Suppose that we have two robots, i ∈ {1, 2}, each moving in 2D space with the goal of approaching

a target position r̄i ∈ R2. They are driven by a controller that asymptotically tracks some position

input ui ∈ R2. Suppose they also have a connectivity goal, where they are not allowed to be outside

of a specified maximum distance d from one another (i.e., ∥r1−r2∥ ≤ d). Consider a penalty function

ḡ : R→ R, chosen to penalize the argument for being greater than the upper bound d. If each robot

is equipped with a sensor that outputs their absolute position yi = ri, then the game can be encoded

as

Ji(ui,y) = ∥ui − r̄i∥2 + ḡ(∥yi − y−i∥),

where y−i is the other player’s output. Since yi asymptotically approaches the target position ui,

we expect the steady-state output mapping to be

π(u) =

[
u1

u2

]

and thus the Jacobian of the outputs with respect to the inputs would be

∂uπ(u) =

[
1 1 0 0

0 0 1 1

]
.

A nominal Jacobian for this problem can be relatively easily calculated, and even a bad approxi-

52

CHAPTER 6. JACOBIAN-FREE ALGORITHM 53

mation can still be expected to converge to an optimum within a bounded distance of a true vKKT

point as per Proposition 4.1. Note that the derivatives of ḡ(∥yi − y−i∥) with respect to each yj can

be calculated in a deterministic fashion, as we choose ḡ to enforce the boundary constraint.

Now we consider the case where the output is simply the (squared) Euclidean 2-norm distance

between the two players, that is, yi = ∥ri − r−i∥2. Thus at steady-state the output converges to

yi = ∥ui − u−i∥2, and the Jacobian becomes

∂uπ(u) = 2

[
u⊤
1 − u⊤

2 u⊤
2 − u⊤

1

u⊤
1 − u⊤

2 u⊤
2 − u⊤

1

]
. (6.1)

Note that this Jacobian varies heavily as a function of the control input. It is not reasonable to fix

a nominal Jacobian and characterize variation from the nominal as uncertainty as we did in (5.18),

as the variation over the course of a game can be quite heavy and lead to large deviation from a

true optimum. An illustration of this problem is presented in Figure 6.1.

-1 0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 6.1: Each robot moves from the marked ‘O’ to the marked arrowhead along the blue trajec-
tory. The black arrows represent the vector ui − u−i.

Inspecting the figure, we could compute gradients at the mid-point of the trajectories to construct

the nominal Jacobian Π, and the maximum distance from the gradients at the start and end points

to construct a ∆π similar to (5.18). However, this construction only appears reasonable if we assume

that the robots will take a relatively straight path towards their destination.This method would fail

CHAPTER 6. JACOBIAN-FREE ALGORITHM 54

to characterize the Jacobian in cases where the robot has more complex dynamics that lead to a

curving path as the robot adjusts its heading (for example, unicycle dynamics), or if the robots’

initialization and targets naturally lead to a path that perturbed more heavily from a straight line

option. Finally, even if the nominal Jacobian seems to be reasonable in a 2-robot problem, an

N -robot problem makes the problem of finding a nominal Jacobian far harder, as each component

could now be an average of several gradients, compounding the offline knowledge required as well as

approximation errors.

Thus, a simple change in the output feedback available for a problem can cause the difference

between a trivially computed nominal Jacobian, and a nominal Jacobian that requires extensive fore-

casting for a relatively inaccurate result. This illustrates the need for online methods of estimating

the Jacobian ∂uπ with minimal a priori knowledge. The rest of this chapter focuses on developing

this approach.

6.2 Quasi-Stochastic Approximation of Jacobian

This section expands on prior work on model-free optimization [18], where it was noted that directly

approximating the Jacobian matrix is a subject of ongoing research. We utilize the quasi-stochastic

perturbation approach to estimate the Jacobian.

A Simultaneous Perturbation Stochastic Approximation (SPSA) approach [24, 26] has proven to

be effective at approximating gradients effectively, where each agent only needs 2 measurements of

the objective function. Contrast this approach with a finite-differences method, which would require

each control input to be perturbed for a measurement, requiring 2n measurements total in our case.

We thus develop our approach based off the stochastic perturbation methods.

We begin by expressing the Jacobian matrix in terms of its rows:

∂uπ(u, w) =



∇⊤
u π11

...

∇⊤
u π1l1

...

∇⊤
u πN1

...

∇⊤
u πNlN


, (6.2)

where for each player i, the mapping πij , j ∈ {1, . . . , li} represents the j-th output that they can

measure. We aim to utilize the measured outputs yi ∈ Rli to approximate each of these gradients,

and thus form an estimation of the Jacobian.

Lemma 6.1. Let f : Rn → R be a C3 function (Definition 2.9), with Lipschitz continuous ∇f and

∇2f . Consider a point x ∈ Rn, a perturbation vector ϕ ∈ Rn, and a perturbation scaling constant

ϵ ∈ R. Then
1

2ϵ
ϕ [f(x+ ϵϕ)− f(x− ϵϕ)] = ϕϕ⊤∇f(x) +O(ϵ2) (6.3)

Proof. We borrow this result and proof from [18]. The proof follows from Taylor Theorem. Consider

CHAPTER 6. JACOBIAN-FREE ALGORITHM 55

any x ∈ Rn and r ∈ R. Then

f(x+ rϕ) = f(x) + rϕ⊤∇f(x) + r2

2
ϕ⊤∇2f(x)ϕ+O(r3).

Taking r = ϵ and r = −ϵ as two separate instances of the above equality and then subtracting them

yields

f(x+ ϵϕ)− f(x− ϵϕ) = f(x) + ϵϕ⊤∇f(x) + ϵ2

2
ϕ⊤∇2f(x)ϕ+O(ϵ3)

−
[
f(x)− ϵϕ⊤∇f(x) + (−ϵ)2

2
ϕ⊤∇2f(x) ϕ+O(ϵ3)

]
.

Cancelling out the like terms and rearranging we conclude:

f(x+ ϵϕ)− f(x− ϵϕ) = 2ϵϕ⊤∇f(x) +O(ϵ3)

1

2ϵ
ϕ [f(x+ ϵϕ)− f(x− ϵϕ)] = ϕϕ⊤∇f(x) +O(ϵ2).

We define the final equation in the above proof as the estimated gradient:

∇̂f(x;ϕ, ϵ) := 1

2ϵ
ϕ [f(x+ ϵϕ)− f(x− ϵϕ)] = ϕϕ⊤∇f(x) +O(ϵ2). (6.4)

Note that this equation contains two perturbed, zero-order evaluations of the function f(x), and

shows the error between those evaluations and the precise gradient ∇f(x). With our setup, we can

measure these evaluations, and thus use them to compute an approximate gradient to form each

row of the Jacobian. Since Lemma 6.1 requires the use of Taylor’s Theorem, we need additional

assumptions on the output mappings πi to ensure that this is a valid approach.

Assumption 6. For each agent i, each output mapping πij : Ω ×W → R, j ∈ {1, . . . , li} is C2

and has Lipschitz continuous ∇πij(u, w) and ∇2πij(u, w).

In classical implementations of SPSA, the vector ϕ is generated by sampling independent and

identically distributed random variables [25, 26]. Recent work in model-free methods shows that

using a quasi-stochastic approach, one where all the processes generating the perturbation vector

are deterministic but “appear” stochastic, helps reduce variance and improve convergence [18, 27].

We note that the algorithm we will develop iterates in the same manner as Algorithm 2, and we

denote iterations as k ∈ {1, . . . ,K}. We will later formalize how these function evaluations and

perturbations fit into Algorithm 2 exactly, for now we assume we are evaluating some function while

iterating through the algorithm. At each iteration, we aim to sample a perturbation vector ϕk ∈ Rn

that we will use two generate the two function evaluations by replacing ϕ in (6.4).

Assumption 7. The perturbation vector ϕk ∈ Rn, at the iteration k ∈ {1, . . . K}, is sampled from

a continuous time signal ϕ(t) with sampling period Ts as ϕk = ϕ(kTs). The signal ϕ(t) is periodic

with period T ∈ R and satisfies the following for any t ∈ R:

1

T

∫ t+T

t

ϕ(τ)ϕ(τ)⊤dτ = In. (6.5)

CHAPTER 6. JACOBIAN-FREE ALGORITHM 56

Assumption 7 enforces that the perturbation signal is chosen such that ϕ(t)ϕ(t)⊤ = In on average.

From the right hand side of (6.4), this would correspond to the average two function evaluation

having an error of O(ϵ2) from a true, instantaneous gradient evaluation. The goal then, is to

construct an approximate Jacobian to replace the one used in step 1 of Algorithm 2 using these two

function evaluations. We thus obtain the average error for the gradient by rearranging (6.4):

∇̂f(x;ϕ, ϵ)−∇f(x) = O(ϵ2), (6.6)

i.e., if we estimate each row of the Jacobian using a model-free, quasi-stochastic perturbation ap-

proach, we expect each row to have an average error of O(ϵ2) from the corresponding row of the

true Jacobian. Note that if the mapping f is quadratic in x then O(ϵ2) = 0.

We now outline a modification to Algorithm 2, estimating the Jacobian at each time step. In

addition to the notation from Algorithm 2, we introduce the following notation. At the k-th iteration,

the perturbation vector is denoted ϕk, and player i’s segment of that vector is denoted ϕi,k. The

perturbed inputs are denoted ui,k+ := ui,k + ϵϕi,k and ui,k− := ui,k − ϵϕi,k respectively, and their

corresponding output measurements are denoted yi,k+ and yi,k−. The matrix Π̂i,k ∈ Rli×n is the

submatrix of the overall approximate Jacobian (Π̂ ∈ Rl×n) that player i computes. Note that player

i is responsible for computing Jacobians Π̂1i,k · · · Π̂Ni,k (each of these is a submatrix of Π̂i,k), but

receives Jacobians Π̂i1,k · · · Π̂iN,k from the other players for its primal step during each iteration.

We now present the algorithm.

Algorithm 3 Distributed OA vGNE-seeking algorithm with Jacobian Estimation

Initialization: ui,0 ∈ Ωi, λi ∈ Rm
+ , and zi,0 ∈ Rm

+

Iteration: Player i ∈ N
Step 1: Exploration - Applies control ui,k+ and ui,k− to the system. Receives

their corresponding output measurements yi,k+ and yi,k−, and

the total perturbation vector ϕk.

Step 2a: Jacobian Approximation - For each j ∈ {1, . . . , li}, updates:
∇̂uπij,k ← 1

2ϵϕk [(yi,k+)j − (yi,k−)j]

Π̂ji,k ← ∇̂⊤
u πij

Step 2b: Approximate Primal Step and Consensus - Receives uj,k, yj,k, j ∈ NGf
(i),

λj,k, j ∈ NGλ
(i), Π̂ij , j ∈ N\{i}, yi,k, and updates:

ui,k+1 ← PΩi

(
ui,k − τi(∇ui,k

fi(ui,k,u−i,k) +
∑

Nj∈Gf
(i)

Π̂⊤
ij,k∇yjgi(yi,k,y−i,k)−A⊤

i λi,k)
)

zi,k+1 ← zi,k + νi
∑

j∈NGλ
(i)

wij(λi,k − λj,k)

Step 3: Consensus and Dual Step - Receives zj,k+1, j ∈ NGλ
(i) and updates:

λi,k+1 ← PRm
+

(
λi,k − σi[Ai(2ui,k+1 − ui,k)− bi +

∑
j∈NGλ

(i)

wij [2(zi,k+1 − zj,k+1)− (zi,k

− zj,k)] +
∑

j∈NGλ
(i)

wij(λi,k − λj,k)
)

Remark 6. We do not formalize the choice of T and Ts in Assumption 7. Developing techniques

to choose them appropriately and studying the impact of these choices is an area of future work. We

note that we want our sampled perturbation vector to be quasi-stochastic, and thus we can loosely

CHAPTER 6. JACOBIAN-FREE ALGORITHM 57

impose that

1. T is significantly larger than Ts so that every period we see during runtime contains a large

number of samples,

2. K is significantly larger than T
Ts

so that we see several periods of ϕ(t) over a single run of the

algorithm, and

3. K is not an integer multiple of T
Ts

so that we see variation in periodically chosen values.

Note that the algorithm does not necessarily converge in its estimate of the Jacobian (unless all

derivatives higher than the second are identically zero, for example, if π were a quadratic). The

average primal step (across any run with a large number of iterations) should be an accurate estimate

of the Jacobian, but each instantaneous Jacobian could vary. We introduce a new pseudogradient

operator:

Hw,Π̂(u) = F (u) + E
(
Π̂⊤∂yg(y)

⊤). (6.7)

It should be noted that the pseudogradient operator Hw,Π̂(u) is no longer fixed for a given (u, w).

The Jacobian matrix Π̂ varies after each iteration as a function of the chosen perturbation vector

ϕ(t), defined in Assumption 7. This variation exists even if we initialize the algorithm at a vKKT

point of the game, and thus we would intuitively expect Algorithm 3 to converge to a limit set rather

than a single limit point, within a bounded distance of a point satisfying the vKKT conditions (4.9).

We develop this bound more formally in the following subsection.

6.2.1 Convergence Analysis

The key idea behind proving the convergence of Algorithm 3 is that the algorithm tracks a hypothet-

ical, “golden” algorithm that knows the Jacobian precisely. We can show that the golden algorithm

converges to a vKKT point of the game (i.e., a point that satisfies the variational KKT conditions

(4.9)). Since Algorithm 3 tracks the iterates of the golden algorithm, it then converges to a limit set

within a bounded distance around the vKKT point that the golden algorithm would converge to.

We first show the convergence of the golden algorithm. The golden algorithm, in this case,

would be Algorithm 2, but replacing the nominal Jacobians Πij with the precisely known Jacobians

∂uiπj (the nominal approximation was explained in Section 4.2, culminating in (4.10)). To this

end, we use the true pseudogradient operator Hw defined in (4.7). We start by representing the

golden algorithm in its forward backward form. We first express the KKT conditions. A point u∗

and a corresponding Lagrange multiplier λ∗ satisfying the vKKT conditions (4.9) must also satisfy

col(u∗, λ∗) ∈ zer(A+B) where

A : col(u, λ) 7→ col(Hw(u),−b)

B : col(u, λ) 7→ col(−A⊤λ+NΩ(u), Au+NRm
+
(λ)).

(6.8)

We can then rewrite the golden algorithm as a forward-backward iteration, similar to (4.24):

ϖk+1 = (Id+Φ−1B̄)−1(Id−Φ−1Ā)(ϖk), (6.9)

CHAPTER 6. JACOBIAN-FREE ALGORITHM 58

where the operators Ā and B̄ are defined as

Ā : ϖ 7→ col(Hw(u),0, L̄λ̄− b̄)

B̄ : ϖ 7→ NΩ(u)× 0×NRmN
+

(λ̄) + Ψϖ,
(6.10)

and the matrices Φ and Ψ are defined identically to (3.10) as

Φ =

τ̄
−1 0 Λ⊤

0 ν̄−1 L̄

Λ L̄ σ̄−1

 , Ψ =

0 0 −Λ⊤

0 0 −L̄
Λ L̄ L

 . (6.11)

Note again that the difference between (6.10) and (4.19) is the use of the precisely known pseudo-

gradient Hw. We require an additional assumption to be placed on this pseudogradient to ensure

convergence.

Assumption 8. The pseudogradient Hw(u) defined in (4.7) is η̄-strongly monotone and θ̄-Lipschitz

continuous.

With this added assumption, we can show the convergence of the golden algorithm.

Proposition 6.1. Suppose Assumptions 1, 3, 4, and 8 hold. Take 0 < β ≤ min
{

1
2d∗ ,

η̄
θ̄2

}
, where

d∗ is the maximal weighted degree of Gλ, and η̄, θ̄ are the monotonicity and Lipschitz parameters

from Assumption 8. Take δ > 1
2β . Suppose that τi, νi, σi are chosen to satisfy (4.25). Then

with Algorithm 2, modified such that each player has access to their corresponding submatrix of the

precise Jacobian ∂uπ(u, w) at each iteration rather than the nominal one, each player’s local strategy

ui,k converges to its corresponding component of a point satisfying the vKKT conditions (4.9), and

their local multipliers λi,k converge to the multiplier satisfying those conditions for that point, i.e.,

limk→∞ ui,k = u∗
i and limk→∞ = λ∗, i ∈ N .

Proof. The proof for this is near-identical to the proof for Theorem 4.2, and builds off a simi-

larly modified Theorem 4.1. We simply redefine the operators A, B, Ā, and B̄, and repeat the

proof for the two Theorems and their intermediary Lemmas. An important note is that while

Theorem 4.2 showed the convergence to a vGNE of the approximated game, this was because

the approximation of the Jacobian as a fixed matrix is akin to assuming that the cost function

fi(ui,u−i) + gi(πi(ui,u−i), π−i(ui,u−i), w) is convex for all ui given a fixed u−i and w (elaborated

on under (4.11)). By using the precisely known Jacobian, we make no such assumption and thus

Proposition 6.1 only guarantees convergence to a point satisfying the vKKT conditions (4.9). Such

a point is a candidate for a local vGNE, but it is possible that the game does not admit one.

This concludes the first step of our convergence analysis. We showed that the golden algorithm

converges to a vKKT point. The next phase of this proof is showing that Algorithm 3 approximately

follows the trajectory of the golden algorithm. We denote the model-free pseudogradient operator

Hw,Π̂ as defined in (6.7). Additionally, we define equivalents of operators A and Ā for the model-free

method as

Â : col(u, λ) 7→ col(Hw,Π̂(u),−b) (6.12)

ˆ̄A : ϖ 7→ col(Hw,Π̂(u),0, L̄λ̄− b̄). (6.13)

CHAPTER 6. JACOBIAN-FREE ALGORITHM 59

Algorithm 3 can then be similarly written as a forward-backward iteration:

ϖ̂k+1 = (Id+Φ−1B̄)−1(Id−Φ−1 ˆ̄A)(ϖ̂k), (6.14)

Now consider some arbitrary point ϖk. Suppose that we apply one iteration of the golden

algorithm (6.9) to obtain ϖk+1. Similarly, we apply an iteration of Algorithm 3, i.e., an iteration of

(6.14), to obtain ϖ̂k+1. Similar to Section 4.3.2, we denote T2 := (Id+Φ−1B̄)−1, T1 := (Id−Φ−1Ā),

and T̂1 := (Id−Φ−1 ˆ̄A). We check the difference between the two iterates. From Lemmas 4.2 and

2.5, we know that T2 is firmly nonexpansive, and thus by Definition 2.14

∥ϖk+1 − ϖ̂k+1∥2Φ = ∥T2T1ϖk − T2T̂1ϖ̂k∥2Φ ≤ ∥T1ϖk − T̂1ϖ̂k∥2Φ.

By the definition of T1 above, we have

∥T1ϖk+1 − T̂1ϖ̂k+1∥2Φ = ∥(Id−Φ−1Ā)(ϖk)− (Id−Φ−1 ˆ̄A)(ϖk)∥2Φ
= ∥Φ−1(Ā− ˆ̄A)(ϖk)∥2Φ.

Similar to the proof for Lemma 4.4, we change the matrix that induces the norm by utilizing the

fact that ∥Φ−1∥2 ≤ 1
δ , with δ chosen as in Proposition 6.1:

∥Φ−1(Ā− ˆ̄A)(ϖk)∥2Φ =
[
Φ−1(Ā− ˆ̄A)(ϖk)

]⊤
Φ
[
Φ−1(Ā− ˆ̄A)(ϖk)

]
=
[
(Ā− ˆ̄A)(ϖk)

]⊤
Φ−1

[
(Ā− ˆ̄A)(ϖk)

]
= ∥(Ā− ˆ̄A)(ϖk)∥2Φ−1

≤ 1

δ
∥(Ā− ˆ̄A)(ϖk)∥22.

We proceed from the last line of the above by expanding the definitions for the operators Â and
¯̂
A

and thus

∥ϖk+1 − ϖ̂k+1∥2Φ

≤ 1

δ
∥(Ā− ˆ̄A)(ϖk)∥22

=
1

δ
∥col(Hw(u)−Hw,Π̂(u),0,0)∥

2
2

=
1

δ

∥∥∥∥E [(∂uπ(u, w)− Π̂
)⊤

∂yg(π(u, w))
⊤
]∥∥∥∥2

2

≤ Emax

δ

∥∥∥∥(∂uπ(u, w)− Π̂
)⊤

∂yg(π(u, w))
⊤
∥∥∥∥2
2

, (6.15)

where the last two lines follow from the definition of the pseudogradient operators Hw and Hw,Π̂ in

(4.7) and (6.7) respectively, and noting the fact that the extraction operator E is linear and bounded,

with Emax being the upper bound defined in (B.2). Applying submultiplicativity to (6.15) we obtain

∥ϖk+1 − ϖ̂k+1∥2Φ ≤
Emax

δ
∥∂yg(π(u, w))∥22

∥∥∥∂uπ(u, w)− Π̂
∥∥∥2
2
. (6.16)

CHAPTER 6. JACOBIAN-FREE ALGORITHM 60

From here we can conclude that the distance between the iterates ϖk+1 and ϖ̂k+1 is bounded

if the distance between the true Jacobian and the estimated Jacobian is bounded. We next aim

to show that the latter indeed is bounded. We begin by noting Π̂ here is specific to one iteration

of the algorithm, and the accuracy of the estimate varies quasi-stochastically over the course of

the algorithm’s run. Thus our approach is to find a worst-case error bound for the inaccuracy of

Π̂, and our algorithm will thus remain within a finite distance of iterates of the golden algorithm,

upper-bounded by the worst case inaccuracy. We start from (6.2), which is used to construct each

row of the Jacobian Π̂ for any iteration of Algorithm 3. By (6.4), we know that the approximated

row ∇̂⊤
u πij (defined in Algorithm 3) satisfies

∇̂uπij(u, w) = ϕϕ⊤∇uπij(u, w) +O(ϵ2),

where ∇uπij(u, w) is the true value of the row (extracted from the corresponding row of the true

Jacobian ∂uπ(u, w)), the vector ϕ corresponds to the perturbation chosen for that estimate, and ϵ is

the magnitude of the perturbation applied while constructing the estimate. Hence the error between

a row of the estimate and that of the true Jacobian can be written as

∥∇̂uπij(u, w)−∇uπij(u, w)∥2 = ∥ϕϕ⊤∇uπij(u, w)−∇uπij(u, w) +O(ϵ2)∥2
≤ ∥(ϕϕ⊤ − In)∇uπij(u, w)∥2 +O(ϵ2)

≤ ∥(ϕϕ⊤ − In)∥2∥∇uπij(u, w)∥2 +O(ϵ2).

By Assumption 7, ϕ is chosen from a periodic signal ϕ(t) periodic signal such that the average value

of ϕ(t)ϕ(t)⊤ is In, which minimizes this error. We choose a worst case value of ϕ(t) to instead

maximize the distance of ϕ(t)ϕ(t)⊤ from In, and denote that value ϕ̄. Then, for any iteration of

Algorithm 3

∥∇̂uπij(u, w)−∇uπij(u, w)∥2 ≤ ∥(ϕ̄ϕ̄⊤ − In)∥2∥∇uπij(u, w)∥2 +O(ϵ2). (6.17)

We introduce an additional assumption now, to ensure that this estimation error remains bounded

for the disturbance.

Assumption 9. Given an output mapping π(u, w), defined in (4.1), it has a finite sensitivity to all

possible action profiles u for any disturbance w, i.e., there exists some Smax <∞ such that for each

j ∈ {1, . . . , li}, and for each i ∈ N

∥∇uπij(u, w)∥2 ≤ Smax ∀u ∈ Ω, ∀w ∈ W.

Combining the bound (6.17) with Assumption 9, we obtain

∥∇̂uπij(u, w)−∇uπij(u, w)∥2 ≤ σmax(ϕ̄ϕ̄
⊤ − In)Smax +O(ϵ2), (6.18)

where σmax(ϕ̄ϕ̄
⊤ − In) is the maximal eigenvalue of the matrix (ϕ̄ϕ̄⊤ − In). Thus each row of the

estimated Jacobian Π̂ is within a bounded distance of the corresponding row of the true Jacobian

∂uπ(u, w). We now seek to relate this row bound to the overall matrix bound we developed earlier,

to conclude this proof. To combine (6.16) and (6.18), we note that the induced 2-norm of a matrix

CHAPTER 6. JACOBIAN-FREE ALGORITHM 61

is upper-bounded by its Frobenius norm, which is in turn equal to the sum of the 2-norms of its

rows. Summing the 2-norms of each row is upper-bounded by simply multiplying the right side of

(6.18) by the number of rows (l), and thus

∥ϖk+1 − ϖ̂k+1∥2Φ ≤
Emaxl

2

δ
∥∂yg(π(u, w))∥22

(
σmax(ϕ̄ϕ̄

⊤ − In)Smax +O(ϵ2)
)2

(6.19)

Theorem 6.1. Suppose that Assumptions 1, 3, 4, 6-9 are satisfied. Take 0 < β ≤ min
{

1
2d∗ ,

η̄
θ̄2

}
,

where d∗ is the maximal weighted degree of Gλ, and η̄, θ̄ are the monotonicity and Lipschitz param-

eters from Assumption 8. Take δ > 1
2β . Suppose that τi, νi, σi are chosen to satisfy (4.25). Then

with Algorithm 3, the overall action profile u converges to an open ball Bnκ(u∗) where u∗ is a point

satisfying the vKKT conditions (4.9) (for some unknown value of the multipliers λ∗), and the radius

κ is defined by

κ =
Emaxl

2

δ
∥∂yg(π(u∗, w))∥22

(
σmax + Smax +O(ϵ2)

)2
.

With that, we can conclude our convergence analysis. We showed that if we start with some

point ϖk, our next iterate with Algorithm 3 will be within a finite bound of an iterate computed

with access to the perfect information Jacobian. We also showed that Algorithm 2, when used with

perfect knowledge of the Jacobian, will converge precisely to a vKKT point of the game. Combining

those two facts let us conclude that Algorithm 3 converges within a bounded distance of a vKKT

point of the game, and thus provides a set of candidate vGNEs.

6.3 Choice of Perturbation Signal

In this section, we illustrate one specific choice of perturbation signal that satisfies Assumption 7.

Note that the signal is arbitrarily chosen, and any signal that satisfies the assumption will reach

within a bounded error of a vKKT point of the problem. Studying the effects of varying this choice

is an area of future research.

Proposition 6.2. The perturbation signal

ϕi(t) =
√
2 sin(ωit), i = 1, . . . , n, (6.20)

with ωi ̸= ωj∀i ̸= j satisfies Assumption 7, given some T that is a common integer multiple of the

sinusoids’ periods.

Proof. We simply evaluate the integral (6.5). Along the diagonal elements, we get:

2

T

∫ t+T

t

sin2(ωiτ)dτ

=
1

T

∫ t+T

t

1− cos(2ωiτ)dτ

=
1

T

[
τ
∣∣∣t+T

t
− 1

2ωi
sin(2ωiτ)

∣∣∣t+T

t

]
= 1,

CHAPTER 6. JACOBIAN-FREE ALGORITHM 62

since the second term of the sum evaluates to 0 due to the signal being T -periodic. For the off-

diagonal elements, we require the following sum/difference angle identities:

cos(α+ β) = cosα cosβ − sinα sinβ

cos(α− β) = cosα cosβ + sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ

sin(α− β) = sinα cosβ − cosα sinβ.

We then evaluate the integrals:

2

T

∫ t+T

t

sin(ωiτ) sin(ωjτ)dτ

=
1

T

∫ t+T

t

cos [(ωi − ωj)τ]− cos [(ωi + ωj)τ] dτ

=
sin [(ωi − ωj)τ]

ωi − ωj

∣∣∣t+T

t
− sin [(ωi + ωj)τ]

ωi + ωj

∣∣∣t+T

t

=

(
sin(ωiτ) cos(ωjτ)− cos(ωiτ) sin(ωjτ)

ωi − ωj

) ∣∣∣t+T

t

−
(
sin(ωiτ) cos(ωjτ) + cos(ωiτ) sin(ωjτ)

ωi + ωj

) ∣∣∣t+T

t

= 0,

because the sinusoids are all T -periodic. Thus the integral evaluates to In.

Intuitively, sampling a single perturbation ϕk from the sinusoidal signal ϕ(t) is akin to choosing a

pair of deterministic, varying (hence quasi-stochastic) points from the boundary of an n-dimensional

ball of radius ϵ
√
2 centred at the currently chosen control input u. We then use that pair of points

to linearly estimate the instantaneous Jacobian.

With that, we conclude this chapter. We introduced a framework that allows online, model-free

optimization of our game-theoretic optimization problem. The key advantage of this technique is its

ability to converge to a reasonable estimate of a vKKT point despite not having access to a nominal

model of the system’s input-output sensitivities. The major limitations of this framework are that

it introduces more communication overhead between agents, it can require extensive tuning for the

perturbation signal to get a good quality approximation, and the fact that it converges to a limit set

rather than a limit point. In the next chapter, we will present simulation results that compare both

algorithms to offline methods as well as to each other, showcasing the advantages and limitations of

both.

Chapter 7

Simulations and Results

7.1 Academic Example

To validate the established theoretical framework and our presented algorithms, we first consider a

simple 2-player example with quadratic costs on both decisions and outputs. Each player controls

ui ∈ R, a scalar decision variable. The action set for the agents’ decisions is defined as Ω = Ω1×Ω2,

with Ωi = {u ∈ R : −5 ≤ u ≤ 5} for i ∈ {1, 2}. The output mapping is defined by

y =

[
y1

y2

]
=

[
π1(u, w)

π2(u, w)

]
=

[
w1u1 + w2

2u2

w2u1 + w2
1u2

]
(7.1)

where w = (w1, w2) ∈ [0, 1]2 is the unknown-but-bounded disturbance, which we assume has a

nominal value w̄ = (0.5, 0.5). The coupling constraints are an upper and lower bound on the total

action allowed:

−1 ≤ u1 + u2 ≤ 1.

We rearrange the above constraints to obtain

u1 + u2 ≥ −1[
1 1

] [u1

u2

]
≥ −1,

and

−u1 − u2 ≥ −1[
−1 −1

] [u1

u2

]
≥ −1.

Combining these into a single, affine inequality we obtain[
−1 −1
1 1

][
u1

u2

]
≥

[
−1
−1

]
.

63

CHAPTER 7. SIMULATIONS AND RESULTS 64

Thus we have sets U and Ui(u−i) of the form defined in (3.1), with Ai = [−1 1]⊤ and bi =
1
2 [−1 − 1]⊤ for i ∈ {1, 2}. Players 1 and 2 are respectively interested in solving the following

optimization problems:

min
u1

u⊤ [1 1
0 1]u+ [0 2]u+ y⊤ [1 0

0 1]y + [0 1]y

y1 = w1u1 + w2
2u2

u1 ∈ U1(u2),

(7.2)

min
u2

u⊤ [1 0
1 1]u+ [3 0]u+ y⊤ [1 0

0 1]y + [0 1]y

y2 = w2u1 + w2
1u2

u2 ∈ U2(u1).

(7.3)

The Jacobian of π with respect to the control input is given by

∂uπ(u, w) =

[
w1 w2

2

w2 w2
1

]
, (7.4)

and we select Π = ∂uπ(0, w̄) as our nominal Jacobian. Finding the pseudogradient F (u) and the

Jacobians ∂uπ(u, w) and ∂yg(y) for the above costs gives us the operator Hw(u), which can be

represented as

Hw(u) =

[
2u1 + u2 + 2w1π1(u, w) + 2w2π2(u, w) + w2

u1 + 2u2 + 2w2
2π1(u, w) + 2w2

1π2(u, w) + w2
1

]
,

with π1 and π2 as defined in (7.1). We substitute the values for w1 and w2 by using the nominal

Jacobian Π = ∂uπ(0, w̄), which yields

Hw,Π(u) =

[
2u1 + u2 + π1(u, w) + π2(u, w) +

1
2

u1 + 2u2 +
1
2π1(u, w) +

1
2π2(u, w) +

1
4

]
.

Differentiating this to get the Jacobian ∂uHw(u) we obtain

∂uHw,Π(u) =

[
2 + ∂u1

π1(u, w) + ∂u1
π2(u, w) 1 + ∂u2

π1(u, w) + ∂u2
π2(u, w)

1 + 1
2∂u1

π1(u, w) +
1
2∂u1

π2(u, w) 2 + 1
2∂u2

π1(u, w) +
1
2∂u2

π2(u, w)

]

From here, we aim to parametrize the Jacobian using the linear fractional transformation, as

outlined in Section 5.2. From the definition of the Jacobian (7.4) we know that

∂uHw,Π(u) =

[
2 1

1 2

]
+

[
w1 + w2 w2

2 + w2
1

1
2w1 +

1
2w2

1
2w

2
2 +

1
2w

2
1

]
.

The uncertainty for this Jacobian is contained in the terms (w1 +w2) and (w2
1 +w2

2), both of which

are in the range [0, 2]. We can thus choose to parametrize the uncertainty in this problem with two

variables:

∂uHw,Π(u) =

[
2 + δ1 1 + δ2

1 + 1
2δ1 2 + 1

2δ2

]
. (7.5)

Note the introduction of conservatism in this uncertainty parametrization: given a fixed δ1, the

CHAPTER 7. SIMULATIONS AND RESULTS 65

true Jacobian has δ2 constrained to a subset of the values that it can take in the LFT, whereas

this parametrization lets it vary independently (i.e., if w1 = w2 = 0.2, we know that δ1 = 0.4 and

δ2 = 0.08, but our conservative model admits all possible (0.4, δ2 ∈ [0, 2])). Thus the true Jacobian

is contained within this LFT. We can define our parameter block with the set

∆ =

{
∆ =

[
δ1 0

0 δ2

]
: δ1, δ2 ∈ [0, 2]

}

We use the iterative technique outlined in Example 2, which we can verify by direct computation,

to obtain the following LFT parametrization for the Jacobian (7.5):

M =

[
2 1

1 2

]
, B =

[
1 1
1
2

1
2

]

C =

[
1 0

0 1

]
, D =

[
0 0

0 0

]
,

With these matrices, we now have a Jacobian uncertainty set J lft, as defined in Definition 5.1.

Following the logic for block-structured uncertainty in Section 5.2.1, with each block being a scalar

(so Is = 1) unstructured monotone and Lipschitz uncertainty µ = 0 ≤ δi ≤ L = 2, we can construct

our convex cone:

Θ =

Θ =


0 0 2ϕ1 0

0 0 0 2ϕ2

2ϕ1 0 −2ϕ1 0

0 2ϕ2 0 −2ϕ2

 : ϕ1, ϕ2 ≥ 0

 .

With that, we are equipped to use the matrix inequality outlined in Proposition 5.2. We now use

the inequality to determine that the operator Hw,Π(u) satisfies Assumption 5 with η = 0.2131 and

θ = 7.5162. Note that Assumptions 1 and 4 are satisfied by our choice of cost functions and output

mapping, and Assumption 3 simply requires that the two players have one edge to communicate their

Lagrange multipliers. Thus, the robust OA vGNE-seeking algorithm (Algorithm 2) is applicable.

We present the results for the algorithm in Section 7.2.1, alongside comparisons to other algorithms.

7.2 Academic Example with Jacobian Estimation

In Section 7.1, we verified that 2 can be applied to an academic example. We now illustrate the

Jacobian estimation framework, Algorithm 3 using the same cost functions, coupling constraints,

and output mapping. We note that the most of the setup remains the same as in the previous

section. The only change comes from the perturbation vector and the Jacobian approximation. We

choose the following perturbation signal for the algorithm:

ϕ(t) =

[√
(2) sin(10πt)√
(2) sin(20πt)

]
. (7.6)

We set the time-horizon of the simulation as t ∈ [0, 6], and we sample 600 points evenly. This

corresponds to a sampling period Ts =
1

100 , and a signal period of T = 1
5 , which corresponds to the

CHAPTER 7. SIMULATIONS AND RESULTS 66

loose guidelines for sampling that we set in Remark 6. We set the disturbance as w1 = w2 = 0.75.

For the sake of comparison, we simulate four different approaches:

1. A variation of Algorithm 2 where the Jacobian is known precisely, by simply subtituting the

set-point w1 = w2 = 0.75 into (7.4).

2. The output is forecasted using a linearized output map (as described in Section 4.1.1 by

computing the linear approximation of π(u, w). We assume that during this computation,

players can directly measure the disturbance w ∈ R2 with an error equivalent to a zero-mean

normal distribution with a variance of 0.0001.

3. Algorithm 2 with the nominal Jacobian and validation as described in Section 7.1.

4. Algorithm 3 with the setup as described in this section.

We simulate the four approaches for 600 iterations, 50 times with randomized initial conditions, and

show our results in Figure 7.1.

Figure 7.1: The 2-player game’s decision trajectories over 600 iterations for 50 randomly generated
initial conditions. The symbols and trajectories are explained in the following section.

CHAPTER 7. SIMULATIONS AND RESULTS 67

7.2.1 Discussion of Simulation Results

Figure 7.1 is a comparison of the four different methods we used to compute the OA vGNE of the

problem. All the plots show decision trajectories over the 600 iterations for each of the 50 randomly

generated initial conditions. The two columns correspond to the two players, with each plot in a

column being overlayed with a contour map of that player’s cost function. The coloured curves

mark the trajectories that the two players iterated through during the simulations, and a yellow X

marks the final point of a trajectory. Intuitively, we can see that a vGNE lies somewhere around the

intersection of both players’ quadratic contours, as a deviation from such a point would correspond

to a cost increase for one or both players.

Each row of the plot corresponds to one of the four algorithms we simulated with. The first

row corresponds to a method with a perfect forecast for the Jacobian. The second row corresponds

to one with a linear forecast; note that the linear forecast mispredicts the optimal trajectory and

causes the decisions to diverge for some subset of the initial conditions, showcasing the need for

an online, feedback-based method. The bottom two plots correspond to the online method with a

nominal Jacobian (as computed in Section 7.1) and the Jacobian Estimation method (outlined in

Section 7.2) respectively. Both methods robustly converge to a limiting point, though one would

intuitively assume that the perfect information case corresponds to the best-case cost reduction. We

thus note the costs corresponding to each optimum in Table 7.2.1. The numerical results match the

Method (P1,P2) Actions (P1,P2) Cost

Online, Exact Jacobian [−0.1886,−0.0755]⊤ [−0.1604,−0.5753]⊤

Offline, Forecast Jacobian Diverges N/A

Online, Nominal Jacobian [−0.1509, 0.0000]⊤ [−0.0422,−0.4948]⊤

Online, Estimated Jacobian [−0.1727,−0.0649]⊤ [−0.1494,−0.5378]⊤

Table 7.1: Player actions and their corresponding costs, as calculated by the 4 different algorithms.

intuition presented. Perfect knowledge of the Jacobian provides the best-case cost reduction among

the algorithms tested. The linear forecast model does not converge for some of the initializations.

The nominal Jacobian has a worse cost than the model-free Jacobian does in this context.

7.3 2-Robot Game with Double Integrator Dynamics

In this section, we study the application that we used in Section 6.1 to motivate the model-free

Jacobian framework. To recap, the game is a simple, 2-robot problem with no disturbances or

coupling constraints. The two robots, i ∈ {1, 2}, each seek to approach a target position r̄i ∈ R2.

In Section 6.1, we did not go into detail on the robot dynamics and controller, which we expand on

here. Each robot obeys the following double-integrator dynamics:

ṙi = vi

v̇i = ξi,
(7.7)

CHAPTER 7. SIMULATIONS AND RESULTS 68

where ri ∈ R2 is the current position of the robot, and ξi ∈ R2 is the control input to the system.

The control input ξi(t) is decided by a PD controller with the following transfer function:

Ξi(s)

Ei(s)
:= Ci(s) =

Kp +Kds 0

0 Kp +Kds

 , (7.8)

where Kp = 1 and Kd = 2 are the derivative and proportional gains respectively. The signal

ei(t) = ui(t) − ri(t) is the error signal (which must be asymptotically stabilized), where ui(t) is a

position control input and ri(t) is the state output. The functions Ei(s), Ui(s), and Ri(s) are the

Laplace transforms of these three signals, and Ξi(s) is the Laplace transform of the plant input ξi(t).

Refer to Appendix D for a proof on this controller successfully tracking the constant position input.

Each robot has access to a sensor that tells it the squared distance between the two robots,

biased by some disturbance wi ∈ R (motivated, for example, by sensor measurement error or noise

on the channel that the robots communicate their distances through):y1
y2

 =

π1(u1, u2, w1)

π2(u1, u2, w2)

 := π(u, w) :=

∥u1 − u2∥2 + w1

∥u2 − u1∥2 + w2

 . (7.9)

Thus the Jacobian of the output mapping at steady-state can be precisely computed as

∂uπ(u) = 2

u⊤
1 − u⊤

2 u⊤
2 − u⊤

1

u⊤
1 − u⊤

2 u⊤
2 − u⊤

1

 . (7.10)

Note that these equations are the same as in 6.1, used here separately for ease of referencing. We

now develop the cost functions that the players are trying to minimize. To minimize the distance

between the robot and its target r̄i ∈ R2, we have the cost function

fi(ui) :=
1

2
∥ui − r̄i∥2. (7.11)

We seek to enforce the boundary constraint yi ≤
√
d. This constraint could be motivated, for

example, by a communication goal between the robots, causing a critical failure if they move too far

away from one another. We use a logarithmic barrier function to enforce this constraint:

gi(yi) := − log (d− yi) . (7.12)

Each player is thus trying to choose a position control input ui to minimize the cost function

Ji(ui, yi) = fi(ui) + gi(yi). The gradient of this cost function is

∇ui
Ji(u,y) = ∇ui

fi(ui) +
∂πi

∂ui
(u)

⊤∇yi
gi(yi) +

∂π−i

∂ui
(u)

⊤∇y−i
gi(yi)

∇uiJi(u, yi) =
1

2
∇ui
∥ui − r̄i∥2 −

∂πi

∂ui
(u)

⊤∇yi
[log(d− yi)]

∇ui
Ji(u, yi) = ui − r̄i +

∂πi

∂ui
(u)

⊤ 1

d− yi
(7.13)

CHAPTER 7. SIMULATIONS AND RESULTS 69

As before, we use u−i and y−i to denote the control input and the sensor output for the “other” player

(from player i’s perspective). Note that while the cost function has no explicit coupling between

players’ actions, there is inherent coupling in the learning dynamics through the Jacobian. Thus a

game-theoretic approach is appropriate for the problem, as it is not composed of two independent

optimization problems.

We apply three approaches to solve the problem, for the sake of comparison:

1. Computing the gradient ∇ui
Ji using the precisely known Jacobian (7.10), and applying Algo-

rithm 2, replacing the Jacobian estimate with the precise one instead. We expect this algorithm

to have the best performance, due to perfect information.

2. Calculating a nominal Jacobian Π to apply Algorithm 2, replacing the Jacobian in (7.13). To

compute the nominal Jacobian, we simply draw the straight line between each of the initial

and final points, and compute the average gradients corresponding to these points.

3. Computing the Jacobian online using the model-free framework outlined in Chapter 6, and

applying Algorithm 3.

We simulate the three algorithms with disturbances uniformly distributed as w1 ∈ [0.1, 0.4] and

w2 ∈ [0.1, 0.3]. We initialize the robots to u1 = col(0.5, 0.75) and u2 = col(1, 3). We simulate

twice, with different target positions: {r̄1 = col(2, 4), r̄2 = col(0,−1)} (Figure 7.2), and {r̄1 =

col(2, 4), r̄2 = col(4,−1)} (Figure 7.3).

In the figures, the blue curves represent the trajectories each robot took. The golden ‘O’ rep-

resents their starting point, and the golden ‘X’ represents the final point in their trajectory. The

green ‘X’ shows each robot’s goal. The red circle denotes the constraint boundary, centred at the

midpoint between the two robots’ final positions. The dashed purple line denotes the “optimality

line” between the two robots; the intuitive answer to the problem would be expected to be at the

intersections of the line with the final constraint boundary, a circle of radius
√
d centred at the

midpoint of the optimality line. Note that the red circle is only the final constraint boundary; we

independently verify that the robots obey the constraint for each time-step within the simulation.

-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

5

Perfect Jacobian

-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

5

Nominal Jacobian

-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

5

Model-Free Jacobian

Robot Trajectory

Target Position

Ending Position

Starting Position

Final Constraint Boundary

Optimality Line

Figure 7.2: The results of the simulations with the three algorithms and the “ideal” target positions.

We see in Figure 7.2 that the three algorithms described above perform relatively similarly.

From left to right, these correspond to the three approaches listed above (Algorithm 2 with a

perfect Jacobian, Algorithm 2 with a nominal Jacobian, and the model-free Algorithm 3). The

nominal Jacobian and the model-free approach both converge to a target in a close neighbourhood

CHAPTER 7. SIMULATIONS AND RESULTS 70

of the optimality line, and they do so along a trajectory that roughly follows the perfect information

trajectory. Observe that the perfect information trajectories are almost straight lines and thus

this set of initial conditions is highly favourable for the nominal Jacobian’s performance, since it

is computed from averaging the gradients along the straight line paths to the goals. The noisy

convergence near the end of the robots’ trajectories for the model-free method is expected, as the

Jacobian never converges to a “true” estimate, it perturbs every iteration (within bounded error of

the true Jacobian), thus the robots’ model-free final targets vary within a bounded set around the

perfect final targets.

-2 -1 0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

4

5

6

Perfect Jacobian

-2 -1 0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

4

5

6

Nominal Jacobian

-2 -1 0 1 2 3 4 5 6

-3

-2

-1

0

1

2

3

4

5

6

Model-Free Jacobian

Robot Trajectory

Target Position

Ending Position

Starting Position

Final Constraint Boundary

Optimality Line

Figure 7.3: The results of the simulations with the three algorithms and unfavourable target posi-
tions.

Figure 7.3 illustrates the problems of the nominal approach in this setup. The perfect trajectory

for robot 1 follows a straight line towards the goal, then sharply turns near the end to obey the con-

straint boundary as robot 2 approaches its respective goal and violates the boundary. At that turn,

the error of the nominal Jacobian appears to compound, and robot 2 converges to a final position

relatively far from the optimality line. The model-free Jacobian, on the other hand, converges to a

similar bounded set around the perfect optimum.

This illustrates the drawbacks of the nominal Jacobian setup, as we outlined in Section 6.1.

Without a priori knowledge of the path the robots are likely to follow, it is difficult to find a nominal

Jacobian that is truly representative of the robots’ cost functions near the constraint boundaries.

The estimation framework requires no knowledge of the structure of the Jacobian, but comes with

the drawback of not truly converging to a single optimum, instead converging to a bounded set in

the neighbourhood of the expected optimum.

7.4 Application: Distribution Feeder

We now consider a practical application arising in control of renewable sources in a distribution

feeder. We use the same setup as [1], with a power distribution feeder (Figure 7.4) whose details

can be found in [7]. In this grid, large quantities of solar generation cause bus voltages to rise

above acceptable levels; the goal is to limit over-voltage, while minimizing the system-wide power

CHAPTER 7. SIMULATIONS AND RESULTS 71

curtailment in the photovoltaic (PV) systems.

Figure 7.4: IEEE 37-node feeder [1]. Node 1 is the Point of Common Coupling (PCC). All other
nodes are connected to a load and a voltage sensor. The square nodes are equipped with PV systems.
The black lines denote electrical connections between nodes of the distribution feeder. The red lines
denote the communication graph that nodes use to communicate multipliers.

Let N = {4, 7, . . . , 36} be the set of all 18 nodes equipped with controllable PV systems (grey

nodes in Figure 7.4). The control input for each PV system i ∈ N is is an active and reactive power

injection set-point, denoted by ui = (pi, qi). Each of these are subject to the constraint ui ∈ Ωi

where

Ωi := {ui = [pi qi]
⊤ | 0 ≤ pi ≤ pmax

i , q2i + p2i ≤ (sratedi)2}.

Here pmax
i is the available active power for each PV unit (dictated by solar irradiance), and sratedi

is the rated apparent power of each PV inverter. The stacked decision vector is u = col({ui}i∈N) ∈
Ω =

∏
i∈N Ωi ⊂ R18. Similarly, let y = col({yi}i∈N) be the vector of measured voltage magnitudes

at every PV-equipped node. Let w ∈ R70 be the collection of all uncontrollable loads and power

injections (active and reactive) at all 35 nodes excluding the PCC. Each node’s cost function is

fi(ui) = ∥(uref)i − ui∥2 where uref = [pmax
i 0]⊤; this penalizes curtailment of the unit from its

maximum real power production. The output y = π(u, w) is dictated by the solution of the power

flow equations for the distribution feeder [7]. The mapping is nonlinear and we assume that it is

not known in full, and we only have access to the measurement y and a nominal Jacobian Πnom ∈
R18×36 of the mapping π. We set the nominal Jacobian to be the Jacobian of the power flow

equations of the feeder with a zero load profile and a voltage magnitude of 1 p.u at the PCC (refer

to Figure 7.4) [1]. We define the safety constraints on each output to be the set Y =
∏

i∈N Yi,
where Yi = {yi | y ≤ yi ≤ ȳ}, with y = 0.95 p.u. and ȳ = 1.05 p.u. We define the cost function
1
2

∑
j∈N gi(yi) = [max(0, y − yi, yi − ȳ)]2 for each node to penalize voltages outside the bus limits.

Finally, we define a set of coupling constraints differentiating this setup from the one in [1].

Consider the case where, perhaps due to contractual agreements, there is a hard upper limit on

the total curtailment of PV power within the feeder. To model this, we define a global coupling

constraint of the form
∑

i∈N (pmax
i − pi) ≤ l where l ∈ R is the upper bound on the total curtailed

real power. Note that pi = Aiui where Ai = [1 0], and each pmax
i is a known quantity at any given

time. Thus the global constraint can be defined as [A1 · · · AN]u ≥ −l+
∑

i∈N pmax
i . We can define

bi = pmax
i − l

N . Thus we have the sets U and Ui(u−i) as defined in (3.1).

With this setup, we are now ready to formulate the game-theoretic problem. At each time-step,

CHAPTER 7. SIMULATIONS AND RESULTS 72

node i ∈ N plays the following constrained game:

min
ui

∥(uref)i − ui∥2 +
1

2

∑
j∈N

[max(0, y − yj , yj − ȳ)]2

s.t. yi = πi(u, w)

ui ∈ Ui(u−i),

(7.14)

to which we aim to apply our distributed OA vGNE seeking algorithm (Algorithm 2). In order to

certify the convergence of Algorithm 2 for this problem, we parametrize it with a linear fractional

transformation. Note that (7.14) is in the form described in Section 5.3: the class of problems of

the same form as (5.13). Thus the pseudogradient is of the form in (5.20) with Q = I2N , αi = 1,

and the rows of Π chosen correspondingly from the nominal Jacobian Πnom. Our goal is to express

the Jacobian in the form Πnom +∆π. Following the methodology in [1], we sample the Jacobian at

10, 000 randomly generated operating points, and compute the difference from the nominal Jacobian

at each of these points to obtain a norm-bound γ as described in (5.18). We obtain a norm bound

and multiply it by a tolerance factor of 1.1 to obtain γ = 1.43. We then use the recipes from Section

5.3 and the aforementioned parameters to verify the strong monotonicity and Lipschitz continuity

of the pseudogradient. We show that Assumption 5 is satisfied with η̄ = 0.44 and θ̄ = 173. It should

be noted that the matrix inequalities developed in Section 5.1 are simply sufficient for convergence

rather than necessary, and thus the estimates on the monotonicity and Lipschitz constants might

be overly conservative. They simply provide convergence guarantees under the appropriately chosen

(Lemma 4.3) step sizes, but the algorithm can have its step sizes tuned for better performance.

For the purpose of this simulation, the communication graph Gλ is defined as connecting any

nodes in N that are adjacent to one another. The red lines on Figure 7.4 shows the communication

graph for the problem. At each iteration of each time step, each node receives multipliers λj and

auxiliary variables zj from neighbouring nodes j ∈ NGλ
(i) and the relevant output measurements

yj , j ∈ NGf
(i), along with local voltage measurement yi, and performs the update

ui,k+1 = PΩi

[
ui,k − τi

(
2(ui − (uref)i) +

[
Π⊤

i1 . . . Π⊤
iN

]
sy,ȳ(y)−

1
0

λi,k

)]
, (7.15)

where sy,ȳ is the soft-thresholding function, defined as in (5.17). Each matrix Πij ∈ R1×2 approx-

imately captures the sensitivity of local voltage changes with respect to player j’s active/reactive

power changes. The multipliers λi and the auxiliary variables zi are updated as in Algorithm 2.

We simulate our distributed controller using ten hours of solar irradiance and load consumption

data collected from Anatolia, CA, USA, with a granularity of one second. The maximum permissible

curtailment is set to l = 0.006 p.u. As can be seen in Figure 7.5, voltages are maintained within safety

limits and the total curtailed power is constrained. The constrained power curtailment shows the

algorithm’s ability to enforce coupling constraints between nodes despite lacking central knowledge

of all nodes’ constraints and their multipliers.

CHAPTER 7. SIMULATIONS AND RESULTS 73

Figure 7.5: Comparison of the distributed algorithm vs. no control.

7.5 Application: Distribution Feeder without Global Information-

Sharing

In the previous section we explored an application of the OA vGNE seeking algorithm to data

sampled from a distribution feeder. Note that the cost function (7.14) requires knowledge of each

other player’s instantaneous output voltage. Further, the gradient step requires each player to have

knowledge of their voltage levels’ sensitivity to each other player’s power injections. We next explore

reducing the informational requirements on this problem formulation, and testing the robustness of

the solution in this context. We assume that each node only has access to its own voltage level,

rather than each other node’s as it did prior. The game formulation thus becomes

min
ui

∥(uref)i − ui∥2 +
3

2
[max(0, y − yi, yi − ȳ)]2

s.t. yi = πi(u, w)

ui ∈ Ui(u−i).

(7.16)

Note that we use the hyperparameter αi = 3, to increase each player’s penalty for disobeying the

constraint. This is meant to offset the fact that in (7.14) each player contributed to constraining the

voltage levels. The matrix Q remains unchanged from before. However, note that when applying

CHAPTER 7. SIMULATIONS AND RESULTS 74

the chain rule to the cost function as in (5.19), we obtain

gi(y) =
3

2

[
max(0, y

¯j
− yj , yj − ȳj)

]2
∇ui

gi(π(u, w)) =

N∑
k=1

∂ui
πk(u, w)

⊤)∇yk
gi(y)

= 3 ∂ui
πi(u, w)sy

¯i
,ȳi

(yi),

because ∇yk
gi = 0 for all k ̸= i. Thus we can express the gradient in the form (5.20) with

Πij =

3(Πnom)ii, i = j

0, i ̸= j.

Figure 7.6: Comparison of the distributed algorithm vs. no control.

Figure 7.6 shows the results of this simulation. We set the upper limit to power curtailment

l = 0.003 p.u. and show a run of the simulation over the same data as the previous section. We note

that some of the nodes overshoot the safety limits by larger margins than in Figure 7.5, due to the

lack of cross-sensitivity.

Chapter 8

Conclusion and Future Work

In this thesis we investigated the intersection of robust control and game theory, and its applications

to various engineering problems. Our major contribution was the development of two algorithms

that converge to candidate optimal points for game theoretic problems, while remaining robust to

external disturbances and model uncertainty.

We outlined the first algorithm, the online approximate vGNE seeking algorithm in Chapter 4,

and illustrated its convergence as a forward-backward operator splitting technique. We developed

criteria to express the KKT points of games as a sum of monotone operators. This unification of

robust online optimization and game-theoretic models can enable the implementation of scalable,

decentralized optimization on large classes of problems in networks, power systems, smart cities,

and other engineering applications.

As our forward-backward technique relies on verifying the strong monotonicity and Lipschitz

continuity of uncertain operators, we focused on developing techniques for guaranteeing the fulfill-

ment of these criteria in Chapter 5. We outlined the usefulness of the linear fraction transformation

within our framework, and explained how uncertain operators can be overbounded by a larger set of

uncertain operators, which makes the problem of verifying the above criteria much more tractable.

We utilized this to develop a single matrix inequality which can be used to verify these criteria for

the pseudogradients of games. Previous work in this area proves the usefulness of these techniques

for gradients of strongly convex cost functions. Our main contribution in this regard is the extension

of these techniques to pseudogradients of games, which make no assumption on the strong convexity

of the underlying cost functions.

We then explored the limitations of a nominal Jacobian framework and noted the recent work

in Simultaneous Perturbation Stochastic Approximation techniques. We noted that existing frame-

works approximate the gradient as a whole. We developed a technique that allows the approximation

of the Jacobian embedded within each agent’s gradient, and proved its convergence using operator-

theoretic techniques. This enabled the development of the model-free game-theoretic algorithm in

Chapter 6. We provided convergence criteria and bounds, and explored the advantages and disad-

vantages of this approach compared to the nominal approach. In summary, the OA vGNE algorithm

performs worse if the nominal Jacobian is too inaccurate, while the model-free framework has more

overhead and does not converge to a final limiting point. The tradeoffs of these techniques can make

them relevant in different applications.

75

CHAPTER 8. CONCLUSION AND FUTURE WORK 76

8.1 Future Work

The primary motivation of this thesis was to implement distributed controllers in an information-light

manner. This leads to natural extensions in the area of partial communication between agents. The

interference graph Gf could be formed in such a way that agents can only communicate information

with of the other agents whose actions and outputs they have a cost dependence on, rather than all of

them. Prior work has been done in developing consensus dynamics to allow agents to estimate others’

actions, similar to the setup used for the Lagrange multipliers in this thesis [20, 58]. Extending the

estimation framework to output dynamics is a major area for future research. The use of more

information-light techniques can allow for robust optimization of more complex classes of problems.

Another useful extension of the partial information framework would be one where one or more

agents are adversarial in the communication graph. This can have applications in networks, security,

etc. Training agents to come to a consensus while ignoring intentionally falsified information would

also be a major improvement to the robustness of the framework, since it would add the ability for

agents to reject classes of disturbances that affect the communication graph rather than directly

impacting the output mapping as we studied within this thesis.

Another future avenue for research would be tuning the exploration signal from Chapter 6. For

one, we defined the sampling of the signal relatively informally in Remark 6. A more rigorous set

of techniques to tune quasi-stochastic signals is a possible future area to consider. Additionally,

the assumptions we place on the signal’s average work well for proving convergence conveniently,

but it is possible that a more complex quasi-stochastic signal could be used to generate less noisy

convergence or a tighter bound around the optimum that Algorithm 3 finds. It should be noted that

quasi-stochastic techniques are a relatively recent innovation on stochastic approximation techniques

[18, 27], leaving this an open area of research.

The focus of this research was in utilizing non-cooperative game theory to enable the use of

distributed optimization. Enabling specific groups of agents within the larger network to play

the game cooperatively could enable faster and more robust convergence. Consider, for example,

the setup we used in the simulation in Section 7.5, where agents only had access to local voltage

outputs, versus having global outputs in Section 7.4. Cooperative subgroups could define a sweet

spot between these two extremes, where agents that are spatially close to one another could have

full, cooperative communication, with far off groups either communicating along sparser channels, or

relying on a partial information framework. This would enable the implementation of game-theoretic

optimization techniques with a smaller communication overhead.

Appendix A

Maximal Monotonicity of

Operators

Consider the operator B defined in (3.6). We can express it as a sum of two operators:

B

u
λ

 =

0 −A⊤

A 0

u
λ

+NΩ×Rm
+

u
λ

 .

The first term is a linear, single-valued operator with domain and range Ω × Rm
+ , thus it fulfills

Minty’s Theorem (Proposition 2.2), and is maximally monotone. The second term is the normal

cone operator, which is maximally monotone as per Lemma 2.2.

By Lemma 2.7, the sum of a maximally monotone operator and a linear operator is maximally

monotone, provided that the intersection of their domains is not the empty set. Hence B is a

maximally monotone operator.

77

Appendix B

Analysis of the Extraction

Operator

In this section, we aim to show that the extraction operator E : Rn×N → Rn, defined in (4.8) is a

bounded linear operator. We first show linearity. Consider some M1, M2 ∈ Rn×N and a, b ∈ R.

Then

E(aM1 + bM2)

=

N∑
k=1

∑
l∈Nk

[
e⊤l (aM1 + bM2) ek

]
el

=

N∑
k=1

∑
l∈Nk

[
e⊤l (aM1) ek + e⊤l (bM2) ek

]
el

=

N∑
k=1

∑
l∈Nk

[
e⊤l (aM1) ek

]
el +

∑
l∈Nk

[
e⊤l (bM2) ek

]
el

=

N∑
k=1

∑
l∈Nk

[
e⊤l (aM1) ek

]
el +

N∑
k=1

∑
l∈Nk

[
e⊤l (bM2) ek

]
el

= a

N∑
k=1

∑
l∈Nk

[
e⊤l M1ek

]
el + b

N∑
k=1

∑
l∈Nk

[
e⊤l M2ek

]
el

= aE(M1) + bE(M2).

Thus the operator E is linear. We next show that the operator is continuous. From the operator’s

linearity, we start with

E(M1)− E(M2) = E(M1 −M2). (B.1)

For the operator to be continuous, we need to show that

lim
M1→M2

∥E(M1)− E(M2)∥2 = 0 ∀M1,M2 ∈ Rn×N ,

78

APPENDIX B. ANALYSIS OF THE EXTRACTION OPERATOR 79

which we can easily show by using the definition of the operator (4.8) in the right side of (B.1).

Thus E is a continuous operator.

A linear and continuous operator is a bounded operator, and thus E is a bounded operator. We

denote the operator norm of E as Emax, i.e.,

∥E(M)∥ ≤ Emax∥M∥, ∀M ∈ Rn×N . (B.2)

Appendix C

Matrix Inequality Proofs

C.1 Equivalence of Semidefinite Inequalities

In this section we aim to prove that the matrix inequality (5.1) is equivalent to the inequality

∥F (x)− F (y)∥2P − (ρ+ θ)⟨F (x)− F (y), x− y⟩P + ρθ∥x− y∥2P ≤ 0, (C.1)

for any F : Rn → Rn and x, y ∈ Rn. We begin by expanding out (5.1):

2J⊤PJ − (ρ+ θ)
[
J⊤P + PJ

]
+ 2ρθP ≼ 0. (C.2)

We first aim to show that (C.1) implies (C.2). We assume that (C.1) is true, and begin by

considering some y = x+ τw, where τ ∈ R+ is a scalar magnitude and w ∈ Rn is a direction vector.

We divide (C.1) by τ2:

1

τ2
∥F (x+ τw)− F (x)∥2P −

ρ+ θ

τ2
⟨F (x+ τw)− F (x), τw⟩P +

ρθ

τ2
∥τw∥2P ≤ 0

1

τ2
⟨F (x+ τw)− F (x), F (x+ τw)− F (x)⟩P −

ρ+ θ

τ
⟨F (x+ τw)− F (x), w⟩P + ρθ⟨w,w⟩P ≤ 0.

Taking the limit as τ approaches 0 from above, we obtain

lim
τ→0+

⟨F (x+ τw)− F (x)

τ
,
F (x+ τw)− F (x)

τ
⟩P − (ρ+ θ)⟨F (x+ τw)− F (x)

τ
, w⟩P + ρθ⟨w,w⟩P ≤ 0

⟨∂F (x)w, ∂F (x)w⟩P − (ρ+ θ)⟨∂F (x)w,w⟩P + ρθ⟨w,w⟩P ≤ 0.

For simplicity of notation, we denote J := ∂F (x). Thus, for all x, w ∈ Rn, the following must be

true:

w⊤J⊤PJw − (ρ+ θ)w⊤J⊤Pw + ρθw⊤Pw ≤ 0. (C.3)

80

APPENDIX C. MATRIX INEQUALITY PROOFS 81

Since all the terms are scalars, we can rewrite the middle term:

w⊤J⊤Pw

=
1

2

[
w⊤J⊤Pw + w⊤J⊤Pw

]
=

1

2

[
w⊤J⊤Pw + (w⊤J⊤Pw)⊤

]
=

1

2

[
w⊤J⊤Pw + w⊤PJw

]
.

With that, we rewrite (C.3) and multiply it by 2 to obtain:

w⊤
[
J⊤PJ − ρ+ θ

2

[
J⊤P + PJ

]
+ ρθP

]
w ≤ 0

2J⊤PJ − (ρ+ θ)
[
J⊤P + PJ

]
+ 2ρθP ≼ 0.

Thus we conclude that (C.1) implies (C.2). We now prove the reverse direction. We start by

assuming that (C.2) is true. We define a parametric line between two points x ∈ Rn and y ∈ Rn:

γ(t) = (1− t)y + tx, t ∈ [0, 1].

Note that γ(0) = y and γ(1) = x. The derivative of γ(t) is

γ̇(t) :=
dγ

dt
(t) = x− y.

With this parametric definition, we can express our function F as follows:

F (x)− F (y) =

∫ 1

0

dF

dt
(γ(t)) dt

=

∫ 1

0

∂F (γ(t))γ̇(t)dt

=

∫ 1

0

∂F (γ(t))(x− y)dt.

Taking the norm ∥ · ∥P on both sides, we get

∥F (x)− F (y)∥2P =
∥∥∥∫ 1

0

∂F (γ(t))(x− y)dt
∥∥∥2
P

≤ max
z

∥∥∥∫ 1

0

∂F (z)(x− y)dt
∥∥∥2
P
,

where z is chosen from along the parametrized line, that is, z = γ(t̄), for some t̄ ∈ [0, 1] that

maximizes the norm on the right hand side. We denote the Jacobian corresponding to this maximal

APPENDIX C. MATRIX INEQUALITY PROOFS 82

z as J := ∂F (z). Then

max
z

∥∥∥ ∫ 1

0

∂F (z)(x− y)dt
∥∥∥2
P

=
∥∥∥∫ 1

0

J(x− y)dt
∥∥∥2
P

= ∥J(x− y)∥2P
= (x− y)⊤J⊤PJ(x− y). (C.4)

From (C.2), we know that

J⊤PJ ≼
1

2

[
(ρ+ θ)

[
J⊤P + PJ

]
− 2ρθP

]
,

therefore, we can place an upper bound on (C.4):

∥F (x)− F (y)∥2P ≤ (x− y)⊤J⊤PJ(x− y)

≤ 1

2
(x− y)⊤

[
(ρ+ θ)

[
J⊤P + PJ

]
− 2ρθP

]
(x− y)

≤ ρ+ θ

2

[
(x− y)⊤

[
J⊤P + PJ

]
(x− y)

]
− ρθ∥x− y∥2P .

Rearranging this inequality, we can say

1

2
(x− y)⊤

[
J⊤P + PJ

]
(x− y) ≥ 1

ρ+ θ

[
∥F (x)− F (y)∥2P + ρθ∥x− y∥2P

]
. (C.5)

Note that the value on the right hand side is strictly greater than 0 for all x ̸= y, hence it is true to

say that there exists some µ ∈ R such that

1

2
(x− y)⊤

[
J⊤P + PJ

]
(x− y) ≥ µP.

By Proposition 8 in [59], which is a modification of Proposition 2.3.2 in [35], we can then say that

F is a strongly monotone function. We can conclude that

⟨F (x)− F (y), x− y⟩P ≥
1

ρ+ θ

[
∥F (x)− F (y)∥2P + ρθ∥x− y∥2P

]
,

which can then be rearranged to exactly obtain (C.1). Thus the two statements, (C.1) and (C.2),

are equivalent.

C.2 Sector-Bounded Nonlinearity

Consider some function F : Rn → Rn, and any two points x, y ∈ Rn. Assume there exist ρ, θ > 0,

P ≻ 0 such that

[∥F (x)− F (y)∥P − ρ∥x− y∥P] [∥F (x)− F (y)∥P − θ∥x− y∥P] ≤ 0. (C.6)

APPENDIX C. MATRIX INEQUALITY PROOFS 83

This statement is equivalent to saying that of the two terms multiplied together, one must be positive

and the other negative. Assume that the first term is positive. Assume, as we did in the proof for

Proposition 5.1, that θ ≥ ρ. Then

∥F (x)− F (y)∥P ≤ ρ∥x− y∥P ,

necessarily implies

∥F (x)− F (y)∥P ≤ θ∥x− y∥P .

This would lead to both terms in (C.6) being negative, which contradicts the assumption we started

with, that the inequality held true. We require that one be positive and the other be negative, which

can then only happen if the second term of (C.6) is negative, and the first positive,and thus

ρ∥x− y∥P ≤ ∥F (x)− F (y)∥P ≤ θ∥x− y∥P . (C.7)

Thus (C.6) is equivalent to the inequality (C.7).

Appendix D

PD Controller Tracking

For a detailed reading on the fundamentals of Laplace Transforms and their application to feedback

control, we refer the reader [60], specifically chapters 2 and 4. The double integrator dynamics from

(7.7) can be represented in the form of a transfer function as

Ri(s)

Ξi(s)
:= Gi(s) =

 1
s2 0

0 1
s2

 . (D.1)

We seek to implement a controller Ci(s) that chooses a control input Ξi(s) such that the system

asymptotically tracks a constant reference signal of the form Ui(s) = 1
scol(ūi,a, ūi,b). Figure D.1

illustrates the block diagram of the system.

Figure D.1: Block diagram of the PD controller.

We consider a controller of the form

Ci(s) =

Kp +Kds 0

0 Kp +Kds

 , (D.2)

that is, we apply a PD controller with derivative gainKd and proportional gainKp to each dimension

84

APPENDIX D. PD CONTROLLER TRACKING 85

of the robot’s state. We verify the values for Kd, Kp for which the closed loop transfer matrix is

asymptotically stable.

Ri(s) = Gi(s)Ξi(s)

Ri(s) = Gi(s)Ci(s) [Ui(s)−Ri(s)]

Ri(s)

Ui(s)
= [1 + Ci(s)Gi(s)]

−1
Ci(s)Gi(s)

Ri(s)

Ui(s)
=


Kp

s2
+

Kd
s

1+
Kp

s2
+

Kd
s

0

0
Kp

s2
+

Kd
s

1+
Kp

s2
+

Kd
s


Ri(s)

Ui(s)
=

 Kds+Kp

s2+Kds+Kp
0

0
Kds+Kp

s2+Kds+Kp

 . (D.3)

We want to choose Kd, Kp such that the poles of the transfer function are in the open left-half plane.

We can verify by direct calculation that the choice of Kp = 1, Kd = 2 satisfies this. Applying the

quadratic formula to the denominator, we get

−Kd ±
√
K2

d − 4Kp

2

= − 1.

Since the poles are asymptotically stable, we can apply the final value theorem to obtain the steady-

state value of the control system. We assume that the input is a constant, causal reference signal of

the form ui(t) = col(ūi,a, ūi,b).

lim
t→∞

ri(t) = lim
s→0

sRi(s)

= lim
s→0

s

 Kds+Kp

s2+Kds+Kp
0

0
Kds+Kp

s2+Kds+Kp

 1

s

ūi,a

ūi,b


=

ūi,a

ūi,b

 . (D.4)

Thus the control system asymptotically tracks a constant reference signal.

Bibliography

[1] M. Colombino, J. W. Simpson-Porco, and A. Bernstein, “Towards robustness guarantees for

feedback-based optimization,” in Proc. IEEE CDC, 2019, pp. 6207–6214.

[2] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Optimization algorithms as robust

feedback controllers,” Unpublished, 2021. arXiv: 2103.11329 [math.OC].

[3] M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization as a feedback controller:

Stability and tracking,” IEEE Trans. Control Net. Syst., vol. 7, no. 1, pp. 422–432, 2020.

[4] L. S. P. Lawrence, J. W. Simpson-Porco, and E. Mallada, “Linear-convex optimal steady-state

control,” IEEE Trans. Autom. Control, vol. 66, no. 11, pp. 5377–5384, 2021.

[5] S. Low and D. Lapsley, “Optimization flow control. i. basic algorithm and convergence,” IEEE

Trans. Networking, vol. 7, no. 6, pp. 861–874, 1999.

[6] Y. Tang, K. Dvijotham, and S. Low, “Real-time optimal power flow,” IEEE Trans. Smart

Grid, vol. 8, no. 6, pp. 2963–2973, 2017.

[7] E. Dall’Anese and A. Simonetto, “Optimal power flow pursuit,” IEEE Trans. Smart Grid,

vol. 9, no. 2, pp. 942–952, 2018.

[8] S. Bolognani, R. Carli, G. Cavraro, and S. Zampieri, “Distributed reactive power feedback con-

trol for voltage regulation and loss minimization,” IEEE Transactions on Automatic Control,

vol. 60, no. 4, pp. 966–981, Apr. 2015.

[9] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Projected gradient descent on riemannian

manifolds with applications to online power system optimization,” in Allerton Conf on Comm,

Ctrl & Comp, 2016, pp. 225–232.

[10] M. Vaquero and J. Cortés, “Distributed augmentation-regularization for robust online convex

optimization,” IFAC-PapersOnLine, vol. 51, no. 23, pp. 230–235, 2018, issn: 2405-8963.

[11] J. S. Shamma, “Game theory, learning, and control systems,” National Science Review, vol. 7,

no. 7, pp. 1118–1119, Nov. 2019. [Online]. Available: https://doi.org/10.1093/nsr/nwz163.

[12] J. R. Marden and J. S. Shamma, “Chapter 16 - game theory and distributed control,” in

ser. Handbook of Game Theory with Economic Applications, H. P. Young and S. Zamir, Eds.,

vol. 4, Elsevier, 2015, pp. 861–899. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/B9780444537669000161.

[13] G. Belgioioso, D. Liao-McPherson, M. H. de Badyn, S. Bolognani, J. Lygeros, and F. Dörfler,

Sampled-data online feedback equilibrium seeking: Stability and tracking, 2021. [Online]. Avail-

able: https://arxiv.org/abs/2103.13988.

86

https://arxiv.org/abs/2103.11329
https://doi.org/10.1093/nsr/nwz163
https://www.sciencedirect.com/science/article/pii/B9780444537669000161
https://www.sciencedirect.com/science/article/pii/B9780444537669000161
https://arxiv.org/abs/2103.13988

BIBLIOGRAPHY 87

[14] A. R. Romano and L. Pavel, “Dynamic NE seeking for multi-integrator networked agents

with disturbance rejection,” IEEE Transactions on Control of Network Systems, vol. 7, no. 1,

pp. 129–139, Mar. 2020.

[15] S. Givigi and H. Schwartz, “A game theoretic approach to swarm robotics,” Applied Bionics

and Biomechanics, vol. 3, 2006.

[16] Y. Zhang and M. Guizani. CRC Press, 2019.

[17] A. B. MacKenzie and L. A. DaSilva, Synthesis Lectures on Communications. Springer, 2006.

[18] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn, Model-free primal-dual methods for network

optimization with application to real-time optimal power flow, 2019. [Online]. Available: https:

//arxiv.org/abs/1909.13132.

[19] P. Yi and L. Pavel, “An operator splitting approach for distributed generalized Nash equilibria

computation,” Automatica, vol. 102, pp. 111–121, 2019, issn: 0005-1098.

[20] L. Pavel, “Distributed GNE seeking under partial-decision information over networks via a

doubly-augmented operator splitting approach,” IEEE Trans. Autom. Control, vol. 65, no. 4,

pp. 1584–1597, Apr. 2020.

[21] F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,” Annals of Operations

Research, vol. 175, pp. 177–211, 2010.

[22] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, Optimal rates for zero-order

convex optimization: The power of two function evaluations, 2013.

[23] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions, 2017.

[24] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals of Mathemat-

ical Statistics, vol. 22, no. 3, pp. 400–407, 1951. doi: 10.1214/aoms/1177729586. [Online].

Available: https://doi.org/10.1214/aoms/1177729586.

[25] “A one-measurement form of simultaneous perturbation stochastic approximation,” Automat-

ica, vol. 33, no. 1, pp. 109–112, 1997, issn: 0005-1098. doi: https://doi.org/10.1016/S0005-

1098(96)00149-5.

[26] “Implementation of the simultaneous perturbation algorithm for stochastic optimization,” taes,

vol. 34, no. 3, pp. 817–823, 1998.

[27] D. Shirodkar and S. P. Meyn, “Quasi stochastic approximation,” Proceedings of the 2011

American Control Conference, pp. 2429–2435, 2011.

[28] H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. Springer, 2011, p. 468.

[29] C. Scherer and S. Weiland, Linear matrix inequalities in control, 2015.

[30] L. Hogben. Routledge, 2013.

[31] G. Strand, Linear Algebra and its Applications, 4th. Brooks Cole, 2005.

[32] M. Maggiore, Foundations of Nonlinear Control Theory. 2019.

[33] A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with

Applications. Springer, 1996.

https://arxiv.org/abs/1909.13132
https://arxiv.org/abs/1909.13132
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/https://doi.org/10.1016/S0005-1098(96)00149-5
https://doi.org/https://doi.org/10.1016/S0005-1098(96)00149-5

BIBLIOGRAPHY 88

[34] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Springer, 2001.

[35] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementary

Problems. Springer Science & Business Media, 2007.

[36] K. J. Devlin, Fundamentals of contemporary set theory. Springer-Verlag, 1979.

[37] F. H. Clarke, “Generalized gradients and applications,” Trans. of the AMS, vol. 205, 1975.

[38] A. Báıllo and J. E. Chacón, “Chapter 1 - statistical outline of animal home ranges: An applica-

tion of set estimation,” in Data Science: Theory and Applications, ser. Handbook of Statistics,

A. S. Srinivasa Rao and C. Rao, Eds., vol. 44, Elsevier, 2021, pp. 3–37.

[39] M. D. Voisei, Maximal monotone normal cones in locally convex spaces, 2019.

[40] R. T. Rockafellar, “On the maximal monotonicity of subdifferential mappings.,” Pacific Jour-

nal of Mathematics, vol. 33, pp. 209–216, 1970.

[41] J. M. Borwein and L. Yao, “Maximality of the Sum of a Maximally Monotone Linear Relation

and a Maximally Monotone Operator,” Set-Valued and Variational Analysis, vol. 25, pp. 603–

616, 2013.

[42] C. Godsil and G. F. Royle, Algebraic Graph Theory, ser. Graduate Texts in Mathematics Book

207. Springer, 2001.

[43] F. Bullo, Lectures on Network Systems, 1.6. Kindle Direct Publishing, 2022.

[44] N. M. M. de Abreu, “Old and new results on algebraic connectivity of graphs,” Linear Algebra

and its Applications, vol. 423, no. 1, pp. 53–73, 2007.

[45] “The laplacian spectrum of a graph,” Computers & Mathematics with Applications, vol. 48,

no. 5, pp. 715–724, 2004.

[46] J. W. Simpson-Porco, “Analysis and synthesis of low-gain integral controllers for nonlinear

systems,” IEEE Trans. Autom. Control, vol. 66, no. 9, pp. 4148–4159, Sep. 2021.

[47] G. E. Dullerud and F. Paganini, “A course in robust control theory,” 2000.

[48] M. Zhu and E. Frazzioli, “Distributed robust adpative equilibrium computation for generalized

convex games,” Automatica, vol. 63, pp. 82–91, 2016.

[49] H. Yin, U. V. Shanbhag, and P. G. Mehta, “Nash equilibrium problems with scaled congestion

costs and shared constraints,” IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1702–1708,

2011.

[50] M. J. Kearns, M. L. Littman, and S. P. Singh, “Graphical models for game theory,” CoRR,

vol. abs/1301.2281, 2013. arXiv: 1301.2281.

[51] L. J. Ratliff, S. A. Burden, and S. S. Sastry, “On the characterization of local Nash equilibria

in continuous games,” IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2301–2307, Aug. 2016.

[52] J. N. Webb, “Game theory, Decisions, interaction and evolution,” in New York, USA: Springer,

2007, ch. 4, sec. 1, p. 62.

[53] C. Yu, M., van der Schaar, and A. H. Sayed, “Distributed learning for stochastic generalized

Nash equilibrium problems,” IEEE Trans. Signal Proc., vol. 65, no. 15, pp. 3893–3908, 2017.

[54] S. Grammatico, “Dynamic control of agents playing aggregate games with coupling con-

straints,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4537–4548, 2017.

https://arxiv.org/abs/1301.2281

BIBLIOGRAPHY 89

[55] A. Nagurne, Network Economics: A Variational Inequality Approach. Springer, 1993.

[56] A. Auslender and M. Teboulle, “Lagrangian duality and related multiplier methods for vari-

ational inequality problems,” SIAM Journal on Optimization, vol. 10, no. 4, pp. 1097–1115,

2000.

[57] A. Megretski and A. Rantzer, “System analysis via integral quadratic constraints,” IEEE

Trans. Autom. Control, vol. 42, no. 6, pp. 819–830, 1997.

[58] D. Gadjov and L. Pavel, “A passivity-based approach to Nash equilibrium seeking over net-

works,” IEEE Trans. Autom. Control, vol. 64, no. 3, pp. 1077–1092, 2019.

[59] ——, On the exact convergence to nash equilibrium in hypomonotone regimes under full and

partial-information, 2021.

[60] R. C. Dorf and R. H. Bishop, Modern Control Systems, 12th. Pearson, 2017.

	Introduction
	Motivation
	Literature Review
	Contributions
	Organization

	Background
	Mathematical Notations and Linear Algebra
	Sets and Set Projection
	Functions and Continuity
	Operator Theory
	Graph Theory
	Linear Fractional Representation
	Examples of Linear Fractional Transformation

	Generalized Nash Equilibrium Problems
	Game Formulation and Nash Equilibria
	Distributed vGNE-seeking Algorithm
	Forward-Backward Algorithm

	Games Played with Output Mappings
	Problem Formulation
	Feedforward Forecast-Based Optimization
	Online Feedback-Based Optimization

	Generalized Nash Equilibrium with Output Mapping
	Online Approximate vGNE-seeking Algorithm
	Forward-Backward Algorithm
	Convergence Analysis

	Monotonicity and Lipschitz Continuity of Uncertain Operators
	Semidefinite Programming Methods to Verify Monotonicity and Lipschitz Continuity
	Linear Fractional Representation of Uncertain Operators
	Recipes for LFR Modelling

	Feedback Optimization Example

	Jacobian-Free Algorithm
	Limitations of a Fixed Jacobian
	Quasi-Stochastic Approximation of Jacobian
	Convergence Analysis

	Choice of Perturbation Signal

	Simulations and Results
	Academic Example
	Academic Example with Jacobian Estimation
	Discussion of Simulation Results

	2-Robot Game with Double Integrator Dynamics
	Application: Distribution Feeder
	Application: Distribution Feeder without Global Information-Sharing

	Conclusion and Future Work
	Future Work

	Maximal Monotonicity of Operators
	Analysis of the Extraction Operator
	Matrix Inequality Proofs
	Equivalence of Semidefinite Inequalities
	Sector-Bounded Nonlinearity

	PD Controller Tracking

