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Abstract

This thesis presents an algorithm that solves the power flow problem for balanced,

three phase transmission systems at steady state. This algorithm is an extension of

the “fixed-point power flow” algorithm in the literature, which is originally derived

for lossless AC transmission systems. We first manipulate the standard power flow

equations into an equivalent fixed-point form, from which we derive the extended

fixed-point power flow algorithm. We then theoretically study the proposed algorithm

on a two-bus system, where we model selected network parameters, e.g., resistive

loss, as perturbations to a nominal, lossless system, and derive sufficient solvability

conditions. Finally, we validate the algorithm through extensive simulations on test

systems of various sizes under different loading scenarios, and compare its convergence

behaviors against those of classic power flow algorithms.
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Chapter 1

Introduction

1.1 Problem Motivation

A fundamental problem that underpins many power system analyses and operations

is the power flow problem, which describes the flow and balance of power in a syn-

chronous AC power system at steady state, and (usually) its relationship with the

voltage at each bus in the system. The power flow problem is formulated by a set

of coupled nonlinear equations—known as the power flow equations—that enforces

Kirchhoff’s laws and Ohm’s law, subject to physical constraints [1]. The power flow

problem can be difficult to solve due to the inherent nonlinearity in the power flow

equations, and typically no analytic solution is possible. However, solving the power

flow problem is essential for the grid operators to control the power system effectively

and respond to contingency events safely.

For balanced three-phase transmission systems at steady state, the standard ap-

proach to accurately solve the power flow problem is to use an iterative algorithm

such as Newton-Raphson. However, these algorithms usually demand initial condi-

tions in a sufficiently small neighborhood of the desired solution in order to converge

to it, and it can be difficult to satisfy this requirement since there exists no systematic

process for finding such initial conditions. Furthermore, when these algorithms fail,

it could be due to the inherent problem infeasibility given the system parameters, the

numerical instability of the algorithms, or poor initial conditions for the algorithms.

Therefore, a robust and reliable algorithm that solves the power flow problem is highly

desirable.

A recently developed research direction produced a novel and particularly robust

fixed-point based algorithm to solve the power flow problem in the lossless or de-

coupled contexts [2]–[4]. While typical transmission systems have small losses, their

presence can fundamentally change the physical behavior of the system as well as

1



Chapter 1. Introduction 2

the solvability of the power flow problem [5]. Similarly, to accurately solve the full

power flow problem, the coupling between active and reactive power in the power flow

equations cannot be ignored. As such, in this thesis we seek to extend this line of

research to incorporate network losses, coupling and other physically realistic mod-

elling aspects not present in the original works, and derive the extended Fixed-Point

Power Flow (FPPF) algorithm to solve the AC power flow problem.

1.2 Literature Review

There has been a litany of studies on the power flow equations tracing back to the

1960s, and the relevant literature loosely fall under two main categories. The first

category concerns the derivation of necessary and/or sufficient conditions for the

existence and uniqueness of the solution(s) to the power flow equations. For example,

Korsak was among the first to show the non-uniqueness of power flow solutions in both

lossless and lossy systems [6]. Wu and Kumagai used a version of the Leray-Schauder

fixed-point theorem to study on the existence of solutions in the security region for the

lossless power flow equations [7], [8]. Ilić et al. developed sufficient but conservative

solvability conditions for the lossy decoupled active and reactive power flow equations

in polar coordinates, and showed their similarities to nonlinear resistive circuits [9],

[10]. More recently, Molzahn et al. derived a sufficient condition for the insolvability of

power flow equations by studying the feasibility of a semidefinite program. Simpson-

Porco et al. derived a sufficient condition for the solvability of the lossless reactive

power flow equation in [11], which is closely connected to the phenomenon of voltage

collapse. This result is analogous to the investigation of decoupled active power flow

equation by Dörfler et al. in their more general discussion of synchronization in

coupled oscillator networks [12]. In contrast to standard formulation of power flow

equations in the reals, Cui and Sun proposed a sufficient condition of power flow

equation solvability in the complex domain using a fixed-point argument, though it

relies on a model of generator buses that differs from the standard PV bus model in

transmission networks [13]. For distribution systems, Bolognani and Zampieri gave

a sufficient condition for the existence and uniqueness of the complex-valued power

flow solution using the Banach fixed-point theorem, though it requires the impedance

matrix rather than the conventional admittance matrix of the network [14]. Aside

from these examples, there have also been a diverse range of other relaxations and/or

approximations of power flow equations, which are surveyed in [15].

The second category focuses on the algorithms that solve the power flow equations

as well as the analysis of these algorithms. For instance, many have applied algorithms

that solve general systems of nonlinear equations to the power flow problem. Meisel
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and Barnard appear to be the first to apply fixed-point theoretic techniques to ana-

lyze Newton-Raphson and Gauss-Seidel algorithms applied to the power flow problem

[16]. A few years later, Wu developed a sufficient condition on the convergence of

Stott’s fast decoupled load flow algorithm that is dependent on the system topol-

ogy, similarly using a fixed-point theoretic argument [17]. More recently, Wang et

al. proposed a fixed-point theoretic reformulation of the complex-valued power flow

equations that can be used to certify the existence and uniqueness of the solution, as

well as an algorithm that solves the power flow problem in distribution networks [18].

Bernstein and Dall’Anese then derived a computationally efficient linearization of this

fixed-point reformulation in the unbalanced three-phase context [19]. For balanced

transmission systems, Simpson-Porco developed fixed-point based algorithms for the

decoupled active power flow equation and the lossless coupled power flow equations

by rewriting them into an equivalent fixed-point form, and analyzed the convergence

of the sequence of voltages under the fixed-point mapping [2]–[4]. Other approaches

and algorithms originate from domains such as optimization and control theory. For

example, Dvijotham et al. proposed an algorithm that solves the lossless power flow

equations based on the connection between power flow equations and energy func-

tions, and gave a convergence condition based on the convexity of the energy function

[20]. In radial distribution networks, Dvijotham et al. also showed the equivalence

of algorithms developed in the convex relaxation, energy function, and fixed-point

theoretic frameworks under some assumptions about the system parameters such as

balanced network and uniform R/X ratio [21].

In summary, while there have been numerous studies on the power flow equations

and its solution(s) to further understand their properties—in particular using a fixed-

point theoretic approach, lossy and coupled power flow equations remain challenging

to analyze and solve. Furthermore, there seems to be little interest in incorporating

physically realistic modelling of system components such as phase-shifting transform-

ers and the Π-model of transmission lines, which undoubtedly increase the complexity

of the analysis, though doing so would offer additional practical benefits.

1.3 Contributions and Organization

The most significant results in this thesis are as follows:

• In Chapter 3, we develop a novel vectorization scheme for the standard lossy

power flow equations that accommodates the distributed slack bus model, and it

culminates in an equivalent fixed-point reformulation of the standard power flow

equations in Theorem 4.1. In particular, we prove one of the key equivalence

condition using a property of the asymmetrically weighted incidence matrix,
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which is constructed in Chapter 2. Finally, we introduce the extended FPPF

algorithm based on the fixed-point reformulation in Algorithm 1.

• In Proposition 5.2, we provide sufficient conditions for the existence and unique-

ness of the desired high voltage solution to the two-bus power flow problem, and

show that the proposed extended FPPF algorithm is guaranteed to converge to

it. This result relies on Theorems 5.1–5.2, where we reproduce the sufficient

condition for the lossless FPPF algorithm to be a contraction on a compact

invariant set, which contains the high voltage solution to the lossless two-bus

power flow problem.

• In Chapter 6, we numerically test the extended FPPF algorithm and demon-

strate its robustness over the standard algorithms on a large set of test cases with

various sizes, loading profiles and initial conditions. We also show its limitations

due to an implicit constraint from the fixed-point reformulation.

• As a tangential contribution, we develop some novel rank properties for the

asymmetrically weighted incidence matrix in Appendix A.

This thesis is organized as follows:

• In Chapter 2, we present the required background materials on the mathematical

tools and the transmission network models used in this thesis.

• In Chapter 3, we set up the vectorized power flow equations using the distributed

slack bus model for subsequent reformulation.

• In Chapter 4, we reformulate the vectorized power flow equations into an equiv-

alent fixed-point form, and present the extended FPPF algorithm.

• In Chapter 5, we analyze the FPPF algorithm on a two-bus system, and provide

sufficient conditions for the existence and uniqueness of the desired solution.

• In Chapter 6, we present comprehensive numerical simulations of the FPPF

algorithm on standard test cases.

• In Chapter 7, we provide a conclusion of this thesis and avenues for future work.

• In Appendix A, we present some novel rank properties of the asymmetrically

weighted incidence matrix.

• In Appendix B, we provide an example for the vectorized power flow equations

developed in Chapter 3.3.



Chapter 2

Background

In this chapter, we present the relevant background information on the mathematical

tools and electrical network modelling used in the main body of this thesis.

When stating a known theorem or lemma in this Chapter, we indicate the source

of the statement and/or the proof without reproducing the proof. Some notations

and constants used in Sections 2.1 and 2.2 may not extend to later sections (including

Section 2.3), where they are redefined; for example, m denotes the cardinality of the

edge set E of a generic graph in Section 2.2, but is redefined in Section 2.3 to denote

the cardinality of the generator bus set.

2.1 Mathematical Preliminaries

We start by presenting some relevant results from matrix algebra and analysis based

on [22]–[25]. These include the classes of diagonally dominant and M -matrices, the

pseudoinverse of a matrix, and the induced norm of a matrix. When a matrix is used

to represent a linear operator, it is written with respect to the standard basis, where

the i-th basis element is denoted by ei. We also use 0n, 0n×m, 1n and In to denote

the n-dimensional zero vector, the n×m zero matrix, the n-dimensional vector of all

ones, and the n× n identity matrix, respectively. We omit these subscripts when the

dimensions are unimportant or can be easily inferred.

Let F denote an arbitrary field, which is usually taken to be the real or complex

numbers denoted as R, C, respectively. Depending on the context, | · | denotes the ab-
solute value of a real number, the magnitude of a complex number, or the cardinality

of a set. The matrix M ∈ Fn×n is diagonally dominant if for i ∈ {1, ..., n},

|Mii| ≥
n∑

j=1, j ̸=i

|Mij|,

5



Chapter 2. Background 6

and is strictly diagonally dominant if the inequality above holds strictly. IfM ∈ Fn×n

is a strictly diagonally dominant matrix, then M is invertible; M is also positive

definite if Mii > 0 and Mij =Mji for all i, j ∈ {1, ...n} [23, Theorem 6.1.10].

Let ρ(·) denote the spectral radius of a matrix. A matrix M ∈ Rn×n is a Z-matrix

if Mij ≤ 0 for all i, j ∈ {1, ...n} such that i ̸= j. It is an M-matrix if there exists a

nonnegative matrix P ∈ Rn×n such that M = sI−P for some s ≥ ρ(P ). If s > ρ(B),

then M is a nonsingular M-matrix. If M ∈ Rn×n is a nonsingular M -matrix, then

the inverse M−1 is nonnegative [25, Theorem 2.3 N38].

Let MH denote the Hermitian transpose of the matrix M . A pseudoinverse of a

matrix M ∈ Fn×m, denoted by M †, is an m × n matrix that satisfies the following

conditions: (i) both MM † and M †M are Hermitian, (ii) MM †M = M , and (iii)

M †MM † = M †. If M ∈ Fn×m has full column rank, then M † is the left inverse of

M and satisfies M †M = Im, and it can be explicitly written as
(
MHM

)−1
MH. If M

has full row rank, then M † is the right inverse of M and satisfies MM † = In, and it

can be explicitly written as MH
(
MMH

)−1
.

Finally, given ℓp norms ∥ · ∥a in Rm and ∥ · ∥b in Rn, the induced norm of a matrix

M ∈ Fn×m is

∥M∥a→b := sup
∥x∥a≤1

∥Mx∥b.

For our purposes, the ℓ∞ norm is of particular interest, and it is defined as

∥v∥∞ := max
i∈{1,...,n}

|vi|

for any v ∈ Rn. Note that the ℓ∞ norm can be used to measure the absolute value of

the greatest element-wise difference between two vectors. From [23, Example 5.6.5],

the induced ℓ∞ norm of an n× n matrix M can be computed by

∥M∥∞ = max
i∈{1,...,n}

n∑
j=1

|Mij|.

Next, we turn our attention to the functions and sets in Rn. Standard definitions

of (i) continuous, Lipschitz continuous and differentiable functions and conditions

for continuity and differentiability, (ii) convex and invariant set, and (iii) elementary

topology in Rn, e.g., open/closed/compact sets can be found in standard textbooks

such as [26]–[29] and are not repeated here. An important result from real analysis

that is crucial for our subsequent discussions in Chapter 5 is the implicit function

theorem, stated below.

Theorem 2.1 (Theorem 5, [30]). Consider a continuously differentiable (C1) function

f : U ⊂ Rn×Rm → Rn, where U is open. Partition the Jacobian matrix of f evaluated
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at any (x, y) ∈ U as

J(x, y) =
[
Jx(x, y) Jy(x, y)

]
=

[
∂fi
∂xj

(x, y)
∂fi
∂yk

(x, y)

]
1≤i,j≤n
1≤k≤m

.

Suppose that there exists a point (x0, y0) ∈ U such that f(x0, y0) = 0n. If Jx(x0, y0)

is invertible, then there exists open sets X ⊂ Rn and Y ⊂ Rm, such that x0 ∈ X and

y0 ∈ Y, and there exists a unique C1 function g : Y → X satisfying g(y0) = x0, and,

f(g(y), y) = 0 for all y ∈ Y.

Intuitively, this theorem provides a sufficient condition for local solvability of

f(x, y) = 0. If the condition is satisfied, then the zeros of f near the known so-

lution is locally the graph of an implicit function of the parameterizing variable y.

Finally, we introduce two well-known fixed-point theorems and a sufficient condi-

tion that certifies a C1 function is a contraction based on its Jacobian matrix. Since

the fixed-point power flow algorithm discussed in the subsequent chapters is iterative

in nature, fixed-point theorems play a significant role in analyzing the algorithm’s

convergence behavior. The point x̄ ∈ Rn is a fixed point of a function f : Rn → Rn

if x̄ = f(x̄). For simplicity, we make the following notational shorthand: given any

x ∈ Rn, for k = 1, 2, ... we recursively define xk := f(xk−1), where x0 := x; thus, we

may also say that xk is a fixed point of f if xk+1 = xk.

The first fixed-point theorem is Brouwer’s fixed-point theorem in Rn, which states

that a continuous function mapping a convex and compact set to itself has at least

one fixed point in this set [27, Theorem 52]. However, this theorem only certifies

the existence of the fixed point, but it does not help us construct the fixed point or

certify its uniqueness. To achieve both, we require the Banach fixed-point theorem,

which states that a globally Lipschitz function f mapping Rn to Rn with Lipschitz

constant strictly less than 1 has a unique fixed point, and that for every x ∈ Rn,

the sequence {xi}i∈Z≥0
converges to the fixed point [31, Theorem 1.1]. When the

condition is satisfied for a given ℓp norm, we call f a contraction in the ℓp norm.

Note that the requirement for f to be a contraction on all of Rn restricted to a

closed f -invariant subset of Rn. A set S ⊂ Rn is f -invariant if f(S) ⊆ S. If f can be

shown to be a contraction on this closed subset, then it must contain the unique fixed

point x̄. Furthermore, let J(x) denote the Jacobian of f evaluated at a point x. If

∥J(x)∥p < 1 for all x in a convex and compact f -invariant set, then f is a contraction

in the ℓp norm on this set [32, Theorem 2].

For our purposes, we are interested in both certifying a C1 function f is a con-

traction on some compact and convex f -invariant set S ⊂ Rn, and obtaining the

unique fixed point x̄ ∈ S. Thus, we need to first show that f is a contraction (or give
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conditions on when f is a contraction) on S by evaluating the induced norm of its

Jacobian matrix at every point in S. Next, by the Banach fixed-point theorem, we

may start at an arbitrary point (the “initial condition”) x0 ∈ S, and iteratively apply

f to obtain the sequence {x1, x2, ...} until ∥xn+1 − xn∥ is sufficiently small, i.e., xn+1

well-approximates the fixed point x̄. Figure 2.1 demonstrates this process.

S
x0

x1

x2 x3

x̄

Figure 2.1: An example sequence of {xi} that converges to the fixed point x̄

2.2 Algebraic Graph Theory

Since a balanced transmission network at steady state can be modelled as a graph,

tools from algebraic graph theory are extremely important for the results in this thesis.

We first provide the relevant definitions of different types of graphs and some of their

relevant properties, then introduce some matrices that can be used to describe the

graphs. For a comprehensive treatment on algebraic graph theoretic results relevant

to electrical network theory and applications, see [24].

Graphs

A finite and simple graph G is a pair (N , E), where N and E ⊆ N × N are both

finite sets of nodes and edges, and without any self-loops (to be defined next). A

subgraph G ′ of G is a pair (N ′, E ′) where N ′ ⊆ N and E ′ ⊆ E . Let n = |N |, m = |E|
denote the number of nodes and edges in G, respectively. Without loss of generality,

we let N = {1, ..., n}, and we enumerate the edge set to be E = {e1, ..., em} with the

index set IE := {1, ...,m}. The degree of node i in a graph, denoted by deg(i), is the

number of edges incident to i. Every edge connecting node i and j in a graph can be

assigned a nonzero weight wij ∈ F from some field F. As a convention, if any edge

weight is not ±1, then the graph is weighted.

A directed graph is one such that the elements of E are ordered pairs of nodes,
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denoted as (i, j), where i is the source node and j is the sink node; equivalently, the

edge (i, j) “leaves” node i and “enters” node j. An undirected graph is one such that

the elements of E are unordered pairs of nodes, denoted as {i, j}, which are without

the notion of source or sink node. That is, {i, j} ∈ E if and only if {j, i} ∈ E . An

edge (i, j) or {i, j} is called a self loop if i = j. We may also assign an “edge number”

k from the edge index set IE, i.e., the k-th edge can be written as ek or equivalently,

(i, j) (resp. {i, j}) in a directed (resp. undirected) graph1. An undirected graph G
is connected if there exists a sequence of edges in E connecting every node to every

other node, and a directed graph Gσ is weakly connected if its underlying undirected

graph G is connected. A (weakly) connected graph is radial if m = n−1, and meshed

if m > n− 1.

Every undirected graph can be made into a directed graph by assigning a direction

to each edge. We denote the directed graph constructed from an undirected graph

G = (N , E) with the orientation σ by Gσ = (N , Eσ). Similarly, every directed graph

Gσ induces an “underlying undirected graph” G if the direction of every edge in Eσ is

removed. Note that we use the notation G to represent both directed and undirected

graphs when the context is clear. We only differentiate the two by using both G and

Gσ if one induces the other in the same scope of discussion.

Next, we introduce the notion of the bidirected graph. It is less commonly used

than the simple undirected or directed graph, but it has desirable properties of both,

which are insufficient for our modelling purposes when there is a phase-shifting trans-

former in the transmission network2.

Definition 2.1 (p.10, [5]). A bidirected graph is a graph G = (N , E) where the edges
are directed, and (i, j) ∈ E if and only if (j, i) ∈ E . Exactly one of (i, j) and (j, i) has

the “forward” direction (called the“forward edge” in short), where the other one has

the “backward” direction (called the “backward edge” in short), which can be chosen

arbitrarily.

When it is necessary for us to distinguish the bidirected graphs from the standard

(un)directed graphs, for k ∈ IE, we use e+k to denote the k-th forward edge (i, j) and

use e−k to denote the k-th backward edge (j, i). For our purposes, when a bidirected

graph is unweighted, we are only interested in the forward edges of a bidirected

graph. Thus, we may focus on the induced directed graph formed by removing all the

edges in the backward direction in the bidirected graph. As such, when the context

is clear, we simply drop the ·+ superscript, and use ek to denote the forward edges

only. However, when a bidirected graph is weighted, both forward and backward edge

1While the edge set is usually unordered, it is helpful to have the edge numbers for the construction of
the node-edge incidence matrix discussed later.

2See Section 2.3 for more detailed discussions.
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weights are important and neither is omitted. In addition, the forward and backward

edge weights can be different, though we require that both are nonzero like the edge

weights in a standard weighted (un)directed graph. Finally, to ensure the consistency

of the size of edge set E , we slightly abuse the notation and use m to also denote |E|
for a bidirected graph. That is, we consider the forward and backward edges to make

up a single “edge” entity in a bidirected graph; the alternative interpretation is that

we do not “double count” the number of edges in a bidirected graph3.

Figures 2.2–2.3 demonstrate the difference between edges in the undirected, di-

rected and bidirected graph in both unweighted and weighted contexts. For the

bidirected graph, the edge with forward direction is drawn in black and the edge with

backward direction is drawn in gray.

j

i

{i, j}
{j, i}

j

i

(i, j)

j

i

(i, j)

(j, i)

Figure 2.2: An edge in an undirected (left), directed (center), and bidirected (right) graph

j

i

wij

wij

j

i

wij

j

i

w+
ij

w−
ij

Figure 2.3: A weighted edge in an undirected (left), directed (center), and bidirected (right)
graph

Recall the notions of degree and connectedness in standard (un)directed graphs

defined at the beginning. These definitions can also be extended to bidirected graphs.

Since the degree of a node in a bidirected graph concerns only the number of incident

edges to it and has nothing to do with their weights, as mentioned before, we can focus

on the induced directed graph (obtained by removing the backward edges). That is,

for every node i in a bidirected graph, deg(i) = deg(i′), where i′ is the corresponding

node in the induced directed graph. Similarly, since the notion of connectedness does

not depend on edge weights, a bidirected graph is weakly connected if and only if

its induced directed graph is weakly connected. In the subsequent discussion, unless

3This caveat is admittedly somewhat ambiguous, but the most important reason to define the bidirected
graphs (in particular, the ones with different forward and backward edge weights) this way is to facilitate
our construction of the asymmetrically weighted incidence matrix, to be discussed next.
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otherwise specified, G is connected if G is undirected, and weakly connected if G is

(bi)directed, which implies that m ≥ n− 1 [33].

Of particular importance to our algorithm formulation in Chapter 4 are the cycles

in a graph and the related concepts. A subgraph G ′ of an graph (undirected, directed

or bidirected) is called a cycle if every node in G ′ has even degrees, and it is further-

more a circuit if it is connected and every node i satisfies deg(i) = 2. The edge space

of a graph G is Eκ(G) := κm, where κ is the field

• {0, 1} if G is undirected and unweighted,

• {−1, 0, 1} if G is (bi)directed and unweighted, and

• R or C if G is weighted (though it is beyond the scope of this thesis).

Thus, we can represent an unweighted cycle (in an undirected, directed or bidirected

graph) as an m-dimensional vector c ∈ Eκ(G), which we call a κ-cycle to distinguish

it from the subgraph-based definition earlier. Similarly, circuits can be written in

vector form as κ-circuits. The k-th element of c are nonzero and takes value from the

field κ if and only if the i-th (forward) edge is in the cycle. The cycle space of a graph

G is the set Cκ(G) := {c : c is a κ-cycle of G} with dimension c = m−n+1, known as

the cycle dimension. A cycle basis spans Cκ(G), and it is a minimal set of k-circuits

such that any κ-cycle can be written as a linear combination of the κ-circuits in the

basis.

To demonstrate these concepts above, consider the directed graph in Figure 2.4

(adapted from [33, Figure 3]). The four subgraphs in Figure 2.5 are circuits that form

a cycle basis; as such, c = 4. Pick the cycle orientation to be clockwise, then the

κ-cycle representation of the cycle in Figure 2.5(a) is [0 0 0 −1 −1 0 0 1]
T
,

since only the edges e4, e5 and e8 are in the cycle and thus the 4th, 5th and 8th

elements are nonzero. Note that the κ-cycle representation of a cycle is not unique.

If G is instead an unweighted bidirected graph, we have the same results since we

only care about the induced directed graph if G is unweighted.

1

2 3

4

5e1

e2

e3

e4

e5

e6
e7

e8

Figure 2.4: A directed graph G with cycles
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1 4

5

e4

e5 e8

(a)

1

2

5e1

e5

e6

(b)

2 3

5

e2

e6 e7

(c) 3

4

5 e3

e7

e8

(d)

Figure 2.5: A cycle basis for G with 4 circuits

Graph Matrices

We are now ready to describe graphs and their properties using tools from matrix

algebra. Once again, we assume that the graph—whether undirected, directed, bidi-

rected, and/or weighted—is (weakly) connected. We focus on two main graph ma-

trices: the node-edge incidence matrix A and the edge-cycle incidence matrix C. We

also introduce some properties relevant to our discussion.

Given an unweighted (bi)directed graph G = (N , E), the node-edge incidence

matrix (or simply incidence matrix ) of G, denoted by A ∈ Rn×m, is defined element-

wise as4

Aik :=


1 if node i is the source node of edge ek

−1 if node i is the sink node of edge ek

0 otherwise

, (2.1)

for all i ∈ N and k ∈ IE.
Furthermore, we can define the nonnegative “from” and “to” incidence matrices

A+, A− such that A = A+ − A−, and A+
ik = 1 if and only if Aik = 1, and A−

ik = 1

if and only if Aik = −1. There does not seem to be a standard nomenclature in the

literature for the matrices A+, A−, but several instances of them can be found in [2],

[3], [5], [34], [35], where the matrices A+, A− (or their transpose) are variously called

the “from”/“to” connection matrix, “heads”/“tails” matrix, etc.

If G is undirected, then its incidence matrix is denoted by |A|, and is constructed by

applying absolute value entry-wise to any induced directed graph’s incidence matrix

A. That is, |A|ij = 1 if and only if Aij ̸= 0, and 0 otherwise. Using the “from”/“to”

incidence matrices discussed above, we can also write |A| = A+ + A−.

Let y := ATx ∈ Rm for an arbitrary x ∈ Rn. Then for all k ∈ IE, yk = xi − xj,
where (i, j) = ek ∈ E [2, Section I-C]; as a result, kerAT = span{1n}. It is a standard

result that rank (A) = rank (|A|) = n− 1 [36, Theorems 7.2, 9.6]; as a result, kerA is

4Some texts define the incidence matrix as the transpose of A defined here.
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trivial if and only if the graph is radial.

Now, let G be a weighted directed graph. Given a vector of nonzero edge weights

w ∈ Rm and let [w] denote the diagonal matrix with w on its main diagonal, we can

also define the weighted incidence matrix, denoted by T := A[w] ∈ Rn×m. Similar

to (2.1), T can be alternatively constructed entry-wise, but we omit the details since

they are unimportant. The matrix T also has rank n−1, since a nontrivial v ∈ Rm is

in kerA if and only if [w]−1v ∈ kerT, and [w]−1 exists since the weights are nonzero.

Finally, we define the asymmetrically weighted incidence matrix, denoted by Γ, for

a bidirected graph where the edge weights wij may not be equal to wji. There does

not seem to be any standard nomenclature for this matrix in the literature, and to

the best of our knowledge, it only appeared in the proof of [5, Theorem 3], whose

authors did not give it a particular name. This matrix is central to the power flow

equation vectorization process in Chapter 3.

Definition 2.2 (Asymmetrically weighted incidence matrix). Given two vectors of

nonzero edge weights w+, w− ∈ Rm, where w+
k represents the weight of the forward

edge k and w−
k represents the weight of the backward edge k, the asymmetrically

weighted incidence matrix is constructed as

Γ := A+[w+]− A−[w−], (2.2a)

or element-wise as

Γik :=


w+

k if i is the source node of the forward edge ek

−w−
k if i is the sink node of the forward edge ek

0 otherwise

. (2.2b)

Note that Γ always has the same sparsity pattern as T and A, and Γ reduces to

T when w+ = w−. However, it is not true that Γ is always rank-deficient like A or T;

see Appendix A for an in-depth treatment on its rank properties. Here, we present a

novel property of Γ that is useful in the proof of Lemma 4.1.

Lemma 2.1. Suppose that w+, w− are both element-wise strictly positive. If there

exists a nonzero x ∈ Rn such that ΓTx = 0m, then x is element-wise strictly positive

or strictly negative.

Proof. Let τk ∈ Rn denote the k-th column of Γ, which represents the edge ek =

(i, j) ∈ E and weights w+
k , w

−
k . If ΓTx = 0m, then for all k ∈ IE, ⟨τk, x⟩ = w+

k xi −
w−

k xj = 0. Since w+
k , w

−
k are both strictly positive, xi, xj must be both strictly

positive, strictly negative, or zero, and we need to show that the last case is impossible.

Assuming towards contradiction that there exists an edge ek = (i, j) that results in



Chapter 2. Background 14

xi = xj = 0 but overall, x is not the zero vector 0n. If G only contains two nodes, then

ek = e1, x = [x1 x2]
T = [0 0]T, and we arrive at the contradiction immediately. In

general, if deg(i) = 1, then deg(j) > 1 since G is weakly connected, i.e., there exists

some forward edge eℓ = (j, h) or (h, j). Since ⟨τℓ, x⟩ = 0 as well, xi = xj = 0 implies

xh = 0. The same logic applies if both nodes i, j have degrees larger than 1. Thus,

by weak connectivity of G, if xi = xj = 0, then it would propagate to the rest of the

graph and result in x = 0n, which is a contradiction. Thus, x must be element-wise

strictly positive or strictly negative.

Next, we introduce the edge-cycle incidence matrix and its relevant properties.

Given a graph G = (N , E) with cycle space Cκ(G) and cycle dimension c, the edge-

cycle incidence matrix (or cycle matrix in short) C ∈ κm×c corresponding to some

cycle basis is a matrix whose columns are the κ-cycle vectors in the cycle basis. Note

that the elements of C depends on the choice of cycle basis, but it always has full

column rank by construction. For any unweighted (bi)directed graph G, kerA = Cκ(G)
[2, Section I-C]; as a result, AC = 0n×c.

2.3 Transmission System Modelling

In this section, we discuss some relevant concepts on AC transmission system and its

modelling. Basic definitions and expositions on these topics, as well as the AC power

flow problem can be found on standard textbooks such as [1, Chapters 4-6] and [37,

Chapter 2], and are not repeated here.

2.3.1 Graph Model

Consider a balanced AC transmission system at synchronous steady state, modelled as

a weakly connected, weighted bidirected graph G = (N , E), where N = {1, ..., n, n+

1, ..., n +m} is the set of buses and E ⊆ N × N is the set of branches. We assume

that G has no self-loops, and the parallel branches between any two buses, if they

exist, are modelled as a single equivalent branch5.

5In our numerical experiments in Chapter 6, we keep multiple branches (if they exist) as is, since one or
more of these parallel branches may be marked as “offline”. Note that this assumption does not refer to the
forward/backward direction of the edges, since G is bidirected.
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NG

NL

4

5

6

1

2

3

e1

e2

e3

e4

e5

e6

Figure 2.6: Graph model of a simple transmission system

We adopt the notations used in [3] and partition the bus set N into the set of load

buses (or PQ buses) NL = {1, ..., n} and the set of generator buses (or PV buses)

NG = {n + 1, ..., n + m}; Figure 2.6 demonstrates an example, where nodes 1 to 3

represent load buses and nodes 4 to 6 represent generator buses. Each bus i ∈ N is

associated with four physical quantities of interest: voltage magnitude Vi, phase angle

θi, real power injection Pi, and reactive power injection Qi. We adopt the convention

that a positive Pi or Qi represents a real or reactive power generation, whereas a

negative value represents consumption or demand. For load buses, Pi, Qi are known

and Vi, θi are unknown. For generator buses, Pi, Vi are known and Qi, θi are unknown.

We can vectorize the quantities associated with each bus and partition the vectors

according to the NL and NG subsets as

P =

 PL

PG

 , Q =

 QL

QG

 , V =

 VL

VG

 , θ =

 θL

θG

 . (2.3)

The edge set E is partitioned into E ℓℓ, Egℓ and Egg, the set of branches connecting
load bus to another load bus, generator bus to another load bus, and generator bus

to another generator bus, respectively. Without loss of generality, we assume that

current flows from generators to load. For notational simplicity, we use 1gg, 0gg and

Igg to denote the vector of all ones, zeros and the identity matrix of the size |Egg|,
respectively; constants with dimensions of the size of the other two subsets of E follow

the same pattern.

Recall that the unweighted incidence matrix A of a bidirected graph is the same

as that of its induced directed graph. Using the node and edge set partitions, we can

readily partition the unweighted incidence matrix A of the bidirected graph model of
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a transmission system as

A =

 AL

AG

 =

 Aℓℓ
L Agℓ

L 0

0 Agℓ
G Agg

G

 , (2.4)

and similarly for the matrices |A|, A+, A− and their weighted versions. Recall the

assumption that currents flow from generators into loads, Agℓ
L is nonnegative, and Agℓ

G

is nonpositive. The zero blocks in A are due to the fact that Eℓℓ contain only branches

connecting load buses to load buses, and similarly for Egg.

2.3.2 The Admittance Matrix

Consider the standard Π-model of a branch in Figure 2.7 (adapted from [35, Figure

3.1]), which can be modelled as a forward edge (i, j) ∈ E in the transmission system

modelled as a weakly connected, weighted bidirected graph G. Let j denote the unit

imaginary number. The branch admittance is yij = 1/zij = gij − jbij, where gij ≥ 0

is the conductance and bij > 0 is the susceptance. The line-charging susceptance is

bcij ∈ R, and the complex transformer turns ratio is τij = tijexp(jθsij), where tij is

the transformer turns ratio, θsij is the phase shift, and exp(·) denotes the exponen-

tial function. While we can easily accommodate nonzero shunt conductance in the

branches, we assume that they are negligibly small. The model in [35, Chapter 3.2]

also adopts this assumption.

j
bcij
2

zij = rij + jxij

j
bcij
2

+

−

Vi

+

−

Vi

τij

+

−

Vj

Ii τ∗ij · Ii Ij

Figure 2.7: Standard Π-model of the branch (i, j)

The branch admittance matrix for the branch (i, j) can be computed asY
(i,j)
ff Y

(i,j)
ft

Y
(i,j)
tf Y

(i,j)
tt

 :=


yij + j

bcij
2

t2ij
−yij
τ ∗ij

−yij
τij

yij + j
bcij
2

 , (2.5)
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where “f” denotes the from end, and “t” denotes the to end of a branch [35], and ·∗
denotes the complex conjugate. The asymmetry of the branch admittance matrix is

due to the phase-shifting transformer in the branch (i, j); if τ ∈ R, then Y (i,j)
ft = Y

(i,j)
tf .

If furthermore τij = 1∠0, i.e., the branch (i, j) is a simple transmission line, then

Y
(i,j)
ft = Y

(i,j)
tf and Y

(i,j)
ff = Y

(i,j)
tt .

We can also write the entries of (2.5) in rectangular coordinates as

Y
(i,j)
ff =

gij
t2ij

+ j
1

t2ij

(
−bij +

bcij
2

)
(2.6a)

Y
(i,j)
ft =

−gij cos θsij − bij sin θsij
tij

+ j
−gij sin θsij + bij cos θsij

tij
(2.6b)

Y
(i,j)
tf =

−gij cos θsij + bij sin θsij
tij

+ j
gij sin θsij + bij cos θsij

tij
(2.6c)

Y
(i,j)
tt = gij + j

(
−bij +

bcij
2

)
(2.6d)

Let Yff , Yft, Ytf , Ytt ∈ C|E| be vectors containing the appropriate entries in (2.6a)–

(2.6d). Then, the system admittance matrix is an (n+m)× (n+m) complex matrix

defined as

Y = A+[Yff ](A
+)

T
+ A+[Yft](A

−)
T
+ A−[Ytf ](A

+)
T
+ A−[Ytt](A

−)
T
+ [Ysh], (2.7)

where Ysh ∈ Cn+m represents the shunt elements at the buses.

The admittance matrix can be separated into real and imaginary parts as Y =

G + jB, where G is the conductance matrix and B is the susceptance matrix. In

particular, it is useful for B to be partitioned by the load/generator bus set as

B =

 BLL BLG

BGL BGG

 .
Lastly, we introduce two standing assumptions that the rest of this thesis relies

on, as well as the rationales for establishing them.

Assumption 2.1. The submatrix BLL ∈ Rn×n is strictly diagonally dominant and

thus invertible.

Assumption 2.1 is related to [3, Assumption 2.2], and implies that the shunt

capacitors at the buses must not overcompensate the network. The difference between

the two assumptions is that we do not require BLL to be negative definite as well,

which is due to the fact that we allow phase-shifting transformers to be in networks,

due to which we may lose the symmetry of BLL. That is, we recover the original
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assumption if there are no phase-shifting transformers in the network. The existence

of B−1
LL follows from our discussion in Section 2.1 on strictly diagonally dominant

matrices. However, since a matrix can be negative definite but not strictly diagonally

dominant, e.g., [
−2 3

3 −7

]
,

our assumption is stricter and does not hold on some test cases in Chapter 6. However,

this is not a significant issue since BLL is always invertible on these test cases, which

is required for the numerical experiments.

Assumption 2.2. For all (i, j) ∈ E , the associated off-diagonal entries Bij, Bji are

strictly positive.

For Assumption 2.2 to hold, we must have

min
(i,j)∈E

{−gij sin θsij + bij cos θsij
tij

,
gij sin θsij + bij cos θsij

tij

}
> 0.

For all (i, j) ∈ E , realistically speaking gij ≥ 0, bij > 0, tij > 0 and θsij ∈ (−π
2
, π
2
), so

we must have
bij
gij

> tan θsij ,

for all (i, j) ∈ E . Thus, Assumption 2.2 holds in cases where both phase shift θsji ,

and the branch R/X ratio are small; when phase shift is large, then the R/X ratio

must be made sufficiently small to compensate the difference. On the test cases in

Chapter 6, this assumption nearly always holds, except for the RTE systems.

Remark 2.1. Assumptions 2.1–2.2 imply that Bij ≥ 0 and Bii < 0 for all 1 ≤ i, j ≤
n. Thus, −BLL is also a nonsingular M -matrix [3, Appendix A], and it follows from

our discussion in Section 2.1 that −B−1
LL is a nonnegative matrix.



Chapter 3

The Power Flow Equations

In this chapter, we set up the problem by first stating the standard power flow equa-

tions with the distributed slack bus formulation. Then, we develop the open-circuit

solution to the power flow equations, and introduce a novel vectorization scheme for

the power flow equations using the algebraic graph theoretic tools from Chapter 2.

3.1 The Distributed Slack Bus Model

We continue from the discussion in Chapter 2.3, where a balanced transmission net-

work at steady state is modelled as a weakly connected bidirected graph.

In classic power system textbooks, the power flow problem in lossy networks re-

quires a single slack bus to compensate for the transmission loss, and it is also used

as the phase angle reference [1], [37], [38]. However, since transmission systems often

span over large geographical areas, it is physically unrealistic to assign all the network

loss to be compensated by a single generator. In addition, some commercial power

system simulation software such as PowerWorld already support the distributed slack

bus model in the power flow computations. As such, we adopt the distributed slack

bus model studied in [39] for our formulation of the power flow equations, and show

that this model is in fact a generalization of the traditional single slack bus model.

To start, we denote the subset of distributed slack buses as N slack
G ⊆ NG, in which

each distributed slack bus i ∈ N slack
G is associated with a known participation factor

αi > 0 such that
∑
αi = 1. In particular, for all i ∈ N slack

G , Pi = P̄i + αiPslack,

where P̄i is the scheduled real power generation and is known, and Pslack ≥ 0 is the

unknown total network loss in the system to be computed. Clearly, when Pslack = 0,

the network is lossless and α effectively becomes irrelevant. We also assume that no

generator output limits are violated, so all the participation factors αi stay constant,

and no PV bus changes to the PQ bus as a result.

19
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Since we formulate the power flow equations in terms of nodal power injections,

we can additionally define αi := 0 for all i ∈ N \ N slack
G . Then, each bus (regardless

of generator or load) is associated with a nonnegative participation factor. Thus, we

can overload the notation and write Pi = P̄i for all i ∈ N \ N slack
G . That is, the

participation factor can be partitioned into the load bus and generator bus subsets,

similar to (2.3):

α =

 0n

αG

 .
Using rectangular coordinates for the admittance matrix entries and polar coor-

dinates for the nodal voltages, the power flow equations for the system [1, Equations

6.4.12-13] are given by

P̄i + αiPslack = Vi

n+m∑
j=1

Vj(Gij cos(θi − θj) +Bij sin(θi − θj)), i ∈ N (3.1a)

Qi = Vi

n+m∑
j=1

Vj(Gij sin(θi − θj)−Bij cos(θi − θj)), i ∈ NL (3.1b)

where P̄ ∈ Rn+m, QL ∈ Rn, VG ∈ Rm and α ∈ Rn+m as well as the entries of G,B

matrices are known and fixed. The objective is to solve for the phase θi at all n+m

generator and load buses, the voltage magnitude Vi at the n load buses, such that

(3.1) holds. Thus, we have 2n+m equations with 2n+m unknowns. The generator

bus reactive power injections QG ∈ Rm and the the total network loss Pslack ≥ 0 can

be computed as by-products in the end.

As mentioned before, the power flow problem is typically stated with a single

slack bus doubled as the phase angle reference (θi = 0 at this bus), and its voltage

magnitude is fixed to be 1.0 p.u. Thus, the Newton-Raphson algorithm applied to the

power flow equations does not require the slack bus’s known voltage magnitude and

phase. In addition, the total network loss is all compensated by the single slack bus

after the algorithm terminates, so the active power injection at the slack bus is also

omitted from the formulation [1, Equation 6.6.1]. However, with the distributed slack

bus formulation used here, we cannot simply remove the equations corresponding to

the slack buses to compute the rest of the bus voltages, but we can still eliminate the

a priori unknown Pslack in the calculation as follows. Let fP,i(V, θ) be a shorthand
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for the right-hand side of (3.1a), then in vector form, we have

P̄ + αPslack = fP (V, θ) :=

 fP,1(V, θ)
...

fP,n+m(V, θ)

 .
We make a transformation to the active power flow equation to eliminate Pslack, given

that the participation factor vector α ∈ Rn+m is known. Let R ∈ R(n+m)×(n+m−1) be

a matrix whose columns form an orthonormal basis for the orthogonal complement of

the subspace spanned by α, denoted by α⊥. That is, RTα = 0n+m−1. Left-multiply

both sides of (3.1a) by RT, then it can be transformed into a system of n +m − 1

nonlinear equations

RTP̄ = RTfP (V, θ), (3.2)

which encapsulate the original active power flow equation (3.1a) but no longer has

the variable α or Pslack in it. The matrix R can be thought of as a “compression”

matrix that transforms the original active power flow equations into one without the

slack variable.

Remark 3.1. Since R has orthonormal columns and full column rank, RT has a right

inverse
(
RT
)†

such that RT
(
RT
)†

= In+m−1.

Remark 3.2. By the fundamental theorem of linear algebra,

(i) since rank (R) = n+m− 1, kerR is trivial, and

(ii) since kerRT = span {α}, imR = span {α}⊥.

After we solve for θ and V with the transformed active power flow equation (3.2)

and the reactive power flow equation (3.1b), we can recover Pslack by simply taking

the sum of the left and right hand side of (3.1a) and use the fact that 1T
n+mα = 1 to

obtain

Pslack = 1T
n+m

(
P̄ − fP (V, θ)

)
. (3.3)

Before we move on, we show that this transformation can readily handle the single

slack bus formulation as a special case. Without loss of generality, let the (n+ 1)-th

bus (the first generator bus in NG) be the only slack bus, then α = en+1, and we can

pick the matrix R to be [
e1 · · · en en+2 · · · en+m

]
,

which is equivalent to the removal of the equation corresponding to the single slack

bus from (3.1a).
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3.2 The Open-Circuit Solution

In this section, we develop the notion of the open-circuit load voltage, which is used

later as a normalization factor for bus voltages variables we need to solve for.

Definition 3.1 (Definition 1, [3]). The open-circuit load voltage V ◦
L ∈ Rn is defined

as

V ◦
L = −B−1

LLBLGVG. (3.4)

The vector V ◦
L is known and fixed, since BLL, BLG and VG are known. We can also

extend this definition and additionally define the open-circuit voltage

V ◦ :=

[
V ◦
L

VG

]
∈ Rn+m

>0 ,

which is known since VG contains the strictly positive, fixed generator voltage mag-

nitudes. The fact that V ◦ is positive element-wise is not trivial, and we focus on

the elements in V ◦
L since VG are the generator setpoints and it would be unrealistic

for them to not be positive. For V ◦
L , note that the submatrix BLG only contains the

off-diagonal entries of B, and is a nonnegative matrix that does not have a zero row or

column if Assumption 2.2 holds and the network G is weakly connected. In addition,

−B−1
LL is a nonnegative matrix by Remark 2.1. Thus, V ◦

L must be strictly positive as

well.

We can also define the normalized load voltage vector v ∈ Rn as

v := [V ◦
L ]

−1VL, (3.5)

and the original VL can be recovered via [V ◦
L ]v. Note that we may extend this nor-

malization scheme for all bus voltage magnitudes V ◦ as

g(v) := [V ◦]−1V =

[
v

1m

]
⇐⇒ [V ◦]g(v) = [g(v)]V ◦ = V. (3.6)

The variable v is crucial to the ensuing discussion since we can compute the unknown

load voltage magnitudes VL if and only if we know v. This normalization scheme also

allows us to work with a more “centered” variable v.

With Definition 3.1, we are ready to extend the open-circuit solution stated in [3,

Proposition 3.1] to the lossy system result below.

Proposition 3.1 (Open-circuit solution). When P̄ = 0n+m and QL = 0n, (θ, VL) =

(0n+m, V
◦
L ) is a solution to (3.1). In addition, Pslack = 1T

n+m[V
◦]GV ◦.
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Proof. We can verify that (θ, VL) = (0n+m, V
◦
L ) is a solution to (3.1a)–(3.1b) by direct

substitution. When θ = 0n+m, sin(θi − θj) = 0 and cos(θi − θj) = 1 for all i, j ∈ N .

Thus, (3.1) reduces to

Pi = Vi

n+m∑
j=1

VjGij, i ∈ N

Qi = −Vi
n+m∑
j=1

VjBij, i ∈ NL

which can be vectorized as

P = [V ]GV, (3.7a)

QL = −[VL]
[
BLL BLG

] [VL
VG

]
. (3.7b)

With VG known and V ◦
L nonzero, if VL = V ◦

L , then (3.7b) becomes

QL = −[V ◦
L ]
[
BLL BLG

] [−B−1
LLBLGVG

VG

]
= −[V ◦

L ]
(
−BLLB

−1
LLBLGVG +BLGVG

)
= 0n,

that is, (θ, VL) = (0n+m, V
◦
L ) solves the reactive power flow equation (3.7b) given that

QL = 0n. Finally, given that P̄ = 0n+m, we can verify that (θ, VL) = (0n+m, V
◦
L )

is a solution to the active power flow equation (3.7a) since the distributed slack bus

compensation Pslack = 1T
n+m[V

◦]GV ◦ satisfies the active power balance.

Given the network losses and the resulting nonzero Pslack, the name “open-circuit

solution” is admittedly somewhat of a misnomer compared to the open-circuit solution

given in the lossless context, where there is truly zero active power flow in the network.

However, this idea is a standard construction in several other papers with fixed-point

theoretic analysis of the power flow equations in both lossless and lossy contexts,

e.g., [14], [18], [19]. However, as in the lossless case, the construction of the open-

circuit voltage magnitude V ◦
L here is still important as an normalizing factor for the

fixed-point reformulation and analysis in the subsequent chapters.

3.3 Vectorization of the Power Flow Equations

Recall that the power flow equations (3.1) are written as scalar equations of the form

gi(x) = ci for each bus i in the system. Looking ahead, our goal in Chapter 4.1 is to
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manipulate (3.1) into an equivalent fixed-point form f(x) = x, where f is no longer

scalar in general. Thus, to bridge the gap between what we have and our goal in the

next chapter, we need to vectorize the scalar equations (3.1) in this section. First, we

introduce a few notations generalized or adapted from [3].

Definition 3.2 (Branch stiffness matrices). Given the normalized voltage magnitudes

and the off-diagonal entries of the conductance and susceptance matrices G and B,

the branch stiffness matrices are the following semidefinite diagonal matrices

D+
G =

[
V ◦
i V

◦
j Gij

]
(i,j)∈E , D−

G =
[
V ◦
i V

◦
j Gji

]
(i,j)∈E

D+
B =

[
V ◦
i V

◦
j Bij

]
(i,j)∈E , D−

B =
[
V ◦
i V

◦
j Bji

]
(i,j)∈E

(3.8)

Since the off-diagonal elements of G are typically nonpositive, D+
G and D−

G are

generally negative semidefinite. In addition, by Assumption 2.2, D+
B and D−

B are

positive definite. Note that if the system contains no phase-shifting transformers,

then D+
B = D−

B and D+
G = D−

G, in which case we drop the ·+, ·− superscripts and use

the notations DB and DG instead. These matrices can be interpreted as the (asym-

metrical) forward and backward edge weights in the graph model of the transmission

system, and are in fact what inspired the construction of the asymmetrically weighted

incidence matrix.

Next, for any forward edge (i, j) ∈ E , we define the mapping h(i,j) : Rn → R by

h(i,j)(v) =


vivj if (i, j) ∈ E ℓℓ
vj if (i, j) ∈ Egℓ
1 if (i, j) ∈ Egg

. (3.9a)

Then, for all forward edges (i, j) ∈ E , we can define the vector-valued mapping

h : Rn → R|E| using h(i,j) and the E ℓℓ, E ℓg, and Egg edge set partitions as

h(v) =

hℓℓ(v)hgℓ(v)

hgg(v)

 =


[(
Aℓℓ,+

L

)T
v

](
Aℓℓ,−

L

)T
v[(

Agℓ,−
L

)T
v

]
1gg

 =
[(
A+
)T
g(v)

] (
A−)Tg(v). (3.9b)

Note that h(1n) = 1|E|. Combined with the branch stiffness matrices, we have

[ViVjGij](i,j)∈E = D+
G[h(v)], [ViVjBij](i,j)∈E = D+

B [h(v)],

[ViVjGji](i,j)∈E = D−
G[h(v)], [ViVjBji](i,j)∈E = D−

B [h(v)].
(3.10)

To vectorize the active power equation, we first rewrite the right-hand side of the
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active power flow equation (3.1a) as

V 2
i Gii +

n+m∑
j=1
j ̸=i

ViVjGij cos(θi − θj) +
n+m∑
j=1
j ̸=i

ViVjBij sin(θi − θj)), i ∈ N (3.11)

and we vectorize the three terms in (3.11) one by one. Observe that the first term

contains the diagonal entries of the conductance matrix G, whereas the second and

third terms contain the off-diagonal elements of G and B.

For the first term in (3.11), we can first extract the diagonal entries of G into the

diagonal matrix [Gii]. Then, the V
2
i Gii terms can be vectorized as [V ][Gii]V , and can

be further rewritten in terms of the normalized load voltage magnitude v and the

map g(·) using (3.6) as

[V ◦][g(v)][Gii][V
◦]g(v). (3.12a)

For the second term in (3.11), we first collect the branch-wise phase differences

θi− θj, and vectorize them as ATθ as discussed in Chapter 2.2. Let cos (·) denote the
element-wise cosine function, then we can vectorize all cos(θi−θj) terms as cos

(
ATθ

)
.

Since cosine is an even function, cos(θi − θj) = cos(θj − θi), and we need not worry

about the sign mismatch due to whether the branch (i, j) or (j, i) is in the forward

direction. However, if the branch (i, j) contains a phase shifting transformer, then

Gij ̸= Gji, and this is precisely why we defined both D+
G and D−

G in (3.8): suppose

that we had not differentiated between the D+
G and D−

G and only defined a diagonal

DG according to the branches in the forward direction, i.e., DG = D+
G. If the edge

(j, i) is in the forward direction, then the j-th summand in the second term of the

i-th equation of (3.11) would be ViVjGij cos(θi−θj). However, vectorizing the second

term with DG alone would result in ViVjGji cos(θi− θj), which is incorrect unless the

branch (i, j) does not contain a phase-shifting transformer. Thus, we need to work

with both D+
G and D−

G defined above. Finally, since (3.11) describes the nodal power

injection and has n equations, and the vectorization cos
(
ATθ

)
describes the branch

phase difference and has |E| equations, we use the incidence matrix and its “from”

and “to” partitions to capture the summation, and vectorize the second term in (3.11)

as (
A+D+

G + A−D−
G

)
[h(v)] cos

(
ATθ

)
, (3.12b)

where the [h(v)] term transforms the normalized voltage magnitudes back to the

actual bus voltage magnitudes, as demonstrated by (3.10).

Finally, for the third term in (3.11), denote sin (·) as the element-wise sine function

similarly as before, but now we need to be careful about the signs since the sine

function is odd. Note that the j-th summand in the third term of the i-th equation of
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(3.11) contains sin(θi− θj), and recall that the corresponding element in sin
(
ATθ

)
is

sin(θi − θj) if (i, j) is the forward edge and sin(θj − θi) = − sin(θi − θj) if (j, i) is the
forward edge. Thus, there needs to be additional negative signs to cancel out these

sign mismatches. Therefore, we can vectorize the third term of (3.11) as(
A+D+

B − A−D−
B

)
[h(v)] sin

(
ATθ

)
. (3.12c)

The subtraction in (3.12c) “corrects” all the sign mismatches due to the sin (·) func-
tion being odd.

If none of the branches in the system contains a phase shifting transformer, then

G and B are symmetric, D+
G = D−

G, D
+
B = D−

B , and (3.12b)–(3.12c) simply reduce

to |A|DG[h(v)] cos
(
ATθ

)
and ADB[h(v)] sin

(
ATθ

)
. However, in general, using the

asymmetrically weighted incident matrix constructed in Section 2.2, we can define1

ΓB := A+D+
B − A−D−

B , |ΓB| := A+D+
B + A−D−

B ,

ΓG := A+D+
G − A−D−

G, |ΓG| := A+D+
G + A−D−

G.
(3.13)

Finally, left multiply on both sides of the vectorized transformed active power flow

equation (3.2) by RT, we can rewrite it as

RTP̄ = RT[V ◦][g(v)][Gii][V
◦]g(v)

+RT|ΓG|[h(v)] cos
(
ATθ

)
+RTΓB[h(v)] sin

(
ATθ

)
. (3.14)

Next, similar to (3.11), we first write the reactive power flow equation (3.1b) as

Qi = −V 2
i Bii +

n+m∑
j=1
j ̸=i

ViVjGij sin(θi − θj)−
n+m∑
j=1
j ̸=i

ViVjBij cos(θi − θj), (3.15)

for all i ∈ NL. Since we only care about the first n reactive power flow equations

corresponding to the load buses, we take the top n rows of the relevant matrices.

Let [Bii]L denote the n × n diagonal matrix formed by the diagonal elements of B

corresponding to the load buses, and let ΓGL
,ΓBL

denote the top n × |E| submatrix

of ΓG,ΓB, respectively, as shown in (3.16).

[Bii] =

[
[Bii]L 0

0 [Bii]G

]
, ΓG =

[
ΓGL

ΓGG

]
, ΓB =

[
ΓBL

ΓBG

]
. (3.16)

We can then vectorize (3.15) using the Definition 3.2 and the maps (3.9a)–(3.9b)

1The notation |ΓB | does not imply that |ΓB | is constructed by taking the absolute value of ΓB element-
wise, but comes from the analogous relationship between A and |A| written using A+ and A−.
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from before as

QL = −[V ◦
L ][v][Bii]L[V

◦
L ]v + ΓGL

[h(v)] sin
(
ATθ

)
− |ΓBL

|[h(v)] cos
(
ATθ

)
(3.17)

using similar arguments as the vectorization of the active power flow equations.

An example that demonstrates the vectorization scheme (3.14) and (3.17) for a

simple system is provided in Appendix B.



Chapter 4

The Fixed-Point Power Flow

Algorithm

In this chapter, we develop the fixed-point power flow (FPPF) algorithm, the main

algorithmic result of this thesis. In Section 4.1, we reformulate the vectorized power

flow equations derived in Chapter 3 into a fixed-point form, and show that the solution

to the reformulation is equivalent to the solution to the original power flow equations.

In Section 4.2, we present the FPPF algorithm from the fixed-point reformulation.

4.1 The Fixed-Point Reformulation

In this section, we manipulate the vectorized power flow equations (3.14) and (3.17)

into an equivalent fixed point form. First, we introduce a few more definitions and

construct some useful quantities.

Let C ∈ {−1, 0, 1}|E|×nc be the cycle matrix of G, where nc = |E| − (n+m− 1) is

the cycle dimension. Recall from the construction of the cycle matrix in Chapter 2.2

that the columns of C form an orthonormal basis of kerA. In addition, we define

MB := RTΓB ∈ R(n+m−1)×|E|, (4.1)

using the ΓB matrix defined in (3.13). Let K ∈ R|E|×nc be a sparse matrix whose

columns form a basis1 of kerMB, which implies MBK = 0. That K must have nc

linearly independent columns is nontrivial, and relies on the fact that MB has full

row rank to be proved in Lemma 4.1 in the next section. Since we interpreted the R

matrix to act as a compression matrix in Chapter 3.1, we can interpret MB to be the

compressed asymmetrically weighted incidence matrix (with weights associated with

1This is not necessarily an orthonormal basis, which would generally make K dense and computationally
inefficient; see Chapter 6.1 for more details.

28
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the branch susceptance values), and K can be viewed as a compressed weighted cycle

matrix. This interpretation is due to the connection between the fact that AC = 0

and the objective that MBK = 0.

Finally, we define the nodal stiffness matrix denoted by S [3, Definition 2], which

quantifies the strength of load bus interconnections in the network.

Definition 4.1 (Nodal Stiffness Matrix). Given the open circuit load voltage mag-

nitudes V ◦
L and the submatrix BLL, the nodal stiffness matrix is an n × n invertible

matrix defined as

S :=
1

4
[V ◦

L ]BLL[V
◦
L ].

We are now ready to provide the main theoretical results of this chapter, which

states the equivalence between the solution to the standard power flow equations and

the solution to our fixed-point reformulation to be developed next.

Theorem 4.1 (Fixed-Point Solution to the Lossy Power Flow Equations). Consider

the change of variable ψ := sin
(
ATθ

)
∈ R|E|, the normalized load voltage magnitudes

v ∈ Rn and some vector xc ∈ Rnc. If Assumptions 2.1–2.2 hold, then the following

statements are equivalent:

(i) (VL, θ) solves the vectorized power flow equations (3.14), (3.17).

(ii) (v, ψ, xc) satisfy

v = 1n −
1

4
S−1[v]−1

(
QL − ΓGL

[h(v)]ψ − |ΓBL
|[h(v)]

(
1|E| − η

))
, (4.2a)

ψ = [h(v)]−1M †
BR

T
(
P̄ − [V ◦][g(v)][Gii][V

◦]g(v)− |ΓG|[h(v)]η
)

+ [h(v)]−1Kxc, (4.2b)

0nc = CT arcsin (ψ) mod 2π, (4.2c)

where η :=
√

1|E| − [ψ]ψ.

The results above are derived in Sections 4.1.1–4.1.2 by considering the active

and reactive power flow equations separately to obtain their equivalent fixed-point

reformulations. As mentioned in Section 3.1, we do not include Pslack as an unknown

to be solved since it can be directly computed once the bus voltages are solved for. In

addition, note that Theorem 4.1 induces a constraint on ψ: to keep all the variables

real-valued, we must have ∥ψ∥∞ ≤ 1. This implicit constraint turns out to be quite

problematic in certain test cases, and we elaborate on this issue in Chapter 6.

When the network is radial, nc = 0 and xc can be discarded. Thus, we can remove

the term [h(v)]−1Kxc from (4.2b) and disregard the constraint (4.2c) in this case. We



Chapter 4. The Fixed-Point Power Flow Algorithm 30

do not state the result for radial networks separately since it can be trivially derived

from Theorem 4.1.

It is worth noting that, while there are many ways to rewrite the power flow equa-

tions from its standard root-finding form to a fixed-point form, we have chosen the

particular form in Theorem 4.1 since it is a direct extension of the lossless formulation

in [3]. Since the main goal of this thesis is to extend the lossless FPPF algorithm

and incorporate losses and other realistic transmission line parameters, it is natural

to choose this particular form.

4.1.1 Active Power Flow Equation

Before we show that the vectorized active power flow equation (3.14) can be equiv-

alently manipulated into the fixed-point form given above, we state and prove the

following lemma, which is crucial to the proof of the equivalence statement in Theo-

rem 4.1.

Lemma 4.1. If Assumption 2.2 holds, then MB has full row rank.

Proof. Since MB has full row rank if and only if MT
B has full column rank, which

holds if and only if it has a trivial kernel, we can equivalently prove that MT
B = ΓT

BR

has a trivial kernel.

Assume towards contradiction that there exist a nonzero x ∈ kerMT
B , then at least

one of the following two cases must be true:

(i) x ∈ kerR, or

(ii) there exists some y = Rx such that y ∈ ker ΓT
B.

We can rule out case (i) due to Remark 3.2(i). For case (ii), suppose that such y

exists and is nonzero (if y = 0, then we are back to the first case). Denote the k-th

column of ΓB by wk, then ΓT
By = 0 if and only if ⟨wk, y⟩ = 0 for all k = 1, ..., |E|.

By the construction of the branch stiffness matrices D+
B , D

−
B and Assumption 2.2, for

each ek = (i, j) ∈ E , wk contains exactly two nonzero elements at wk,i = V ◦
i V

◦
j Bij

and wk,j = −V ◦
i V

◦
j Bji, so ΓT

By = 0 if and only if ⟨wk, y⟩ = V ◦
i V

◦
j (Bijyi − Bjiyj) = 0

for all k = 1, ..., |E|. However, since V ◦
i , V

◦
j > 0 and Bij, Bji > 0, yi, yj must be both

positive, both negative, or both zero. Recall that in Lemma 2.1, the weak connectivity

of the bidirected graph implies that

• if there exists an edge (i, j) ∈ E such that yi = yj = 0, then y = 0 must hold,

which returns us to case (i) and results in a contradiction;

• the sign of any particular yi, yj will propagate to the rest of the elements of y,

i.e., y > 0 or y < 0 element-wise.
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However, regardless of whether y > 0 or y < 0 element-wise, αi ≥ 0 implies that

yTα ̸= 0 always holds, because we would need at least one sign variation within

the elements of y for yTα = 0 to even be possible. Finally, by Remark 3.2(ii),

yTα ̸= 0 implies that y /∈ imR, that is, there does not exist a nonzero x such that

y = Rx ∈ ker ΓT
B and case (ii) cannot hold. Thus, neither case (i) or case (ii) can

hold, and we can conclude that kerMT
B must be trivial.

Remark 4.1. Since MB has full row rank, the right inverse of MB denoted by M †
B

exists, i.e., MBM
†
B = In+m−1 and we can explicitly write M †

B = MT
B

(
MBM

T
B

)−1
. If

the system is also radial, then |E| = n+m− 1, in which case MB becomes invertible

and we write M †
B as M−1

B instead.

Now, we rewrite the transformed active power flow equation (3.14) into a fixed-

point form. With the change of variable from the phase angles θ to ψ, we have

sin
(
ATθ

)
= ψ, cos

(
ATθ

)
=
√

1|E| − [ψ]ψ,

where the square root is understood to be taken element-wise on its argument. Thus,

(3.14) becomes

RTP̄ = RT[V ◦][g(v)][Gii][V
◦]g(v) +RT|ΓG|[h(v)]

√
1|E| − [ψ]ψ +MB[h(v)]ψ, (4.3a)

which can be rearranged to isolate the MB[h(v)]ψ term as

MB[h(v)]ψ = RTP̄ −RT[V ◦][g(v)][Gii][V
◦]g(v)−RT|ΓG|[h(v)]

√
1|E| − [ψ]ψ (4.3b)

If we temporarily assume the right-hand side to be a known vector, then (4.3b) is

linear in ψ, and is written in the form of Aψ = b with known A and b. A clear

solution candidate for ψ on the left-hand side is thus ψ = A†b such that AA† = I.

We can check that (4.2b) is the general solution of (4.3b) by substituting it into the

left-hand side of (4.3b), which becomes

MB[h(v)][h(v)]
−1M †

BR
T

(
P̄ − [V ◦][g(v)][Gii][V

◦]g(v)− |ΓG|[h(v)]
√

1|E| − [ψ]ψ

)
+MB[h(v)][h(v)]

−1Kxc. (4.3c)

The left-hand side after substitution (4.3c) is consistent with the right-hand side of

(4.3b), since [h(v)][h(v)]−1 = I|E| and MB[h(v)][h(v)]
−1M †

B = In+m−1 by Lemma 4.1.

The first term of (4.2b) is the particular solution, and the second term parameterizes

the homogeneous solution with a slack variable xc, since MBK = 0 by construction.

Finally, let arcsin (·) denote the element-wise arcsine function. If ψ, v are known
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and ψ ∈ [−1, 1]|E|, then the change of variable scheme sin
(
ATθ

)
= ψ implies that

arcsin (ψ) = ATθ + 2πk (4.4a)

for some k ∈ Z|E| [40, Remark 5.3.2]. As discussed in Chapter 2.2, AC = 0(n+m)×nc ,

so (4.4a) yields

CT arcsin (ψ) = CT
(
ATθ + 2πk

)
= (AC)Tθ + 2πCTk = 2πCTk. (4.4b)

Since C ∈ {−1, 0,−1}|E|×nc and k ∈ Z|E|, we must have CTk ∈ Znc , which implies that

2πCTk mod 2π = 0nc . That is, the “loop flow” constraint (4.2c) must be satisfied, and

we elaborate on this requirement in Section 4.2. The cycles in the network necessitate

the variable xc in the formulation, and we expect its magnitude to be small2.

To summarize, we have shown the equivalence between the fixed-point reformula-

tion and the transformed active power flow equations, as well as the necessity of the

constraint (4.2c).

4.1.2 Reactive Power Flow Equation

We make use of [3, Lemma A.3] stated below to derive the fixed-point reactive power

flow equation (4.2a).

Lemma 4.2. If Assumption 2.1 holds, then the following expressions are equivalent:

(i) −[V ◦
L ][v][Bii]L[V

◦
L ]v − |ΓBL

|[h(v)]1|E|

(ii) −[VL] (BLLVL +BLGVG)

(iii) [v][V ◦
L ]BLL[V

◦
L ] (1n − v)

Proof. Note that when θ = 0n+m, sin
(
ATθ

)
= 0|E| and cos

(
ATθ

)
= 1|E|, thus, the

reactive power flow equation (3.17) becomes

QL = −[V ◦
L ][v][Bii]L[V

◦
L ]v − |ΓBL

|[h(v)]1|E|,

and the condition θ = 0n+m is used to develop the open-circuit solution in (3.7b),

QL = −[VL] (BLLVL +BLGVG) ,

thus, (i) and (ii) are equivalent. Now, expanding out [VL] = [V ◦
L ][v] and inserting an

2We can corroborate this statement with the numerical tests in Chapter 6, and show that the linear
approximation xc must be 0nc , though the details are not important and omitted here.
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additional BLLB
−1
LL = I term into the equation above, we have

QL = −[V ◦
L ][v]BLLB

−1
LL (BLLVL +BLGVG)

= −[V ◦
L ][v]BLL ([V

◦
L ]v − V ◦

L ) = [v][V ◦
L ]BLL[V

◦
L ] (1n − v) ,

which shows that (ii) and (iii) are equivalent.

With the nodal stiffness matrix S in Definition 4.1 and the equivalent expressions

above, we have

−[V ◦
L ][v][Bii]L[V

◦
L ]v − |ΓBL

|[h(v)]1|E| = 4[v]S(1n − v).

Thus, if we add and subtract a |ΓBL
|[h(v)]1|E| term in (3.17) and again apply the

change of variable ψ = sin
(
ATθ

)
, we have

QL = −[V ◦
L ][v][Bii]L[V

◦
L ]v − |ΓBL

|[h(v)]1|E| + ΓGL
[h(v)]ψ

+|ΓBL
|[h(v)]1|E| − |ΓBL

|[h(v)]
√

1|E| − [ψ]ψ

= 4[v]S (1n − v) + ΓGL
[h(v)]ψ + |ΓBL

|[h(v)]
(

1|E| −
√

1|E| − [ψ]ψ
)
.

Rearrange the equation above and multiply by 1
4
S−1[v]−1 on both sides, we get

v = 1n −
1

4
S−1[v]−1

(
QL − ΓGL

[h(v)]ψ − |ΓBL
|[h(v)]

(
1|E| −

√
1|E| − [ψ]ψ

))
,

which is precisely (4.2a), and the proof of Theorem 4.1 is complete.

4.2 The Fixed-Point Power Flow Algorithm

We now return to the fixed point reformulation of the power flow equations in lossy

networks, and derive the full FPPF algorithm. Recall that the fixed point reformu-

lation for the meshed networks in Section 4.1 is written in the form

v = Q(ψ, v, xc), (4.5a)

ψ = P(ψ, v, xc), (4.5b)

0 = C(ψ, v, xc), (4.5c)

where Q,P and C represent the right-hand side expressions of (4.2) for notational

simplicity. As mentioned before, in the case of radial networks, we can remove xc

from (4.5a)–(4.5b) and disregard the constraint (4.5c).

To find the solution, we need to initialize ψ, v, and xc at some (ψ0, v0, x0c); at the
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k-th step, we substitute the current values of ψk, vk, and xkc into right-hand side of

(4.5a)–(4.5b), and treat their left-hand side as the next iteration ψk+1, vk+1, and xk+1
c

to be evaluated, e.g., vk+1 = Q(ψk, vk, xkc ). Similarly, we solve the constraint (4.5c)

at every iteration using the most up-to-date values of ψ, v, and xc. We continue the

iterations until the fixed-point equations (4.5a)–(4.5b) and the constraint (4.5c) are all

satisfied up to a small tolerance ϵ, as demonstrated in Figure 2.1. These convergence

criteria are in practice equivalent to the power balance mismatch criterion typically

used in power flow studies.

Since the updates are sequential, in the spirit of [17], at each iteration, we use the

already updated variable to evaluate the update of the next variable. In addition,

there are three variables in total, so we can choose from six different update orders.

For example, we can first evaluate vk+1 using ψk, vk and xkc , then evaluate ψk+1 using

the updated vk+1 and the current ψk and xkc , and finally evaluate xk+1
c using both

updated vk+1, ψk+1, and the current xkc . All the update orders lead to convergence

under slight modifications to the network R/X ratios on standard test IEEE and PE-

GASE systems3, but have slightly different trajectories of power balance mismatches.

While these update orders may be empirically similar, they formulate entirely differ-

ent fixed-point mappings, and thus, any further theoretical analysis must factor the

update order into account. We discuss the impact of update order on the convergence

behaviors in more detail in Chapter 6.2.

For brevity, the ensuing discussion is based on the following update order. First,

we evaluate vk+1 using ψk, vk, and xkc as

vk+1 = Q
(
ψk, vk, xkc

)
. (4.6a)

Then, we compute xk+1
c by solving the constraint (4.5c) using vk+1, ψk, and xkc . Since

the constraint (4.5c) is already in the root-finding form, we may use Newton-Raphson

to compute xk+1
c as follows

xk+1
c = xkc −

(
Jk
c

)−1 C
(
ψk, vk, xkc

)
, (4.6b)

where Jk
c is the Jacobian matrix of (4.5c) at the k-th iteration, and can be explicitly

computed using the chain rule as

Jk
c = CT

(
I|E| − [ψk]2

)−1/2
[h(vk+1)]−1K. (4.6c)

Finally, we evaluate ψk+1 using vk+1, ψk, and xk+1
c as

ψk+1 = P
(
ψk, vk, xk+1

c

)
. (4.6d)

3Some update orders fail to converge on certain RTE systems; see Chapter 6 for more details.
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We iteratively update these variables until the termination criterion is met, which

is the power balance mismatch typically used in power flow algorithms (or if a pre-

set maximum iteration limit is reached). To compute the power balance, we simply

substitute the computed ψk+1, vk+1 values into (3.14) and (3.17), and evaluate mis-

match between the known power injections RTP̄ , Q on the left-hand side and the

results on the right-hand side. In addition, as mentioned previously, if the system

is radial, then nc = 0 and we omit steps (4.6b)–(4.6c), and the instances of xkc and

xk+1
c in (4.6a)–(4.6d) are fixed to be 0. The pseudocode for the FPPF algorithm is

listed in Algorithm 1, where the initial voltage conditions are the default values in the

test system. The construction of the required power flow data and relevant matrices

presented in this chapter is discussed in more depth in Chapter 6.

Algorithm 1 The Fixed-Point Power Flow Algorithm (v-xc-ψ order)

Require: Power flow data, power balance mismatch tolerance ϵ, maximum iteration limit

v[0]← VL/V
◦
L , ψ[0]← sin

(
ATθ

)
, xc[0]← 0nc

k ← 0

Compute power balance mismatch with ψ[0], v[0]

while power balance mismatch > ϵ AND k < maximum iteration limit do

update v[k + 1] using (4.6a)

if nc > 0 then

update xc[k + 1] using (4.6b)–(4.6c)

end if

update ψ[k + 1] using (4.6d)

Compute power balance mismatch with ψ[k + 1], v[k + 1]

k ← k + 1

end while

return ψ[k + 1], v[k + 1], power balance mismatch



Chapter 5

Analysis of the Algorithm for the

Two-Bus System

In this chapter, we leverage the mathematical tools from Chapter 2 to provide a

detailed theoretical analysis for the fixed-point power flow algorithm developed in

Chapter 4 on a simple two-bus system.

The two-bus system is a trivial radial system, so we focus on analyzing the FPPF

algorithm for radial systems, i.e., without the cycle constraint and slack variable

xc. In Section 5.1, we simplify the vectorized equations into the scalar equations,

written with constants specific to the two-bus model, and make several simplifying

assumptions on the system parameters. In Section 5.2, we reproduce the theoretical

results on a lossless two-bus system presented in [4, Section III-C] with more detailed

derivations, which lays the foundation for the analysis of the lossy FPPF algorithm.

Finally, in Section 5.3, we generalize the lossless system results to a full, lossy system,

and provide a sufficient condition for the existence of a convex and compact invariant

set, in which the desired power flow solution exists.

Since the full system not only includes the resistive loss, but also the parameters

from the (phase-shifting) transformer and Π model of the transmission line, we refer

to the lossless system discussed in Section 5.2 as the “nominal system” to differentiate

it from the full system discussed in Section 5.3.

5.1 Problem Setup

Consider the two-bus model in Figure 5.1, where bus 2 is the only generator/slack

bus and bus 1 is the load bus, in conformity to our NL,NG set partition convention.

The load is inductive and has a fixed power factor. Since there is exactly one load

bus and one generator bus, it holds that P̄1 = −P̄2, i.e., bus 2 supplies exactly the

36
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known real power consumption at bus 1, plus the transmission line loss Pslack to be

calculated.

V2 = V2∠0

Bus 2

V1 = V1∠θ1

Bus 1

Figure 5.1: Two-bus model

The edge orientation is from bus 1 to bus 2 in the graph model of this system, in

accordance with our assumption that the forward edge direction is from the generator

buses to load buses. The incidence matrix and its “from” and “to” incidence matrices

are A = [−1 1]T, A+ = [0 1]T, and A− = [1 0]T. Since bus 2 is the only slack

bus, the R matrix in (3.2) can be chosen as [1 0]T.

The branch is modelled by the standard Π-model (see Figure 2.7), which follows

from our discussion in Chapter 2.3. Let the branch admittance be y = g − jb where

g ≥ 0 and b > 0. Let the (small) line-charging susceptance be bc ≥ 0, and let the

transformer tap ratio be τ = t∠θs where t > 0 and θs is small. Based on (2.5), the

conductance and susceptance matrix for this system are1

G =

 g
−g cos θs + b sin θs

t

−g cos θs − b sin θs
t

g

t2

 ,

B =

 −b+ bc
2

g sin θs + b cos θs
t

−g sin θs + b cos θs
t

1

t2

(
−b+ bc

2

)
 .

Define t̄ := t−1 as the shifted magnitude of the transformer tap ratio. For notational

simplicity, we also define the following constants:

g̃ :=
g cos θs − b sin θs

t̄+ 1
, b̃ :=

b cos θs + g sin θs
t̄+ 1

, b̂ := b− bc
2
, β :=

b̂

b̃
. (5.1)

Realistically speaking, g̃, b̃ and b̂ are all nonnegative constants: b̂ ≥ 0 if and only if

bc < 2b, g̃ ≥ 0 if and only if g/b ≥ tan(θs), which is true for θs ∈ (−π/2, arctan(g/b)]2,
1Note that, since the 2-bus system here follows the NL-NG partitioning scheme, the admittance matrix

is a permuted version of the one shown in (2.5).
2This is a very large interval considering the realistic range of R/X ratios; e.g., if g/b = 0.2, then we
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and b̃ ≥ 0 if and only if b/g ≥ tan(θs), which is certainly true if g̃ ≥ 0. Furthermore,

if t̄ ≈ 0, θs ≈ 0, and bc ≈ 0, then g̃ ≈ g, b̃ ≈ b ≈ b̂, and β ≈ 1. Using these constants,

we can extract the following components of the B,G matrices:

BLL = −b̂, BLG = b̃, [Gii] =

[
g 0

0
g

t2

]
.

Next, since the only generator voltage magnitude in this system is V2 = 1.0 p.u.,

we can compute V ◦
1 , the open-circuit load voltage magnitude as

V ◦
1 = −B−1

LLBLGV2 =
b̃

b̂
V2 =

1

β
V2 =

1

β
V ◦
2 ,

and write the normalized load voltage magnitude as v1 = V1/V
◦
1 . Note that V2 =

V ◦
2 = 1.0 p.u. The nodal stiffness matrix S can then be computed as

S =
1

4
[V ◦

1 ]BLL[V
◦
1 ] = −

1

4
b̂ (V ◦

1 )
2 = −1

4
b̃V ◦

1 V
◦
2 .

The remaining matrices required can be computed as follows:

M−1
B = −

(
D−

B

)−1
, RT|ΓG| = D−

G, |ΓBL
| = D−

B , ΓGL
= −D−

G,

where D−
G = V ◦

1 V
◦
2 G12 = −g̃V ◦

1 V
◦
2 and D−

B = V ◦
1 V

◦
2 B12 = b̃V ◦

1 V
◦
2 . Finally, since the

only load bus is bus 1, we can write v = v1, g(v) = [v1 1]T and h(v) = v1. Combining

the results above and noting that ψ = sin
(
ATθ

)
= sin(θ2− θ1) = − sin(θ1), the fixed-

point reformulation in Theorem 4.1 simplifies to

ψ = −
(

P̄1

b̃V ◦
1 V

◦
2

)
1

v
+
g

b̂
v − g̃

b̃

√
1− ψ2, (5.2a)

v =

(
Q1

b̃V ◦
1 V

◦
2

)
1

v
− g̃

b̃
ψ +

√
1− ψ2. (5.2b)

Note that (5.2a) reduces exactly to the lossy active power flow fixed-point equation

[2, Equation 12] if we additionally assume that t̄ = 0, θs = 0 and bc = 0, i.e., if the

branch is modelled as a simple series impedance.

Recall that the normalized load voltage magnitude v introduced in Chapter 3.1

satisfies v = 1 when there is no load power demand. If we temporarily assume that the

branch connecting bus 1 and 2 is modelled by a simple series impedance, then as the

load power demand increases (up to the maximum transferable power), v decreases,

need θs ∈ (−90◦, 11.3◦] for g/b ≥ tan(θs) to hold, but θs values in test cases found in [35] are often in much
smaller intervals.
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and thus v ∈ (0, 1] in this scenario3. When the branch is modelled by the full Π-model

with a transformer, v is somewhere on the positive real number line, likely around 1

under reasonable assumptions about the Π model and transformer parameters. Thus,

unlike ψ which can be positive or negative, v is a “one-sided” variable since it is never

negative. If we make a change of variable x := v− 1, then the values of both ψ and x

are expected to be centered around 0. We thus focus on the pair (ψ, x) rather than

(ψ, v) in the subsequent analysis, and (5.2b) becomes

x =

(
Q1

b̃V ◦
1 V

◦
2

)
1

x+ 1
− g̃

b̃
ψ +

√
1− ψ2 − 1. (5.2c)

Define the variable ξ = [ψ x]T, which captures the complex nodal voltage at the

load bus, then we can vectorize (5.2a) and (5.2c) as

ξ =

[
ψ

x

]
=


−
(

P̄1

b̃V ◦
1 V

◦
2

)
1

x+ 1
+
g

b̂
(x+ 1)− g̃

b̃

√
1− ψ2

(
Q1

b̃V ◦
1 V

◦
2

)
1

x+ 1
− g̃

b̃
ψ +

√
1− ψ2 − 1

 =:

[
Pµ(ξ)

Qµ(ξ)

]

where µ = [g bc t̄ θs]
T. That is, µ contains the resistive loss, the line-charging

susceptance, and the (normalized) transformer parameters. When µ = 0, the system

reduces to the two-bus system investigated in [4, Section III-C]. Thus, a nonzero µ can

be seen as a vector of “perturbations” on the nominal lossless-shuntless-transformerless

system (“nominal system” in short). As the elements of µ get further away from 0,

the solutions to the full system stray further away from the respective solutions to

the nominal system.

To simplify the general FPPF algorithm for the two-bus system, we use the most

updated ψ in the update of x, then

ξk+1 =

[
Pµ(ψk, xk)

Qµ(ψk+1, xk)

]
=

[
Pµ(ξk)

Qµ(Pµ(ξk), xk)

]
=: Fµ(ξk). (5.3)

Note that this is different from the chosen order in Chapter 4.2. However, the main

objective of this chapter is to first reproduce the two-bus results in [4], then extend

it to the case with the resistive loss and phase-shifting transformer, so we adopt the

same update order as [4]4.

Finally, we define the following dimensionless constants that characterize the active

3See [37, Chapter 2.2] for a detailed discussion leading up the development of the nose curves.
4As we shall see in the next section, this update order is the obvious choice for the nominal system anal-

ysis, though the numerical experiments in Chapter 6.2 demonstrate some potentially problematic behaviors.
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and reactive power loading margins

γ̃P :=
P̄1

b̃V ◦
1 V

◦
2

, γ̃Q :=
Q1

b̃V ◦
1 V

◦
2

, (5.4)

which, through the constants b̃, V ◦
1 and V ◦

2 , also encode information on the resistive

loss and the transformer parameters. We also define two constants that reflects the

system R/X ratio below

ρ :=
g

b̂
=

g

b− bc
2

, ρ̃ :=
g̃

b̃
=
g cos θs − b sin θs
b cos θs + g sin θs

,

such that ρ encodes the shunt information and ρ̃ encodes the phase-shift information.

Assumption 5.1. The constants ρ and ρ̃ are nonnegative.

Satisfying ρ ≥ 0 is easy since it only requires g ≥ 0 and bc < 2b, both of which

are realistic. However, satisfying ρ̃ ≥ 0 is a little more delicate, since g is typically

much smaller than b, so it does not take a large phase-shift θs for ρ̃ to be negative.

Intuitively, this means that if g/b is small, then θs also needs to be small, and if g/b is

large, then θs can be large. (Note that the value of ρ̃ is independent of the transformer

tap ratio t.) When θs is small, ρ̃ is a quasi-linear function of θs, and ρ̃ is close to ρ.

Lastly, as explained after the introduction of the constants g̃, b̃, if ρ̃ ≥ 0, then b̃ > 0.

5.2 Nominal System Analysis

In this section, we show that the nominal system possesses two distinct solutions when

a crucial assumption on the load bus power consumption is satisfied. Furthermore,

we show that the FPPF algorithm is a contraction in a carefully constructed subset

of R2, and it converges to the desired solution in this subset, which has a voltage

magnitude near 1.0 p.u. and a small phase angle θ. Once again, while the results

from this section are well-known and available in the literature, we reproduce them

here to provide the theoretical and notational foundations for the analysis in Section

5.3.

As discussed in the construction of the constants and network parameters in the

previous section, when µ = 0, we have that b̂ = b̃ = b > 0, g̃ = g = 0, and V ◦
1 = V ◦

2 .

In this case, denote the reduced constants γ̃P , γ̃Q by γP , γQ, respectively, and the
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FPPF update rule (5.3) reduces to

ξk+1 =

[
ψk+1

xk+1

]
=

 − γP
xk + 1

γQ
xk + 1

+
√
1− ψ2

k+1 − 1

 =: F0(ξk). (5.5)

When the load draws strictly less than the maximum deliverable power, it is

a standard textbook result that (5.5) has two distinct solutions: a “high-voltage”

solution and a “low-voltage” solution, with the former being the desired solution

[37, Chapter 2]. Our goal is to characterize their locations in the ψ, x plane using a

fixed-point theoretic approach for the mapping F0.

As mentioned in the fixed-point theorem discussions in Chapter 2.1, our strategy

is to first construct a closed F0 invariant set, then give conditions under which F0

is a contraction in this set. Consequently, we are guaranteed to find the desired

high-voltage solution and certify its uniqueness.

5.2.1 Construction of the Invariant Set

We first characterize the invariant set that includes the fixed points, i.e., solutions to

the power flow equations. Define the compact and convex set

A(k1, k2) := {ξ : |ψ| ≤ k1, |x| ≤ k2}, (5.6)

which is a closed box in R2 centered at the origin, parameterized by some unknown

k1, k2 > 0 to be determined5. The F0-invariance of A(k1, k2) can be established by

showing that any ξk ∈ A(k1, k2) implies ξk+1 ∈ A(k1, k2) for all k ∈ Z≥0. Note that,

since we require |ψ| ≤ 1 in order to recover θ with the arcsine function, we require

k1 ≤ 1; since the denominator of ψk+1 is xk +1, we require k2 < 1 to prevent division

by zero in (5.5).

Assumption 5.2 (Section III-C, [4]). The constants γP , γQ satisfy 0 < 4γ2P−4γQ < 1;

equivalently, 0 < 1
4
+ γQ − γ2P < 1

4
.

Assumption 5.2 characterizes the permissible loading margins, states that the

load is inductive, and implies that γP , γQ ≤ 0 and cannot be both zero6. Figure 5.2

shows the permissible region of γP , γQ levels, where the circles indicate the infeasible

extrema. This assumption is crucial for our subsequent analyses.

5Since µ = 0 implies that there is no transformer in the system, for the load to draw power, it must be
true that v ∈ (0, 1), i.e., x ∈ [−k2, 0). However, for the sake of symmetry of A(k1, k2) and the subsequent
analysis of the full lossy system when µ ̸= 0, we let x ∈ [−k2, k2].

6When γP = γQ = 0, it is precisely the open-circuit case which is perfectly valid. However, here we are
interested in the case where there is a strictly positive active power injection at the generator bus.
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0−1
2

−1
4

γP

γQ

Figure 5.2: The permissible region of γP , γQ values

We now derive the condition for A(k1, k2) to be an F0-invariant set. From (5.5),

A(k1, k2) is F0-invariant if and only if for all ξk ∈ A(k1, k2),∣∣∣∣− γP
xk + 1

∣∣∣∣ ≤ k1, (5.7a)

∣∣∣∣ γQ
xk + 1

+
√

1− ψ2
k+1 − 1

∣∣∣∣ ≤ k2. (5.7b)

For (5.7a), first note that since −γP ≥ 0 and xk + 1 > 0 for all xk ∈ [−k2, k2] by
construction, −γP/(xk+1) ≥ 0. (Similarly, we can conclude that γQ/(xk+1) ≥ 0 for

all xk ∈ [−k2, k2].) Thus, we only need to consider the upper bound on the inequality,

which is −γP
xk + 1

≤ k1.

The “worst case” for the inequality above is attained when the denominator is min-

imized. Since xk ∈ [−k2, k2] and k2 < 1, if we want to guarantee (5.7a) holds, then

we must require
−γP
−k2 + 1

≤ k1 =⇒ k1(1− k2) ≥ −γP , (5.8)

which implies that k1 increases or decreases as the choice of fixed k2 increases or

decreases. Solving for the boundary condition with equality, the smallest possible k1

required is

kmin
1 :=

−γP
1− k2

, (5.9)

when k2 is fixed. Note that, since the maximum possible value for k1 is 1, the choice of

k2 must satisfy k2 ≤ 1+γP . Consequently, characterizing k1, k2 such that A(k1, k2) is
F0-invariant depends on k2. Thus, in the ensuing analysis, we first derive the desired

interval where k2 exists, then define the interval where k1 exists with a fixed k2, and

finally we obtain the F0-invariant set A(k1, k2).
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Derivation of k2

For (5.7b), first note that since all ψ ∈ [−1, 1],
√

1− ψ2
k+1 − 1 must be nonpositive.

Then, since γQ/(xk + 1) is nonpositive as well for all x ∈ [−k2, k2], the upper bound

on the inequality constraint in (5.7b) is always satisfied, so we only need to find a k2

that satisfies the lower bound of (5.7b), which is

γQ
xk + 1

+

√
1−

(
γP

xk + 1

)2

− 1 ≥ −k2.

Similar to before, the worst case that the inequality above must satisfy is attained

when xk = −k2. Thus, we require

γQ
1− k2

+

√
1−

(
γP

1− k2

)2

− 1 ≥ −k2

which holds if and only if

(1− k2)4 − (2γQ + 1)(1− k2)2 + γ2Q + γ2P ≤ 0. (5.10)

Note that (5.10) is a quadratic inequality in (1− k2)2. At the boundaries of (5.10),

(1− k2)2± =
1

2
+ γQ ±

√
1

4
+ γQ − γ2P .

The roots (1− k2)2± are real and takes two distinct values if and only if Assumption

5.2 holds. Furthermore, (1 − k2)2± are real if and only if k2 is real, since the square

root of (1− k2)2± is real if and only if γ2P + γ2Q ≥ 0, which is trivially true. Thus, since

k2 < 1, the boundaries of (5.10) correspond to the following roots

k−2 := 1−

√
1

2
+ γQ +

√
1

4
+ γQ − γ2P , (5.11a)

k+2 := 1−

√
1

2
+ γQ −

√
1

4
+ γQ − γ2P , (5.11b)

where 0 < k−2 < k+2 < 1, and any k2 ∈ [k−2 , k
+
2 ] satisfies (5.10), which in turn creates a

bound such that every xk ∈ [−k2, k2] satisfies the second invariance condition (5.7b).

Recall from (5.9) that the choice of k2 must also satisfy k2 ≤ 1+γP for there to be

a k1 such that any ψk ∈ [−k1, k1] satisfies the first invariance condition (5.7a). Thus,

we must choose k2 such that k−2 ≤ k2 ≤ min{k+2 , 1 + γP}. To simplify the upper

bound, we show that k+2 = min{k+2 , 1 + γP} by assuming towards contradiction that
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1 + γP ≤ k+2 . We then have

1 + γP ≤ 1−

√
1

2
+ γQ +

√
1

4
+ γQ − γ2P ⇐⇒

√
1

4
+ γQ − γ2P ≤ γ2P − γQ −

1

2
.

If Assumption 5.2 holds, then γ2P − γQ < 1/4, so the statement 1 + γP ≤ k+2 implies

that
√

1/4 + γQ − γ2P < 0, which is a contradiction. Thus, k+2 = min{k+2 , 1 + γP}.

Derivation of k1

Next, from (5.9), we can compute kmin
1 , the corresponding smallest possible k1 that

satisfies (5.8). Then, any ψk ∈ [−k1, k1] such that k1 ∈ [kmin
1 , 1] will satisfy the first

F0-invariance condition (5.7a). In particular, since kmin
1 decreases as k2 decreases, we

denote the smallest kmin
1 as

k−1 := − γP
1− k−2

=
−γP√

1
2
+ γQ +

√
1
4
+ γQ − γ2P

, (5.12)

The invariant set A(k1, k2)

A+

A−

−1 − 1√
2

1√
2

1

−1

− 1√
2

−1
2

1
2

1√
2

1

ψ

x

Figure 5.3: Example of the sets A+ and A−; any closed ℓ∞ norm ball in between A+ and
A− is also an F0-invariant set

In summary, we have found the intervals where k1, k2 respectively exists, such that

A(k1, k2) is F0-invariant. In particular, Figure 5.3 shows an example of the largest
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and the smallest F0-invariant sets, which are

A+ := {ξ : |ψ| ≤ 1, |x| ≤ k+2 },
A− := {ξ : |ψ| ≤ k−1 , |x| ≤ k−2 },

respectively. We are in particular interested in the smallest F0-invariant set A− since

it contains the desired high-voltage solution. We state the result thus far on the F0-

invariant set in Theorem 5.1 and Corollary 5.1; the latter of which is a special case

of [4, Theorem 5.1].

Theorem 5.1. The set A(k1, k2) is F0-invariant for any k2 ∈ [k−2 , k
+
2 ] and k1 ∈

[k−1 , 1], with k
−
2 , k

+
2 defined in (5.11a), and k−1 defined in (5.12) given the choice of

k2, if and only if Assumption 5.2 holds.

Corollary 5.1. If Assumption 5.2 holds, then the lossless power flow equation (5.5)

is solvable, and the high-voltage solution is ξ̄+ := [k−1 − k−2 ]
T ∈ A−.

Proof. Since A(k1, k2) is a compact convex set and F0 is C1 and thus continuous on

A(k1, k2), there must be at least one fixed point ξ̄ ∈ A(k1, k2) by Brouwer’s fixed

point theorem. We can verify that ξ̄+ is a fixed point of (5.5) by direct substitution.

Recall that v = 1 + x by construction, so x̄ = −k−2 implies that v̄ is close to 1, and

ξ̄+ is thus the desired high-voltage solution.

We now characterize the intervals where the bounds k−1 , k
−
2 and k+2 live in. Since

the loading margins γP , γQ determine the range of k−2 and k+2 , we characterize them

as follows. Maximizing k−2 is equivalent to minimizing 1/2 + γQ +
√
1/4 + γQ − γ2P ,

whose infimum is attained when −γQ+γ2P = 1/4 and γQ = −1/4. Thus, Assumption

5.2 implies that k−2 ∈ (0, 1/2). Similarly, minimizing k−2 is equivalent to maximizing

1/2 + γQ −
√
1/4 + γQ − γ2P , whose supremum is attained when −γQ + γ2P = 1/4

and γQ = 0. Thus, k+2 ∈ (1/
√
2, 1). We can also show by direct computation that

k−1 ∈ (0, 1/
√
2) based on (5.12). These points are shown on Figure 5.3 as well.

Consequently, when recovering the normalized voltage solution v̄ from x̄, the low

voltage solution denoted by v̄− takes values in the interval (0, 1−1/
√
2), and the high-

voltage solution denoted by v̄+ takes values in the interval (1/2, 1), which implies that

v̄− < v̄+, and we have the two distinct solutions as claimed at the beginning of this

section.

5.2.2 Condition for Contractivity

Having shown the existence of the desired high-voltage solution, we now seek to derive

a sufficient condition for F0 to be a contraction in the smallest F0-invariant set A−,

which establishes the uniqueness of the high-voltage solution in Corollary 5.1.
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Theorem 5.2. If Assumption 5.2 holds, then F0 is a contraction on A− in the ℓ∞
norm.

Proof. First, we compute Jacobian of F0 evaluated at any ξk ∈ A− as

J(ξk) =


∂P0

∂ψk

∂P0

∂xk

∂Q0

∂ψk

∂Q0

∂xk

 =


0

γP
(xk + 1)2

0 − γQ
(xk + 1)2

+
γ2P

(xk + 1)2
√

(xk + 1)2 − γ2P

 . (5.13)

It is easy to show that the partial derivative terms in (5.13) are continuous for all

xk ∈ [−k−2 , k−2 ], since each of them are the results of elementary operations of stan-

dard continuous functions in xk. Thus, if there exists a constant d < 1 such that

∥J(ξk)∥∞ ≤ d for all ξk ∈ A−, then F0 is a contraction in A−. For any ξk ∈ A−,

recall that the ℓ∞ matrix norm of J(ξk) can be computed as

∥J(ξk)∥∞ = max

{
−γP

(xk + 1)2
, − γQ

(xk + 1)2
+

γ2P

(xk + 1)2
√

(xk + 1)2 − γ2P

}
. (5.14)

Fix any γP , γQ such that Assumption 5.2 is satisfied, then each of the two elements of

(5.14) are maximized when the denominator (xk + 1)2 is minimized, i.e., xk = −k−2 .
Then, F0 is a contraction on A− if there exist some d1, d2 < 1 such that the following

inequalities hold:
−γP

(1− k−2 )2
≤ d1, (5.15a)

− γQ
(1− k−2 )2

+
γ2P

(1− k−2 )2
√

(1− k−2 )2 − γ2P
≤ d2. (5.15b)

Substituting the definition of k−2 in (5.11a) into (5.15a), then the left-hand side of

(5.15a) becomes
−γP

1
2
+ γQ +

√
1
4
+ γQ − γ2P

<
−γP

1
2
+ γQ

< 1,

which is true if and only if Assumption 5.2 holds, since it states that
√

1/4 + γQ − γ2P
is real and positive, and implies that −γP ∈ (0, 1/2) and γQ ∈ (−1/4, 0). For (5.15b),
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its left-hand side becomes

−γQ
1
2
+ γQ +

√
1
4
+ γQ − γ2P

+
γ2P(

1
2
+ γQ +

√
1
4
+ γQ − γ2P

)√
1
2
+ γQ +

√
1
4
+ γQ − γ2P − γ2P

,

Similar as before, an upper bound on the expression above is

−γQ
1
2
+ γQ

+
γ2P(

1
2
+ γQ

)√
1
2
+ γQ − γ2P

<
−γQ + 2γ2P

1
2
+ γQ

<
1
4
+ γ2P

1
2
+ γQ

< 1,

which, again, holds if and only if Assumption 5.2 holds. Therefore, from the sequence

of strict inequalities above, there exist constants d1, d2 < 1 such that ∥J(ξk)∥∞ ≤
max{d1, d2} < 1, and we can conclude that F0 is a contraction on A−.

In summary, we have constructed an F0-invariant set of interest, A−, and we have

shown the desired high-voltage solution is unique and exists on the boundary of A−.

We have also shown that the FPPF algorithm is a contraction on the A− set if the

critical loading margin assumption 5.2 holds. Note that these are known results that

we have simply stated in the language of invariant sets and contraction mappings.

In the next section, we extend them to investigate the location of the high-voltage

solution in the ψ-x space by including the resistive loss, the branch Π-model and

transformer parameters in the problem.

5.3 Full System Analysis

Now, we shift our focus back to the FPPF algorithm on a full, lossy two-bus system,

and similarly show that we can construct an invariant set based on A−, and give a

sufficient condition for contractivity.

Consider the update rule for the full FPPF algorithm (5.3), written using the

constants defined in Section 5.1 as

ξk+1 = Fµ(ξk) =


−γ̃P
xk + 1

+ ρ (xk + 1)− ρ̃
√
1− ψ2

k

γ̃Q
xk + 1

− ρ̃ψk+1 +
√
1− ψ2

k+1 − 1

 =

[
ψk+1

xk+1

]
. (5.16)

We proceed by assuming that Assumptions 5.1–5.2 hold, which imply that the loading
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margins γ̃P , γ̃Q defined in (5.4) are nonpositive and are not both zero. Recall that

γ̃P =
P̄1

b̃V ◦
1 V

◦
2

=
b

b

(
P̄1

b̃ 1
β
(V ◦

2 )
2

)
=
bβ

b̃

P̄1

b (V ◦
2 )

2 =
bβ

b̃
γP =: kµγP ,

where kµ ≥ 0 is also implied by Assumption 5.1. We can similarly show that γ̃Q =

kµγQ. Observe that kµ does not depend on the conductance g, and approaches 1 as

the remaining elements of µ approach 0.

5.3.1 Construction of the Invariant Set

Similar to the steps we took in Section 5.2, we first construct a closed Fµ-invariant set,

in which the high-voltage solution exists. Let ϵ1 = ϵ1(µ, γP , γQ) and ϵ2 = ϵ2(µ, γP , γQ).

Denote the set Aϵ(k1, k2) := A(k1 + ϵ1, k2 + ϵ2), then we can define A−
ϵ := Aϵ(k

−
1 +

ϵ1, k
−
2 + ϵ2). Intuitively, this set is “slightly expanded” from A− (on which F0 is a

contraction, as shown in the previous section) when the µ parameters are nonzero.

We now derive the conditions on ϵ1, ϵ2 such that A−
ϵ is Fµ-invariant.

The set A−
ϵ is Fµ-invariant if and only if for every ξk ∈ A−

ϵ ,

|ψk+1| =
∣∣∣∣−kµγPxk + 1

+ ρ (xk + 1)− ρ̃
√

1− ψ2
k

∣∣∣∣ ≤ k−1 + ϵ1, (5.17a)

|xk+1| =
∣∣∣∣ kµγQxk + 1

− ρ̃ψk+1 +
√
1− ψ2

k+1 − 1

∣∣∣∣ ≤ k−2 + ϵ2. (5.17b)

Unlike in the F0 case in Section 5.2, neither terms inside the absolute value in (5.17a)–

(5.17b) are sign-definite without further restrictions on µ and loading margins γP , γQ.

Thus, we need to keep the absolute value and bound both the upper and lower bounds

simultaneously.

We start with the inequality (5.17a), and recall from Section 5.2 that k−1 :=

−γP/(1− k−2 ) . Since |ψk| ≤ k−1 + ϵ1 and |xk| ≤ k−2 + ϵ2,

|ψk+1| =
∣∣∣∣−kµγPxk + 1

+ ρ (xk + 1)− ρ̃
√
1− ψ2

k

∣∣∣∣
≤ −kµγP
xk + 1

+ ρ (xk + 1) + ρ̃
√
1− ψ2

k

≤ −kµγP
1− k−2 − ϵ2

+ ρ
(
1 + k−2 + ϵ2

)
+ ρ̃

= k−1 +
−kµγP

1− k−2 − ϵ2
+

γP
1− k−2

+ ρ
(
1 + k−2 + ϵ2

)
+ ρ̃
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That is, if ϵ1, ϵ2 satisfies

−kµγP
1− k−2 − ϵ2

+
γP

1− k−2
+ ρ

(
1 + k−2 + ϵ2

)
+ ρ̃ ≤ ϵ1 (5.18a)

then any |ψk| ≤ k−1 + ϵ1 implies |ψk+1| ≤ k−1 + ϵ1. Note that we also need ϵ2 < 1− k−2
to prevent division by zero in (5.18a).

Next, the left-hand side of the inequality (5.17b) can be upper bounded as

|xk+1| =
∣∣∣∣ kµγQxk + 1

− ρ̃ψk+1 +
√

1− ψ2
k+1 − 1

∣∣∣∣
≤ −kµγQ
xk + 1

+
∣∣∣√1− ψ2

k+1 − 1− ρ̃ψk+1

∣∣∣
≤ −kµγQ

1− k−2 − ϵ2
+

∣∣∣∣√1−
(
k−1 + ϵ1

)2 − 1− ρ̃
(
k−1 + ϵ1

)∣∣∣∣
≤ −kµγQ

1− k−2 − ϵ2
+ 1−

√
1−

(
k−1 + ϵ1

)2
+ ρ̃

(
k−1 + ϵ1

)
= k−2 +

−kµγQ
1− k−2 − ϵ2

+
(
1− k−2

)
+ ρ̃

(
k−1 + ϵ1

)
−
√

1−
(
k−1 + ϵ1

)2
,

so if ϵ1, ϵ2 satisfies

−kµγQ
1− k−2 − ϵ2

+
(
1− k−2

)
+ ρ̃

(
k−1 + ϵ1

)
−
√

1−
(
k−1 + ϵ1

)2 ≤ ϵ2, (5.18b)

then any |xk| ≤ k−2 + ϵ2 implies |xk+1| ≤ k−2 + ϵ2. To keep the square root term

above real-valued, we also require ϵ1 ∈ [−1 − k−1 , 1 − k−1 ], although since ϵ1 ≥ 0 by

construction, we simply require that ϵ1 ≤ 1− k−1 .
Note that since we made several bounding steps in the inequalities above, the

bounds (5.18) may be quite conservative, with (5.18a) especially so due to the first

inequality step, which is made with triangle inequality. This conservatism can be

improved with additional mild assumptions on the magnitudes of ρ and ρ̃, but we do

not pursue that path here.

To summarize the steps thus far, if there exist nonnegative ϵ := (ϵ1, ϵ2) such that it

satisfies (5.18), then A−
ϵ is an Fµ-invariant set and it contains at least one solution to

the power flow problem. However, in the current form of the problem, we must solve a

feasibility problem using the inequalities (5.18) to find a desired ϵ. Wile numerically

there exists a wide range of feasible ϵ (especially with a sufficiently small µ), the

feasibility problem is difficult to analytically assess. Since any ϵ that satisfies (5.18)
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at the boundary, i.e., the system of nonlinear equations

−kµγP
1− k−2 − ϵ2

+
γP

1− k−2
+ ρ

(
1 + k−2 + ϵ2

)
+ ρ̃ = ϵ1 (5.19a)

−kµγQ
1− k−2 − ϵ2

+
(
1− k−2

)
+ ρ̃

(
k−1 + ϵ1

)
−
√

1−
(
k−1 + ϵ1

)2
= ϵ2 (5.19b)

trivially satisfy the inequalities (5.18) themselves, we may proceed by focusing on

solving the boundary equations (5.19).

Before going back to the question of when the set A−
ϵ is Fµ-invariant, we make one

more note to show that A−
ϵ is a well-defined extension of the A− set for the nominal

system.

Proposition 5.1. When µ = 0, ϵ = 0 solves (5.19) and thus (5.18), which implies

that the set A−
ϵ reduces to A− as the mapping Fµ reduces to F0.

Proof. Let µ = 0, then (5.19) can be simplified and rearranged as

−γP
1− k−2 − ϵ2

+
γP

1− k−2
− ϵ1 = 0, (5.20a)

−γQ
1− k−2 − ϵ2

+
(
1− k−2

)
−
√

1−
(
k−1 + ϵ1

)2 − ϵ2 = 0. (5.20b)

It is trivial to verify that ϵ = 0 is a solution to (5.20a) by direct substitution, which

results in −γP
1− k−2

+
γP

1− k−2
= 0.

However, verifying that it is also a solution to (5.20b) requires some work: substitute

ϵ = 0 and the explicit expression of k−1 (5.12) into (5.20b), then its left-hand side

becomes
−γQ
1− k−2

+ (1− k−2 )−
√
1− γ2P(

1− k−2
)2 . (5.21a)

By construction,

−γQ
1− k−2

+ (1− k−2 ) +
√

1− γ2P(
1− k−2

)2 (5.21b)

is strictly positive (note the plus sign before the square root term above rather than

the minus sign in (5.21a)). That is, (5.21a) equals zero if and only if the expression

below equals zero:(
−γQ
1− k−2

+ (1− k−2 )−
√

1− γ2P(
1− k−2

)2
)(

−γQ
1− k−2

+ (1− k−2 ) +
√
1− γ2P(

1− k−2
)2
)
.



Chapter 5. Analysis of the Algorithm for the Two-Bus System 51

The expression above simplifies to

γ2Q(
1− k−2

)2 +
(
1− k−2

)2 − 2γQ −
(
1− γ2P(

1− k−2
)2
)

=
γ2Q + γ2P

γQ + 1
2
+
√

1
4
+ γQ − γ2P

+ γQ +
1

2
+

√
1

4
+ γQ − γ2P − 2γQ − 1

=
γ2Q + γ2P√

1
4
+ γQ − γ2P + γQ + 1

2

+

√
1

4
+ γQ − γ2P −

(
γQ +

1

2

)

=
γ2Q + γ2P + 1

4
+ γQ − γ2P −

(
γQ + 1

2

)2√
1
4
+ γQ − γ2P + γQ + 1

2

= 0.

Thus, ϵ = 0 also solves (5.20b), and A−
ϵ reduces to A− when µ = 0.

Similar to the way we rearranged the equations in the proof above, we rewrite the

general boundary condition (5.19) into a root-finding form with E : Dϵ × R4 → R2

defined as

E(ϵ, µ) =


−kµγP

1− k−2 − ϵ2
+

γP
1− k−2

+ ρ
(
1 + k−2 + ϵ2

)
+ ρ̃− ϵ1

−kµγQ
1− k−2 − ϵ2

+
(
1− k−2

)
+ ρ̃

(
k−1 + ϵ1

)
−
√

1−
(
k−1 + ϵ1

)2 − ϵ2

 = 0,

where Dϵ ⊂ [0, 1− k−1 )× [0, 1− k−2 ) ⊂ R2 is an open set. The domain of E is open,

since both Dϵ and R4 are open and the Cartesian product of two open sets is open7.

Note that Proposition 5.1 implies that E(0, 0) = 0. The existence of ϵ that solves

(5.19) is thus equivalent to the existence of a general (local) solution to E(ϵ, µ) = 0.

Proposition 5.2. Given a sufficiently small µ, there exists U , a nonempty open

subset of Dϵ × R4 such that (02, 04) ∈ U , and every (ϵ, µ) ∈ U satisfies E(ϵ, µ) = 0.

Proof. Clearly E is a C1 function, so we can compute its Jacobian evaluated at some

(ϵ, µ) in its domain as

JE(ϵ, µ) =
[
JE,ϵ(ϵ, µ) JE,µ(ϵ, µ)

]

=


∂E1

∂ϵ1

∂E1

∂ϵ2

∂E1

∂g

∂E1

∂bc

∂E1

∂t̄

∂E1

∂θs

∂E2

∂ϵ1

∂E2

∂ϵ2

∂E2

∂g

∂E2

∂bc

∂E2

∂t̄

∂E2

∂θs

 . (5.22)

7This fact can be easily shown based on the discussion in [41].
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After evaluating the Jacobian at the point (ϵ, µ) = (02, 04), we get

JE,ϵ(0, 0) =


−1 −γP(

1− k−2
)2

k−1√
1−

(
k−1
)2 −γQ(

1− k−2
)2 − 1

 ,

JE,µ(0, 0) =


2 + k−2
b

γP

2b
(
1− k−2

) − γP
1− k−2

−1

k−1
b

γQ

2b
(
1− k−2

) − γQ
1− k−2

−k−1

 .
We can also compute

det JE,ϵ(0, 0) =

(
1− −γQ(

1− k−2
)2
)
−
(

−γP(
1− k−2

)2
) k−1√

1−
(
k−1
)2


=

√
1−

(
k−1
)2 (

1− k−2
)2

+ γQ

√
1−

(
k−1
)2

+ k−1 γP(
1− k−2

)2√
1−

(
k−1
)2 . (5.23)

Recall from the previous section the intervals from which k−1 and k−2 can take values,

we can conclude that the denominator of (5.23) is always nonzero by construction.

Thus, JE,ϵ(0, 0) is invertible if and only if the numerator of (5.23) is also nonzero, or

equivalently, ((
1− k−2

)2
+ γQ

)√
1−

(
k−1
)2

= −k−1 γP . (5.24)

Recall from the previous section that k−1 and k−2 only depend on the loading levels

γP , γQ, so we have

(
1− k−2

)2
= γQ +

1

2
+

√
1

4
+ γQ − γ2P , (5.25a)

√
1−

(
k−1
)2

=

√
1− γ2P(

1− k−2
)2 =

√√√√√ 1
2
+ γQ − γ2P −

√
1
4
+ γQ − γ2P

γQ + 1
2
+
√

1
4
+ γQ − γ2P

. (5.25b)

Expanding and squaring both sides of (5.24) using the explicit expressions (5.25a)–
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(5.25b) and re-arranging the equation, we get

0 =

(
2γQ +

1

2
+

√
1

4
+ γQ − γ2P

)2
 1

2
+ γQ − γ2P −

√
1
4
+ γQ − γ2P

γQ + 1
2
+
√

1
4
+ γQ − γ2P


− γ4P

γQ + 1
2
+
√

1
4
+ γQ − γ2P

0 =

(
2γQ +

1

2
+

√
1

4
+ γQ − γ2P

)2(
1

2
+ γQ − γ2P −

√
1

4
+ γQ − γ2P

)
− γ4P

0 =
1

2

(
3− 6γ2P + 8γ2Q + 6γQ

)(1

4
+ γQ − γ2P

)
+

(
3γ2Q − 4γ2PγQ +

3

2
γQ +

3

16

)√
1

4
+ γQ − γ2P (5.26)

if and only if JE,ϵ(0, 0) is singular. Note that the first half of the right-hand side of

(5.26) can be rewritten as(
3

(
1

4
+ γQ − γ2P

)
+

3

4
+ 4γ2Q

)(
1

4
+ γQ − γ2P

)
,

which is strictly positive. Recall that Assumption 5.2 also implies that γ2P < 1/4 when

γQ ≤ (−1/4, 0], so the second half of the right-hand side of (5.26) can be rewritten

as (
5γQ

(
1

4
+ γQ − γ2P

)
+ γQ

(
1

4
− γ2P

)
+

3

16

)√
1

4
+ γQ − γ2P ,

and it is also strictly positive. Thus, the right-hand side is always strictly positive and

(5.26) is never true, so JE,ϵ(0, 0) is always invertible. Then, by the implicit function

theorem, there exists a nonempty open set U = Uϵ×Uµ that includes (ϵ, µ) = (0, 0), on

which there exists a unique C1 function g : Uµ ⊂ R4 → R2 such that E(g(µ), µ) = 02

for all µ ∈ Uµ, and g(04) = 02.

Having shown the existence of the desired ϵ when µ is sufficiently small, we can eas-

ily construct it by solving E(ϵ, µ) = 0 with a root-finding algorithm such as Newton-

Raphson; the details are omitted here. An immediate consequence of Proposition 5.2

is that any sufficiently small µ guarantees the existence of an ϵ such that A−
ϵ is an

Fµ-invariant set. As a result, by Brouwer’s fixed-point theorem, there exists at least

one solution to the power flow problem in A−
ϵ .
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5.3.2 Condition for Contractivity

Similar to the steps taken in the previous section, we now check whether Fµ is a

contraction on A−
ϵ given a fixed, sufficiently small µ; if so, then we can conclude that

there exists a unique solution to the full, two-bus power flow problem, and that the

FPPF algorithm always converges to this solution.

The Jacobian of Fµ evaluated at any ξk ∈ A−
ϵ is

Jµ(ξk) =


∂Pµ

∂ψk

∂Pµ

∂xk

∂Qµ

∂ψk

∂Qµ

∂xk

 = J0(ξk) + ∆J(ξk) =


∂P0

∂ψk

∂P0

∂xk

∂Q0

∂ψk

∂Q0

∂xk

+

[
δ11 δ12

δ21 δ22

]
.

Clearly, Proposition 5.1 implies that ∆J(ξk) = 0 when µ = 0, and we can write

δ11 :=
∂Pµ

∂ψk

=
ρ̃ψk√
1− ψ2

k

δ12 :=
∂Pµ

∂xk
− ∂P0

∂xk
=

(kµ − 1)γP
(xk + 1)2

+ ρ

δ21 :=
∂Qµ

∂ψk

= − ρ̃ψk√
1− ψ2

k

ρ̃+ ρ(xk + 1)2 − ρ̃
√
1− ψ2

k − kµγP√
1−

(
ρ(xk + 1)− ρ̃

√
1− ψ2

k − kµγP
xk+1

)2


δ22 :=
∂Qµ

∂xk
− ∂Q0

∂xk
= −(kµ − 1)γQ

(xk + 1)2
− ρ̃

(
ρ+

kµγP

(xk + 1)2

)

+

(
ρ+ kµγP

(xk+1)2

)(
ρ(xk + 1)− ρ̃

√
1− ψ2

k − kµγP
xk+1

)
√

1−
(
ρ(xk + 1)− ρ̃

√
1− ψ2

k − kµγP
xk+1

)2
− γ2P

(xk + 1)2
√

(xk + 1)2 − γ2P
.

While these terms look overwhelming, we can easily verify by inspection that for

realistic values of µ, they are all well-defined and real-valued. Furthermore, the δij

entries are the results of elementary operations—such as element-wise addition and

function composition—on standard continuous functions in µ, and thus are themselves

continuous in µ. Recall that Theorem 5.2 states that it is possible find a constant

d < 1 such that ∥J0∥∞ ≤ d. Then by continuity, for sufficiently small µ, we can also

find a d′ < 1 such that ∥Jµ∥∞ ≤ d′ and conclude that Fµ must be a contraction on

A−
ϵ in the ℓ∞ norm. Thus, we can conclude that there must exist a unique power

flow solution in the set A−
ϵ .
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In summary, in this section, we have analyzed the full FPPF algorithm on a lossy

two-bus system with a phase-shifting transformer and a Π-model transmission line.

We used the F0-invariant A− set from Section 5.2 to construct an Fµ-invariant set A−
ϵ ,

in which the desired solution to the two-bus power flow problem exists. The constant

ϵ characterizes how much the A−
ϵ set expands from the A− set when the perturbation

vector µ is nonzero, and we used the implicit function theorem to prove the existence

of such ϵ given a sufficiently small µ. Finally, given a sufficiently small µ, we have

shown that the FPPF algorithm is a contraction on the A−
ϵ set, once again based on

the nominal system analysis in the previous section using a continuity argument. In

this case, we can guarantee that the FPPF algorithm always converges to the desired

high voltage solution by starting from any point in the A−
ϵ set.



Chapter 6

Numerical Results

Having concluded our theoretical work, in this chapter we provide comprehensive

numerical simulations of the FPPF algorithm.

In Section 6.1, we discuss the construction of the power flow data in Algorithm

1, and the recovery of the bus voltage values V, θ from the FPPF variables v, ψ.

In Section 6.2, we examine some numerical behaviors of the FPPF algorithm, in

particular the effect of update order on the convergence as briefly discussed in 4.2,

and its sensitivity to high network branch R/X ratios. In Section 6.3, we present some

simulation results using different standard systems of various sizes, loading profiles

and network parameters.

All subsequent simulations are conducted on Matlab, using test cases from the

Matpower library [42]–[44].

6.1 Computational Remarks and Software Implementation

In this section, we discuss the construction of relevant network matrices and required

data for FPPF iterations, as well as other caveats and issues relevant to the software

implementation. The known “power flow data” in Algorithm 1 includes the following:

(i) network admittance matrix Y , which can be computed using built-in function

makeYbus in Matpower, and it is modified to re-order the buses in conformity

with the NL,NG partitions and return the incidence matrix A;

(ii) network incidence matrix A, from which the “from”/“to” partitions A+, A−

and the cycle matrix C can be computed. In particular, since C contains only

elements from {−1, 0, 1}, we compute it using the null(A, ‘r’) command, in

which the ’r’ option generates a rational basis for kerA. This process is the

most time-consuming step; as such, the C matrix for all large systems (with 300

56
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buses or more) are computed once only and saved for future use, and they only

need to be re-computed if the network topology changes1;

(iii) bus voltage data, in particular the generator voltages VG to evaluate the open-

circuit voltage V ◦, from which the nodal stiffness matrix S can be computed;

(iv) branch stiffness matrices D+
G, D

−
G, D

+
B and D−

B can be computed using (3.8);

(v) the bus participation factor α and the full rank R matrix whose columns form an

orthonormal basis to α⊥. Since standard power flow algorithms and test cases

available on Matpower do not support the distributed slack bus modelling by

default, we use the traditional single slack bus model in the simulations, i.e., R

is constructed by removing the column, whose the position of the 1 element is

the slack bus number, from the identity matrix;

(vi) the right inverse M †
B and the “compressed” weighted cycle matrix K, whose

columns form a basis forMB. Unlike the true cycle matrix C, the elements of K

are not limited to {−1, 0, 1}. To maximize the sparsity ofK, it is computed using

the LUQ decomposition2 [46], which is considerably faster than the cycle matrix

computation. The right inverseM †
B is computed using sparse(lsqminnorm(M B,

eye(n+m-1))).

The matrices above are sparse wherever possible. The bus number re-ordering

process mentioned in (i) is nontrivial. To satisfy the NL,NG partitions, we must

re-label the bus number (the BUS I field of the bus data [35, Table B-1]) of all the

load buses (BUS TYPE = 1) as 1, ..., n, and re-label the bus number of all the generator

buses (BUS TYPE = 2) as n + 1, ...,m. In order to convert between the original bus

numbering and the NL,NG partition bus numbering, we need to build and store a

lookup table (alternatively, a sparse permutation matrix). By convention, the test

systems on Matpower has a single reference bus (BUS TYPE = 3), which is also

doubled as the slack bus in standard algorithms, so we also need to record its original

and re-named bus number separately.

In addition, on certain large systems, multiple generators may be connected to

a single bus, which corresponds to multiple rows in the generator data [35, Table

B-2] having the same GEN BUS data. If this setup occurs, we aggregate all the power

generations into a single generator to properly compute the bus power injections, and

remove all others from the system.

Recall from Chapter 4.2 that we also need to update the Jacobian of the cycle

matrix and find its inverse J−1
cycle at every iteration of the FPPF algorithm. We also

1From a purely computational perspective, we do not require the C matrix, since all we need is a full
column rank matrix whose columns span the null space of A.

2See [45] for a detailed explanation of the LUQ decomposition algorithm.
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need the inverse of the nodal stiffness matrix S−1 for the v update. Both of these can

be computed much more efficiently with the mldivide command 3

After the FPPF converges, we can recover V from v by (3.6) and θ from ψ by

computing θ =
(
AT
)†

arcsin (ψ) as long as ψ ∈ [−1, 1]|E|, with the pseudoinverse

again computed using the mldivide command. Finally, to ensure the reference bus

has 0 voltage phase angle, we subtract from all θi its current value before returning

the final V, θ vectors.

6.2 Numerical Behaviors of the FPPF Algorithm

In this section, we discuss the numerical behaviors of the FPPF algorithm; in par-

ticular, we show that the order we use to compute the next iteration variables has

a small but non-negligible effect on the iterations required for convergence, and that

the FPPF algorithm is sensitive to high network R/X ratios. For all of these cases,

we set the desired power balance mismatch tolerance to be 10−8 p.u., which is the

default Matpower convergence criterion. We also set the initial condition to be the

“flat-start” voltage profile, i.e., VL = 1n and θ = 0n+m.

6.2.1 Effects of Update Order

As mentioned in Chapter 4.2, there are six total possible update orders to compute

ψk+1, vk+1 and xk+1
c using the current ψk, vk and xkc . Conducting a theoretical analysis

to understand the differences between all these update orders would be a painstaking

undertaking beyond the scope of this thesis, so we present the numerical results

from selected standard test systems instead, which nonetheless offer some qualitative

insight. Each system’s maximum branch R/X ratio is capped to be 0.8, as explained

in the next section.

Figure 6.1 shows the number of iterations FPPF requires to converge and the

power balance mismatch at each iteration for all six update orders. The legend entries

indicate the update order. For example, ψ-xc-v means that ψk+1 is first computed

using ψk, vk and xkc , then x
k+1
c is computed using ψk+1, vk and xkc , and finally, vk+1

is computed using ψk+1, vk and xk+1
c . We can observe two major facts from Figure

6.1. First, the difference between the update orders are not significant, and the total

iterations required to converge for each update order differs by only a few iterations.

Second, the ψ-xc-v and xc-ψ-v orders seem to take consistently more iterations than

the rest of the update orders to converge, and initially the power balance mismatch

increases before it decreases again. However, updating v before ψ seems to provide

3Although it is not pursued here, the computations can be further optimized with heuristics such as the
approximate minimum degree permutation [47], which is used in the NR implementation on Matpower.
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consistently faster and smoother convergence behaviors. In fact, on the RTE 1951

and RTE 6468 bus systems, updating ψ before v leads to convergence failure. A

potential reason for this phenomenon is that initially, updating ψ first may give it

too large of a “kick” and the power balance mismatch would increase, but updating v

before ψ steers the update of ψ in the right direction. However, more work is required

to prove or disprove this conjecture. Nonetheless, we choose the v-xc-ψ update order

for the remaining simulations.
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Figure 6.1: Effect of update order on mismatch trajectories of FPPF
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6.2.2 Sensitivity to Network R/X Ratio

While practical transmission networks generally have low branch R/X ratios, test

systems on Matpower occasionally have branches with unrealistically high R/X

ratios (e.g., due to equivalencing [48]). The FPPF algorithm is unfortunately sensitive

to these branches, and on certain cases it does not converge with the default branch

R/X parameters. Table 6.1 lists the branches with unrealistically high R/X ratios

in the 300 bus system and the PEGASE 2869 bus system, where FPPF fails with the

default branch parameters. The R and X values are taken directly from the test case

data, in which parallel branches are combined into a single equivalent branch.

Table 6.1: Branches with high R/X ratios

Test case Branch R (p.u.) X (p.u.) R/X ratio

300 bus system (9003, 9044) 0.07378 0.06352 1.16152

(9021, 9023) 1.10680 0.95278 1.16165

(9044, 9004) 0.03832 0.02894 1.32412

PEGASE 2869 (1216, 5233) 0.000430 0.000380 1.13158

(3095, 2951) 0.003211 0.001760 1.82443

(4318, 1338) 0.002967 0.002901 1.02275

(6047, 5271) 0.001012 0.000802 1.26210

(8209, 1998) 0.000690 0.000479 1.44050

Note that these problematic branches account for only a tiny portion of the total

branches, since the 300 bus system has 411 total branches and the PEGASE 2869

bus system has 4582 total branches. However, these branches are sufficient to cause

the FPPF iterations to violate the implicit constraint that ∥ψ∥∞ ≤ 1, and result

in convergence failure. It is not totally clear to us the precise mechanism through

which few branches with high R/X ratios generates an iteration that violates this

constraint, but it is not a trivial issue to fix. For example, the algorithm still fails

even if we restrict the violating element(s) of ψ to be some c ∈ [0, 1] in each iteration.

Consequently, we cap the branch R/X ratios on these test cases, and investigate

the change in FPPF’s convergence behavior as we vary the R/X ratio cap. Figure

6.2 shows the power balance mismatch trajectories of FPPF on both cases. Clearly,

FPPF takes more iterations to converge as we increase the R/X ratio cap. Note that

the first few power balance mismatches are close for all the R/X ratio caps, before

they disperse and the convergence becomes slower as R/X ratio cap grows. Figure

6.3 shows the distribution of branch R/X ratios for both test systems, and verifies
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that indeed the vast majority of the branches have low R/X ratios.
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Figure 6.2: Mismatch trajectories of FPPF with different R/X ratio caps
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Figure 6.3: Distribution of branch R/X ratios

With a step size of 0.01, we computed that the minimum R/X ratio cap for

convergence failure to be 1.00 and 1.01 for the 300 bus system and PEGASE 2869

system, respectively. Consequently, we choose to cap the branch R/X ratios on all

test cases at 0.8, since it is a generous upper bound for realistic transmission systems,

and FPPF can converge on all test cases in a reasonable number of iterations in order

to compare against classic power flow algorithms such as Newton-Raphson (NR) and

the fast decoupled load flow (FDLF) in the next section. This modification does not
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create an unfair advantage for FPPF over NR or FDLF, since their convergence rates

also deteriorate as the network R/X ratio increases [49]. By not further decreasing

the bound on maximum R/X ratio, we also minimally modify the system since only

fewer than 1% of the branches are modified in general.

6.3 Comparison to Standard Power Flow Algorithms

In this section, we compare the FPPF algorithm against the standard NR and FDLF

(the XB version), both of which are available in Matpower. We focus on two

aspects of the algorithm performance: (i) iterations required for convergence, and (ii)

sensitivity to the initial bus voltage values. We also set the maximum iteration count

to be 100 for all three algorithms.

6.3.1 Iterations Required for Convergence

Here, we compare the number of iterations each algorithm requires to converge using

the flat-start initial condition. We present the simulation results based on two loading

scenarios: (i) base loading, which is the default values on the test systems, and (ii)

high loading, which is computed by continuation power flow (CPF) using the cpf

command on Matpower [35, Chapter 5]. For the latter scenario, the base power

generation and demand are set to be 90% of the way to the power flow insolvability

boundary. Table 6.2 shows the number of iterations each algorithm takes to converge.

If the algorithm fails to converge, then the corresponding entry is marked as “/”.

Table 6.2: Iterations required to converge

Base loading High loading

Test case NR FDLF FPPF NR FDLF FPPF

9 bus system 4 6 8 5 29 22

30 bus system 3 11 18 6 28 22

PEGASE 89 4 9 10 6 26 23

118 bus system 4 11 11 6 33 25

300 bus system 5 15 33 6 33 33

PEGASE 1354 5 11 42 5 25 42

RTE 1888 / 61 33 / 76 33

RTE 1951 / 55 32 / 58 32

RTE 2868 / 49 43 / 46 44

PEGASE 2869 5 11 42 6 29 42

PEGASE 9241 6 17 46 6 23 47
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We can make the following observations based on the data from Table 6.2. First,

when NR converges successfully, it consistently outperforms both FDLF and FPPF

due to its quadratic convergence rate. Figures 6.4–6.7 demonstrate that both FDLF

and FPPF have a linear convergence rate, and the iterations required by both algo-

rithms are comparable. Curiously, we can see that the power balance mismatch of

FPPF seems to closely match that of FDLF for the first few iterations, before it takes

a turn and decrease at a smaller but still linear rate for all except the 118 bus system

with high loading, which does not have a smooth decaying trajectory but nonetheless

converges.
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Figure 6.4: Mismatch trajectory of FDLF and FPPF on small systems (base loading)
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Figure 6.5: Mismatch trajectory of FDLF and FPPF on small systems (high loading)
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Figure 6.6: Mismatch trajectory of FDLF and FPPF on large systems (base loading)
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Figure 6.7: Mismatch trajectory of FDLF and FPPF on large systems (high loading)

Second, on large systems (with 300 buses or more), FPPF requires almost identical

iterations to converge for both base and high loading levels; however, FDLF requires

nearly twice of the base loading iterations to converge on systems with high loading.

That is, FDLF is more sensitive to the system loading level than FPPF is.

Aside from these, NR struggles to converge on all the RTE systems, even though

it is able to converge on the PEGASE 9241 bus system, which is the largest system

tested. FPPF also outperforms FDLF on these systems, even though it takes more

iterations than FDLF to converge in almost all other systems in base loading. This
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fact potentially has more to do with the inherent properties of these RTE systems than

the algorithms themselves, which may warrant further investigations. We emphasize

that the initial condition for these tests is the “flat-start” condition, and is generally

not the best for NR due to its fractal convergence regions. With this caveat in mind,

it then seems plausible for NR to fail on both base and high loading scenarios in

the RTE systems while CPF computations successfully result in a non-unity scaling

factor for the high loading scenario.

6.3.2 Sensitivity to Initialization

Finally, we test each algorithm’s sensitivity to bus voltage initialization. While we did

not pursue the development of sufficient and necessary condition(s) for FPPF to be

a contraction, we can expect that if it is a contraction on a large set of bus voltages,

then its convergence success rate would be insensitive to the initial conditions (ICs).

We adopt the random initialization scheme for voltage magnitudes introduced [3].

For a fixed “IC spread” constant δ ∈ (0, 1) as well as a fixed random number generator

seed, we generate 1000 random samples of initial voltage magnitudes V
[k]
L,init ∈ Rn,

where the superscript [k] represents the k-th sample. Each element of V
[k]
L,init is sampled

from a uniform distribution on the interval [1 − δ, 1 + δ], and we set the initial load

bus voltage magnitude V 0
L = V

[k]
L,init, for k = 1, ..., 1000 while keeping θ = 0n+m.

We first compute the known high voltage solution using NR with flat-start volt-

ages, then compare this solution against the ones returned by NR, FDLF and FPPF

using the random voltage initializations. If the solution returned does not match the

known solution up to a small tolerance, or if the algorithm fails, then the sample is

marked as unsuccessful, otherwise it is successful. Tables 6.3–6.4 demonstrates each

algorithm’s success rate for different δ on the 30 and 118 bus systems.

Table 6.3: Algorithm success rate (%) under random V 0
L for the 30 bus system

Base loading High loading

δ NR FDLF FPPF NR FDLF FPPF

0.1 100.0 100.0 100.0 100.0 100.0 100.0

0.2 97.2 100.0 100.0 97.8 100.0 100.0

0.3 34.2 100.0 100.0 39.5 100.0 100.0

0.4 2.7 100.0 100.0 3.7 100.0 100.0

0.5 0.1 100.0 100.0 0.1 100.0 100.0

0.7 0.0 100.0 100.0 0.0 100.0 100.0

0.9 0.0 100.0 100.0 0.0 87.3 95.9

0.95 0.0 100.0 100.0 0.0 75.5 88.2
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Table 6.4: Algorithm success rate (%) under random V 0
L for the 118 bus system

Base loading High loading

δ NR FDLF FPPF NR FDLF FPPF

0.1 100.0 100.0 100.0 100.0 100.0 100.0

0.2 98.8 100.0 100.0 98.8 100.0 100.0

0.3 65.6 100.0 100.0 66.7 100.0 100.0

0.4 6.9 100.0 100.0 7.7 100.0 100.0

0.5 0.0 100.0 100.0 0.0 100.0 100.0

0.7 0.0 100.0 100.0 0.0 100.0 100.0

0.9 0.0 100.0 100.0 0.0 98.7 100.0

0.95 0.0 100.0 100.0 0.0 89.0 98.9

Evidently, NR is the least robust against the random voltage magnitude initializa-

tions; with a small δ, it performs on par with FPPF and FDLF, but its convergence

success rate drastically decreases as δ increases. This observation matches the well-

known fact that the convergence of NR is extremely sensitive to the initial condition

selection. Additionally, FDLF performs almost as well as FPPF until δ gets close to

1 in the high loading scenario, where a small number of samples fail to converge4. For

each V
[k]
L,init that results in FPPF failing to converge, FPPF fails due to the violation of

the implicit constraint that ∥ψ∥∞ ≤ 1 during the fixed-point iterations, similar to the

case discussed in Section 6.2.2. That is, when FPPF converges, it always converges

to the known high voltage solution.

However, when a similar random initialization is implemented for voltage phases

(e.g., sampling from [−πδ/4, πδ/4]), FPPF becomes much more sensitive and consis-

tently fail to converge due to ∥ψ∥∞ > 1. We offer a brief analysis on a potential cause

of this constraint violation, as well as a possible solution to address this issue in our

concluding remarks in Chapter 7.

4The source code that generated [3, Table II] contained a small typo, so FDLF was mistakenly shown
to have the same results as NR.



Chapter 7

Conclusions and Future Work

In this thesis, we have derived a new algorithm for the AC power flow problem by

extending the lossless FPPF algorithm to accommodate network loss, phase-shifting

transformers, transmission line Π-model parameters, and the distributed slack bus

model. As a first step in the theoretical analysis of the algorithm, we studied a version

of it on the two-bus system and presented sufficient conditions on the existence and

uniqueness of the desired solution. We have also demonstrated the performance of

the proposed full FPPF algorithm on standard test cases.

This thesis has three major components. The first one is the derivation of an

equivalent fixed-point reformulation of the conventional power flow equations, and the

full FPPF algorithm based on this reformulation in Chapter 4. These results relied

on concepts and techniques from algebraic graph theory, matrix algebra and power

system modelling discussed in Chapters 2–3. One caveat of the full FPPF algorithm

is that in the traditional nodal power injection model of the power flow equations,

the domain of the voltage angle θ is virtually all of Rn+m (even though only a small

subset of Rn+m makes practical sense). However, the domain of the related voltage

angle quantity for our fixed-point reformulation, ψ, is implicitly constrained to be in

[−1, 1]|E| in order to keep the fixed-point reformulations real-valued.

The second component is a first step in a rigorous theoretical analysis of the full

FPPF algorithm in Chapter 5. We studied the two-bus power flow problem with a

physically realistic branch model, and provided sufficient conditions for the FPPF

algorithm to be a contraction on a methodically constructed closed and convex norm

ball in R2. This analysis relies on the lossless system results extensively studied in

the literature, which we have attempted to build upon. Crucially, we employed the

implicit function theorem to show the existence of the desired high voltage solution,

and argued by continuity for the contractivity.

The final component consists of the extensive numerical simulations we conducted

67
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to test the performance of the full FPPF algorithm in Chapter 6, where we showed

that it can reliably obtain the high voltage solution under the mild assumption that

network has realistic R/X ratios. Overall, we showed that the full FPPF algorithm

is comparable to FDLF, with FDLF being potentially more computationally efficient,

and FPPF being less sensitive to loading level changes. Additionally, while FPPF has

a lower order of convergence compared to NR, it is much more robust given random

initial conditions.

Finally, as mentioned in Chapter 2, a tangential contribution of this thesis is the

construction of the asymmetrically weighted incidence matrix Γ, which is motivated

by the presence of phase-shifting transformers in the system. While the preliminary

rank properties of Γ that we derived in Appendix A are novel to the best of our

knowledge, they have no applications in the context of this thesis, thanks to the R

matrix that “compressed” the active power flow equations and removed the slack bus

power injections from the analysis. However, this matrix could be potentially useful

for other problems involving complex networked system modelling and analysis.

Future Work

Numerically, violation of the ∥ψ∥∞ ≤ 1 constraint, whether due to high R/X ratio

or large initial θ values, seems to be the most significant drawback of the FPPF

algorithm. Further analysis and numerical techniques could be employed to address

or circumvent this problem, for example:

• investigate the precise mechanism through which one or few branches with high

R/X ratio(s), or large initial θ values creates the infeasible update that violates

this constraint;

• examine whether this constraint violation is a “transient” phenomenon of the

algorithm, i.e., whether the voltage variables and the cycle slack variable even-

tually become real-valued given sufficient iterations;

Additionally, the cycle constraint computations at every FPPF iteration can be made

more efficient with a pseudo-Newton update scheme, and the mldivide command for

solving systems of linear equations can be accelerated by using heuristics such as

the approximate minimal degree permutation. A complexity analysis of the FPPF

algorithm can also be conducted for further comparison against NR and FDLF.

Theoretically, the sufficient conditions we obtained in Chapter 5.3 could be tight-

ened, e.g., through better manipulations of the invariance inequalities. They could

also be extended to general radial systems using similar approaches as in [4]. If

this extension is possible, then further extensions to the meshed systems could be

attempted. In addition, we could revise the fixed-point reformulation in Chapter 4
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to explicitly account for branches with high R/X ratios, which could address the

non-convergence caused by the ∥ψ∥∞ ≤ 1 constraint violation. Since the right-hand

side of (4.2b) encodes some R/X information from the M †
B, [Gii] and ΓG matrices,

it seems plausible that branches with high R/X ratios can cause the ψ update to

violate the constraint. We could revise the reformulation by, for example, replacing

MB with another matrix, which includes not just the information from B but also

the G matrix, and could “cancel out” the loss terms captured by the [Gii] and ΓG

matrices to a certain degree.

If the FPPF algorithm is implemented for other applications that require power

flow solutions, e.g., contingency analysis, then there is one caveat: changes in the

system topology necessitate that the graph matrices A,C both to be re-computed.

While computing C is expensive in general, it can be achieved efficiently under certain

circumstances. For example, if only a few nearby edges in the graph are removed to

represent out-of-service transmission lines, then we can choose a small subgraph G ′
that contains these edges and cut it off from the rest of the graph G. We can then

compute the new cycle vectors in the subgraph G ′ to form the updated cycle matrix

C, which would be much faster than computing C from scratch since the cycles in

the rest of the graph are not impacted.

Finally, while the construction of the asymmetrically weighted matrix Γ is an

unambiguous extension of the typical incidence matrix of a directed graph A, the

notion of bidirected graph and its properties are still somewhat fuzzy. As such, the

way we defined the bidirected graph and its properties can be polished and made

compatible with standard algebraic graph theory language. Even though they are

tangentially related to this thesis, we can explore the connections between Γ and

other standard directed graph matrices such as the Laplacian matrix (which can be

constructed using A), and Kirchhoff’s voltage and current laws (which can be written

using A, the nodal voltage and current injection and branch potential difference and

current flow). We can also investigate its potential applications in other complex

networks with bidirected and asymmetrical information or commodity flow, other

than the AC transmission networks with phase-shifting transformers.
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[9] J. Thorp, D. Schulz, and M. Ilić-Spong, “Reactive power-voltage problem: Conditions

for the existence of solution and localized disturbance propagation,” International

Journal of Electrical Power & Energy Systems, vol. 8, no. 2, pp. 66–74, 1986.

[10] M. Ilic, “Network theoretic conditions for existence and uniqueness of steady state so-

lutions to electric power circuits,” in 1992 IEEE International Symposium on Circuits

and Systems (ISCAS), vol. 6, 1992, pp. 2821–2828. doi: 10.1109/ISCAS.1992.230611.

70

https://doi.org/10.1109/TPAS.1972.293463
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1980/28467.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1980/28467.html
https://doi.org/10.1109/TCS.1982.1085091
https://doi.org/10.1109/ISCAS.1992.230611


BIBLIOGRAPHY 71

[11] J. W. Simpson-Porco, F. Dörfler, and F. Bullo, “Voltage collapse in complex power

grids,” Nature Communications, vol. 7, no. 1, p. 10 790, Feb. 2016. [Online]. Available:

https://doi.org/10.1038/ncomms10790.

[12] F. Dörfler, M. Chertkov, and F. Bullo, “Synchronization in complex oscillator net-

works and smart grids,” Proceedings of the National Academy of Sciences, vol. 110,

no. 6, pp. 2005–2010, 2013. [Online]. Available: https://www.pnas.org/doi/abs/10.

1073/pnas.1212134110.

[13] B. Cui and X. A. Sun, Solvability of power flow equations through existence and unique-

ness of complex fixed point, 2019. arXiv: 1904.08855 [cs.SY].

[14] S. Bolognani and S. Zampieri, “On the existence and linear approximation of the

power flow solution in power distribution networks,” IEEE Transactions on Power

Systems, vol. 31, no. 1, pp. 163–172, 2015.

[15] D. K. Molzahn and I. A. Hiskens, “A survey of relaxations and approximations

of the power flow equations,” Foundations and Trends in Electric Energy Systems,

vol. 4, no. 1-2, pp. 1–221, 2019. [Online]. Available: http://dx.doi.org/10.1561/

3100000012.

[16] J. Meisel and R. D. Barnard, “Application of fixed-point techniques to load-flow

studies,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-89, no. 1,

pp. 136–140, 1970. doi: 10.1109/TPAS.1970.292681.

[17] F. F. Wu, “Theoretical study of the convergence of the fast decoupled load flow,”

IEEE transactions on power apparatus and systems, vol. 96, no. 1, pp. 268–275, 1977.

[18] C. Wang, A. Bernstein, J.-Y. Le Boudec, and M. Paolone, “Explicit conditions on ex-

istence and uniqueness of load-flow solutions in distribution networks,” IEEE Trans-

actions on Smart Grid, vol. 9, no. 2, pp. 953–962, 2016.

[19] A. Bernstein and E. Dall’Anese, “Linear power-flow models in multiphase distribution

networks,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe

(ISGT-Europe), 2017, pp. 1–6. doi: 10.1109/ISGTEurope.2017.8260205.

[20] K. Dvijotham, S. Low, and M. Chertkov, “Convexity of energy-like functions: Theo-

retical results and applications to power system operations,” Tech. Rep., Jan. 2015.

[Online]. Available: https://www.osti.gov/biblio/1168707.

[21] K. Dvijotham, E. Mallada, and J. W. Simpson-Porco, “High-voltage solution in ra-

dial power networks: Existence, properties and equivalent algorithms,” IEEE Control

Systems Letters, vol. 1, no. 2, pp. 322–327, 2017.

[22] R. Penrose, “A generalized inverse for matrices,” Mathematical Proceedings of the

Cambridge Philosophical Society, vol. 51, no. 3, pp. 406–413, 1955. doi: 10.1017/

S0305004100030401.

https://doi.org/10.1038/ncomms10790
https://www.pnas.org/doi/abs/10.1073/pnas.1212134110
https://www.pnas.org/doi/abs/10.1073/pnas.1212134110
https://arxiv.org/abs/1904.08855
http://dx.doi.org/10.1561/3100000012
http://dx.doi.org/10.1561/3100000012
https://doi.org/10.1109/TPAS.1970.292681
https://doi.org/10.1109/ISGTEurope.2017.8260205
https://www.osti.gov/biblio/1168707
https://doi.org/10.1017/S0305004100030401
https://doi.org/10.1017/S0305004100030401


BIBLIOGRAPHY 72

[23] R. Horn and C. Johnson, Matrix Analysis, 2nd ed. Cambridge University Press, 2013.

[24] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Electrical networks and algebraic

graph theory: Models, properties, and applications,” Proceedings of the IEEE, vol. 106,

no. 5, pp. 977–1005, 2018.

[25] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,

ser. Computer science and applied mathematics. San Diego, CA: Academic Press,

Dec. 1979.

[26] K. R. Davidson and A. P. Donsig, Real Analysis and Applications, 1st ed. Springer

New York, 2009.

[27] C. C. Pugh, Real Mathematical Analysis, 2nd ed. Springer Cham, 2015.

[28] T. M. Apostol, Mathematical Analysis, 2nd ed. Pearson Education, Inc., 1971.

[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

2009.

[30] O. de Oliveira, “The implicit and the inverse function theorems: Easy proofs,” Real

Anal. Exchange, vol. 39, no. 1, p. 207, 2014.

[31] K. Conrad, The contraction mapping theorem. [Online]. Available: https://kconrad.

math.uconn.edu/blurbs/analysis/contraction.pdf.

[32] T. von Petersdorff, AMSC/CMSC 666 Numerical Analysis: Fixed point iteration and

contraction mapping theorem, https : / / terpconnect . umd . edu / ∼petersd / 666 /

fixedpoint.pdf, Accessed: 2022-05-07.

[33] T. Kavitha, C. Liebchen, K. Mehlhorn, et al., “Cycle bases in graphs characterization,

algorithms, complexity, and applications,” Computer Science Review, vol. 3, no. 4,

pp. 199–243, 2009, issn: 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2009.

08.001. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S1574013709000483.

[34] C. Balbuena, D. Ferrero, X. Marcote, and I. Pelayo, “Algebraic properties of a digraph

and its line digraph,” Journal of Interconnection Networks, vol. 4, no. 4, pp. 377–393,

2003.

[35] R. D. Zimmerman and C. E. Murillo-Sanchez, MATPOWER User’s Manual, Version

7.1, 2020.

[36] N. Deo, Graph Theory with Applications to Engineering & Computer Science. New

York: Dover Publications, 2016.

[37] T. Van Cutsem and C. Vournas, Voltage Stability of Electric Power Systems. Boston,

MA: Springer, 1998.

[38] A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and

Control, 3rd ed. Chichester, England: Wiley-Blackwell, Dec. 2013.

https://kconrad.math.uconn.edu/blurbs/analysis/contraction.pdf
https://kconrad.math.uconn.edu/blurbs/analysis/contraction.pdf
https://terpconnect.umd.edu/~petersd/666/fixedpoint.pdf
https://terpconnect.umd.edu/~petersd/666/fixedpoint.pdf
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.08.001
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.08.001
https://www.sciencedirect.com/science/article/pii/S1574013709000483
https://www.sciencedirect.com/science/article/pii/S1574013709000483


BIBLIOGRAPHY 73

[39] S. V. Dhople, Y. C. Chen, A. Al-Digs, and A. D. Domı́nguez-Garćıa, “Reexamining
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Appendix A

The Asymmetrically Weighted

Incidence Matrix

In this chapter, we develop some rank properties for the asymmetrically weighted

incidence matrix, defined in Chapter 2.2. We assume that the bidirected graph G is

weakly connected (in the sense of forward edges), and that both edge weight vectors

w+, w− are element-wise strictly positive. Recall that given A, the incidence matrix

of the associated directed graph and its partitions A+ and A−, the asymmetrically

weighted incidence matrix is constructed as

Γ := A+[w+]− A−[w−].

Recall that the incidence matrix A of a weakly connected directed graph with n

nodes always satisfies rank (A) = rank (A[w]) = n−1 for any nonzero weight vector w.

Since Γ shares the identical sparsity patterns as A and A[w], we study the following

problem: when does a bidirected graph have an asymmetrically weighted incidence

matrix with full rank? Note that the results derived here can be easily generalized to

weight vectors of all negative weights, since these results rely only on the fact that

there are no sign variations in the edge weight elements.

A.1 Rank Properties

We now discuss the rank of the asymmetrically weighted incidence matrix. First, we

compute rank (Γ) for a simple asymmetrically weighted bidirected graphs in Figure

A.1 with different weighting patterns to motivate the general results that follow.

74



Appendix A. The Asymmetrically Weighted Incidence Matrix 75

2 3

1 4

w+
1

w−
1

w+
2

w−
2

w+
3w−

3

w+
4

w−
4

Figure A.1: Example of an asymmetrically weighted bidirected graph

Example A.1. For the bidirected graph in Figure A.1, we can check that

Γ =


w+

1 0 −w−
3 −w−

4

−w−
1 w+

2 0 0

0 −w−
2 w+

3 0

0 0 0 w+
4

 .
We compute rank (Γ) for four different weighting patterns:

(i) Suppose w+
1 ̸= w−

1 , but w
+
2 = w−

2 =: w2, w
+
3 = w−

3 =: w3, and w
+
4 = w−

4 =: w4.

Then, suppose x ∈ ker Γ and x ̸= 0, we have


w+

1 0 −w3 −w4

−w−
1 w2 0 0

0 −w2 w3 0

0 0 0 w4



x1

x2

x3

x4

 =


0

0

0

0

 =⇒


w+

1 x1 = w3x3 + w4x4

w−
1 x1 = w2x2

w2x2 = w3x3

w4x4 = 0

.

Since the weights are strictly positive and x ̸= 0, we must have w+
1 = w−

1 , which

is a contradiction. Therefore, ker Γ constructed using this weighting pattern has

a trivial kernel and rank (Γ) = 4.

(ii) Suppose w+
4 ̸= w−

4 but all others are identical, similar to case (i). If x ∈ ker Γ,

then 
w1 0 −w3 −w−

4

−w1 w2 0 0

0 −w2 w3 0

0 0 0 w+
4



x1

x2

x3

x4

 =


0

0

0

0

 .
However, in this case, we can verify that for all k ∈ R,

x = k

[
1

w1

1

w2

1

w3

0

]T
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satisfies x ∈ ker Γ. Thus we conclude that rank (Γ) = 3.

(iii) Suppose w+ ̸= w− element-wise, but w+
1 = w−

3 =: v1, w
+
2 = w−

1 =: v2, and

w+
3 = w−

2 =: v3, If x ∈ ker Γ, then
v1 0 −v1 −w−

4

−v2 v2 0 0

0 −v3 v3 0

0 0 0 w+
4



x1

x2

x3

x4

 =


0

0

0

0

 ,

and we can verify that x = k
[
1 1 1 0

]T
for any constant k satisfies the

equality above, and conclude that rank (Γ) = 3 as well.

(iv) Again suppose that w+ ̸= w−, but w+
1 = 2w−

1 and w+
2 = 1

2
w−

2 while w+
3 = w−

3 =:

w3 and w+
4 = w−

4 =: w4. If x ∈ ker Γ, then
2w−

1 0 −w3 −w4

−w−
1 w+

2 0 0

0 −2w+
2 w3 0

0 0 0 w4



x1

x2

x3

x4

 =


0

0

0

0


and we can pick any

x = k

[
w3

2w−
1

w3

2w+
2

1 0
]T

for the equality above to holds, and conclude that rank (Γ) = 3 too in this case.

The key difference between cases (i) and (ii) is that the asymmetrical edge weight is

placed in the cycle {e1, e2, e3} in (i) but not in (ii), and the key difference between (i)

and (iii) is that, in (iii), the elements of w− that correspond to the cycle {e1, e2, e3}
is constructed by “right-shifting” the corresponding elements of w+ by one. We can

alternatively express this relationship using a “weighted” permutation matrix, i.e.,

w− = Pw+, where

P =


0 0 w−

3 /w
+
3 0

w−
1 /w

+
1 0 0 0

0 w−
2 /w

+
2 0 0

0 0 0 w−
4 /w

+
4

 .
Note that the top left 3× 3 submatrix of P performs the shifting operation. Observe

that, however, in both cases (iii) and (iv) where Γ is rank-deficient, for the cycle

{e1, e2, e3}, the product of edge weights in the forward direction is the same as that

in the backward direction, that is,
∏3

i w
+
i =

∏3
i w

−
i .
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Given the four cases discussed above and the observations we made, we attempt

to state some general results about rank (Γ). First, we generalize the standard result

that rank (A) = n− 1 to rank (Γ).

Lemma A.1. If G is weakly connected, then rank (Γ) ≥ n− 1.

Proof. Analogous to the proof given in [36, Theorem 9.6], we prove by induction,

and denote G and its Γ matrix with a subscript (k) as needed, which represents the

number of nodes. The nontrivial base case is when n = 2, for which

Γ(2) =
[
w+

1 w−
1

]T
, or Γ(2) =

[
w−

1 w+
1

]T
,

and rank
(
Γ(2)

)
= 1 in either case since w+

1 , w
−
1 ̸= 0.

For the inductive step, we assume rank
(
Γ(n)

)
≥ n − 1 up to n = k, and prove

rank
(
Γ(k+1)

)
≥ k. First, since G(k+1) is weakly connected, its underlying undirected

graph Gu(k+1) is connected, and it has a spanning tree Su = (N , EuT ), where |ET | = k ≤
m. We denote the corresponding bidirected tree as S = (N , ET ). Next, we relabel the
edges of G(k+1) such that edges e1, ..., ek ∈ ET , and rename the nodes such that node

k + 1 is incident to a node i ∈ {1, ..., k} via the forward edge ek = (i, k + 1). This

process only shuffles the rows and columns of the Γ(k+1) so that its first k columns

correspond to e1, ..., ek and does not change its rank and nullity. Let δik ∈ Rk−1 denote

the vector with w+
k in its i-th entry and zero everywhere else. Then, the matrix Γ(k+1)

has the following form  Γ(k) δik

0T
k −w−

k

∗ · · · ∗

,
where the columns ∗ represent the edges in E \ ET and are not important here. The

first block Γ(k)

0T
k


has at least k − 1 linearly independent columns, since rank

(
Γ(k)

)
≥ k − 1 by the

inductive assumption. Since w−
k ̸= 0, the column[

δik

−w−
k

]

is linearly independent from all the columns in the first block. That is, the submatrix Γ(k) δik

0T
k −w−

k
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has at least k linearly independent columns, so rank
(
Γ(k+1)

)
≥ k.

Remark A.1. Since Γ is a wide matrix with n rows, rank (Γ) is either n− 1 or n. In

particular, if G is a tree, then it has full rank n− 1.

Recall from Chapter 2.2 that a bidirected graph can be constructed from a directed

graph by treating all edges ek as the forward edge e+k and adding a backward edge

e−k where appropriate. The same procedure applies in the weighted graph context,

although an additional nonzero backward edge weight w−
k must be chosen. In the same

spirit, we can construct a bidirected cycle from a directed cycle, in both weighted and

unweighted contexts.

Now, we prove a useful result that helps us establish Lemma A.3, which establishes

the full rank condition for a weighted bidirected cycle.

Lemma A.2. Given strictly positive edge weight vectors w+, w−, there exist nonzero

constants {ti}ni=1 such that

t1
w+

1

=
t2
w−

1

,
t2
w+

2

=
t3
w−

2

, · · · , tn
w+

n

=
t1
w−

n

, (A.1a)

if and only if
n∏

i=1

w+
i =

n∏
i=1

w−
i . (A.1b)

Proof. We first show (A.1b) implies (A.1a). Suppose (A.1b) holds, then any t ∈ R
implies

t = t · 1 =⇒ t = t

(∏n
i=1w

+
i∏n

i=1w
−
i

)
= t

w+
nw

+
n−1 · · ·w+

1

w−
nw

−
n−1 · · ·w−

1

.

We pick an arbitrary t1 ̸= 0 and clearly the equality above holds for t1. Then, we

recursively define

t2 := t1
w−

1

w+
1

, t3 := t2
w−

2

w+
2

, · · · , tn := tn−1

w−
n−1

w+
n−1

,

all of which are well-defined since the weights w+
i are nonzero; additionally they are

nonzero given t1 ̸= 0 and the strictly positive weights. Expanding the tn term and

inserting an identity element using (A.1b), we get

tn = t1

∏n−1
i=1 w

−
i∏n−1

i=1 w
+
i

= t1

∏n
i=1w

+
i∏n

i=1w
−
i

∏n−1
i=1 w

−
i∏n−1

i=1 w
+
i

= t1
w+

n

w−
n

.

Re-arrange these terms and we recover (A.1a). Next, we prove the converse statement.

Suppose that there exist t1, ..., tn ̸= 0 such that (A.1a) holds, then we can re-arrange
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the terms as

t1 = t2
w+

1

w−
1

=

(
t3
w+

2

w−
2

)
w+

1

w−
1

= · · · =
(((

t1
w+

n

w−
n

)
· · ·
)
w+

2

w−
2

)
w+

1

w−
1

= t1

∏n
i=1w

−
i∏n

i=1w
+
i

which implies (A.1b).

Lemma A.3. If G is a bidirected cycle, then rank (Γ) = n if and only if the weights

w+, w− satisfy
n∏

i=1

w+
i ̸=

n∏
i=1

w−
i . (A.2)

Proof. If G is a bidirected cycle, then its nodes and edges can be relabeled, i.e., its

asymmetrically weighted incidence matrix can be shuffled into the following form,

without affecting its rank:

Γ =


w+

1 0 · · · 0 −w−
n

−w−
1 w+

2 · · · 0 0

0 −w−
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −w−
n−1 w+

n

 .

First, we show that rank (Γ) = n implies (A.2) by equivalently proving its contraposi-

tion, i.e., we show that (A.1b) implies det Γ = 0 and thus rank (Γ) ̸= n. Suppose that

(A.1b) holds, then by Lemma A.2, there exist nonzero ti for i = 1, ..., n such that

t1
w+

1

=
t2
w−

1

,
t2
w+

2

=
t3
w−

2

, · · · , tn
w+

n

=
t1
w−

n

,

which can be equivalently written as

w+
1 =

t1
t2
w−

1 , w
+
2 =

t2
t3
w−

2 , · · · , w+
n =

tn
t1
w−

n .

Thus, substitute the expressions above, we have

det



t1
t2
w−

1 0 · · · 0 −w−
n

−w−
1

t2
t3
w−

2 · · · 0 0

0 −w−
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −w−
n−1

tn
t1
w−

n

 =
1∏n

i=1w
−
i

det



t1
t2

0 · · · 0 −1
−1 t2

t3
· · · 0 0

0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 tn
t1


︸ ︷︷ ︸

Γ̃

,
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which is well-defined since w−
i and ti are all nonzero. However, observe that

−t2
t1



t1
t2

−1
0
...

0

−
t3
t1


0
t2
t3

−1
...

0

− · · · −
tn
t1


0

0
...

tn−1

tn

−1

 =


−1
0

0
...
tn
t1

 ,

that is, the last column of Γ̃ can be written as a linear combination of the first n− 1

columns, so det Γ̃ = 0, and Γ itself is rank deficient.

We now show the converse direction by contradiction. Suppose that (A.2) holds,

but there always exists exactly one nonzero x ∈ ker Γ. Then, rank (Γ) = n− 1 by the

rank-nullity theorem (by Lemma A.1 there cannot exist more than one such x), and

Γx =


w+

1 0 · · · 0 −w−
n

−w−
1 w+

2 · · · 0 0

0 −w−
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −w−
n−1 w+

n




x1

x2

x3
...

xn

 = 0n,

which implies


w+

1 x1 − w−
n xn = 0

w+
2 x2 − w−

1 x1 = 0
...

w+
n xn − w−

n−1xn−1 = 0

=⇒



x1 =
t1
w+

1

, xn =
t1
w−

n

x2 =
t2
w+

2

, x1 =
t2
w−

1

...
...

xn =
tn
w+

n

, xn−1 =
tn
w−

n

, (A.3)

for some t1, ..., tn ̸= 0 (by Lemma 2.1, any ti = 0 would propagate and result in all

ti’s being 0). Then, since xi = xi for all i = 1, ..., n, by Lemma A.2 we must have

n∏
i=1

w−
i =

n∏
i=1

w+
i ,

which is a contradiction.

Finally, we combine all the previous lemmas for a general asymmetrically weighted



Appendix A. The Asymmetrically Weighted Incidence Matrix 81

bidirected graph with at least one cycle: suppose that C, the cycle basis of G, has
at least one element c ∈ Rm, which traverses through the nodes in Nc ⊆ N via the

edges in Ec ⊆ E . Denote by Gc := (Nc, Ec) the subgraph induced by the cycle c, and

it is associated with the asymmetrically weighted incidence matrix Γc.

Theorem A.1. Suppose G has a nonempty cycle basis C. Then, rank (Γ) = n if and

only if there exists at least one c ∈ C such that

|Nc|∏
i=1

w−
i ̸=

|Nc|∏
i=1

w+
i . (A.4)

Proof. We first cut G into two disjoint subgraphs, with edges in the (nonempty) cutset

denoted by χ, where |χ| = d < m. The first subgraph Gc corresponds to a cycle c

that satisfies (A.4), if it exists. Let |Nc| = |Ec| = ℓ ≤ n. The second subgraph is

G̸c := (N̸c, E ̸c), where N̸c := N \Nc and E ̸c := E \ (Ec ∪ χ). In addition, let Γ ̸c denote

the asymmetrically weighted incidence matrix for G̸c, and let Γχ ∈ Rn×d be the matrix

whose columns represent the edges in the cutset χ.

Next, we can re-label the nodes and edges of G, and correspondingly shuffle the

rows and columns of Γ such that Nc = {1, ..., ℓ}, N̸c = {ℓ+ 1, ..., n}, Ec = {e1, ..., eℓ},
χ = {eℓ+1, ..., eℓ+d}, and E ̸c = {eℓ+d+1, ..., em}. That is, the matrix Γ can be shuffled

into the following form Γc

0(n−ℓ)×ℓ

Γχ

0ℓ×(m−ℓ−d)

Γ̸c

 =:
[
Zc Γχ Z̸c

]
, (A.5)

where the zero blocks exist due to the fact that Nc ∩ N̸c = ∅. We can make several

observations from (A.5). First and most importantly, by Lemma A.3 the matrix Γc

has rank ℓ, i.e., Zc has ℓ linearly independent columns, if and only if (A.4) holds.

Next, since the cutset χ is nonempty, Γχ contains at least one column, which is

linearly independent from all columns in Zc and Z̸c by construction. Finally, by

Lemma A.1, rank (Z ̸c) = rank (Γ̸c) ≥ n − ℓ − 1. Thus, together, Γ contains at least

ℓ + 1 + (n − ℓ − 1) = n linearly independent columns, i.e., rank (Γ) ≥ n if and only

if (A.4) holds. However, by Remark A.1, rank (Γ) is either n− 1 or n. Therefore, we

conclude that rank (Γ) = n if and only if (A.4) holds.



Appendix B

Power Flow Equation Vectorization

Example

In this appendix, we use a concrete example to demonstrate the procedure to vectorize

the power flow equations given in Section 3.3. Consider the bidirected graph model

of a simple four-bus system in Figure B.1, where the nodes are labelled in accordance

with the NL,NG partition (the blue circles represent load buses and the red squares

represent generator buses), and only the forward edges are shown and labelled. We

assume that all the branches are modelled by the Π-model and the system contains

at least one phase-shifting transformer.

3 4

1 2
e1

e2
e3

e4

Figure B.1: The bidirected graph model of a simple four-bus system

The incidence matrix and the “from” and “to” incidence matrices are as follows:

A =


1 −1 −1 0

−1 0 0 0

0 1 0 1

0 0 1 −1

 , A+ =


1 0 0 0

0 0 0 0

0 1 0 1

0 0 1 0

 , A− =


0 1 1 0

1 0 0 0

0 0 0 0

0 0 0 1

 ,

82
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and the branch stiffness matrices defined in (3.8) are as follows:

D+
G = diag



V ◦
1 V

◦
2 G12

V ◦
3 V

◦
1 G31

V ◦
4 V

◦
1 G41

V ◦
3 V

◦
4 G34


 , D−

G = diag



V ◦
1 V

◦
2 G21

V ◦
3 V

◦
1 G13

V ◦
4 V

◦
1 G14

V ◦
3 V

◦
4 G43


 ,

D+
B = diag



V ◦
1 V

◦
2 B12

V ◦
3 V

◦
1 B31

V ◦
4 V

◦
1 B41

V ◦
3 V

◦
4 B34


 , D−

B = diag



V ◦
1 V

◦
2 B21

V ◦
3 V

◦
1 B13

V ◦
4 V

◦
1 B14

V ◦
3 V

◦
4 B43


 .

The normalized load voltages is v = [v1 v2]
T, so we can write g(v) = [v1 v2 1 1]T,

and h(v) = [v1v2 v1 v1 1]T.

We focus on vectorizing the active power flow equations, since the reactive power

flow equations can be vectorized almost identically. As such, the relevant asymmet-

rically weighted incidence matrices are |ΓG| and ΓB, which can be written as

|ΓG| =


V ◦
1 V

◦
2 G12 V ◦

1 V
◦
3 G13 V ◦

1 V
◦
4 G14 0

V ◦
1 V

◦
2 G21 0 0 0

0 V ◦
1 V

◦
3 G31 0 V ◦

3 V
◦
4 G34

0 0 V ◦
1 V

◦
4 G41 V ◦

3 V
◦
4 G43

 ,

ΓB =


V ◦
1 V

◦
2 B12 −V ◦

1 V
◦
3 B13 −V ◦

1 V
◦
4 B14 0

−V ◦
1 V

◦
2 B21 0 0 0

0 V ◦
1 V

◦
3 B31 0 V ◦

3 V
◦
4 B34

0 0 V ◦
1 V

◦
4 B41 −V ◦

3 V
◦
4 B43

 .
The standard active power flow equations (3.1a) are written as follows:

P1 = V 2
1 G11 + V1V2G12 cos (θ1 − θ2) + V1V2B12 sin (θ1 − θ2)
+ V1V3G13 cos (θ1 − θ3) + V1V2B13 sin (θ1 − θ3)
+ V1V4G14 cos (θ1 − θ4) + V1V2B14 sin (θ1 − θ4). (B.1a)

P2 = V 2
2 G22 + V2V1G21 cos (θ2 − θ1) + V2V1B21 sin (θ2 − θ1), (B.1b)

P3 = V 2
3 G33 + V3V1G31 cos (θ3 − θ1) + V3V1B31 sin (θ3 − θ1)
+ V3V4G34 cos (θ3 − θ4) + V3V4B34 sin (θ3 − θ4), (B.1c)

P4 = V 2
4 G44 + V4V1G41 cos (θ4 − θ1) + V4V1B41 sin (θ4 − θ1)
+ V4V3G43 cos (θ4 − θ3) + V4V3B43 sin (θ4 − θ3). (B.1d)
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We can group the cosine terms on the right-hand sides of (B.1) as follows:
V1V2G12 cos (θ1 − θ2) + V1V3G13 cos (θ1 − θ3) + V1V4G14 cos (θ1 − θ4)

V2V1G21 cos (θ2 − θ1)
V3V1G31 cos (θ3 − θ1) + V3V4G34 cos (θ3 − θ4)
V4V1G41 cos (θ4 − θ1) + V4V3G43 cos (θ4 − θ3)+

 , (B.2)

and the sine terms as follows:
V1V2B12 sin (θ1 − θ2) + V1V2B13 sin (θ1 − θ3) + V1V2B14 sin (θ1 − θ4)

V2V1B21 sin (θ2 − θ1)
V3V1B31 sin (θ3 − θ1) + V3V4B34 sin (θ3 − θ4)
V4V1B41 sin (θ4 − θ1) + V4V3B43 sin (θ4 − θ3)

 . (B.3)

The necessity of both D+
G and D−

G (respectively, D+
B and D−

B) is reflected in the

equations above where both Gij and Gji (resp. Bij and Bji) are present, and at least

one branch (i, j) satisfies Gij ̸= Gji and Bij ̸= Bji.

For the vectorization steps, we proceed term by term as discussed in Section 3.3.

Vectorizing the squared voltage terms is straightforward and thus omitted. For the

second term involving cosine, first, we can easily verify that

ATθ =


θ1 − θ2
θ3 − θ1
θ4 − θ1
θ3 − θ4

 .
Since cos

(
ATθ

)
= cos

(
−ATθ

)
, we have

cos
(
ATθ

)
=


cos(θ1 − θ2)
cos(θ3 − θ1)
cos(θ4 − θ1)
cos(θ3 − θ4)

 =


cos(θ2 − θ1)
cos(θ1 − θ3)
cos(θ1 − θ4)
cos(θ4 − θ3)

 .
Then, we can verify that

|ΓG|[h(v)] =


V1V2G12 V1V3G13 V1V4G14 0

V1V2G21 0 0 0

0 V1V3G31 0 V3V4G34

0 0 V1V4G41 V3V4G43

 ,
and |ΓG|[h(v)] cos

(
ATθ

)
results in precisely (B.2).
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For the third term involving the sine terms, we can similarly verify that

ΓB[h(v)] =


V1V2B12 −V1V3B13 −V1V4B14 0

−V1V2B21 0 0 0

0 V1V3B31 0 V3V4B34

0 0 V1V4B41 −V3V4B43

 ,
and that since sin

(
−ATθ

)
= − sin

(
ATθ

)
,

sin
(
ATθ

)
=


sin(θ1 − θ2)
sin(θ3 − θ1)
sin(θ4 − θ1)
sin(θ3 − θ4)

 =


− sin(θ2 − θ1)
− sin(θ1 − θ3)
− sin(θ1 − θ4)
− sin(θ4 − θ3)

 .
The negative signs in ΓB[h(v)] thus exactly cancels out the negative signs in the sin(·)
terms in the product ΓB[h(v)] sin

(
ATθ

)
, which recovers (B.3).
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