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Abstract

Many engineering systems — including electrical power networks, chemical processing
plants, and communication networks — have a well-defined notion of an “optimal” steady-
state operating point. This optimal operating point is often defined mathematically as
the solution of a constrained optimization problem that seeks to minimize the monetary
cost of distributing electricity, maximize the profit of chemical production, or minimize the
communication latency between agents in a network. Optimal steady-state regulation is
obviously of crucial importance in such systems.

This thesis is concerned with the optimal steady-state control problem, the problem of
designing a controller to continuously and automatically regulate a dynamical system to
an optimal operating point that minimizes cost while satisfying equipment constraints and
other engineering requirements, even as this optimal operating point changes with time. An
optimal steady-state controller must simultaneously solve the optimization problem and
force the plant to track its solution.

This thesis makes two primary contributions. The first is a general problem definition and
controller architecture for optimal steady-state control for nonlinear systems subject to time-
varying exogenous inputs. We leverage output regulation theory to define the problem and
provide necessary and sufficient conditions on any optimal steady-state controller. Regarding
our controller architecture, the typical controller in the output regulation literature consists
of two components: an internal model and a stabilizer. Inspired by this division, we propose
that a typical optimal steady-state controller should consist of three pieces: an optimality
model, an internal model, and a stabilizer. We show that our design framework encompasses
many existing controllers from the literature.

The second contribution of this thesis is a complete constructive solution to an important
special case of optimal steady-state control: the linear-convex case, when the plant is
an uncertain linear time-invariant system subject to constant exogenous inputs and the
optimization problem is convex. We explore the requirements on the plant and optimization
problem that allow for optimal regulation even in the presence of parametric uncertainty,
and we explore methods for stabilizer design using tools from robust control theory.

We illustrate the linear-convex theory on several examples. We first demonstrate the
use of the small-gain theorem for stability analysis when a PI stabilizer is employed; we
then show that we can use the solution to the H∞ control problem to synthesize a stabilizer
when the PI controller fails. Furthermore, we apply our theory to the design of controllers
for the optimal frequency regulation problem in power systems and show that our methods
recover standard designs from the literature.
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Chapter 1

Introduction

1.1 Motivation and Literature Review1

Control theory is the study of dynamical systems with inputs and outputs. We are free to
manipulate the inputs to influence the evolution of the system, and we are able to measure
the outputs to acquire information about the system’s behaviour. Feedback refers to the
act of using these measured outputs to make smart decisions about the inputs we apply.
Control theorists study the use of feedback to elicit desirable behaviour from a system.

“Desirable” might mean stabilizing the system, guiding measurable outputs to prescribed
setpoints, or optimizing state trajectories. Consider the use of feedback control in, for
example, an autonomous car driving along a straight stretch of road. The motion of the car
is described by a set of differential equations arising from Newton’s laws of motion. The
steering angle of the front wheels and the speed of rotation of the back wheels serve as inputs
that influence how the car moves. We suppose the car is equipped with a speedometer and
a camera system that can detect its lateral position and position relative to the car ahead
and the car behind — these measurements are the outputs. We would define “desirable
behaviour” in this example as the car moving in a straight line at a constant speed, with
minimal deviation from the centre of the lane, while maintaining a constant distance from
the other cars. The on-board computer system must take the measurements of speed and
distance and determine whether the vehicle needs to speed up, slow down, or bank to one
side.

1Some of the contents of this section appear in L. S. P. Lawrence, Z. E. Nelson, E. Mallada, and J.
W. Simpson-Porco “Optimal Steady-State Control for Linear Time-Invariant Systems”, in 2018 IEEE
Conference on Decision and Control (CDC), pages 3251–3257.
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In many engineering applications, the control goal is to make a system come to rest in
a dynamic equilibrium that is, by some definition, optimal. Consider an electrical power
grid, consisting of a network of power supplies, such as synchronous generators, and power
loads, such as residential consumers demanding electricity. The optimal operating point is
determined by a constrained optimization problem that seeks to minimize the total cost of
power generation, while maintaining supply-demand balance and system stability [32,70].
The current approach for regulating an electrical power grid to this optimal operating
point involves a time-scale separation between the tasks of computing the optimal setpoint
and tracking this setpoint using feedback controllers. The optimal generation setpoints are
computed offline using demand projections and a model of the network, then the operating
points are dispatched as reference commands to local controllers at each generation site [5].
This process is repeated with a fixed update rate: a new optimizer is computed, dispatched,
and tracked. If the supply and demand of power changes on a time scale that is slow
compared to the update rate, then this method is perfectly acceptable.

If the optimizer changes rapidly, however, as is the case for power networks with a high
penetration of renewable energy sources, the conventional approach is inefficient [69]. Profit
is reduced as a result of operating in a sub-optimal regime between optimizer updates. In
the rapidly-changing optimizer case, then, it would be advantageous to eliminate the time-
scale separation by combining the local generator controllers with an online optimization
algorithm, so that the optimal operating condition could be tracked in real time. Indeed,
this is the direction of much recent research in power system control [2, 18,19,21,22,31,38,
46,47,51,52,54,66–69,72,73,77,78,82].

The same theme of real-time regulation of system variables to optimal values emerges
in diverse areas, and much work on controller design to implement online optimization
exists in the literature. Fields of application besides the power network control example
mentioned already include network congestion management [41, 48, 49, 53, 76], chemical
processing [20, 26, 28], wind turbine power capture [8, 58], active flow control and axial
flow compressor control for aerospace applications [4,75], temperature regulation in energy-
efficient buildings [30], and beam matching in particle accelerators [65].

The breadth of applications motivates the need for a general theory and design procedure
for controllers that regulate a system to a maximally efficient operating point defined by
an optimization problem, even as the optimizer changes over time due to changing market
prices, disturbances to the system dynamics, and operating constraints that depend on
external variables. We refer to the problem of designing such a controller as the optimal
steady-state (OSS) control problem.

Much work on the OSS control problem already exists in the literature under various
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names including “real-time optimization” and “online optimization” — see for example,
[11, 13, 16, 17, 33, 35, 40, 44, 56, 57, 59, 79]. In the extremum-seeking control approach, a
harmonic signal is used to perturb an uncertain system, and the gradient of a cost function
is then inferred by filtering system measurements; a control signal is applied to drive the
gradient to zero [20,29,43]. Jokić, Lazar, and van den Bosch propose a Karush-Kuhn-Tucker
(KKT) controller, employing the necessary and sufficient KKT conditions for optimality
as the basis of a nonlinear feedback controller that guides the outputs of a system to an
optimizer [39,40]. Nelson and Mallada consider an optimization problem over system states
and apply gradient feedback with a proportional-integral (PI) controller; if the full system
state cannot be directly measured, a Luenberger observer is employed [59].

Many of the currently-proposed controllers, however, have limited applicability: some
solutions only apply to systems of a special form [13, 79]; some attempt to optimize only
the steady-state input [17] or output [11, 35, 40, 57] alone; some apply only to equality-
constrained [16,56] or unconstrained optimization problems [33]; and in all cases, the effects
of parametric modelling uncertainty are omitted.

As a result, a number of important questions are raised regarding the existence of
solutions and the general architecture of OSS controllers.

(i) Fundamental controller existence theorems are lacking, leaving important questions
unanswered: What conditions on the plant and optimization problem are necessary
for the OSS control problem to be solvable? What properties must a controller satisfy
to solve the OSS control problem?

(ii) Insufficient attention has been paid to understanding when real-time optimization
can be performed robustly in the presence of parametric uncertainty.

(iii) The literature lacks a general, unifying architecture for OSS controllers that facilitates
controller design and connects to established design methodologies.

This thesis fills these gaps in the optimal steady-state control literature.

1.2 Organization of Thesis

This thesis is organized as follows. In Chapter 2, we give a summary of the background
necessary to understand the remainder of the thesis. We then outline the fundamentals of
optimal steady-state control, including a formal problem statement, solvability conditions,
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and general controller architecture in Chapter 3. We pose our problem in a very general
setting for which a solution may be difficult or impossible to determine; in Chapter 4, there-
fore, we describe a special case for which we formulate a constructive design procedure. We
illustrate many of the discussed ideas in Chapter 5, followed by a summary and enumeration
of future directions in Chapter 6.
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Chapter 2

Background

This chapter summarizes the essential topics required to understand the remainder of the
thesis. We survey

(i) convex optimization,

(ii) the output regulation problem, and

(iii) robust control theory.

We assume the reader is familiar with the basics of linear control theory (see [34]), nonlinear
systems theory including stability definitions and Lyapunov analysis (see [42]), and linear
algebra (see [3]).

Notation

We will do our best to introduce notation in a “just-in-time” manner; however, some
notation is so common that it is easier to agree upon its use at the outset.

We denote by R the set of real numbers. The set Rn is the set of n-tuples of real numbers.
The space of n ×m matrices with real entries is denoted by Rn×m. The matrix In is the
n× n identity matrix, 0n is the n-vector of all zeros, and 0 is a matrix of zeros whose size
may be inferred from context.

For matrices A,B ∈ Rn×n, the generalized inequality A ≺ B means B − A is positive
definite, while A � B means B − A is positive semidefinite.
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The notation f : U → V means that f is a function mapping (a subset of) the set
U to (a subset of) the set V . For a differentiable function f : Rn → R, its gradient is
∇f : Rn → Rn.

2.1 Convex Optimization

This section recalls the basics of mathematical optimization, and convex optimization in
particular, from [10]. For more on optimization, we also refer the reader to [6, 7, 50, 60].

2.1.1 Optimization Problems

An optimization problem is the problem of selecting a “best” decision out of a universe of
possible decisions. Formulating this problem in the language of mathematics, we seek to
select a vector of decision variables x ∈ Rn that minimizes a cost as measured by a function
f : Rn → R that we call the objective function.

We write an optimization problem as follows:

minimize
x∈Rn

f(x) . (2.1)

An optimizer or minimizer x? ∈ Rn satisfies the property that no other vector in Rn yields
a lower value of f , i.e.

f(x?) ≤ f(x) for all x ∈ Rn .

We denote the set of minimizers by

argmin
x∈Rn

f(x) .

This set may contain zero, one, or many elements.

The problem (2.1) is called an unconstrained problem, since our decision variable may
be any element of Rn. Often, not every decision is admissible. We are frequently subject to
constraints in our choices. We formulate constraints mathematically by imposing that our
decision vector lie in some set C which may be a strict subset of Rn. We call the set C the
feasible region and say that x ∈ Rn is a feasible point if x ∈ C. We write this constrained
problem as

minimize
x∈Rn

f(x)

subject to x ∈ C ,
(2.2)
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and denote the set of minimizers by

argmin
x∈Rn

{f(x) | x ∈ C} .

We typically describe the feasible region C algebraically using a set of functions gi : Rn → R,
i ∈ {1, . . . , nic}, that define inequality constraints and hi : Rn → R, i ∈ {1, . . . , nec}, that
define equality constraints, like so:

C = {x ∈ Rn | gi(x) ≤ 0 for all i ∈ {1, . . . , nic} , hi(x) = 0 for all i ∈ {1, . . . , nec}} .

Using this algebraic description, we write the problem (2.2) as

minimize
x∈Rn

f(x)

subject to gi(x) ≤ 0 , i ∈ {1, . . . , nic}
hi(x) = 0 , i ∈ {1, . . . , nec} .

2.1.2 Convexity

Certain sets and functions satisfy an important property known as convexity. A set C ⊂ Rn

is said to be convex when the line segment between any two points in C is also in C.
Mathematically, C is convex if

x, y ∈ C and λ ∈ [0, 1] imply that (1− λ)x+ λy ∈ C also. (2.3)

A function f : Rn → R is said to be convex when the line segment between any two points
on the graph of the function lies above the graph. Mathematically, f is convex when

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for any x, y ∈ Rn and any λ ∈ [0, 1]. (2.4)

Optimization problems with a convex objective function and a convex feasible region possess
structure that permits us to say much more about such problems than generic problems
lacking convexity. A convex optimization problem is given by

minimize
x∈Rn

f(x)

subject to gi(x) ≤ 0 i ∈ {1, . . . , nic}
Ax = b ,

(2.5)
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where f : Rn → R is convex, A ∈ Rm×n and b ∈ Rm define the equality constraints, and
the gi : Rn → R strict inequality, i.e. when

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y) for any x, y ∈ Rn with x 6= y and any λ ∈ [0, 1].
(2.6)

We have the following lemma from [10, Section 4.2.1].

Lemma 2.1.1 (Strict Convexity Implies Uniqueness) If the objective function f in
the convex problem (2.5) is strictly convex and an optimizer exists, then the optimizer is
unique.

Suppose we are given a convex optimization problem and a feasible point x. To assess
whether or not x is optimal, we require a set of necessary and sufficient conditions for
optimality. We turn our attention to such conditions next.

2.1.3 The Karush-Kuhn-Tucker Conditions

In an unconstrained, single-variable optimization problem such as

minimize
x∈R

f(x) ,

with f : R→ R convex, the point x? ∈ R satisfies

df

dx
(x?) = 0 (2.7)

if and only if x? is a minimizer of f . For a convex multivariable constrained optimization
problem such as (2.5), the derivative condition (2.7) is generalized to the Karush-Kuhn-
Tucker conditions. The following theorem holds if a Slater point exists for the problem (2.5),
a point x̄ ∈ Rn such that Ax̄ = b and gi(x̄) < 0 for all i ∈ {1, . . . , nic}. If a Slater point exists,
then the problem (2.5) is said to satisfy Slater’s constraint qualification. See [10, Section 5]
for more details on the KKT conditions and constraint qualifications.

Theorem 2.1.2 (Karush-Kuhn-Tucker) Assume a Slater point exists for the convex
optimization problem (2.5). The point x? ∈ Rn is a global minimizer for the problem (2.5)

8



if and only if there exist µ? ∈ Rnec and ν? ∈ Rnic such that

0 = ∇f(x?) + ATµ? +
m∑
k=1

ν?i∇gi(x)

ν?i ≥ 0 , i ∈ {1, . . . , nec}
ν?i gi(x

?) = 0 , i ∈ {1, . . . , nic} .

(2.8)

4

Remark 2.1.3 (Dual Variables) From the convex problem (2.5), one can define a sec-
ond, closely-related convex problem known as the dual problem with decision variables called
the dual variables. The vectors µ? and ν? of (2.8) are the optimal dual variables for the
dual problem. We will not need to examine dual problems at any point in this thesis, but
the interested reader is encouraged to consult [10, Chapter 5] for more. 4

2.2 The Output Regulation Problem

This section recalls the basic problem setup and results for the global nonlinear output
regulation problem from [61]. Our exposition is brief, and we refer the reader to [14, 36, 37,
61,62] for detailed treatments.

Output regulation is a generalization of integral control to cases where disturbances
and/or reference signals are time-varying. Consider a nonlinear plant

ẋ = f(x, u, w) , x(0) ∈ X := Rn

ym = hm(x, u, w) ,
(2.9)

where x ∈ X is the state, u ∈ U := Rm is the control input, ym ∈ Rpm is the vector of
available measurements, and w ∈ Rnw is a set of exogenous inputs which might include
disturbances to the plant dynamics, reference signals, or uncertain parameters. The function
f is assumed to be locally Lipschitz in x and continuous in u and w, while hm is assumed
to be continuous; note for later that ym may contain components of the input u. We define
an error signal e ∈ Rp associated with the plant

e = he(x, u, w) , (2.10)

9



consisting of variables which should be “protected” from the effects of the exogenous inputs
and initial conditions. For example, e may be a vector of reference tracking errors, and
should be driven to zero asymptotically using feedback control. The function he is assumed
to be continuous. The class of exogenous inputs of interest is generated by the exosystem

ẇ = s(w) , w(0) ∈ W (2.11)

where s is locally Lipschitz and W ⊂ Rnw is an open invariant set for the dynamics (2.11).
Note that we can capture the effects of parametric uncertainty in the plant model (2.9) by
including such parameters as components of w with static dynamics ẇi = 0. We denote the
set of solutions of (2.11) by Is(W ), the corresponding ω-limit set by Ω(W ), and assume
that solutions of the exosystem (2.11) are bounded for all time t ∈ R.

A general nonlinear feedback controller for (2.9) is given by

ẋc = fc(xc, ym) , xc(0) ∈ Xc := Rnc

u = hc(xc, ym) ,
(2.12)

which processes the measurements ym(t) and produces the control signal u(t) in closed-loop
with the plant (2.9). The dynamics of the closed-loop system are described by (2.9) and
(2.12), with (2.11) generating the exogenous input, i.e. the closed-loop system is given by
the dynamics

ẋ(t) = f(x(t), u(t), w(t))

ym(t) = hm(x(t), u(t), w(t))

ẋc(t) = fc(xc(t), ym(t))

u(t) = hc(xc(t), ym(t)) ,

(2.13)

an exogenous inputw(·) satisfying ẇ(t) = s(w(t)), and a set of initial conditions (w(0), x(0), xc(0)) ∈
W × X × Xc. We will say that the closed-loop system is well-posed when the equations
(2.13) yield a unique solution for x(t), ym(t), xc(t), and u(t), defined for all t ≥ 0, for all
exogenous inputs w(·) ∈ Is(W ) and initial conditions (x(0), xc(0)) ∈ X ×Xc.

The problem of output regulation is to design the feedback controller such that the closed-
loop system satisfies a generalized stability criterion known as global uniform convergence
with a uniformly bounded steady-state (UBSS) and such that the error signal e(t) is driven
to zero. We recall the definition of this generalized stability property (see [61] for more
details) and then define the output regulation problem.

Definition 2.2.1 (Convergence of an Autonomous System) Consider an autonomous
dynamical system with state z ∈ Rd

ż = F (z, t) . (2.14)
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We assume F is locally Lipschitz in z and piecewise continuous in t. The autonomous
system (2.14) is said to be globally uniformly convergent if there exists a solution z̄(t) such
that z̄(t) is defined and bounded for all t ∈ R and z̄(t) is globally asymptotically stable for
all solutions of (2.14).

Definition 2.2.2 (Convergence of a System with Inputs) Consider a dynamical sys-
tem with state z ∈ Rd and input w ∈ Rm

ż = F (z, w) . (2.15)

The function F is assumed to be locally Lipschitz in z and continuous in w. The signal w(t)
is assumed to belong to a class of signals W which are piecewise continuous functions of
time defined for all t ∈ R.

The system (2.15) is said to be globally uniformly convergent with the UBSS property
for the class of inputs W if the following hold:

(i) For each w(·) ∈ W, the system (2.15) is globally uniformly convergent;

(ii) For every ρ > 0 there exists an R > 0 such that if w(·) satisfies ‖w(t)‖ ≤ ρ for all
t ∈ R then the corresponding steady-state solution z̄w(t) of (2.15) with input w(t)
satisfies ‖z̄w(t)‖ ≤ R for all t ∈ R.

Problem 2.2.3 (Output Regulation) For the plant (2.9), design, if possible, a dynamic
feedback controller of the form (2.12) such that the closed-loop system (2.13) meets the
following criteria:

(i) well-posedness: the closed-loop system is well-posed;

(ii) global convergence: the closed-loop system is globally uniformly convergent and satisfies
the UBSS property for the class of inputs Is(W );

(iii) asymptotic error zeroing: for every initial condition (x(0), xc(0)) ∈ X × Xc of the
closed-loop system and initial condition w(0) ∈ W of the exosystem, the error signal
(2.10) asymptotically tends to zero, i.e., lim

t→∞
e(t) = 0p.

4
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The following theorem is a basic necessary condition for the output regulation problem
to be solvable [61, Lemma 4.13].

Theorem 2.2.4 (Regulator Equations) The output regulation problem is solvable only
if there exist continuous mappings π : Ω(W ) → X and ψ : Ω(W ) → U which satisfy the
regulator equations

d

dt
π(w) = f(π(w), ψ(w), w)

0p = he(π(w), ψ(w), w)
(2.16)

for every solution of the exosystem w = w(t) satisfying w(t) ∈ Ω(W ) for all t ∈ R. 4

The interpretation of Theorem 2.2.4 is that there must exist a steady-state feedforward
control input u(t) = ψ(w(t)) with corresponding steady-state state trajectory x(t) = π(w(t))
such that the error e = he(x, u, w) is held identically equal to zero. The set of controllers
that solve the output regulation problem is described in the next theorem [61, Theorem
4.16].

Theorem 2.2.5 (Controller Conditions) The output regulation problem is solved by a
controller of the form (A.4) if and only if

(i) there exists a mapping πc : Ω(W ) → Xc such that for some π and ψ satisfying the
regulator equations (2.16) the mapping πc satisfies the generalized internal model
principle

d

dt
πc(w) = fc(πc(w), hm(π(w), ψ(w), w))

ψ(w) = hc(πc(w), hm(π(w), ψ(w), w))
(2.17)

for every solution of the exosystem w = w(t) satisfying w(t) ∈ Ω(W ) for all t ∈ R;

(ii) the closed-loop system corresponding to this controller is globally uniformly convergent
with the UBSS property for the class of inputs Is(W ). 4

Theorem 2.2.5 (i) states that that there must exist a steady-state trajectory xc(t) =
πc(w(t)) of the controller which can produce the error-zeroing steady-state input u(t) =
ψ(w(t)).
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The typical controller solving the output regulation problem consists of two sub-systems:
an internal model of the exosystem and a stabilizer ; see [14, Equation (2.20)], [36, Equa-
tion (6.14)], [61, Equation (5.13)]. The internal model ensures the controller satisfies the
generalized internal model property (2.17), and reduces the output regulation problem to
the problem of (robustly) stabilizing the augmented plant, consisting of the internal model
and the plant in either a series or feedback configuration. The stabilizer ensures that the
closed-loop system satisfies the UBSS stability property. The output regulation problem is
therefore solved using the following modular design strategy:

(i) design an internal model and construct the augmented plant;

(ii) design a stabilizer to ensure the closed-loop system meets a stability criterion (e.g.,
global uniform convergence).

Both of these steps are formidable in general, and methods for constructing internal models
are described in [36]. The specific case of a static exosystem (constant disturbances and
uncertain parameters), however, has the well-known solution of integral control when the
error e is measurable.

Lemma 2.2.6 (Integral Control) Suppose the exosystem (2.11) is static so that ẇ =
0nw , and suppose the error e is available for measurement. Consider the controller

η̇ = e (2.18a)

ẋs = fs(xs, e, ym, η) (2.18b)

u = hs(xs, e, ym, η) . (2.18c)

If the closed-loop system with plant (2.9) and controller (2.18) is well-posed and has a
globally asymptotically stable equilibrium point for every w(0) ∈ W , then the regulator
equations (2.16) are solvable and the controller (2.18) solves the output regulation problem.

Proof: Since the closed-loop system (2.9) and (2.18) has a globally asymptotically stable
equilibrium point for every w(0) ∈ W , it follows that there exists a unique solution (x̄, ū)
to

0n = f(x̄, ū, w)

0p = e = h(x̄, ū, w)
(2.19)

for every w(0) ∈ W since ẋ = 0n and η̇ = 0p at an equilibrium point. The equations (2.19),
however, are precisely the regulator equations (2.16) for a static exosystem; the maps π
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and ψ are the maps from w(0) to the vectors x̄ and ū solving (2.19) respectively. Hence,
the regulator equations are solvable.

We now show that items (i) and (ii) of Theorem 2.2.5 are satisfied, proving the claim.
Again, the existence of a unique equilibrium point for the closed-loop system implies that
there exists a unique solution (η̄, x̄s) to

0ns = fs(x̄s, 0p, ȳm, η̄)

ū = hs(x̄s, 0p, ȳm, η̄)

for each w(0) ∈ W . Hence, item (i) of Theorem 2.2.5 is satisfied, with the map πc mapping
from w(0) to the vector (η̄, x̄s). Furthermore, in the case of a static exosystem, global
uniform convergence with the UBSS property is equivalent to the existence of a globally
asymptotically stable equilibrium point for each w(0) ∈ W . Item (ii) of Theorem 2.2.5 is
therefore satisfied by assumption. �

The first component of the controller (2.18a) is the internal model (in this case, a pure
integrator), while the second component (2.18b) and (2.18c) is the stabilizer.

2.3 Robust Control

The subfield of control known as robust control is concerned with questions of stability and
performance for feedback systems in the presence of nonlinearity, uncertainty, or otherwise
“troublesome” components that prevent us from applying traditional linear systems theory.
See [25,83] for detailed treatments of robust control.

In a robust control setting, we are interested in feedback connections of the form depicted
in Figure 2.1. We have a nominal system G, which we assume to be linear and time-invariant,
and a troublesome system ∆. We assume that we have some coarse description of the input-
output behaviour of ∆, but otherwise the exact manner by which ∆ maps input signals to
output signals is unknown to us. We ask whether we can certify stability of the closed-loop
system despite our limited knowledge of ∆.

In this thesis, the troublesome component ∆ is related to the gradient of a convex
function. This section on robust control will detail how to design a controller that guarantees
closed-loop stability when such a nonlinearity is present in the feedback path.

We will first explore the idea of a “system” as a map between spaces of input and
output signals. This perspective on systems leads naturally to the idea of “gain.” Our
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G

∆

qp

Figure 2.1: The standard robust stability problem: an LTI system G is connected in feedback with
a “troublesome” component ∆.

main analysis tool, the small-gain theorem, gives a sufficient condition for stability of the
feedback interconnection of two systems based on the systems’ respective gains. We then
show how to apply the small-gain theorem to our particular application (when ∆ is the
gradient of a convex function). Finally, we give an overview of our main synthesis tool, H∞
controller design, which allows us to compute a controller that enforces the condition of
the small-gain theorem.

2.3.1 The Signal Space L2

We will view systems as maps between vector spaces we call signal spaces. We will only be
interested in the signal space L n

2 [0,∞), the set of vector-valued functions square-integrable
on the positive real line. For brevity of notation, we shall drop the time range [0,∞) from
L n

2 [0,∞). We also drop the superscript n if it can be inferred from context, and simply
refer to the space L2.

The function f : R+ → Rn is a member of L2 when∫ ∞
0

f(t)Tf(t) dt <∞ .

We interpret the integral in the above equation as a measure of the “energy” contained in
the signal f (consider the case when f is a current signal, for instance). Then f being a
member of L2 means that f is a signal carrying finite energy. This energy integral defines
a norm on the vector space L2 by

‖f‖ :=

∫ ∞
0

f(t)Tf(t) dt .

Unstable systems do not necessarily produce outputs of finite energy when the inputs
are of finite energy. We must therefore broaden the signal space L2 to accommodate such
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systems. We define the extended space L2e, which contains all signals of finite energy over
finite time intervals. Specifically, f ∈ L2e if∫ T

0

f(t)Tf(t) dt <∞ for all T ≥ 0 .

The space L2e contains such signals as et and sin(t), in addition to all the signals in L2 of
finite energy.

2.3.2 Systems and L2 Gain

We consider systems as maps between L2e spaces. A system G with np inputs and nq
outputs is taken to be a mapping G : L

np
2e → L

nq
2e , i.e. G takes input signals p ∈ L

np
2e and

produces output signals q ∈ L
nq
2e . We denote this relationship by q = G(p).

We will say that G is L2 stable if p ∈ L2 =⇒ q ∈ L2. That is, G is stable if an input
of finite energy results in an output of finite energy. Furthermore, G is said to be L2 stable
with finite gain if the greatest multiplicative increase in the output energy as compared to
the input energy is finite, i.e. if the quantity

sup

{
‖Gp‖
‖p‖

∣∣∣∣ p ∈ L2, p 6= 0

}
is finite. We define the L2 gain ‖G‖L2 of a norm-bounded system G as

‖G‖L2
:= sup

{
‖Gp‖
‖p‖

∣∣∣∣ p ∈ L2, p 6= 0

}
.

The system G : L
np
2e → L

nq
2e is linear if

G(αp1 + βp2) = αG(p1) + βG(p2)

for all α, β ∈ R and p1, p2 ∈ L
np
2e .

The system G : L
np
2e → L

nq
2e is time-invariant if, for every input p ∈ L

np
2e producing

output q ∈ L
nq
2e , the input p(t− τ)h(t− τ) produces output q(t− τ)h(t− τ) for any τ ≥ 0,

where h(·) is the unit step function.

A linear, time-invariant system G : L
np
2e → L

nq
2e admits a state-space representation

ẋ = Ax+Bp , x(0) = 0n
q = Cx+Dp

(2.20)
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for some matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. We use the notation

G =

[
A B
C D

]
to mean that the system G is linear and time-invariant, with a state-space representation
given by the matrices A, B, C, and D. Linear, time-invariant systems are stable if their
corresponding dynamics matrix A is Hurwitz, i.e. has all of its eigenvalues in the open
left-half plane.

We can completely characterize the L2 gain of a stable LTI system via the system’s
state-space representation. This is summarized by the following lemma, whose proof may
be found in [37, Theorem 3.1].

Lemma 2.3.1 (L2 Gain for LTI Systems) For the LTI system

G(s) =

[
A B
C D

]
,

with A Hurwitz, the following are equivalent:

(i) The L2 gain of G is less than γ;

(ii) There exists a positive definite symmetric matrix P such that[
ATP + PA PB

BTP −γI

]
+

1

γ

[
C D

]T [
C D

]
≺ 0 .

4

Remark 2.3.2 (Linear Matrix Inequalities) The inequality of item (ii) is known as a
linear matrix inequality (LMI), and the question of the existence of a matrix P satisfying
the inequality can be answered through semidefinite programming (SDP). For more on LMIs
and SDPs, see [9, 27, 74]. 4
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2.3.3 Sector-Bounded and Slope-Restricted Functions

In this thesis, the trouble-making component ∆ will be a static, sector-bounded nonlinearity.

A function f : Rn → Rn defines a system called a static nonlinearity ∆ : L n
2e → L n

2e

with input q and output p through the simple relation

p(t) = ∆(q(t)) = f(q(t)) .

A function f (equivalently, the static nonlinearity ∆) satisfying f(0) = 0 is said to be in
the sector [α, β] with α, β ∈ R, α ≤ β, when

(f(x)− αx)T(βx− f(x)) ≥ 0 (2.21)

for every x ∈ Rn. In the one-dimensional case (n = 1), we can interpret the condition (2.21)
as saying that the graph of the function f lies between the straight lines αx and βx. As
a shorthand notation, we will use ∆ ∈ sec[α, β] to mean that ∆ is a static nonlinearity in
the sector [α, β].

A stronger condition than a sector bound is a slope restriction. A function h : Rn → Rn

is said to be slope restricted to [α, β] with α, β ∈ R, α ≤ β when[
x− y

h(x)− h(y)

]T [ −2αβI (α + β)I
(α + β)I −2I

] [
x− y

h(x)− h(y)

]
≥ 0 (2.22)

for all x, y ∈ Rn. Note that if h : Rn → Rn is slope restricted to [α, β] then the function
ψ : Rn → Rn defined by ψ(x) := h(x+ x̄)− h(x̄) is in the sector [α, β] for any x̄ ∈ Rn.

The gradient of a convex function is slope restricted under certain conditions. A convex
function g : Rn → R is said to be strongly convex with parameter κ, or κ-strongly convex, if

g((1− λ)x+ λy) ≤ (1− λ)g(x) + λg(y)− 1

2
κλ(1− λ)‖x− y‖2 ,

where κ is a positive real number. Strong convexity is a stronger condition than strict
convexity.

A function h : Rn → Rm is said to be (globally) Lipschitz continuous with parameter L,
or L-Lipschitz, if

‖h(x)− h(y)‖ ≤ L‖x− y‖
for all x, y ∈ Rn, where L is a positive real number.

We have the following lemma that relates the previous two definitions to a slope restric-
tion on convex function gradients
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Lemma 2.3.3 (Sector-Bounded Gradient) If g : Rn → R is κ-strongly convex and
∇g : Rn → Rn is L-Lipschitz then ∇g is slope restricted to [κ, L].

Proof: See [45, Section 3.3]. �

The sector [−1, 1] deserves special mention because we will focus on a related stability
theorem shortly. If a static nonlinearity ∆ is in the sector [−1, 1], the L2 gain of ∆ is less
than one. We therefore call the sector [−1, 1] the small-gain sector.

In the next section, we present a stability theorem for the interconnection of an LTI
system and a static nonlinearity in the small-gain sector. We subsequently show how to
extend these results to more general sectors.

2.3.4 The Small-Gain Theorem

The small-gain theorem is a stability condition for the interconnection of two (not necessarily
linear and time-invariant) systems. We consider a special case of the small gain theorem
for the interconnection of an LTI system and a static nonlinearity in the small gain sector.

Consider the feedback interconnection of the LTI system

G =

[
A B
C D

]
with A Hurwitz and a static nonlinearity ∆ ∈ sec[−1, 1]. The closed-loop system equations
are

ẋ = Ax+Bp

q = Cx+Dp

p = ∆(q) .

(2.23)

Theorem 2.3.4 (Small Gain) The origin x = 0 is globally asymptotically stable for the
dynamics (2.23) if ‖G‖L2 < 1.

Proof: Since ‖G‖L2 < 1, by Lemma 2.3.1 there exists a positive definite symmetric matrix
P such that [

ATP + PA PB
BTP −I

]
+
[
C D

]T [
C D

]
≺ 0 . (2.24)
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We claim that for any P satisfying (2.24),

V (x) = xTPx

is a Lyapunov function for the closed-loop system. Note that V is a positive definite function
satisfying V (0) = 0. It remains to show that V̇ is a negative definite function.

If there exists a positive definite matrix P such that (2.24) holds, then there exists a
ε > 0 such that [

ATP + PA PB
BTP −I

]
+
[
C D

]T [
C D

]
� −εI . (2.25)

Multiply (2.25) on the left and right by any col(x, p) ∈ Rn × Rnp to obtain[
x
p

]T [
ATP + PA PB

BTP −I

] [
x
p

]
+

[
x
p

]T [
C D

]T [
C D

] [x
p

]
≤ −ε(‖x‖2 + ‖p‖2)

xTATPx+ xTPAx+ xTPBp+ pTBTPx− pTp+ (Cx+Dp)T(Cx+Dp) ≤ −ε(‖x‖2 + ‖p‖2)

(Ax+Bp)TPx+ xTP (Ax+Bp)− pTp+ (Cx+Dp)T(Cx+Dp) ≤ −ε(‖x‖2 + ‖p‖2) .

Using the system equations for G

ẋ = Ax+Bp

q = Cx+Dp ,

we find
ẋTPx+ xTPẋ− pTp+ qTq ≤ −ε(‖x‖2 + ‖p‖2) . (2.26)

We use the fact that

ẋTPx+ xTPẋ =
d

dt

(
xTPx

)
=

d

dt
V (x)

to rewrite (2.26) as
d

dt
V (x)− pTp+ qTq ≤ −ε(‖x‖2 + ‖p‖2) . (2.27)

Now, because ∆ ∈ sec[−1, 1], we have

(∆(q) + q)T(q −∆(q)) ≥ 0

for all inputs q. In other words, p and q satisfy

(p+ q)T(q − p) = −pTp+ pTq − qTp+ qTq = −pTp+ qTq ≥ 0 ,
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or
pTp− qTq ≤ 0 .

Therefore, (2.27) implies

d

dt
V (x) ≤ −ε‖x‖2−ε‖p‖2︸ ︷︷ ︸

≤0

+ pTp− qTq︸ ︷︷ ︸
≤0

≤ −ε‖x‖2 .

Hence V̇ is a negative definite function. The origin x = 0 is therefore globally asymptotically
stable for the dynamics (2.23). �

2.3.5 Loop Transformations

We aren’t always handed a feedback system with ∆ in the small-gain sector. As we saw
in Section 2.3.3, κ-strongly convex functions with L-Lipschitz gradients are in the sector
[κ, L]. Thankfully, the feedback interconnection of a static nonlinearity in a general sector
[α, β] (with α, β ∈ R and α ≤ β) and an LTI system may be converted to the form required
by Theorem 2.3.4 using what is known as a loop transformation.

The idea is to perform manipulations on the feedback loop to transform the intercon-
nection of the system G and nonlinearity ∆ ∈ sec[α, β] to the interconnection of a new
system G′ and new nonlinearity ∆′ ∈ sec[−1, 1] in such a way that the resulting closed-loop
system is equivalent to the original one. The loop transformation is depicted in Figure 2.2
and consists of the following steps:

(i) apply a negative feedforward of β+α
2

to ∆ and cancel this with a positive feedback of
β+α

2
to G;

(ii) place a gain of 2
β−α at the output of the feedforward summing junction and cancel

this with a gain of β+α
2

at the input to the feedback summing junction.

Suppose G has the state-space representation

ẋ = Ax+Bp

q = Cx+Dp .
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G

∆

β+α
2

β+α
2

2
β−α

β−α
2

q′

−

p′

∆′

G′

Figure 2.2: A loop transformation converts the nonlinearity ∆ ∈ sec[α, β] to ∆′ ∈ sec[−1, 1], the
small-gain sector. The LTI system G becomes the LTI system G′.
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The uncertainty input p′ of the loop-transformed system G′ is related to the old input p
and output q by

p =
β + α

2
q +

β − α
2

p′

=
β + α

2
(Cx+Dp) +

β − α
2

p′ ,

which can be solved to obtain

p =
β + α

2

(
I − β + α

2
D

)−1

Cx+
β − α

2

(
I − β + α

2
D

)−1

p′ ,

assuming the matrix I − β+α
2
D is invertible. The system G′ therefore has the state-space

representation

ẋ =

(
A+

β + α

2

(
I − β + α

2
D

)−1

C

)
x+

β − α
2

Bp′

q′ =

(
C +

β + α

2
D

(
I − β + α

2
D

)−1

C

)
x+

β − α
2

D

(
I − β + α

2
D

)−1

p′ .

The next lemma follows trivially from the fact that a loop transformation is nothing more
than a change-of-variables.

Proposition 2.3.5 (Loop-Transformed Equivalence) The origin x = 0 is globally
asymptotically stable for the dynamics

ẋ = Ax+Bp

q = Cx+Dp

p = ∆(q)

with ∆ ∈ sec[α, β] if and only if the origin x = 0 is globally asymptotically stable for the
loop-transformed dynamics

ẋ =

(
A+

β + α

2

(
I − β + α

2
D

)−1

C

)
x+

β − α
2

Bp′

q′ =

(
C +

β + α

2
D

(
I − β + α

2
D

)−1

C

)
x+

β − α
2

D

(
I − β + α

2
D

)−1

p′

p′ = ∆′(q′)

with ∆′ ∈ sec[−1, 1]. 4
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Proposition 2.3.5 tells us that we may apply the small-gain theorem to the loop-
transformed system (i.e. check that the L2 gain of G′ is less than one) to verify stability
of the original feedback interconnection.

2.3.6 H∞ Controller Synthesis

The small-gain theorem is an analysis theorem: we are simply given an LTI system G and
asked whether it is stable when placed in feedback with a troublesome block ∆ ∈ sec[−1, 1].
However, suppose G is a system with two channels: an uncertainty channel p → q with
uncertainty input p and uncertainty output q (through which G is connected to ∆) and a
control channel u→ y with control inputs u and measured outputs y, as shown in Figure
2.3a. We might ask whether it is possible to design a feedback controller K for G that
enforces the conditions of the small-gain theorem through the p→ q channel. Attaching a
nonlinearity ∆ ∈ sec[−1, 1] to the p→ q channel would then result in a stable closed-loop
system. The problem of designing a controller for the u→ y channel to minimize the L2

gain of the p→ q channel is a synthesis problem known as the H∞ control problem1, which
we now describe.

We define the linear, time-invariant augmented system G with two inputs, p (uncertainty
input) and u (control input), and two outputs, q (uncertainty output) and y (measured
output).

ẋ = Ax+Bpp+Buu

q = Cqx+Dqpp+Dquu

y = Cyx+Dypp .

or, in transfer function notation,

G =

 A Bp Bu

Cq Dqp Dqu

Cy Dyp 0

 . (2.28)

Suppose we close the loop around the control input/measured output channel with a
controller K given by

K =

[
AK BK

CK DK

]
. (2.29)

1The symbol H∞, pronounced “aitch-infinity,” refers to the H∞ norm of a transfer function, which is
equal to the corresponding system’s L2 gain. See [25, Chapter 3] for more on H∞ norms.
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G

K

qp

yu

(a)

G ? K
qp

(b)

Figure 2.3: Diagram of the H∞ control problem. Figure (a) shows the LTI system G with
uncertainty channel p → q and control channel u → y, through which we attach controller K.
Figure (b) shows the same system after the loop through the control channel is closed, resulting
in the system G ?K with input p and output q.

This defines a new system with input p and output q which we denote by G ? K:

G ? K =

 A+BuDKCy BuCK
BKCy AK

Bp +BuDKDyp

BKDyp

Cq +DquDKCq DquCK Dqp +DquDKDyu

 . (2.30)

Closing the control loop is depicted in Figure 2.3b. We now state the H∞ control problem.

Problem 2.3.6 (H∞ Control) For the LTI system (2.28), design a controller of the form
(2.29) such that for the closed-loop system (2.30), the dynamics matrix[

A+BuDKCy BuCK
BKCy AK

]
is Hurwitz and the L2 gain ‖G ? K‖L2 is minimized. 4

Two common approaches exist to solve the H∞ control problem. The first approach is
based on coupled Riccati equations, while the second formulates the problem in a linear
matrix inequality (LMI) framework. The details of each approach are substantial and we
will not discuss them here; we refer the reader to [23,24] for the Riccati equation approach
and to [63,64] for the LMI approach. We note that the controller K obtained from each of
these approaches is of the same order as the controlled plant. That is, if A ∈ Rn×n, then
AK ∈ Rn×n also. The H∞ synthesis procedure is therefore said to produce a controller of
“full order.”

25



2.3.7 Stabilizing Controller Design Procedure

We now have all the ingredients necessary to formulate a design procedure for a controller
K that stabilizes the feedback interconnection of an LTI system G and a sector-bounded
nonlinearity ∆, as depicted in Figure 2.4a. We will employ these procedures in our design
of optimal steady-state controllers.

The first, and simpler, option is to fix a controller structure for K with tunable param-
eters using engineering judgment. We then close the control loop to obtain the feedback
interconnection of G ? K and ∆. After performing a loop transformation to shift ∆ from
the sector [α, β] to the small-gain sector [−1, 1], we perform a grid search over the tunable
parameters, applying Theorem 2.3.4 to find a combination that guarantees stability.

The second, more sophisticated, option is to use the H∞ controller synthesis procedure
of the preceding section as follows.

(i) Perform a loop transformation through the p → q channel to convert the upper
interconnection of G and ∆ ∈ sec[α, β] to the interconnection of G′ and ∆′ ∈ sec[−1, 1]
as described in Section 2.3.5.

(ii) Synthesize a controller K for the u′ → y′ channel to minimize the L2 gain of the
p′ → q′ channel using the methods of Section 2.3.6.

(iii) Verify that the minimum achieved L2 gain of the p′ → q′ channel is less than one. If
so, the origin of the original closed-loop system is globally asymptotically stable by
Theorem 2.3.4 and Proposition 2.3.5.

These steps are illustrated in Figure 2.4.

The designer should attempt the first controller design procedure before employing the
second. The former has the advantage of simplicity; it is possible that a low-order controller,
such as a lead-lag or pure output feedback controller, is sufficient to stabilize the closed-loop
system. The design procedure using H∞ synthesis results in a high-order, fully dynamic
controller, which will generally be more complex to implement. However, the second design
procedure may yield a stabilizing controller when the first method fails in solving a difficult
problems, such as when the LTI plant is unstable.
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G

∆
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K

q′p′

y′u′

(b)

G′ ? K

∆′
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Figure 2.4: Diagram of the design procedure to stabilize the feedback interconnection of an LTI
system G and sector-bounded nonlinearity ∆ ∈ sec[α, β] using feedback controller K. The original
system is depicted in (i), the loop-transformed system in (ii), and the system with closed control
channel in (iii).
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Chapter 3

Fundamentals

The reader should now be sufficiently prepared to understand the fundamentals of the
optimal steady-state control problem. In this chapter, we formulate the basic problem
statement, present necessary and sufficient conditions for solvability of the OSS control
problem, and detail a general architecture for OSS controllers.

3.1 Problem Statement

Consider the general nonlinear plant (2.9) of the output regulation problem. Suppose that
instead of trying to asymptotically zero an error signal, our objective is to design a feedback
controller of the form (A.4) so that a specified subset of the control inputs and plant states
are asymptotically driven to a cost-minimizing steady-state, determined by the solution of
a constrained optimization problem. This objective should be achieved despite parametric
uncertainty in the plant, and in the presence of unknown exogenous disturbances.

Formally, define the optimization output y ∈ Y := Rp as

y = hr(x, u, w) , (3.1)

where hr is a continuous function. The cost-minimizing steady-state is determined by an
optimization problem with the optimization output y as the decision variable. Specifically,
consider the following nonlinear optimization problem parameterized by w ∈ W with
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decision variable y ∈ Y ,

minimize
y∈Y

g(y;w) (3.2a)

subject to li(y, w) = 0 , i ∈ {1, . . . , nec} (3.2b)

kj(y, w) ≤ 0 , j ∈ {1, . . . , nic} . (3.2c)

The cost function is g : Y ×W → R. The constraints (3.2b) and (3.2c) represent nec ≥ 0
engineering equality constraints and nic ≥ 0 engineering inequality constraints which should
be satisfied in the desired steady-state. The steady-state optimization problem (3.2) is
flexible enough to encompasses many situations of interest. To wit, the components of w
included in the cost function (3.2a) could represent uncertain parameters, such as changing
market prices. The engineering equality constraints (3.2b) might represent required setpoint
tracking or balance conditions. The engineering inequality constraints (3.2c) can be used to
ensure that states and inputs do not exceed their maximum continuous operation ratings.

For each w ∈ W , let

y?(w) := argmin
y∈Y

{g(y;w) | (3.2b) and (3.2c) hold} (3.3)

denote the optimal solution function of the problem (3.2). In general, the optimal solution
function is set-valued, and its value for a particular w may be empty. Going forward we
will assume that the optimization problem (3.2) has a unique minimizer for each w ∈ W ,
and hence y? is a single-valued map. We further assume that y? : W → Y is continuous —
this assumption is essential for the application of output regulation results to the optimal
steady-state control problem.

Assumption 3.1.1 (Properties of y?) The optimal solution function y? : W → Y de-
fined in (3.3) is single-valued and continuous on W . 4

The goal in optimal steady-state control is to asymptotically guide the optimization
output y(t) to the time-varying optimizer y?(w(t)), where w(t) is generated by the exosystem
(2.11). We define the optimal steady-state control problem in the language of the output
regulation problem, Problem 2.2.3, with error signal e := y − y?(w).

Problem 3.1.2 (Optimal Steady-State Control) Design, if possible, a dynamic feed-
back controller of the form (A.4) for the nonlinear plant (2.9) such that the closed-loop
system meets the following criteria:
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(i) well-posedness: the closed-loop system is well-posed;

(ii) global convergence: the closed-loop system is globally uniformly convergent and satisfies
the UBSS property for the class of inputs Is(W );

(iii) asymptotic optimality: For every initial condition (x(0), xc(0)) ∈ X×Xc of the closed-
loop system and initial condition w(0) ∈ W of the exosystem, the optimization output
y is asymptotically brought into agreement with the optimizer

lim
t→∞

(hr(x(t), u(t), w(t))− y?(w(t)) = 0p .

4

An important feature that distinguishes the OSS control problem from the standard
output regulation problem is the absence of knowledge of the error signal: the optimal
solution function y? is generally unknown, and the time-varying optimizer y?(w(t)) de-
pends on the unknown exogenous disturbance w. Technically, the statement of the output
regulation problem does not require the error signal e to be measurable, but standard con-
troller designs make such an assumption — again, see [14, Equation (2.20)], [36, Equation
(6.14)], [61, Equation (5.13)]. This creates a new set of challenges for optimal steady-state
control beyond the substantial challenges already present in the output regulation problem.

3.2 Solvability Conditions

Before outlining a general design strategy for the OSS control problem, we present solvability
theorems that follow immediately from output regulation results. The optimal steady-
state control problem is defined as the output regulation problem with continuous error
signal e = he(x, u, w) := hr(x, u, w) − y?(w). The results of Section 2.2 therefore apply;
in particular, we have the following necessary condition for solvability which follows from
Theorem 2.2.4.

Theorem 3.2.1 (OSS Regulator Equations) The OSS control problem is solvable only
if there exist continuous mappings π : Ω(W )→ X and ψ : Ω(W )→ U that satisfy the OSS
regulator equations

d

dt
π(w) = f(π(w), ψ(w), w)

y?(w) = hr(π(w), ψ(w), w)
(3.4)

for every solution of the exosystem w = w(t) satisfying w(t) ∈ Ω(W ) for all t ∈ R. 4
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Theorem 3.2.1 for the optimal steady-state control problem admits a similar interpreta-
tion to Theorem 2.2.4 for the output regulation problem: for every exogenous input signal
w(t) ∈ Ω(W ), there must exist a control input u(t) = ψ(w(t)) that produces the state
trajectory x(t) = π(w(t)) in the plant such that the optimization output is optimal, i.e.,
y(t) = y?(w(t)). An alternative interpretation is that (3.4) expresses compatibility between
the set of all time-varying optimizers and the set of possible steady-state behaviours of the
plant.

The necessary and sufficient conditions for a controller to solve the optimal steady-state
control problem follow from Theorem 2.2.5.

Theorem 3.2.2 (OSS Controller Conditions) The OSS control problem is solved by
the controller (A.4) if and only if

(i) there exists a mapping πc : Ω(W ) → Xc such that for some π : Ω(W ) → X and
ψ : Ω(W )→ U satisfying the OSS regulator equations (3.4) the mapping πc satisfies
the generalized internal model principle

d

dt
πc(w) = fc(πc(w), hm(π(w), ψ(w), w))

ψ(w) = hc(πc(w), hm(π(w), ψ(w), w))
(3.5)

for every solution of the exosystem w = w(t) satisfying w(t) ∈ Ω(W ) for all t ∈ R;

(ii) the closed-loop system corresponding to this controller is globally uniformly convergent
with the UBSS property for the class of inputs Is(W ). 4

3.3 Design Architecture

We will now describe a framework for the design of optimal steady-state controllers that
encompasses and generalizes many designs present in the literature. As we have already
stated, the optimal steady-state control problem is more difficult to solve than the output
regulation problem because the optimizer set is unknown and therefore the regulation error
is not measurable. However, if we could produce a measurable proxy for the optimality
error, then we could mirror the design techniques from the output regulation literature.

Recall that in the design of a controller to solve the output regulation problem, employing
an internal model of the exosystem reduces the problem of output regulation to a problem
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of robust stabilization. Inspired by this approach, we will introduce the idea of an optimality
model to reduce the problem of optimal steady-state control to an output regulation problem
with a measurable error signal.

An optimality model is a filter applied to the measured output of the plant that, when in
steady-state, produces an output ε which is a proxy for the optimality error e = y − y?(w).
To make this idea precise, consider a filter with state ξ ∈ Ξ := Rnξ , inputs ym (plant
measurements) and v ∈ V := Rnv (auxiliary stabilizing input), and output ε described by

ξ̇ = ϕ(ξ, ym, v)

ε = hε(ξ, ym, v) ,
(3.6)

and define the filtered plant as the original plant (2.9) in cascade with the filter (3.6):

ẋ = f(x, u, w)

ym = hm(x, u, w)

ξ̇ = ϕ(ξ, ym, v)

ε = hε(ξ, ym, v)

yf = col(ξ, ym, ε) .

(3.7)

The state of the filtered plant is col(x, ξ), the control inputs are u and v, the error output
is ε, and the measured output is yf = col(ξ, ym, ε) consisting of the filter state, original
plant measurements, and error output. The purpose of the additional input v will become
clear shortly. Consider now the steady-state behaviours of the filtered plant that would lead
to our error proxy signal ε being identically zero. In other words, consider the solutions
(π, πξ, ψu, ψv) : Ω(W )→ X × Ξ× U × V of the regulator equations for the filtered plant:

d

dt
π(w) = f(π(w), ψu(w), w) ,

d

dt
πξ(w) = ϕ(πξ(w), hm(π(w), ψu(w), w), ψv(w)) ,

0 = hε(πξ(w), hm(π(w), ψu(w), w), ψv(w)) .

(3.8)

This leads us to the definition of an optimality model.

Definition 3.3.1 (Optimality Model) The filter (3.6) is said to be an optimality model
(for the OSS control problem, Problem 3.1.2) if the following implication holds: if the
quadruple (π, πξ, ψu, ψv) is a solution of the regulator equations (3.8) for the filtered plant
(3.7), then the pair (π, ψu) satisfies the OSS regulator equations (3.4). 4
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An optimality model encodes sufficient conditions for optimality during steady-state
operation with the plant. For instance, given a convex optimization problem where strong
duality holds, the optimality model might encode the KKT conditions when it is in dynamic
steady-state with the plant; we explore this case further in Section 4.2. Just as knowledge
of an internal model can be used to reduce the output regulation problem to a robust
stabilization problem, an optimality model can be used to reduce the optimal steady-state
control problem to an output regulation problem with measurable error, as the following
theorem shows.

Theorem 3.3.2 (Reduction of OSS to Output Regulation) Suppose that the filter
(3.6) is an optimality model for the OSS control problem (Problem 3.1.2), and consider the
filtered plant (3.7). If the controller

ẋc = fc(xc, ξ, ym, ε)

u = huc (xc, ξ, ym, ε)

v = hvc(xc, ξ, ym, ε)

(3.9)

solves the output regulation problem for the filtered plant (3.7) with error signal ε, then the
controller

ξ̇ = ϕ(ξ, ym, v)

ẋc = fc(xc, ξ, ym, hε(ξ, ym, v))

u = huc (xc, ξ, ym, hε(ξ, ym, v))

v = hvc(xc, ξ, ym, hε(ξ, ym, v))

(3.10)

solves the optimal steady-state control problem.

Proof: Suppose the controller (3.9) solves the output regulation problem for the filtered plant
(3.7). One consequence of Theorem 2.2.5 is that there must exist a solution (π, πξ, ψu, ψv)
to the regulator equations for the filtered plant (3.8). Define ym(w) := hm(π(w), ψu(w), w)
to be the steady-state plant measurements and yf(w) := col(πξ(w), ym(w), 0) to be the
steady-state output of the filtered plant — note that ε = 0 since (π, πξ, ψu, ψv) solve the
regulator equations for the filtered plant. Also by Theorem 2.2.5, we can conclude there
exists a mapping πc such that

d

dt
πc(w) = fc(πc(w), yf(w))

ψu(w) = huc (πc(w), yf(w))

ψv(w) = hvc(πc(w), yf(w))
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and the closed-loop system corresponding to this controller is globally uniformly convergent
with the UBSS property for the class of inputs Is(W ).

Define the OSS controller with state col(ξ, xc) and dynamics given by (3.10). Since the
filter is an optimality model and (π, πξ, ψu, ψv) solve the regulator equations for the filtered
plant, it follows from Definition 3.3.1 that the pair (π, ψu) solve the OSS regulator equations
(3.4). Therefore, by Theorem 3.2.2, there exist mappings πξ, πc such that for the solution
(π, ψu) of the OSS regulator equations, the OSS controller satisfies

d

dt
πξ(w) = ϕ(πξ(w), ym(w), hvc(πc(w), yf(w)))

d

dt
πc(w) = fc(πc(w), yf(w))

ψu(w) = huc (πc(w), yf(w))

and the closed-loop system corresponding to this controller is globally uniformly convergent
with the UBSS property for the class of inputs Is(W ). Employing Theorem 2.2.5 in the
other direction, we conclude the OSS controller solves the optimal steady-state control
problem. �

Based on Theorem 3.3.2, we obtain the following modular design strategy for solving
the OSS control problem:

(i) design an optimality model and construct the filtered plant;

(ii) design a controller that solves the output regulation problem for the filtered plant.

A controller solving the OSS control problem will therefore typically consist of three cascaded
subsystems: an optimality model, an internal model of the exosystem, and a stabilizer. See
Figure 3.1 for a diagram of this proposed scheme. The purpose of the auxiliary input v to
the optimality model can now be made clear: it provides additional inputs for stabilization
of the closed-loop system.
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ẇ = s(w)

Exosystem

ẋ = f(x, u, w)

ym = hm(x, u, w)

Plant

ξ̇ = ϕ(ξ, ym, v)

ε = hε(ξ, ym, v)

Optimality Model

η̇ = γ(η, ε)

Internal Model

ẋs = fs(xs, η, ξ, ym, ε)

u = hus (xs, η, ξ, ym, ε)

v = hvs (xs, η, ξ, ym, ε)

Stabilizer

w

ym

ε
ξ

η

u

v

Figure 3.1: A general architecture for OSS controllers. The plant and optimality model are placed
in cascade to form the filtered plant. The internal model and stabilizer solve the output regulation
problem for the filtered plant with error signal ε. The overall controller is contained in the shaded
blue region.
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Chapter 4

The Linear-Convex Case 1

For an arbitrary nonlinear plant, exosystem, and optimization problem, the OSS control
problem is likely intractable. The remainder of this paper focuses in detail on the important
case of a LTI plant with constant parametric uncertainty, a static exosystem, and a convex
steady-state optimization problem. We call this case linear-convex optimal steady-state
control, and leverage the results of Chapter 3 to provide a complete solution to this problem.
In Section 4.1, we consider the fundamentals of linear-convex OSS control, before presenting
a constructive controller design procedure in Section 4.2.

4.1 Linear-Convex Fundamentals

4.1.1 Uncertain LTI Plant

We specialize the nonlinear plant (2.9) and the output to be optimized (3.1) to the case
of linear time-invariant dynamics with structured parametric uncertainty in the system
matrices:

ẋ = A(δ)x+B(δ)u+Bw(δ)w , x(0) ∈ X
y = C(δ)x+D(δ)u+Q(δ)w ,

ym = Cm(δ)x+Dm(δ)u+Qm(δ)w .

(4.1)

1The contents of this chapter will be incorporated into a publication: L. S. P. Lawrence, J. W. Simpson-
Porco, and E. Mallada, “The Linear-Convex Optimal Steady-State Control Problem,” to be submitted to
IEEE Transactions on Automatic Control.
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Note the difference in notation from Chapter 3, as we have split the exogenous input
into two components, w and δ. The vector w ∈ Rnw models exogenous disturbances and
setpoints, while δ ∈ δ ⊂ Rnδ is a vector that characterizes structured parametric model
uncertainty and belongs to a set δ containing the origin (δ = 0 is the nominal model). All
matrices are assumed to be continuous functions of δ ∈ δ. We assume the corresponding
exosystems are static:

d

dt

[
w
δ

]
=

[
0nw
0nδ

]
, w(0) ∈ Rnw , δ(0) ∈ δ , (4.2)

which yields constant signals w and δ.

4.1.2 Robust Steady-State Optimization Problem

Recall from Theorem 3.2.1 that a necessary condition for solvability of the OSS control
problem is that the OSS regulator equations (3.4) have a solution; that is, there must exist
a steady-state operation of the plant that yields the optimal output. We can either assume
that the OSS regulator equations have a solution, or we can constrain our optimization
problem to guarantee that solutions exist. We opt for the latter strategy by embedding the
steady-state operation constraint into the steady-state optimization problem.

Consider the equilibrium outputs ȳ that can be generated from (4.1) by an equilibrium
state x̄ and input ū:

0n = A(δ)x̄+B(δ)ū+Bw(δ)w

ȳ = C(δ)x̄+D(δ)ū+Q(δ)w .
(4.3)

We define the set-valued mapping Y : W × δ ⇒ Y so that Y (w, δ) is the set of all such
achievable equilibrium optimization outputs ȳ for fixed values of w and δ:

Y (w, δ) := {ȳ ∈ Y | there exists an (x̄, ū) such that

(x̄, ū, ȳ) satisfy (4.3)} .
(4.4)

For each (w, δ), the set Y (w, δ) is an affine subset of Y , which we assume is nonempty.2

We shall include ȳ ∈ Y (w, δ) as a constraint of the steady-state optimization problem
to ensure compatibility between the optimizers and steady-state operation of the plant,
thereby ensuring solvability of the OSS regulator equations (Theorem 3.2.1).

2Equivalently, we assume that rangeBw(δ) ⊆ range
[
A(δ) B(δ)

]
for all δ ∈ δ.
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The cost-minimizing equilibrium point is determined by the convex optimization problem

minimize
y∈Y

g(y;w) (4.5a)

subject to y ∈ Y (w, δ) (4.5b)

Hy = Lw (4.5c)

ki(y, w) ≤ 0 , i ∈ {1, . . . , nic} (4.5d)

in which g : Y ×W → R is assumed to be a continuous function of all of its arguments,
and differentiable and convex in y for each w. The constraint (4.5b) is the steady-state
constraint just discussed. The constraints (4.5c) and (4.5d) represent nec engineering equal-
ity constraints and nic engineering inequality constraints which should be satisfied in the
desired steady-state. To ensure the optimization problem is convex, the engineering equality
constraints must be linear and the functions ki : Y ×W → R of the engineering inequality
constraints must be convex in y for each w. The matrices H,L and functions ki are part of
the design specifications, and are therefore not subject to parametric uncertainty.

Proceeding from (3.3), as before y? : W × δ → Y is the optimal solution function of
(4.5), and we assume y? satisfies Assumption 3.1.1.3 If the objective function g is strictly
convex, then we may simply assume that an optimizer exists for each (w, δ); uniqueness of
the optimizer then follows from Lemma 2.1.1. We further assume that a strictly feasible
point exists for the optimization problem (4.5).

Assumption 4.1.1 (Constraints Strictly Feasible) There exists a point ỹ ∈ Y that
satisfies ỹ ∈ Y (w, δ), Hỹ = Lw, and ki(ỹ, w) < 0 for all i ∈ {1, . . . , nic}.

The existence of a strictly feasible point ensures Slater’s constraint qualification holds,
and therefore guarantees that the Karush-Kuhn-Tucker (KKT) conditions are necessary
and sufficient for optimality [10, Sections 5.2.3 and 5.5.3].

The optimality condition associated with the constraint y ∈ Y (w, δ) involves the unique
subspace associated with the affine set Y (w, δ). Recall that any affine set in Euclidean
space can be written as the sum of a (unique) subspace and a (non-unique) “offset” vector.

3Unlike in the general case, we can verify that Assumption 3.1.1 holds under certain conditions for convex
problems like (4.5). Continuity of y? follows from properties of feasible region, while single-valuedness of
y?(w, δ) follows if g(·, w) is strictly convex for each w. If g(·;w) is not strictly convex, one may perturb
the objective function to enforce strict convexity without changing the optimal value significantly. See
Appendix B for more details.
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It follows from the definition of Y that for each (w, δ), there exists an offset vector y(w, δ)
and a unique subspace V (δ) such that

Y (w, δ) = y(w, δ) + V (δ) . (4.6)

For each (w, δ), the optimal solution y? is characterized as the unique vector such that
there exists µ? ∈ Rnec and ν? ∈ Rnic such that (y?, µ?, ν?) satisfy the KKT conditions

∇g(y?, w) +HTµ? +

nic∑
i=1

ν?i∇ki(y, w) ⊥ V (δ) (4.7a)

0 = ν?i ki(y
?, w) , ν?i ≥ 0 , i ∈ {1, . . . , nic} (4.7b)

along with the primal feasibility conditions (4.5b)–(4.5d). The gradient condition (4.7a) is
written in a non-standard manner in terms of the subspace V (δ), which can be interpreted
as the subspace of first-order feasible variations for the affine constraint y ∈ Y (w, δ) —
see [6, Section 3.1] for details.

We draw the reader’s attention to a second, equivalent, way to write the gradient
condition (4.7a). There exists a (y?, µ?, ν?) satisfying (4.7) if and only if there exists a
(y?, ν?) satisfying

∇g(y?, w) +

nic∑
i=1

ν?i∇ki(y?, w) ⊥ (V (δ) ∩ nullH) (4.8a)

0 = ν?i ki(y
?, w) , ν?i ≥ 0 , i ∈ {1, . . . , nic} (4.8b)

Going forward, we will make use of both formulations (4.7) and (4.8) when appropriate.

Remark 4.1.2 (Comments on Linear-Convex OSS Formulation) The assumption
that H,L in (4.5c) are free of parametric uncertainty can be relaxed without much difficulty.
One could relax the assumption of differentiability of g by using subgradients or proximal
operator methods, as in [16]; we do not pursue this here. 4

4.1.3 Linear-Convex OSS Regulator Equations

Recall that solvability of the OSS regulator equations (3.4) is necessary for the solvability
of the OSS control problem. The inclusion of the equilibrium constraint (4.5b) in the
optimization problem ensures this necessary condition is met.
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Proposition 4.1.3 (Solvability of OSS Regulator Equations) For the linear-convex
OSS control problem with plant (4.1), exosystem (4.2), and convex optimization problem
(4.5), there exist functions π : W ×δ → X and ψ : W ×δ → U satisfying the OSS regulator
equations (3.4). 4

Proof: We consider whether there exist functions π and ψ satisfying (3.4) for the LTI
dynamics (4.1) with exosystem (4.2). That is, we consider solutions to

0n = A(δ)π(w, δ) +B(δ)ψ(w, δ) +Bw(δ)w

y?(w, δ) = C(δ)π(w, δ) +D(δ)ψ(w, δ) +Q(δ)w .
(4.9)

Since, by the constraints of the optimization problem, y?(w, δ) ∈ Y (w, δ), it follows from
(4.3) and (4.4) that the mappings π and ψ exist. �

Remark 4.1.4 (Necessity of Steady-State Constraints) Failing to include the steady-
state constraints (4.5b) in the optimization problem (4.5) can result in an instance of the
OSS control problem in which y?(w, δ) /∈ Y (w, δ) for some (w, δ). That is, the optimizer of
(4.5) might be inconsistent with steady-state operation of the plant (4.1) for some (w, δ). In
this case, the OSS regulator equations (3.4) will fail to have globally defined solutions, and
the OSS control problem will be insolvable. 4

4.2 Constructive Solutions

This section presents constructive solutions to the linear-convex OSS control problem
outlined in Section 4.1.

4.2.1 Robust Subspaces

Following the design strategy outlined in Section 3.3, we must construct an optimality model
for the linear-convex OSS control problem, and then design a controller solving the output
regulation problem for the series interconnection of the LTI plant and the optimality model
(Theorem 3.3.2). A major roadblock to constructing optimality models is the presence
of parametric uncertainty, and we therefore devote significant effort in this subsection
to studying it. Indeed, consider the KKT conditions (4.7) or (4.8), and notice that both
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nullH

V (δ1)
V (δ2)

Figure 4.1: An illustration of the robust feasible subspace property. For two distinct values of
uncertainty δ1 and δ2, the subspaces V (δ1) and V (δ2) are different. However, the intersected
subspaces V (δ1) ∩ nullH and V (δ2) ∩ nullH, shown by the dashed line, are equal.

involve the subspace V (δ), which depends on the uncertain parameters δ. It is therefore
impossible for our controller to incorporate the gradient condition within an optimality
model without knowledge of δ unless V (δ) or V (δ) ∩ nullH is, in fact, independent of
δ. While we cannot expect such a result to hold for an arbitrary uncertain LTI plant,
this uncertainty-independence always holds when V (δ) = Rp for all δ. What’s more, this
property may hold even when V (δ) is a strict subset of Rp for all δ, provided that the
manner in which the uncertainty enters our model possesses some structure.4

We now explore the means by which one can verify the robustness (i.e., uncertainty
independence) of these subspaces to parametric uncertainty, and some of the consequences.
Our first definition makes precise the notion of V (δ) ∩ nullH being independent of δ.

Definition 4.2.1 (Robust Feasible Subspace (RFS)) Let V (δ) be the unique subspace
associated with Y (w, δ) as in (4.6). The optimization problem (4.5) is said to satisfy the
robust feasible subspace (RFS) property if there exists a fixed l ∈ N and a fixed set of
vectors {v1, v2, . . . , vl} ⊂ Rp such that V (δ)∩nullH = span(v1, v2, . . . , vl) for all δ ∈ δ. 4

The robust feasible subspace property is illustrated in Figure 4.1. In this example,
one can visualize the subspace V (δ) rotating along the dashed-line axis as δ changes in
value. So long as the subspaces V (δ) and nullH are never equal, there exists a fixed basis,
independent of δ, for the subspace V (δ) ∩ nullH. In this case, the basis consists of one
vector in the direction of the dashed line.

A sufficient condition for V (δ) ∩ nullH to be independent of δ is that V (δ) is itself
independent of δ; this leads to our second definition.

4We show that this special structure exists in, for example, power system models in Section 5.2.
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Definition 4.2.2 (Robust Output Subspace (ROS)) The uncertain LTI plant (4.1)
is said to satisfy the robust output subspace (ROS) property if there exists a fixed l ∈ N
and a fixed set of vectors {v1, v2, . . . , vl} ⊂ Rp such that V (δ) = span(v1, v2, . . . , vl) for all
δ ∈ δ. 4

We next discuss how to verify the RFS and ROS properties algebraically through the
construction of certain matrices whose column vectors form a basis of the subspace V (δ)
or V (δ) ∩ nullH. These matrices will play a key role in defining optimality models for the
linear-convex OSS control problem. We first present the construction of a matrix whose
range is V (δ), which will be useful for assessing both the RFS and ROS properties.

Lemma 4.2.3 (Construction of V (δ)) Let NAB(δ) be any matrix such that rangeNAB(δ) =
null

[
A(δ) B(δ)

]
. Then the columns of the matrix

R(δ) :=
[
C(δ) D(δ)

]
NAB(δ) (4.10)

span the subspace V (δ), and hence V (δ) = rangeR(δ).

Proof: We can view the affine space Y (w, δ) from (4.4) as being constructed by a two-step
process. In the first step, we examine the steady-state solutions (x̄, ū) to

A(δ)x̄+B(δ)ū+Bw(δ)w = 0n . (4.11)

In the second step, we compute each corresponding output as ȳ = C(δ)x̄+D(δ)ū+Q(δ)w
and place ȳ into Y . Let the set of solutions to the linear equations (4.11) be denoted
L ⊂ Rn × Rm. The set L is affine, and therefore can be written as the sum of a subspace
and an offset vector. Fix a particular solution (x̃, ũ) to (4.11), and note that

L = (x̃, ũ) + null
[
A(δ) B(δ)

]
.

The set Y can then be written as

Y (w, δ) = {C(δ)x̄+D(δ)ū+Q(δ)w | (x̄, ū) ∈ L}
= C(δ)x̃+D(δ)ũ+Q(δ)w︸ ︷︷ ︸

y(w,δ)

+

[
C(δ) D(δ)

] (
null

[
A(δ) B(δ)

])︸ ︷︷ ︸
V (δ)

.
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It follows that the construction described in the statement of the lemma indeed yields the
subspace V (δ). �

We now consider how to verify when the robust feasible subspace property holds. For
δ ∈ δ, let R⊥(δ) be a matrix satisfying nullR⊥(δ) = V (δ).5 We then have

V (δ) ∩ nullH = nullR⊥(δ) ∩ nullH

= null

[
R⊥(δ)
H

]
.

(4.12)

If the null space of the last line of (4.12) has a basis independent of δ, then the robust
feasible subspace property holds. These observations lead us to the following result.

Proposition 4.2.4 (Algebraic Characterization of RFS Property) Let R⊥(δ) be any
matrix satisfying nullR⊥(δ) = V (δ) for all δ. The optimization problem (4.5) satisfies the
robust feasible subspace property if and only if there exists a fixed matrix T0 such that

rangeT0 = null

[
R⊥(δ)
H

]
(4.13)

for all δ ∈ δ. 4

Proof: First suppose the optimization problem (4.5) satisfies the RFS property. Then there
exists an l ∈ N and a set of vectors {v1, v2, . . . , vl} ⊂ Rp such that V (δ) ∩ nullH =
span(v1, v2, . . . , vl) for all δ. It follows that T0 :=

[
v1 v2 . . . vl

]
satisfies

rangeT0 = V (δ) ∩ nullH = null

[
R⊥(δ)
H

]
for all δ. Conversely, suppose there exists a matrix T0 satisfying (4.13) for all δ. Then
V (δ) ∩ nullH = rangeT0 for all δ, hence the column vectors of T0 span V (δ) ∩ nullH for
all δ, and therefore the problem (4.5) satisfies the ROS property. �

5 One can either construct R⊥(δ) from R(δ) by requiring that R⊥(δ)R(δ) = 0 and
[
R(δ) RT

⊥(δ)
]

is
full rank, or one can use a more direct procedure. First, construct a matrix Γ(δ) such that

rangeΓ(δ) = null

[
A(δ) B(δ)
C(δ) D(δ)

]T
, for all δ ∈ δ .

Then, partition Γ(δ)T as Γ(δ)T =
[
X(δ) Z(δ)

]
where X(δ) has n columns and Z(δ) has p columns. One

can show that V (δ) = nullZ(δ) and therefore one may use R⊥(δ) := Z(δ) in Proposition 4.2.4.
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We now have an algebraic characterization of the ROS property — the existence of a
matrix T0 satisfying (4.13). We can make an analogous statement for the robust output
subspace property. The proof of the following proposition is essentially identical to the
proof of Proposition 4.2.4.

Proposition 4.2.5 (Algebraic Characterization of ROS Property) Let R(δ) be the
matrix defined in Lemma 4.2.3. The LTI plant (4.1) satisfies the robust output subspace
property if and only if there exists a fixed matrix R0 such that rangeR0 = rangeR(δ) for
all δ ∈ δ.

The next result gives a strong sufficient condition for the ROS property.

Proposition 4.2.6 (Robust Full Rank Implies ROS) The LTI system (4.1) satisfies
the ROS property if

rank

[
A(δ) B(δ)
C(δ) D(δ)

]
= n+ p , for all δ ∈ δ . (4.14)

Moreover,

(i) the requirements of Proposition 4.2.5 are satisfied by the matrix R0 := Ip;

(ii) the requirements of Proposition 4.2.4 are satisfied by any matrix T0 such that rangeT0 =
nullH.

Proof: If (4.14) holds, then Y (w, δ) = Rp for all (w, δ), and therefore V (δ) = Rp for all δ.
The standard basis vectors {e1, e2, . . . , ep} ⊂ Rp therefore satisfy V (δ) = span(e1, e2, . . . , ep)
for all δ, and hence the plant satisfies the ROS property. Since rangeR(δ) = V (δ) = Rp

for all δ ∈ δ, one may indeed take R0 = Ip in Proposition 4.2.5. Finally, considering
Proposition 4.2.4, the only valid choice of the matrix R⊥(δ) such that nullR⊥(δ) = V (δ)
for all δ ∈ δ is R⊥(δ) := 0. Hence the matrix T0 can be selected as any matrix satisfying

rangeT0 = null

[
0
H

]
= nullH. �

Note that (4.14) can hold only when the number of outputs to be optimized is less
than or equal to the number of control inputs. The rank condition (4.14) of Proposition
4.2.6 — sometimes referred to as the non-resonance condition [37, Lemma 4.1] — is a

44



Prop. 4.2.5 Prop. 4.2.4

Prop. 4.2.6 ROS Property RFS Property

OM (4.17) OM (4.15)

Figure 4.2: Relationships between robust subspace results and optimality models.

standard assumption of the linear output regulation problem with constant disturbances.
We emphasize that (4.14) is only a sufficient condition for the ROS property, which itself
is merely sufficient for the RFS property. The relationships between these conditions, and
the optimality models of the following section, are summarized in Figure 4.2.

Remark 4.2.7 (Enforcing the RFS Property) Two potential remedies exist if the RFS
property fails to hold for an instance of OSS control. First, the designer can consider adding

additional engineering equality constraints (rows of H) to ensure the subspace null

[
R⊥(δ)
H

]
of Proposition 4.2.4 is independent of δ. This can be accomplished by observing the manner
in which the uncertain parameters δ enter the matrix R⊥(δ) and adding rows of H accord-
ingly. Second, the designer can consider changing the selection of system variables to be
optimized, i.e. changing the definition of y, to modify the matrices C(δ) and D(δ) and hence
the matrix R(δ) of Lemma 4.2.3. This modification might consist of reducing the number
of optimization outputs p to a value less than or equal to the number of control inputs m,
to make it possible for the full-rank condition of Proposition 4.2.6, and therefore the ROS
property, to hold. 4

4.2.2 Optimality Models for Linear-Convex OSS Control

We now consider the construction of optimality models for linear-convex OSS control. The
options available to us depend on which of the two previously-defined subspace robustness
properties hold. For simplicity, we omit the auxiliary stabilizing input v from consideration
in the remainder of our discussion.

We assume the constraint violations Hy − Lw and ki(y, w), and objective function
gradient, ∇g(y;w), are available for feedback, in that they are either directly measurable
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or can be calculated using measurements. Incorporating the inequality constraints and
associated dual variable conditions relies on the following lemma, which is straightforward
to prove by checking every sign combination.

Lemma 4.2.8 For real numbers a and b, the pair (a, b) satisfies a = max(a+ b, 0) if and
only if a ≥ 0, b ≤ 0, and ab = 0. 4

It follows that, for each i ∈ {1, . . . , nic}, the conditions νi ≥ 0, ki(y, w) ≤ 0, and
νiki(y, w) = 0 are equivalent to νi = max(νi + ki(y, w), 0). In compact notation, we
write ν = max(ν + k(y, w), 0), where max evaluates max elementwise and k(y, w) :=
col(k1(y, w), . . . , knic

(y, w)).

Proposition 4.2.9 (Robust Feasible Subspace Optimality Model) Suppose the op-
timization problem (4.5) satisfies the robust feasible subspace property, and let T0 be any
matrix satisfying the statement of Proposition 4.2.4. Then

ν̇ = max(ν + k(y, w), 0)− ν

ε =

[
Hy − Lw

TT
0 (∇g(y;w) +

∑nic

i=1 νi∇ki(y, w))

]
(4.15)

is an optimality model for the linear-convex OSS control problem.

Proof: For each (w, δ), consider the solutions (x̄, µ̄, ν̄, ū) of the regulator equations for the
LTI plant (4.1) and optimality model (4.15) in series:

0 = A(δ)x̄+B(δ)ū+Bw(δ)w (4.16a)

ȳ = C(δ)x̄+D(δ)ū+Q(δ)w (4.16b)

0 = max(ν̄ + k(ȳ, w), 0)− ν̄ (4.16c)

0 = Hȳ − Lw (4.16d)

0 = TT
0

(
∇g(ȳ, w) +

∑nic

i=1
ν̄i∇ki(ȳ, w)

)
. (4.16e)

All time derivatives on the left-hand side of the regulator equations (4.16) are zero since
the exosystem is static. We show that the regulator equations are equivalent to the KKT
conditions (4.8). The first two equations (4.16a) and (4.16b) imply ȳ ∈ Y (w, δ). The equa-
tion (4.16d) is the engineering equality constraint. The engineering inequality constraints

46



and remaining KKT conditions (4.8) are encoded by (4.16c) and (4.16e). Since the KKT
conditions are sufficient for optimality, the following implication holds for all (w, δ): if
(x̄, µ̄, ν̄, ū) satisfy the regulator equations (4.16), then (x̄, ū) satisfy the linear-convex OSS
regulator equations (4.9). The filter (4.15) satisfies the criterion of Definition 3.3.1, and is
therefore an optimality model. �

The robust feasible subspace optimality model (RFS-OM) may be employed whenever
the RFS property holds. If, furthermore, the ROS property holds, then we have a second
option: the robust output subspace optimality model (ROS-OM).

Proposition 4.2.10 (Robust Output Subspace Optimality Model) Suppose the plant
(4.1) satisfies the robust output subspace property, and let R0 be any matrix satisfying the
statement of Proposition 4.2.4. Then

µ̇ = Hy − Lw
ν̇ = max(ν + k(y, w), 0)− ν

ε = RT
0

(
∇g(y;w) +HTµ+

∑nic

i=1
νi∇ki(y, w)

) (4.17)

is an optimality model for the linear-convex OSS control problem.

Proof: The proof is almost identical to the proof of Proposition 4.2.9, except that we
compare the gradient condition to (4.7a) instead of (4.8a). �

If the robust output subspace property holds, then we are free to employ either (4.15)
or (4.17) as our optimality model.6 In each optimality model, the choice of the matrix T0

or R0 provides a great deal of design flexibility. When combined with different controller
design options solving the output regulation problem for the filtered plant, this gives a huge
variety of design options for synthesizing OSS controllers.

4.2.3 Linear-Convex OSS Controller

Suppose that we have constructed an optimality model for our linear-convex OSS control
problem, perhaps using one of the two optimality models of the previous section. We

6In fact, even more variations are possible by considering other equivalent formulations of the KKT
conditions and developing appropriate robust subspace notions; for brevity we omit the details here.
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represent the optimality model generically by

ξ̇ = ϕ(ξ, ym)

ε = hε(ξ, ym) .

We need to construct a controller that solves the output regulation problem for the filtered
plant comprising the LTI plant and optimality model in series:

ẋ = A(δ)x+B(δ)u+Bw(δ)w

ym = Cm(δ)x+Dm(δ)u+Qm(δ)w

ξ̇ = ϕ(ξ, ym)

ε = hε(ξ, ym)

(4.18)

Observe that the filtered plant is a nonlinear system subject to constant exogenous
inputs with a measurable error ε — Lemma 2.2.6 immediately yields the solution. We must
employ an integrator and stabilizer to solve the output regulation problem for the filtered
plant (4.18):

η̇ = ε

ẋs = fs(xs, ym, ξ, η, ε)

u = hs(xs, ym, ξ, η, ε) .

(4.19)

If the closed-loop system is well-posed and stable, the linear-convex OSS control problem
is solved.

Proposition 4.2.11 (Linear-Convex OSS Controller) Let (ϕ, hε) be an optimality model
for the linear-convex OSS control problem. If the stabilizer (fs, hs) is designed such that the
closed-loop system of the filtered plant (4.18) and controller (4.19) in feedback is well-posed
and has a globally asymptotically stable equilibrium point for all (w, δ), then the controller

ξ̇ = ϕ(ξ, ym)

η̇ = hε(ξ, ym)

ẋs = fs(xs, ym, ξ, η, hε(ξ, ym))

u = hs(xs, ym, ξ, η, hε(ξ, ym))

(4.20)

solves the linear-convex optimal steady-state control problem. 4
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4.2.4 Stabilizer Design

Using an optimality model and a bank of integrators, Proposition 4.2.11 tells us that we have
reduced the linear-convex OSS control problem to a stabilization problem. If we restrict
our attention to linear time-invariant stabilizers and if we employ the optimality model of
Proposition 4.2.9 or Proposition 4.2.10, the only nonlinearity in the closed-loop system is
the static, slope-restricted nonlinearity ∇g(·, w). The map y 7→ ∇g(y;w) is slope-restricted
to [κ, L] if y 7→ g(y;w) is κ-strongly convex and y 7→ ∇g(y;w) is L-Lipschitz continuous.

After centering the closed-loop system equations about an equilibrium point, the only
nonlinearity present is in the sector [κ, L]. As a result, the controller design procedures
of Section 2.3.7 apply. We can either propose a simple stabilizer structure, such as a PI
controller, and search for stabilizing gains using the small-gain theorem; otherwise, we can
synthesize a full-order dynamic controller using H∞ synthesis techniques. We illustrate
these procedures on concrete examples in the next chapter.
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Chapter 5

Illustrative Examples

In this section, we consider several illustrative examples of the concepts discussed in the
previous portions of the thesis. We first examine two academic examples that demonstrate
the application of the small-gain theorem andH∞ controller synthesis to the construction of
the stabilizer. Subsequently, we apply the OSS control framework to power system models.
We show that we are able to recover several standard controller designs from the literature
to solve the optimal frequency regulation problem.

5.1 Stabilization Examples1

We demonstrate the construction of the stabilizer assuming the simplest possible form
for the OSS control problem. We assume no parametric uncertainty and no engineering
constraints. This allows us to illustrate the fundamental tools for stabilizer design with a
minimum of clutter.

We suppose we are interested in regulating the output y of the LTI system

ẋ = Ax+Bu+Bww

y = Cx+Du

ym = y .

1Some of the contents of this section appear in L. S. P. Lawrence, Z. E. Nelson, E. Mallada, and J.
W. Simpson-Porco “Optimal Steady-State Control for Linear Time-Invariant Systems”, in 2018 IEEE
Conference on Decision and Control (CDC), pages 3251–3257.
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to the solution of the equilibrium-constrained problem

minimize
y∈Y

g(y;w)

subject to y ∈ Y (w) ,
(5.1)

where g : Y ×W → R is κ-strongly convex and ∇g(y;w) is L-Lipschitz in y for each w.
Since we assume no parametric uncertainty, the equilibrium output map Y depends only
upon w, and not (w, δ).

5.1.1 Analysis of Proportional-Integral Stabilizer via the Small-
Gain Theorem

Suppose we wish to keep the design of the stabilizer as simple as possible, and use a
proportional-integral (PI) controller structure. The plant satisfies the robust output subspace
property since no parametric uncertainty is present. We may therefore apply the ROS
optimality model

ε = RT
0∇g(y;w) ,

with the matrix R0 constructed as in Lemma 4.2.3.

The closed-loop system equations are

ẋ = Ax+Bu+Bww (5.2a)

y = Cx+Du (5.2b)

η̇ = ε = RT
0∇g(y;w) (5.2c)

u = −KP ε−KIη . (5.2d)

The closed-loop system (5.2) possesses a unique equilibrium point under mild assumptions.

Proposition 5.1.1 (Unique Equilibrium Point) Suppose y 7→ g(y;w) is strictly con-
vex,

rank

[
A B
C D

]
= n+m, (5.3)

and KI is invertible. Then for each w ∈ Rnw the closed-loop system (5.2) has a unique
equilibrium point.
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Proof: The equilibria (x̄, η̄) of (5.2) satisfy

0 = Ax̄+Bū+Bww (5.4a)

ȳ = Cx̄+Dū (5.4b)

0 = RT
0∇g(ȳ;w) (5.4c)

ū = −KI η̄ . (5.4d)

Since RT
0∇g(y;w) is an optimality model, (5.4a)–(5.4c) imply that ȳ is optimal. Strict

convexity of y 7→ g(y;w) then implies this ȳ is unique. By the rank assumption (5.3), the
state-input pair (x̄, ū) is unique. Finally, invertibility of KI implies η̄. �

Assuming the requirements of Proposition 5.1.1 hold, we denote the unique equilibrium
values by x?, u?, y?, and so on. We centre the system equations about this equilibrium point
by making the change-of-variables x̃ := x − x?, ũ = u − u?, ỹ = y − y?, etc. and extract
the nonlinearity ∇g to obtain a feedback system in the standard form of the robust control
problem with the troublesome block ∆ ∈ sec[κ, L] (given by ∆(y) := ∇g(y + y?;w) −
∇g(y?;w)) and LTI system G given by

G =

 A −KI

0 0
−BKPR

T
0

RT
0

C −DKI −DKPR
T
0

 .

We may then apply Theorem 2.3.4 and Proposition 2.3.5 to assess the stability of the
closed-loop system.

We take as the plant matrices

A :=


−1 −4 −1 3
1 −4 −1 −3
−1 4 −1 −9
0 0 0 −4

 , B :=


0
1
0
1

 ,

C :=

1 −1 0 −4
1 0 2 0
0 0 0 0

 D :=

0
0
1

 .

The matrix Bw is irrelevant for this example. The matrix A has four stable eigenvalues at
{−2,−2 + 2i,−2− 2i,−4}. The state matrices satisfy

rank

[
A B
C D

]
= n+m.
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Notice that the optimization output y comprises two measurements from the state of the
system as well as the control input. The matrix R0 as constructed in Lemma 4.2.3 is given
by

RT
0 :=

[
−0.7474 −1.1626 −0.6644

]
.

We suppose we are interested in assessing stability for any objective function g which
is κ-strongly convex with κ := 1/9 and whose gradient ∇g is L-Lipschitz continuous with
L := 1.

Using CVX in MATLAB to verify the L2 gain of the loop-transformed system G′ (as
detailed in Section 2.3.7), we find the closed-loop system to be stable for all 100 gain
combinations (KP , KI) ∈ {0.2, 0.4, . . . , 1.8, 2}2. (Note that KI is invertible for each of these
gain combinations.) That is, employing a PI controller as the stabilizer with any of these
gain combinations results in a controller (5.2c) and (5.2d) that solves the OSS control
problem.

5.1.2 H∞ Synthesis of Full-Order Dynamic Controller

A simple PI controller will not always work to stabilize the closed-loop system. Suppose we
are interested in OSS control for the unstable plant

A :=


−1 −4 −1 3
1 −4 −1 −3
−1 4 −1 −9
0 0 0 1

 , B :=


0
1
0
1

 ,

C :=

1 −1 0 −4
1 0 2 0
0 0 0 0

 D :=

0
0
1

 .

The matrix A has eigenvalues {−2,−2 + 2i,−2− 2i, 1}, three stable and one unstable. We
assume the objective function is strongly convex with parameter κ := 1 and has a Lipschitz
continuous gradient with parameter L := 2.

Using a PI controller as the stabilizer, we attempted stability verification using the
methods of Section 2.3.7 for the 49 gain combinations (KP , KI) ∈ {10−3, 10−2, . . . , 102, 103}2.
The LMI solver failed in each case, and simulations further suggest the PI controller is
incapable of stabilizing the closed-loop system.

By contrast, we can employ the H∞ synthesis procedure of Section 2.3.7 to design
a full-order dynamic stabilizer. Using the hinfsyn function in MATLAB, we were able to
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Figure 5.1: The optimization output variables (y1, y2, y3) plotted as a function of time. The
optimizer for each variable over each time interval is shown as a dashed line.

synthesize a functioning dynamic stabilizer whose behaviour is demonstrated in Figure 5.1
for the objective function g(y;w) = y2

1 + 1
2
y2

2 + 1
2
y2

3 and piecewise constant disturbance w(t)
given by

w(t) :=



[
−1 3 1 2

]T
for 0 ≤ t < 100[

2 −3 0 0
]T

for 100 ≤ t < 200[
1 0 0 −1

]T
for 200 ≤ t < 300 .

In summary, H∞ synthesis can produce a stabilizer when a simple structure such as a
PI controller fails; however, the resulting dynamic controller is of high order. In general,
one should begin with simpler stabilizer designs and move to progressively more complex
ones as need dictates.
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5.2 Optimal Frequency Regulation in Power Systems2

This final section illustrates the application of our theory to a power system control problem.
Our main objective is to work through the constructions presented in Section 4.2, and
to simultaneously illustrate the many sources of design flexibility within our proposed
framework. In particular, we will show that several centralized and distributed frequency
controllers proposed in the literature are recoverable as special cases of our framework.

The dynamics of synchronous generators in a connected AC power network with n
buses and nt transmission lines is modelled in a reduced-network framework by the swing
equations. The vectors of angular frequency (deviations from nominal) ω ∈ Rn and real
power flows p ∈ Rnt along the transmission lines obey the dynamic equations

M(δ)ω̇ = P ? −D(δ)ω −Ap+ u

ṗ = B(δ)ATω ,
(5.5)

in which M(δ) � 0 is the (diagonal) inertia matrix, D(δ) � 0 is the (diagonal) damp-
ing matrix, A ∈ {0, 1,−1}n×nt is the signed node-edge incidence matrix of the network,
B(δ) � 0 is the diagonal matrix of transmission line susceptances, P ? ∈ Rn is the vector of
uncontrolled power injections (generation minus demand) at the buses, and u ∈ Rn is the
controllable reserve power produced by the generator. The diagonal elements of the inertia,
damping, and branch susceptance matrices are uncertain but positive; for example, they
could be known within some bounds. See [81, Section VII] for a first-principles derivation
of this model.

The incidence matrix satisfies nullAT = span(1n), and strictly for simplicity we assume
that the network is acyclic, in which case nt = n− 1 and nullA = {0}.

We consider the optimal frequency regulation problem (OFRP), wherein we minimize
the total cost

∑
i Ji(ui) of reserve power production in the system subject to network-wide

balancing of supply and demand. We will consider two equivalent formulations, yielding
two different OSS control problems. In both formulations, we take steady-state operation
of the plant (5.5) as an implicit constraint, as in the definition of the optimization problem
(4.5) for linear-convex OSS control.

2The contents of this section will be incorporated into a publication: L. S. P. Lawrence, J. W. Simpson-
Porco, and E. Mallada, “The Linear-Convex Optimal Steady-State Control Problem,” to be submitted to
IEEE Transactions on Automatic Control.
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5.2.1 Economic Dispatch Formulation of OFRP

The first formulation of the optimization problem requires balance between power supply
and demand

minimize
u

J(u) :=
∑n

i=1
Ji(ui)

subject to 1T
nu = −1T

nP
? .

(5.6)

With state vector x := col(ω, p), the dynamics (5.5) can be put into the standard LTI form
(4.1) with matrices

A(δ) :=

[
−M(δ)−1D(δ) −M(δ)−1A
B(δ)AT 0

]
B(δ) :=

[
M(δ)−1

0

]
Bw(δ) :=

[
M(δ)−1

0

]
.

Based on (5.6), we define the output to be optimized as y := u. Therefore

C =
[
0 0

]
, D = In .

We assume the measured output ym consists of the inputs u and the exogenous disturbance
term 1T

nP
?, so that ym = col(u, 1T

nP
?). As a consequence, the constraint violation 1T

nu+1T
nP

?

is measurable.

We begin by determining whether this OSS control problem satisfies the robust feasible
subspace property of Definition 4.2.1. We first check whether the robust output subspace
property (Definition 4.2.2) holds by constructing the matrix R(δ) as outlined in Lemma
4.2.3. We construct a matrix NAB(δ) satisfying rangeNAB(δ) = null

[
A(δ) B(δ)

]
by

examining

null

[
−M(δ)−1D(δ) −M(δ)−1A M(δ)−1

B(δ)AT 0 0

]
One may verify that choosing

NAB(δ) :=

 1n 0
0 In

D(δ)1n A

 (5.7)

yields the required property. We find that the matrix R(δ) =
[
C D

]
NAB(δ) is given by

R(δ) =
[
D(δ)1n A

]
.
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Because rangeA = (nullAT)⊥ = (span(1n))⊥ and 1T
nD(δ)1n > 0 for all δ, the matrix

R(δ) is full column rank for all δ. Therefore, we may choose R0 := In as a matrix satisfying
rangeR0 = rangeR(δ) for all δ. The robust output subspace property therefore holds by
Proposition 4.2.5.3

Because the plant satisfies the robust output subspace property, we have access to the
optimality models for both the ROS property (Proposition 4.2.10) and the RFS property
(Proposition 4.2.9). The ROS optimality model (4.17) reduces to

µ̇ = 1T
nu+ 1T

nP
? , ε = ∇J(u) + µ1n ,

and applying Proposition 4.2.11, two possible OSS controllers corresponding to different
stabilizer choices are

µ̇ = 1T
nu+ 1T

nP
?

η̇ = ∇J(u) + 1nµ
u = −η (5.8)

and, if each Ji is strictly convex

µ̇ = 1T
nu+ 1T

nP
? , u = (∇J)−1(−µ1n) . (5.9)

In (5.8) the optimality error ε is integrated to zero by the internal model, while in (5.9)
we instead instantaneously zero ε through selection of u. The former can be considered as
a “primal-dual” algorithm (see [68]), while the latter would be called “dual ascent”. Both
designs are feedforward OSS controllers, in that neither uses feedback from the system
dynamics; in this application one is free to add additional negative frequency feedback to
the control.

We omit the calculations for the RFS optimality model (4.15) for this formulation of the
optimization problem, as the RFS-OM will be illustrated for the second formulation. We
note, however, that application of the RFS-OM recovers another control scheme from the
literature. Inspired by approaches in multi-agent control, we introduce a connected, weighted
and directed communication graph Gc = ({1, . . . , n}, Ec) between the buses, with associated
Laplacian matrix Lc ∈ Rn×n. If the directed graph Gc contains a globally reachable node4,
then

ε =

[
1T
nu+ 1T

nP
?

Lc∇J(u)

]
(5.10)

3One may also reach the same conclusion by observing that the full-rank condition of Proposition 4.2.6
holds for this instance of OSS control.

4See [12, Chapter 6] for details.
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is one option for an optimality model. If, furthermore, Gc is weight-balanced, then from the
optimality model (5.10) we can recover the controller

η̇ = −Lc∇J(u) +
1

n

(
1T
nu+ 1T

nP
?
)

1n , u = η . (5.11)

Equation (5.11) is the controller [15, Equation (7)] specialized to an economic dispatch
problem with differentiable cost function and without box constraints.

5.2.2 Frequency Constraint Formulation of OFRP

The second formulation of the optimization problem explicitly requires zero steady-state
frequency deviations:

minimize
u,ω

J(u) :=
∑n

i=1
Ji(ui)

subject to Fω = 0r .
(5.12)

The matrix F ∈ Rr×n is assumed to satisfy 1n /∈ nullF . Options for the matrix F include
F := In, to enforce ω = 0n, or F := eT1 , to enforce ω1 = 0, or F := cT, where c ∈ Rn is a
vector of convex combination coefficients satisfying ci ≥ 0 and

∑n
i=1 ci = 1. We identify the

optimization output as y := col(u, ω). Therefore

C :=

[
0 0
In 0

]
D :=

[
In
0

]
. (5.13)

We assume the measured output ym consists of the inputs u and the term Fω, so that
ym = col(u, Fω). As a consequence, the constraint violation Fω is measurable.

We identify the matrix H of the engineering equality constraints in (4.5) as H :=
[
0 F

]
.

Using (5.7) and (5.13), we may calculate R(δ) =
[
C D

]
NAB(δ) to be

R(δ) =

[
D(δ)1n A

1n 0

]
.

The subspace rangeR(δ) varies with δ, and therefore there cannot exist a fixed matrix R0

such that rangeR(δ) = rangeR0 for all δ. The robust output subspace property fails by
Proposition 4.2.5. However, it is still possible that the robust feasible subspace property
holds. To check whether this is the case, we first construct a matrix R⊥(δ) ∈ Rn×2n satisfying
nullR⊥(δ) = rangeR(δ). We find that selecting

R⊥(δ) :=
[
1n1T

n −(1T
nD(δ)1n)In

]
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yields the required property. Following (4.13), we now ask whether there exists a fixed
matrix T0 such that

rangeT0 = null

[
1n1T

n −(1T
nD(δ)1n)In

0 F

]
(5.14)

for all δ. This null space is spanned by vectors of the form col(v, 0n) where 1T
nv = 0. If Lc

is, as before, the Laplacian matrix of a communication digraph Gc with a globally reachable
node, then

T0 :=

[
LT

c

0

]
,

is an eligible choice for T0. Therefore, the optimization problem satisfies the robust feasible
subspace property by Proposition 4.2.4. Noting that

TT
0 ∇g(y, w) =

[
Lc 0

] [∇J(u)
0

]
= Lc∇J(u) ,

we apply Proposition 4.2.9 to obtain the optimality model

ε =

[
Fω

Lc∇J(u)

]
. (5.15)

Therefore, one option for the linear-convex OSS controller of Proposition 4.2.11 is

η̇1 = Fω

η̇2 = Lc∇J(u)

u = −K1η1 −K2η2 −K3ω ,

where K1, K2, and K3 are gain matrices that should be selected for closed-loop stabil-
ity/performance. With F = In, K1 = K2 = 1

k
In for k > 0, and K3 = 0, this design

reduces to the distributed-averaging proportional-integral (DAPI) frequency control scheme;
see [1, 21, 66, 73, 80]. Other choices of F with this same stabilizer design lead to various
centralized/decentralized controller designs.

The so-called gather-and-broadcast scheme of [22] can be recovered as follows. Assume
that each Ji is strictly convex, set F = cT as discussed previously, and retain the integral
controller η̇ = cTω, which integrates a weighted average of the frequency deviations. Next,
select the input u in (5.15) to zero the second component of ε:

Lc∇J(u) = 0n ⇐⇒ ∃α ∈ R s.t. ∇J(u) = α1n
⇐⇒ ∃α ∈ R s.t. u = (∇J)−1(α1n) .
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Selecting α = η leads to the hierarchical gather-and-broadcast controller

η̇ =
∑n

i=1
ciωi , ui(t) = (∇Ji)−1(η(t)) . (5.16)

In summary, many recent frequency control schemes can be recovered as special cases
of our general control framework. The full potential of our methodology for the design of
improved power system control will be an area for future study.
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Chapter 6

Conclusions and Future Work1

We have defined and presented a detailed discussion of the optimal steady-state control
problem, wherein the goal is to guide a combination of states and inputs of a nonlinear
dynamical system to an optimal steady-state, in the presence of exogenous time-varying
disturbances and model uncertainty. Necessary and sufficient conditions for solvability of the
problem were presented, along with a constructive design framework that revolves around
the introduction of an optimality model, the purpose of which is to robustly produce a
proxy for the error between the optimized variables and their desired optimal values. This
optimality model converts the OSS control problem into an output regulation problem; one
designs an output-regulating controller for the plant and optimality model in cascade to
solve the OSS control problem.

We then studied in detail the special case of the linear-convex OSS control problem,
wherein the plant is an uncertain LTI system, the exogenous disturbances are constant, and
the optimization problem is convex. A complete controller design procedure was presented,
and two properties — the robust feasible subspace and robust output subspace properties

— were identified as important for understanding cases where optimizing robustly with
respect to parametric modelling uncertainty is achievable. Applying our linear-convex OSS
procedures to a frequency regulation problem from power systems, we recovered a number
of existing controller designs from the recent literature.

Immediate future work will present the analogous discrete-time and sampled-data OSS
control problems, along with a more detailed study of applications in power system control.

1The contents of this chapter will be incorporated into a publication: L. S. P. Lawrence, J. W. Simpson-
Porco, and E. Mallada, “The Linear-Convex Optimal Steady-State Control Problem,” to be submitted to
IEEE Transactions on Automatic Control.
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See Appendix A for an example of current research into discrete-time OSS control.

A large number of open questions remain concerning the presented framework, including
but not limited to: construction of OSS controllers for special classes of nonlinear systems,
flexibility of the framework for distributed/decentralized control, formulations and solutions
of hierarchical and approximate OSS control problems.
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[39] A. Jokić, M. Lazar, and P. P. J. van den Bosch. On constrained steady-state optimal
control: Dynamic KKT controllers. In 2008 American Control Conference, pages
4474–4479, Seattle, WA, USA, June 2008.
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Appendix A

Future Work

The following section is an example of a future research direction: OSS controller design
for discrete-time plants by direct interconnection with optimization algorithms.

A.1 Problem Setup

We consider an LTI system
xk+1 = Axk +Buk +Bww

yk = Cxk +Duk +Qw
(A.1)

where A ∈ Rn×n is Schur, x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rp is the
optimization output. The vector w ∈ Rnw is a constant disturbance. The transfer function
from u→ y is

P (z) := C(zI − A)−1B +D

and from w → y is
Pw(z) := C(zI − A)−1Bw +Q .

In steady-state, we have the relations

ȳ = P (1)ū+ Pw(1)w .

The optimization problem of interest is the convex problem

minimize
ū,ȳ

f(ȳ) (A.2a)

subject to ȳ = P (1)ū+ Pw(1)w (A.2b)
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We assume that f : Rm → R is differentiable and κ-strongly convex with an L-Lipschitz
gradient.

Assumption A.1.1 (Optimizer Exists) An optimizer for the problem (A.2) exists.

Due to strong convexity of f in ȳ, Assumption A.1.1 is enough to guarantee a unique ȳ
optimizer for (A.2). We denote this unique ȳ optimizer by y?.

We can rewrite the optimization problem (A.2) by directly substituting for ȳ using the
constraint equation. We obtain the equivalent unconstrained problem

minimize
ū

f(P (1)ū+ Pw(1)w) . (A.3)

We are interested in designing a dynamic feedback controller of the form

ξk+1 = fc(ξk, yk) , ξ0 ∈ Rnξ

uk = hc(ξk, yk) ,
(A.4)

for the system.

Problem A.1.2 (Optimal Steady-State Control) Design, if possible, a dynamic feed-
back controller (A.4) for the dynamic system (A.1) such that the closed-loop system meets
the following criteria:

(i) well-posedness: the closed-loop system is well-posed;

(ii) bounded trajectories: for each initial condition (x0, ξ0) and exogenous input w ∈ Rnw ,
the trajectories (x(t), ξ(t)) of the closed-loop system (A.1) and (A.4) remain bounded
for all t ≥ 0;

(iii) asymptotic optimality: For every initial condition (x0, ξ0) of the closed-loop system
and every constant disturbance w ∈ Rnw , the optimization output yk is asymptotically
brought into agreement with the optimizer y?

lim
k→∞

yk = y? .
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A.2 Stability of OSS Control with First-Order Opti-

mization Algorithms

As shown in our recent paper, the class of controllers which solves Problem A.1.2 is very
broad. In this document we want to focus in on the application of standard first-order
optimization methods for OSS control. For example, applying the gradient method to (A.3)
yields the algorithm

uk+1 = uk − α
[
P (1)T∇f(P (1)uk + Pw(1)w)

]
.

This algorithm produces a sequence of feedforward inputs {u1, u2, . . .}, which we apply to
the system, i.e., uk = uk. Under mild assumptions we expect that uk → u? and hence that
yk → y? by internal stability of (A.1). However, this implementation requires knowledge
of the (possibly unknown) disturbance w as well as the steady-state gain matrix Pw(1)
from disturbance to output. If we replace the argument of the gradient with the real-time
measurement yk, then we have the feedback algorithm

uk+1 = uk+1 − α
[
P (1)T∇f(yk)

]
uk = uk .

We can now generalize this easily. Following the methodology of Lessard et al, we
represent the first order optimization algorithm by a linear time-invariant system of the
form

vk = ∇f(yk)

ξk+1 = Fξk +GP (1)Tvk

uk = Hξk

(A.5)

which has input yk and output uk. The formulas for some standard methods are

Gradient descent:

[
F G
H 0

]
=

[
I −αIm
Im 0

]

Heavy ball:

[
F G
H 0

]
=

 (1 + β)Im −βIm −αIm
Im 0 0
Im 0 0


Nesterov:

[
F G
H 0

]
=

 (1 + β)Im −βIm −αIm
Im 0 0

(1 + β)Im −βIm 0


(A.6)
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Note that in all cases, F has p simple eigenvalues at z = 1 and that (F,G,H) is
controllable and observable. We denote the optimization algorithm’s transfer function by
O(z), with

O(z) := H(zI − F )−1G .

Closing the loop between (A.1) and (A.5), the system is described by

xk+1 = Axk +Buk +Bwwk

yk = Cxk +Duk +Qwk

ξk+1 = Fξk +GP (1)Tvk

vk = ∇f(yk)

uk = Hξk

(A.7)

Let (x?, ξ?, y?, u?, v?) denote a fixed point of this closed-loop system, i.e., a point satis-
fying

x? = Ax? +Bx? +Bww

y? = P (1)u? + Pw(1)w

ξ? = Fξ? +GP (1)Tv?

u? = Hξ?

v? = ∇f(y?)

We assume the point is unique and optimal.

In terms of deviation variables

x̃ = x− x? , ỹ = y − y? , . . .

with respect to the equilibrium point, we have

Plant:

{
x̃k+1 = Ax̃k +Bũk

ỹk = Cx̃k +Dũk

Controller:


ṽk = ∇f(ỹk + y?) := ψ(ỹk)

ξ̃k+1 = F ξ̃k +GP (1)Tṽk

ũk = Hξ̃k

(A.8)

where now ψ(0p) = 0p.
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A.3 Combined Plant and Algorithm Analysis

We collect the LTI components of the closed-loop system (plant and optimization algorithm)
into the augmented linear system Ψ

Ψ =

 A BH
0 F

0
GP (1)T

C DH 0


with transfer function Ψ(z) = P (z)O(z)P (1)T. We shall apply standard robust stability
analysis to the interconnection of Ψ and a nonlinearity ∆ ∈ sec[κ, L] (the gradient).

The transfer functions for common optimization algorithms are:

Gradient descent: Ograd(z) =
−α
z − 1

Im

Heavy ball: Oheavy(z) =
−α
z − 1

z

z − β
Im

Nesterov: Onesterov(z) =
−α
z − 1

(1 + β)z − β
z − β

Im ,

(A.9)

where α > 0 and β ∈ (0, 1) are tuning parameters. The parameter α is the “step size” in
the language of optimization algorithms, or the “integral gain” in the language of control
theory; we will emphasize the dependence of the LTI system Ψ on α by writing Ψα hereafter.
Notice that each optimization algorithm consists of an integrator and a stable filter in series.
Furthermore, the DC gain matrix of the filter for each algorithm is positive definite (the
importance of this point will become clear shortly).

We state and prove the main theorem.

Theorem A.3.1 (Low-Gain First-Order Optimization) Consider the feedback inter-
connection of the LTI plant (A.1) and a first-order optimization algorithm of the form (A.5)
whose transfer matrix O(z) = H(zI − F )−1G can be written in the form

O(z) =
−α
z − 1

M(z) ,

with M(z) a stable transfer matrix satisfying M(1) � 0. There exists an α? > 0 such that
for any α ∈ (0, α?), the controller (A.5) solves the optimal steady-state control problem.
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Appendix B

Continuity of Optimal Solution
Function

Proposition B.0.1 (Sufficient Conditions for Properties of y?) Suppose the follow-
ing hold:

(i) the inequality constraint functions of the optimization problem (4.5) are all affine,
so that there exist matrices J ∈ Rnec×p and M ∈ Rnec×nw such that the inequality
constraints (4.5d) may be written as Jy ≤Mw;

(ii) the optimization problem (4.5) has a solution for each (w, δ);

(iii) the objective function g(y;w) of the optimization problem (4.5) is strictly convex in
y for each w;

(iv) the LTI plant (4.1) has a robust output subspace;

(v) rank
[
A(δ) B(δ)

]
= n for all δ ∈ δ.

Then y? is continuous and y?(w, δ) is single-valued for every (w, δ). 4

Proof: Uniqueness of the solution to (4.5) follows from strict convexity of g [10, Section
4.2.1]. By the assumption that the optimization problem has a solution for each (w, δ), it
follows that y?(w, δ) is single-valued for every (w, δ).
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We now show continuity of the mapping y? : W → Y . The optimization problem (4.5)
can be written as

minimize
y∈Y

g(y;w)

subject to y ∈ C(w, δ) ,

where C : W × δ ⇒ Y is a set-valued mapping determining the feasible region. Specifically,

C(w, δ) := {y ∈ Y : y ∈ Y (w, δ) , Hy = Lw , Jy ≤Mw} .

By definition, C(w, δ) is closed and convex for all (w, δ). If, futhermore, C is a continuous
set-valued mapping then by [71, Theorem 3.1] y? is continuous.

Suppose the LTI plant has a robust output subspace, so that

Y (w, δ) = y(w, δ) + V0

for all (w, δ). Recall that the subspace V0 is uniquely determined by the plant matrices,
while the offset vector y(w, δ) is non-unique. The remainder of the proof depends on the
fact that it is always possible to select the offset vector y(w, δ) as a continuous function of
(w, δ).

Lemma B.0.2 (Continuous Offset Vector) If the LTI plant has a robust output sub-
space, then there exists a continuous mapping y : W×δ → Y such that Y (w, δ) = y(w, δ)+V0

Proof: Recall from the proof of Lemma 4.2.3 that we can think of the affine space Y (w, δ)
as being constructed by a two-step process. First, determine functions x̃(w, δ) and ũ(w, δ)
satisfying

A(δ)x̃(w, δ) +B(δ)ũ(w, δ) +Bw(δ)w = 0n . (B.1)

for all (w, δ). Then Y (w, δ) = y(w, δ) + V (δ) where

y(w, δ) = C(δ)x̃(w, δ) +D(δ)ũ(w, δ) +Q(δ)w

V (δ) =
[
C(δ) D(δ)

] (
null

[
A(δ) B(δ)

])
.

It follows that if x̃(·, ·) and ũ(·, ·) can be chosen as continuous mappings then the y(w, δ)
generated by the above equation is continuous.
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By the assumption that rank
[
A(δ) B(δ)

]
is the same for all δ, let MAB(δ) ∈ R(n+m)×n

denote the Moore-Penrose pseudoinverse of
[
A(δ) B(δ)

]
for each δ. The mapping MAB(·)

is continuous since A(·) and B(·) are continuous, and we can define x̃(w, δ) and ũ(w, δ) as[
x̃(w, δ)
ũ(w, δ)

]
:= −MAB(δ)Bw(δ)w .

Therefore, it is possible to choose the mapping y(w, δ) as a continuous function of (w, δ). �

We now rewrite the steady-state constraint (4.5b), ȳ ∈ Y (w, δ) = y(w, δ) + V0, in a
more standard form as a set of equality constraints. We suppose we have chosen y(w, δ)
as a continuous function of (w, δ), possible because of Lemma B.0.2. Let Γ be any matrix
such that null Γ = V0, and define b(w, δ) := Γy(w, δ). Then the constraint ȳ ∈ Y (w, δ) is
equivalent to

Γȳ = b(w, δ) .

The constraint set of the optimization problem (4.5) therefore consists of linear equality and
inequality constraints with the parameters (w, δ) only appearing in continuous functions
on the right-hand side. It is straightforward to show from [55, Theorem 2.2] that C(·, ·) is a
continuous set-valued mapping, which completes the proof. �

Proposition B.0.3 (Perturbed Problem) Consider the convex optimization problem
(4.5) with a perturbed cost function

minimize
y∈Y

gε(y;w)

subject to y ∈ Y (w, δ)

Hy = Lw

Jy ≤Mw ,

(B.2)

where ε ∈ R is an additional parameter and gε(y;w) := g(y;w)+ε2‖y‖2. Let g?ε(w, δ) denote
the optimal value of the perturbed problem (B.2) for each (w, δ, ε) ∈ W × δ × R and let
g?(w, δ) denote the optimal value of the original problem (4.5) for each (w, δ). Note that
g?0(w, δ) = g?(w, δ). If the conditions of Proposition B.0.1 hold, then

(i) the optimization problem (B.2) has a unique optimizer for each (w, δ, ε) such that
ε 6= 0, and

(ii) limε→0 g
?
ε(w, δ) = g?(w, δ) for all (w, δ).
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Proof: Since g(y;w) is convex in y for each w ∈ W , gε(y;w) is strictly convex in y for
each (w, ε) ∈ W × R such that ε 6= 0. Uniqueness of the optimizer follows from strict
convexity of the objective function for a convex problem [10, Section 4.2.1]. Furthermore,
if the assumptions of Proposition B.0.1 hold, then it follows from [71, Theorem 3.1] that
the optimal value function g?ε(w, δ) is continuous in ε. Also noting that g?0(w, δ) = g?(w, δ)
yields the identity limε→0 g

?
ε(w, δ) = g?(w, δ).

�

Remark B.0.4 (Perturbing for Uniqueness) Proposition B.0.3 justifies perturbing the
cost function of the original optimization problem (4.5) by ε2‖y‖2 for small ε to enforce a
unique optimizer if g is not already strictly convex. We can be assured that this procedure
does not affect the optimal cost significantly, since the optimal value of the perturbed problem
can be made arbitrarily close to the optimal value of the original problem by choosing small
enough ε because of the property limε→0 g

?
ε(w, δ) = g?(w, δ). 4
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