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Abstract

In recent years, data-driven predictive control (DDPC) has emerged as an active re-
search area, with well-known methods such as Data-enabled Predictive Control (DeePC)
and Subspace Predictive Control (SPC) being validated through reliable experimental re-
sults. On the theoretical side, it has been established that both DeePC and SPC methods
can generate equivalent control actions as one can obtain from Model Predictive Control
(MPC), for deterministic linear time-invariant (LTI) systems. However, similar results do
not yet exist for the application of DDPC beyond deterministic LTI systems. Therefore, the
objective of our research is to generalize this theoretical equivalence between model-based
and data-driven methods for more general classes of control systems.

In this thesis, we present our contributions to DDPC for linear time-varying (LTV)
systems and stochastic LTI systems. In our first piece of work, we developed Periodic
DeePC (P-DeePC) and Periodic SPC (P-SPC) methods, which generalize DeePC and SPC
from LTI systems to linear time-periodic (LTP) systems, as a special case of LTV systems.
Theoretically, we demonstrate that our P-DeePC and P-SPC methods have equivalence
control actions as produced from MPC for deterministic LTP systems, under appropriate
tuning conditions. As an intermediate step in our theoretical development, we extended
certain aspects of behavioral systems theory from LTI systems to LTP/LTV systems. This
includes extending Willems’ fundamental lemma to LTP systems and the defining the
concepts of order and lag for LTV systems.

In our second piece of work, we proposed a control framework for stochastic LTI sys-
tems, namely Stochastic Data-Driven Predictive Control (SDDPC). Our SDDPC method
theoretically achieves equivalent control performance to model-based Stochastic MPC, un-
der idealized conditions of appropriate tuning and noise-free offline data. This method,
which applies to general linear stochastic state-space systems, serves as an alternative to
the data-driven method previously proposed by Pan et al., which also achieved theoretical
equivalence to Stochastic MPC but was limited to a narrower class of systems. Beyond
the theoretical assumption of noise-free offline data, we performed our SDDPC method
in simulations with practical noisy offline data. The simulation results demonstrated that
our SDDPC method outperforms benchmark methods, achieving lower cumulative tracking
cost and lower rate and amount of constraint violation.
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Chapter 1

Introduction

1.1 Background

1.1.1 Model-Based Control and Data-Driven Control

Control design methods can broadly be classified intomodel-based methods and data-driven
methods. Model-based design methods rely on a parametric representation (or a model) of
the system, which may come from first-principles modeling or from system identification
— a process of building a system model from recorded input-output data. Data-driven
control, on the other hand, produces a control strategy directly from recorded historical
data, with no requirement on system models. Note that the scheme of system identification
followed by model-based control can also be considered as a data-driven control process,

Input-Output
Data

System
Model

Control
PolicySystem

Identification
Model-Based

Control

Indirect Data-Driven Control

Input-Output
Data

Control
Policy(Direct) Data-Driven Control

Figure 1.1: Direct and indirect data-driven control.
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and is sometimes called indirect data-driven control [1]. Direct data-driven control, on
the contrary, refers to data-driven methods with no model identified. See Figure 1.1 for a
summary of those terms. Going forward, we use the term “data-driven control” to refer to
“direct data-driven control”. As modern systems of interest become increasingly complex
and difficult to identify, direct data-driven control techniques become preferable, and have
attracted significant research interest in recent years [2, 3]. A comprehensive survey of
early data-driven control methods can be found in [4].

1.1.2 Model Predictive Control

Model Predictive Control (MPC) [5] is a particular model-based design method which has
been widely used in industrial applications, such as autonomous driving [6], autonomous
flight [7], mobile robots [8] and smart energy systems [9]. The MPC framework typically
uses a receding horizon of prediction and planning, and at each planning step the future
control decisions over the considered horizon are solved from an optimization problem. A
main benefit of MPC, comparing to other classical model-based control methods such as the
classical Linear-Quadratic(-Gaussian) Regulator (LQR/LQG), is the ability to incorporate
input and state/output constraints, which typically model actuator saturation and safety
constraints, respectively. Despite this applicational benefit, MPC requires a parametric
system model for prediction of the future trajectory, and the modeling process is sometimes
expensive, as discussed above.

For stochastic systems, work on Stochastic MPC (SMPC) [10, 11, 12] has focused
on modelling the uncertainty in systems probabilistically. SMPC methods optimize over
feedback control policies rather than control actions, resulting in performance benefits
when compared to the naive use of deterministic MPC [13]. Additionally, SMPC allows
the use of probabilistic constraints, useful for computing risk-aware controllers. Another
MPC method dealing with uncertainty is Robust MPC (RMPC) [14], which attempts to
conservatively guard against the worst-case deterministic uncertainty.

1.2 Motivation for Data-Driven Predictive Control

Although data-driven control methods show promise for complex or difficult-to-model sys-
tems, early works on data-driven control did not adequately account for constraints on
inputs and outputs (see examples in [4]). This observation leads to the development of
Data-Driven Predictive Control (DDPC), a type of data-driven control method which can

2



considering
constraints in control

not considering
constraints in control

Data-Driven
Control Methods

Model-Based
Control Methods

DDPC MPC

early data-driven
control methods [4]

classical LQR/LQG,
classical H∞ control

Table 1.1: A classification of some multivariate control methods.

incorporate input-output constraints as considered in MPC. As such, DDPC possesses
both the benefit of MPC for handling constrained control and the aforementioned benefit
of data-driven control over model-based control; see Table 1.1 for a comparison of DDPC,
MPC and early data-driven control.

In predictive control, the future trajectory of the system should be predicted at each
planning time step. In the MPC framework, the future trajectory is produced by a system
model, while DDPC methods should generate the future trajectory with solely data. As
such, DDPC methods can be viewed as derived from MPC where the parametric system
model is replaced by a non-parametric, data-based representation of the system. Vari-
ous approaches exist for constructing such data-based system representation, resulting in
different types of DDPC methods, which we will introduce in the next section.

1.3 An Overview of Data-Driven Predictive Control

DDPC methods can be categorized based on different data-based representations of the
dynamic system, where the data-based representations are used to predict the future tra-
jectory in the control process. Below, we highlight some of the most common DDPC
frameworks.

Subspace Predictive Control (SPC) [15, 16] is a DDPC framework, where a data-based
prediction matrix is obtained through a subspace identification approach and is used to
predict the future trajectory of the system, so that the need for a parametric model is
eliminated. Research on SPC dates back to [17, 18] and has since been applied to control
problems of complex systems such as airplanes [19] and nuclear reactors [20].

Learning-based predictive control [21, 22] is also a prominent DDPC framework, where
the system dynamics is captured by a neural network trained by input-output data. This

3



control approach has gained significant attention due to the advancements in reinforcement
learning.

Another class of DDPC methods is grounded in behavioral systems theory [23, 24].
In the behavioral approach, a dynamical system is characterized by the set of all possible
input-output trajectories it can produce, referred to as the system’s behavior [25, 26, 27, 28,
29, 30]. Of particular note, for a finite-dimensional discrete-time deterministic linear time-
invariant (LTI) system, this behavior can be represented using a data matrix constructed
from historical input-output data collected from the system — a result now known as
the fundamental lemma [31]. By leveraging the fundamental lemma in the behavioral
framework, a data matrix is sufficient to reflect the system’s dynamics. This approach
has led to the development of data-driven tracking controllers [32], data-driven feedback
controllers [33, 34, 35, 36] and behavior-based DDPC methods. Notable examples of the
latter include the work in [37] and the Data-enabled Predictive Control (DeePC) framework
[38, 39, 40]. DeePC has been successfully applied to the control of power systems [41, 42],
motor drives [43], quad-copters [44] and excavators [45]. Other behavior-based DDPC
methods were designed to ensure closed-loop stability [46, 47, 48, 49].

Equivalence between DDPC and MPC

On the theoretical front, it has been proved that DeePC and SPC, as DDPC methods,
can produce the same control actions as those obtained from MPC, for deterministic linear
time-invariant (LTI) systems [38, 15, 50]. This result establishes a theoretical equivalence
between the DDPC methods and the MPC framework in the idealized deterministic LTI
case. For data-driven control methods, achieving performance on par with model-based
control is the best possible outcome, because data-driven control cannot outperform model-
based control (with an exact model). As detailed in the next section, our research seeks to
extend the theoretical equivalence between model-based and data-driven control beyond
deterministic LTI systems.

1.4 Relevant Works and Research Objectives

In Section 1.3, we provided an overview of DDPC methods. Many of these methods,
including DeePC and SPC, are tailored for deterministic LTI systems. Regularized versions
of these control methods have demonstrated robustness to data disturbances and system
non-linearity [38, 39], and have been successfully applied in simulations and experiments.
Meanwhile, other DDPC methods are developed to handle a wider range of systems beyond

4



deterministic LTI systems, which we will explore in Section 1.4.1 and Section 1.4.2. Finally,
we present our research objectives in Section 1.4.3.

1.4.1 DDPC for Non-linear and Time-Varying Systems

Some DDPCmethods were designed for nonlinear and time-varying systems. For non-linear
systems, DDPC methods have been proposed for various types, including Hammerstein-
Wiener systems [51, 52], second order discrete Volterra systems [53], flat nonlinear sys-
tems [54], polynomial time-invariant systems [55] and the worst-case scenario for general
non-linear systems [56]. These methods often extend Willems’ fundamental lemma to
accommodate the specific characteristics of these nonlinear systems.

For time-varying systems, DDPC methods have been developed for specific types, such
as linear parameter-varying systems [57, 58], linear slowly-varying systems [59] and the
worst-case scenario for general linear time-varying systems [60]. Again, in these cases,
Willems’ fundamental lemma has sometimes been extended to address the aspects of time-
varying systems. As discussed in the next section, one of our contributions will be the
development of DDPC methods for time-periodic systems, an area that has not been
addressed in the existing literature.

1.4.2 DDPC for Stochastic Systems

Data-driven control methods are typically designed with robustness in mind, ensuring
that their performance remains insensitive to noisy data from stochastic systems. Both
DeePC and SPC, as representative DDPC methods, have robust versions designed to adapt
to stochastic systems. In application of SPC with noisy data, a predictor matrix is often
computed with denoising methods, such as prediction error methods [41, 42] and truncated
singular value decomposition [43]. Robust versions of DeePC have also been developed with
stochastic systems in mind, such as norm-based regularized DeePC [38, 39] in which the reg-
ularization can be interpreted as a result of worst-case robust optimization [61, 62], as well
as distributionally robust DeePC [39, 40]. While the stochastic adaptations of DeePC and
SPC were validated through experiments, these stochastic data-driven control methods lack
an analogous theoretical equivalence to any model-based MPC method, in contrast to the
deterministic case; see Figure 1.2. Other related works include tube-based [63], sampling-
based [64], innovation-based [65] and constraint-tightening [66], multiplicative-noise [67]
and distributionally robust [68, 69, 70, 71, 72] stochastic DDPC schemes. These meth-
ods were validated through simulations, and most of them guarantee recursive feasibility

5



for deterministic
LTI systems

for stochastic/uncertain
LTI systems

(Model-Based) MPC (Data-Driven) DDPC

MPC
DeePC

SPC

having equivalent
control performance

Stochastic MPC

Robust MPC

various adaptations
e.g. Regularized DeePC

by modeling
uncertainty

by numerical methods
for robustness

Figure 1.2: State of the art in MPC and DDPC for stochastic systems.

and closed-loop stability. Again, however, no equivalence in performance was established
between these methods and model-based MPC methods.

This disconnect between data-driven and model-based methods in the stochastic case
has been noticed by some researchers, and some recent DDPC methods were developed
for stochastic systems that have provable equivalence to model-based MPC methods. The
works in [73, 74, 75, 76] proposed data-driven control frameworks for stochastic systems
applying Polynomial Chaos Expansion (PCE); the use of PCE enables modeling of ar-
bitrary noise distributions. Their methods have equivalent performance to SMPC when
disturbances are known and when stochastic signals are exactly represented by finite PCE
terms [73, Thm. 1] [74, Cor. 1]. In practice, disturbances should be estimated using
input-output data, which estimation requires heavier computation with larger amount of
data. Their frameworks have considered systems without sensor noise and systems in the
Auto-Regressive form with eXogenous input (ARX), which are special cases of systems in
the state-space representation. Thus, the gap addressed here is to develop an alternative
data-driven stochastic control method that has provably equivalent performance to the
model-based SMPC, where we only need to estimate a fixed number of parameters re-
gardless of the data amount and we consider general systems in the state-space form with
separate process noise and measurement noise.

1.4.3 Motivation and Research Objectives

Among the numerous developed DDPC methods, we currently lack a clear understanding
of which data-driven approach offers the best control performance. Due to the absence of

6



system model information, data-driven control methods cannot be expected to outperform
model-based control methods with an exact model in any given control problem. There-
fore, the best we can hope for with data-driven control is a performance equivalent to that
of model-based control with an exact model. As mentioned in Section 1.3, some DDPC
methods have equivalent control performance with MPC for deterministic LTI systems,
which are a type of idealized dynamical systems. However, real-life dynamical systems are
often stochastic, non-linear and sometimes time-varying. Motivated by this observation,
our objective is to extend the theoretical equivalence between DDPC and MPC to encom-
pass a broader range of control systems beyond deterministic LTI systems, by developing
appropriately tailored DDPC methods. This extension can take three main directions:
towards stochastic systems, non-linear systems and time-varying systems — each corre-
sponding to a generalization of deterministic LTI systems. In this section, we investigate
the three directions separately with review of relevant works.

As elaborated in the next section, this thesis contributes to the development of DDPC
methods for a specific class of time-varying systems as well as for stochastic systems.

1.5 Outline and Contributions

The rest of the thesis is organized as follows. Chapter 2 provides an overview of the
preliminaries relevant to our research. This includes a review of behavioral systems theory
(Section 2.3) and and fundamental DDPC methods (Section 2.4). Chapter 3 presents our
contributions to DDPC methods for linear time-periodic (LTP) systems, a specific subclass
of linear time-varying (LTV) systems, based on our work in [77]. Chapter 4 details our
development of a stochastic DDPC framework, referring to our works in [78, 79]. Chapter
5 concludes the thesis and summarizes the findings.

Chapter 3: Data-Driven Predictive Control for Linear Time-Periodic Systems

We consider the problem of data-driven predictive control for an unknown discrete-time
linear time-periodic (LTP) system of known period. Our proposed strategy generalizes both
DeePC and SPC, which are established data-driven control techniques for LTI systems.
The approach is supported by an extensive theoretical development of behavioral systems
theory for LTP systems, culminating in a generalization of Willems’ fundamental lemma.
Our algorithm produces results identical to standard MPC for deterministic LTP systems.
Robustness of the algorithm to noisy data is illustrated via simulation of a regularized
version of the algorithm applied to a stochastic multi-input multi-output LTP system.
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Chapter 4: Stochastic Data-Driven Predictive Control

We propose a data-driven receding-horizon control method dealing with the chance con-
strained output-tracking problem of unknown stochastic LTI systems. The proposed
method takes into account the statistics of the process noise, the measurement noise and
the uncertain initial condition, following an analogous framework to Stochastic MPC, but
does not rely on the use of a parametric system model. As such, our receding-horizon
algorithm produces a sequence of closed-loop control policies for predicted time steps, as
opposed to a sequence of open-loop control actions. Under certain conditions, we establish
that our proposed data-driven control method produces identical control inputs as that
produced by the associated model- based SMPC. Simulation results on a grid-connected
power converter are provided to illustrate the performance benefits of our methodology.

1.6 Notations

Throughout the thesis, we apply the following notations.

Z[a,b] the set of consecutive integers from a to b, i.e., Z ∩ [a, b]
Z[a,b) the set of consecutive integers from a to b− 1, i.e., Z ∩ [a, b)
Sq
+ the set of q × q positive semi-definite symmetric matrices

Sq
++ the set of q × q positive definite symmetric matrices

M † the Moore-Penrose pseudo inverse of a matrix M
⊗ the Kronecker product
col(M1, . . . ,Mk) the column concatenation of matrices/vectors M1, . . . ,Mk

Diag(M1, . . . ,Mk) the block-diagonal concatenation of matrices M1, . . . ,Mk

For a Rq-valued discrete-time signal z with integer index t, we let z[t1,t2] denote either

• a vector sequence {zt}t2t=t1 ⊆ Rq or
• a concatenated vector col(zt1 , . . . , zt2) ∈ Rq(t2−t1+1)

where the usage is clear from the context; let z[t1,t2) := z[t1,t2−1]. A matrix sequence {Mt}t2t=t1

and a function sequence {πt(·)}t2t=t1 are denoted by M[t1,t2] and π[t1,t2] respectively.
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Chapter 2

Preliminaries

In this chapter, we review some key foundational works that provide the prerequisites
for our research presented in Chapter 3 and Chapter 4. Our discussion here will primar-
ily focus on a constrained control problem of unknown deterministic linear time-invariant
(LTI) systems, as formally stated in Section 2.1. The control problem for unknown sys-
tems must be addressed using data-driven control methods, whereas for known systems,
Model Predictive Control (MPC) provides a sufficient solution, as outlined in Section 2.2.
We provide a brief review of the behavioral systems theory in Section 2.3, which forms
the theoretical foundation of the Data-enabled Predictive Control (DeePC) method. An
overview of DeePC and Subspace Predictive Control (SPC) methods is in Section 2.4,
which are typical Data-Driven Predictive Control (DDPC) methods. In Section 2.5, we
explore the performance equivalence between the DDPC methods, DeePC and SPC, and
the MPC method. Finally, in Section 2.6, we extend our discussion beyond deterministic
LTI systems to show how regularization techniques are applied to adapt DeePC and SPC
methods for real-world non-linear stochastic systems.

2.1 Problem Statement: Deterministic LTI Case

Throughout the chapter, we focus on the control of a deterministic LTI system described
by the following state-space model S,

S :

{
xt+1 = Axt +But

yt = Cxt +Dut

(2.1)
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with state xt ∈ Rn, input ut ∈ Rm, output yt ∈ Rp and system matrices A,B,C,D. The
state xt is unmeasured and the initial state x0 is unknown. In the data-driven scenario, the
system matrices A,B,C,D in (2.1) are unknown; we have access only to the input ut and
output yt in in (2.1). We assume the pair (A,B) is controllable. Moreover, without loss of
generality for an unknown system, we assume the pair (A,C) is observable, as justified in
[23, Sec. 2.4].

In a reference tracking problem, the objective is for the output yt to follow a specified
reference signal rt ∈ Rp. The trade-off between the tracking error yt − rt and the control
effort ut may be encoded in the quadratic instantaneous cost

Jt(ut, yt) := ∥yt − rt∥2Q + ∥ut∥2R (2.2)

at time t ∈ N≥0, where Q ∈ Sp
+ and R ∈ Sm

++ are user-selected parameters. The control
objective is to minimize the accumulation of the cost (2.2) over a horizon. Other alternative
convex cost functions in ut and yt may be considered instead of (2.2) as a different problem
setup. This tracking should be achieved subject to constraints on the inputs and outputs
in the form of

ut ∈ U , yt ∈ Y (2.3)

for time t ∈ N≥0, where the constraint sets U ⊆ Rm and Y ⊆ Rp are assumed to be convex,
non-empty and closed.

Notations based on System Model

For the state-space model (2.1), we define for L ∈ N the (reversed) extended controllability
matrix CL ∈ Rn×mL, the extended observability matrix OL ∈ RpL×n and the impulse-
response matrix GL ∈ RpL×mL of depth L.

CL :=
[
AL−1B · · · A2B AB B

]

OL :=


C
CA
CA2

...
CAL−1

 , GL :=


D
CB D
CAB CB D

...
. . . . . . . . .

CAL−2B · · · CAB CB D


(2.4)
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With this notation, the unique resulting state and resulting output of (2.1) with initial
state xt0 at time t = t0 can be expressed as follows,

xt1 = At1−t0 xt0 + Ct1−t0 u[t0,t1) (2.5a)

y[t0,t1) = Ot1−t0 xt0 + Gt1−t0 u[t0,t1) (2.5b)

for all future time t1 > t0.

2.2 Deterministic Model Predictive Control

With the system model in (2.1) unknown, data-driven control techniques are necessary to
address the problem outlined in Section 2.1. Nonetheless, in the case where the system
model is known, the constrained control problem can be effectively solved using determin-
istic Model Predictive Control (MPC) as a standard method [5]. In this section, we review
a specific framework of deterministic MPC with partial state observation.

The MPC framework operates based on a receding-horizon strategy. At each control
step t = k, as a specific time step, control decisions are made through optimization for
N upcoming time steps, referred to as the prediction horizon. Among these decisions, the
control actions for the first Nc steps, known as the control horizon, are applied to the
system. The lengths of the prediction and control horizons, N,Nc ∈ N with Nc ≤ N , are
fixed parameters. Once the control inputs for the current control horizon are applied, the
control step is updated to t = k +Nc, and the process is repeated, with the time horizons
shifting forward. The initial control step corresponds to the starting time, t = 0, marking
the beginning of the receding-horizon cycle.

Here we formulate an MPC optimization problem, aligning with the MPC scheme
reviewed in [38]. Consider the control step t = k, and we are given an estimate x̂k of the
state xk through a state estimator. Let x, u and y denote the prediction of future state,
input and output trajectories over the prediction horizon, so they should match the system
model (2.1) as

xt+1 = Axt +But, t ∈ Z[k,k+N) (2.6a)

yt = Cxt +Dut, t ∈ Z[k,k+N) (2.6b)

xk = x̂k (2.6c)

with the initial condition xk set as x̂k, and satisfy the constraint (2.3) as

ut ∈ U , yt ∈ Y , t ∈ Z[k,k+N) (2.7)
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over the prediction horizon. The objective function in optimization is chosen as the pre-
diction of cost (2.2) summing over the prediction horizon,

k+N−1∑
t=k

Jt(ut, yt) (2.8)

and thus a deterministic MPC optimization problem at control step t = k is

minimize
u[k,k+N)

(2.8) subject to (2.6) and (2.7) (MPC)

where u[k,k+N) are the decision variables that determine other variables x[k,k+N ] and y[k,k+N)

through (2.6). With the receding-horizon process, our investigated MPC scheme is shown
in Algorithm 1.

Algorithm 1 A Framework of Deterministic Model Predictive Control [38, Sec. III]

Input: prediction- and control-horizon lengths N,Nc, system model (A,B,C,D), stage
cost function Jt(·), and constraint sets U ,Y .

1: Initialize the control step k ← 0.
2: while true do
3: Generate state estimate x̂k using past input-output data.
4: Solve control actions u[k,k+N) from problem (MPC).
5: for t from k to k +Nc − 1 do
6: Apply input ut ← ut to the system (2.1).
7: Measure output yt from the system (2.1).
8: Set k ← k +Nc.

The MPC framework outlined in Algorithm 1 does not inherently guarantee recursive
feasibility and closed-loop stability. These properties can be ensured by augmenting the
MPC problem (MPC) with terminal costs in addition to (2.8) and terminal constraints in
addition to (2.7), as reviewed in [5]. Later in Section 2.5, the model-based MPC framework
in Algorithm 1 will be compared to the data-driven DeePC and SPC methods introduced in
Section 2.4, establishing connections between the model-based and data-driven approaches.

2.3 Behavioral Systems Theory for LTI Systems

The MPC approach described in Section 2.2 provides a model-based solution to the control
problem outlined in Section 2.1, in the case where the system model is known. When

12



the system model is unknown, data-driven control methods are necessary to address the
problem. Before presenting these data-driven control methods in Section 2.4, we first
introduce key results from the behavioral systems theory [23, 24, 25, 26, 27, 28, 29, 30] as
preliminary groundwork.

The concept of behavior is introduced in Section 2.3.1, followed by a review of its
key properties, including state-space representation (Section 2.3.2), controllability (Section
2.3.3), and complexity indices such as order and lag (Section 2.3.4). Then, we present in
Section 2.3.5 and Section 2.3.6 essential results that play pivotal roles in the formulation
of DDPC methods.

2.3.1 Behavioral Representation of LTI Systems

In behavioral framework, a dynamical system is described in a different way from using a
state-space model, but instead is described as a collection of possible input-output trajec-
tories from the system, which collection is called the behavior of the system. In original
works [25, 26, 27, 28], a behavior B ⊆ (Rm+p)N is defined as a subset of the space (Rm+p)N

of Rm+p-valued semi-infinite signals, where m and p are the input dimension and output di-
mension, respectively. Some notions such as linearity and time-invariance are thus defined
in a behavioral way based on the property of the subset B. In this report, for simplicity of
presentation, we define behavior based on the state-space representation (2.1) of systems,
which definition is equivalent to the formal definition of behavior for finite-dimensional LTI
systems [23, Sec. 2.3].

Definition 2.1 (Behavior). For the finite-dimensional LTI system S in (2.1), the behavior
BS of S is the set of semi-infinite trajectories

BS :=

{[
u[0,∞)

y[0,∞)

] ∣∣∣∣ ∃x0 s.t. (2.1) holds for all t ∈ N≥0

}
.

Let BS
k be the restriction of behavior BS , or the restricted behavior, on the first k ∈ N

time steps, that is,

BS
k :=

{[
u[0,k)

y[0,k)

] ∣∣∣∣ ∃x0 s.t. (2.1) holds for all t ∈ Z[0,k)

}
.

We can analogously define the behavior BS for a non-LTI state-space model S in a
manner similar to Definition 2.1. We write a behavior as B, and a restricted behavior as
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Bk, when the underlying system model is not emphasized. We say that a behavior B is
an LTI behavior if it is equal to the behavior BS of some LTI system S by Definition 2.1.

Going forward, we discuss mainly the restricted behaviors. For linear systems, the
behavior is always a vector space, where the LTI restricted case is captured as follows.

Lemma 2.2. For LTI system S in (2.1) and integer k ∈ N, the restricted behavior BS
k is

a finite-dimensional vector space

BS
k = ColSpan

[
0mk×n Imk

Ok Gk

]
with matrices Ok,Gk defined in (2.4).

Corollary 2.2.1. dimBS
k = rank(Ok) +mk, where m is the input dimension of S.

2.3.2 State-Space Representation of Behavior

The behavioral representation BS of an LTI state-space model S is unique, according to
Definition 2.1. On the contrary, however, the state-space representation of an LTI behavior
may not be unique, as we specify in Lemma 2.4, where we use the notion of equivalent LTI
systems defined in Definition 2.3.

Definition 2.3 (Equivalent LTI Systems). LTI state-space models SI : (AI, BI, CI, DI) and
SII : (AII, BII, CII, DII) are said to be equivalent if they have the same state dimension and
there exists a non-singular matrix P such that

AII = P−1AIP, BII = P−1BI, CII = CIP, DII = DI.

Lemma 2.4 (State-Space Representations of Same LTI Behavior [25, Sec. 5]). For LTI
state-space models SI and SII, their behaviors are equal, i.e.,

BSI = BSII

if, and only if, the observable systems of SI and SII are equivalent in the sense of Definition
2.3.

Lemma 2.4 provides a sufficient and necessary condition for different LTI system models
to possess the same behavior. Through Lemma 2.4, given an LTI state-space model S, we
are able to know all state-space models that share the same behavior with the model S.
Although a behavior has multiple state-space representations, we may focus on those rep-
resentations with the smallest state dimension, which are called minimal representations.
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Definition 2.5 (Minimal State-Space Representations [23, 24]). For an LTI behavior B,
an LTI state-space model Sm is called a minimal state-space representation of B if

• Sm is a state-space representation of B, i.e., B = BSm , and
• among all state-space representations of B, Sm has the minimal state dimension.

Minimal state-space representations of an LTI behavior are not unique, but they are
all equivalent in the sense of Definition 2.3. Moreover, for LTI behaviors, a state-space
representation is minimal if, and only if, it is observable [25, Sec. 5].

2.3.3 Controllability of Behavior

Lemma 2.4 revealed the role of observability in behavioral representation. Next, we discuss
controllability. In the behavioral framework, controllability is defined in a trajectory-based
sense, as opposed to the more classical notion of state-controllability.

Definition 2.6 (Controllability for LTI Behaviors [31, 38]). An LTI behavior B is con-
trollable if for any finite trajectory wI

[0,t1)
∈ Bt1 with t1 ∈ N and any trajectory wII

[0,∞) ∈ B,
there exists a trajectory w⋄

[0,∞) ∈ B and an integer t2 ≥ t1 such that

w⋄
[0,t1)

= wI
[0,t1)

, w⋄
[t2,∞) = wII

[0,∞), (2.9)

where we let w[s1,s2] := col(u[s1,s2], y[s1,s2]) denote a trajectory for integers s1 ≤ s2.

In other words, for a controllable behavior, two trajectories can always be patched
together in finite time and form a new valid trajectory; see Fig 2.1. Relating to classical
state-space concepts, the behavior is controllable if, and only if, all observable states are
reachable [23, Sec. 2.4].

tr
a
je
ct
or
y

time

wI

wII

wII shifted t2
steps forward

w⋄

0 t1 t2

Figure 2.1: Controllability of LTI behavior.

The controllability of LTV behaviors is defined slightly different from Definition 2.6
and will be revisited in Definition 3.6 in Chapter 3. Here we focus on LTI behaviors.
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2.3.4 Structure Indices: Order and Lag

The complexity of a behavior is described by integer invariants including order and lag.
Order and lag are inherent properties of LTI behaviors, and they can be represented or
defined in multiple equivalent ways, such as investigating dimensionality of restricted be-
havior [23, Sec. 2.2] [25, Sec. 7] [28, Sec. X], using kernel representation [23, Sec. 2.3] [80,
Prop. 3] and using minimal representation [80, Sec. III.A]. Here we define order and lag
in terms of the dimensions of restricted behaviors.

We first investigate the dimensions of restricted behaviors. For an LTI system with
finite state dimension, the dimension dimBk of its restricted behavior has the following
properties [25, Sec. 7] [28, Sec. X].

1. The dimension dimBk monotonically increases as k increases, while the increment
in dimBk monotonically decreases as k increases, i.e.,

0 ≤ dimB1 ≤ dimB2 ≤ · · · , (2.10a)

dimB1 − 0 ≥ dimB2 − dimB1 ≥ dimB3 − dimB2 ≥ · · · . (2.10b)

2. There exists k0 ∈ N such that for all k ≥ k0, dimBk is an affine function of k,

dimBk = n′ +mk (2.11)

where m is the system’s input dimension and n′ ∈ N≥0 is some intercept.

We consequently define order and lag based on those observations of dimBk. The order
n(B) of behavior B is defined as the integer offset n′ in (2.11), and the lag l(B) is the
smallest integer k = k0 such that (2.11) holds [25, 28]. This definition can be written as

n(B) := lim
k→∞

dimBk −mk, (2.12a)

l(B) := min
{
k ∈ N : dimBk = n(B) +mk

}
. (2.12b)

Figure 2.2 visualizes the relationship of order n(B), lag l(B) and the dimension of Bk.

Order and lag are inherent properties of a behavior. However, given a state-space
representation of the behavior, one can also represent the order and lag in terms of the
state-space model. For LTI system S : (A,B,C,D) in (2.1), the order and lag of its
behavior BS can be written as

n(BS) = lim
k→∞

rank(Ok),

l(BS) = min
{
k ∈ N : rank(Ok) = n(BS)

}
,

(2.13)
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dimBk

k

n(B)

l(B)

Figure 2.2: Order, lag, and the dimensionality of restricted behavior.

with matrix Ok defined in (2.4), according to Corollary 2.2.1 and the definitions in (2.12).
Leveraging state-space terminology, the order n(BS) is the number of observable states,
and the lag l(BS) is equal to the observability index, i.e., the smallest number of time steps
on which all observable states are observed. Furthermore, for a minimal representation
Sm : (Am, Bm, Cm, Dm) of behavior B, (2.13) is reduced as follows:

• the order n(B) is equal to the state dimension of Sm, and
• the lag l(B) is the smallest integer k ∈ N such that Ok has full column rank.

The above appears as an alternative definition of order and lag in the literature, based on
minimal representation [24].

Order and lag are fundamental concepts in behavioral systems theory, serving as essen-
tial tools for characterizing system complexities. These structure indices often influence
the validity of key theoretical results and their practical application. As we will see in Sec-
tion 2.3.5 and Section 2.3.6, order and lag emerge as critical preconditions that guide the
selection of certain user-defined parameters in the formulation of these theoretical results.

2.3.5 Specification of Initial Condition

With the causal system model (2.1), the output y[t,N) is uniquely determined given the input
u[t,t+N) and the initial state xt at time t, as demonstrated in (2.5b). However, in the model-
free case where the state-space model is unknown, the initial condition cannot be specified
as an initial state, since the state is not available. In the behavioral framework, we instead
specify the initial condition at time t as a past input-output trajectory u[t−L,t), y[t−L,t) of the
system. The following result shows that, if the initial-condition trajectory is sufficiently
long, then the subsequence output can be uniquely determined given the corresponding
input subsequence.
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Lemma 2.7 (Initial-Condition Specification [32, Lemma 1] [23, Lemma 1]). Consider
an LTI behavior B and integers L ≥ l(B) and N ∈ N. Then, for any trajectories
col(u[t−L,t), y[t−L,t)) ∈ BL and any input subsequence u[t,t+N), there exists a unique out-
put subsequence y[t,t+N) that satisfies

col(u[t−L,t), u[t,t+N), y[t−L,t), y[t,t+N)) ∈ BL+N . (2.14)

Lemma 2.7 ensures that the correct resulting output y[t,t+N) can be identified given
corresponding input u[t,t+N) and the previous trajectory u[t−L,t), y[t−L,t) of sufficient length
L. This result allows us to treat the input-output trajectory u[t−L,t), y[t−L,t) as an initial
condition of the system at time t in the model-free case, enabling accurate prediction of the
future output trajectory. As we will discuss in Section 2.4, the past input-output trajectory
is commonly used as the initial condition in DDPC methods.

2.3.6 Fundamental Lemma

We have explored the behavior as an alternative representation of dynamical systems to
state-space models. However, the notion of behavior cannot be directly used in data-
driven control problems, as it is inherently defined based on the system dynamics which
are unknown in the data-driven case. To make the behavioral systems theory applicable
to data-driven control, the final building block is to represent the behavior itself in a
data-driven manner.

In this section, we present a key result that enables the representation of restricted LTI
behaviors using purely data from the system, known as the Fundamental Lemma [31, Thm.
1], which we will introduce as Lemma 2.9. We begin by defining the concept of persistent
excitation.

Definition 2.8 (Persistent Excitation). A sequence z[t1,t2] is persistently exciting of order
K, for positive integer K ≤ t2 − t1 + 1, if the associated block-Hankel matrix of depth K

HK(z[t1,t2]) :=


zt1 zt1+1 · · · zt2−K+1

zt1+1 zt1+2 · · · zt2−K+2
...

...
. . .

...
zt1+K−1 zt1+K · · · zt2


has full row rank.

Lemma 2.9 (Fundamental Lemma [31]). Let B be an LTI behavior, and let col(ud
[1,T ], y

d
[1,T ]) ∈

BT be a data trajectory from the system. For K ∈ N, if
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(i) the behavior B is controllable in the sense of Definition 2.6, and
(ii) the input sequence ud

[1,T ] is persistently exciting of order K + n(B),

then we have

ColSpan

[
HK(u

d
[1,T ])

HK(y
d
[1,T ])

]
= BK . (2.15)

Equality (2.15) means that an input-output sequence col(u[0,K), y[0,K)) is a trajectory
of the system, i.e., col(u[0,K), y[0,K)) ∈ BK if, and only if, it can be represented as[

u[0,K)

y[0,K)

]
=

[
HK(u

d
[1,T ])

HK(y
d
[1,T ])

]
g

for some vector g ∈ RT−K+1.

By Lemma 2.9, the restricted behavior can be fully represented by input-output data,
with properly selected input and a controllability assumption. Some extensions of the
fundamental lemma were also developed in the literature, including alleviation of the con-
trollability requirement [80, 81], relaxations of persistent excitation [82, 81], extension to
multiple dataset [83], online selection of input when recording data [84], robust versions
[85] and equivalent formulations [86].

Recall from Lemma 2.7 that the future output y[t,t+N) can be uniquely identified given
future input u[t,t+N) and past input-output data u[t−L,t), y[t−L,t), under the assumption that
we know the restricted behavior BL+N . Through Lemma 2.9, BL+N can be represented
using data. Hence, by combination of Lemma 2.7 and Lemma 2.9, we can obtain some
expression which is purely based on data and predicts the future output – playing a similar
role as the constraint (2.6) in MPC. This motivates us to develop a data-driven counterpart
of MPC, which will be introduced in Section 2.4.

2.4 Data-Driven Predictive Control for Deterministic

LTI Systems

In this section, we introduce DDPC frameworks handling the control problem in Section
2.1. In Section 2.4.1, we start with motivation to DDPC, adapting the MPC framework in
2.2 and using the tools of the behavioral systems theory in Section 2.3. In Section 2.4.2,
we introduce specific DDPC methods, including Data-enabled Predictive Control (DeePC)
and Subspace Predictive Control (SPC).
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2.4.1 Motivation for Data-Driven Predictive Control

As reviewed in Section 2.2, MPC is a model-based method because the output-prediction
constraints (2.6) are based on an explicit system model. In data-driven scenario without
a valid system model, MPC as a model-based method is no longer applicable. Because
of the utility that MPC allows inherent inclusion of input and output constraints, we are
interested in developing direct data-driven control methods which have the same utility.
The latter type of control methods is so-called Data-Driven Predictive Control (DDPC).

To build up a data-driven counterpart of MPC, we need to replace the model-based
output prediction (2.6) by some equivalent data-based expression. The output-prediction
constraints (2.6) in problem (MPC) at control step t = k can be compactly written as
follows,

y[k,k+N) = PS
(
u[k,k+N), x̂k

)
:= ON x̂k + GN u[k,k+N) (2.16)

with matrices ON ,GN defined in (2.4), where S is the label of the system model (2.1) and
PS(·) is the output-prediction function. That is, in MPC, the output prediction y[k,k+N)

is a function PS(·) of future input u[k,k+N) and the initial condition x̂k, where the function
PS(·) depends on the system model S : (A,B,C,D).

In DDPC, on the other hand, the output prediction at control step t = k can be written
in the following form,

y[k,k+N) = PD

(
u[k,k+N),

[
u[k−L,k)

y[k−L,k)

])
(2.17)

or some other expression that uniquely identifies y[k,k+N) given u[k,k+N) and

[
u[k−L,k)

y[k−L,k)

]
—

an example is the DeePC framework to be introduced in Section 2.4.2. In (2.17), the
future output y[k,k+N) is uniquely determined as a function of future input u[k,k+N) and
recent input-output measurement u[k−L,k), y[k−L,k), with parameter L ∈ N. The output-
prediction function PD(·) in (2.17) is formulated using a dataset D collected from the
system, so that (2.17) is entirely based on data. The recent trajectory u[k−L,k), y[k−L,k)

in (2.17) specifies the initial condition at time t = k, and plays the same role as x̂k in
(2.16). Figure 2.3 compares the output prediction in model-based and data-driven control.
Therefore, the MPC framework can be adapted by replacing the model-based output-
prediction constraint (2.16) by some data-based constraint in the form of (2.17), thereby
formulating DDPC methods.
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Figure 2.3: Output prediction in model-based and data-driven control.

General Formulation of DDPC

As discussed above, DDPC is a class of data-driven methods modified fromMPC. Similar to
MPC, DDPC is also a receding-horizon control strategy. That is, at each control step t = k,
we solve for control inputs u[k,k+N) over the prediction horizon Z[k,k+N) by minimizing a
cumulative cost over the horizon, and then apply the first Nc control actions u[k,k+Nc) to the
system on the control horizon Z[k,k+Nc), with integer parameters N,Nc ∈ N that Nc ≤ N .
Moreover, in the data-driven scenario, the initial condition of the system is specified by the
past input-output trajectory u[k−L,k), y[k−L,k) on a past interval Z[k−L,k) called the initial(-
condition) horizon, with parameter L ∈ N. We call the union of the initial and prediction
horizons the total horizon at control step t = k. Figure 2.4 summarizes the time horizons
in DDPC.

The general form of DDPC optimization problem at control step t = k can be written
as follows,

minimize
u,y

(2.8) subject to (2.17) and (2.7) (DDPC)
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Figure 2.4: Time horizons in Data-Driven Predictive Control.

which is similar to (MPC) except that the output-prediction constraint (2.6) (equivalent to
(2.16)) is replaced by a data-driven version (2.17). In (2.17), the output-prediction function
PD(·) is formulated based on a dataset D generated from the system, thus satisfying the
data-driven requirement. The explicit expression of (2.17) depends on specific DDMPC
algorithms, and we will see two examples in Section 2.4.2. The optimization process
is repeated after we apply the solved input u[k,k+Nc) and then update the control step
t = k +Nc. The entire DDPC control process is shown in Algorithm 2.

Algorithm 2 A General Framework of Data-Driven Predictive Control

Input: initial-, prediction- and control-horizon lengths L,N,Nc, stage-cost function Jt(·),
and constraint sets U ,Y , and offline dataset D.

1: Record the initial trajectory u[−L,0), y[−L,0) of the system.
2: Initialize the control step k ← 0.
3: while true do
4: Solve control actions u[k,k+N) from problem (DDPC).
5: for t from k to k +Nc − 1 do
6: Apply input ut ← ut to the system (2.1).
7: Measure output from the system (2.1).
8: Set k ← k +Nc.

DDPC preserves several features of MPC. First, DDPC (Algorithm 2) and MPC (Algo-
rithm 1) are both receding-horizon control strategies. As such, both methods can handle
reference tracking problems with time-varying reference signals. Second, DDPC frame-
works can incorporate input and output constraints (2.7) as MPC does, making DDPC
useful in applications of constrained control.
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2.4.2 DDPC Methods: DeePC and SPC

In Section 2.4.1, we introduced a general formulation of DDPC, where the explicit form
of the constraint (2.17) in problem (DDPC) varies with different DDPC methods. In this
section, we exemplify two typical DDPC methods, namely Data-enabled Predictive Control
(DeePC) [38, 39, 40, 61, 62] and Subspace Predictive Control (SPC) [17, 87, 15, 16].

Offline Data Collection

Both DeePC and SPC contain an offline process in addition to the (online) control pro-
cess. In the offline process, we record from the system (2.1) an input-output trajectory
ud
[1,T ], y

d
[1,T ], which constitutes the dataset D in (2.17) and in Algorithm (DDPC). For

data informativity, the input trajectory is required to be persistently exciting of order
L + N + n(B). We formulate data matrices Up ∈ RmL×h, Uf ∈ RmN×h, Yp ∈ RpL×h and
Yf ∈ RpN×h as follows,[

Up

Uf

]
:= HL+N(u

d
[1,T ]),

[
Yp

Yf

]
:= HL+N(y

d
[1,T ])

where the block-Hankel matrix H (·) is defined in Definition 2.8, and h := T − (L+N)+1
denotes the common width of HL+N(u

d
[1,T ]) and HL+N(y

d
[1,T ]). Using those data matrices,

we can represent the restricted behavior BL+N of the system,

BL+N = ColSpan


Up

Uf

Yp

Yf

 , (2.18)

according to Lemma 2.9, under assumption that the system behavior B is controllable and
the input data ud

[1,T ] is persistently exciting of order L+N + n(B).

The theoretical result in (2.18) holds once the input data is persistently exciting, which
can be achieved with various types of signals. In practice, however, the data trajectory may
encounter numerical issues, especially with unstable systems. To mitigate these issues, a
stabilizing controller can be applied during the data generation process. Another approach
to avoid numerical problems is to combine multiple short data trajectories and construct
data matrices as outlined in [83].
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Online Control Process

With offline data, we are able to formulate the online control algorithms. For both DeePC
and SPC, the online control process follows the framework of Algorithm 2, only differing
in the constraint (2.17) of problem (DDPC). The DeePC optimization problem at control
step t = k is what follows,

minimize
g,u,y

(2.8) subject to (2.19) and (2.7) (DeePC)

where g ∈ Rh is an auxiliary variable, and the output-prediction constraint (2.19) is
Up

Uf

Yp

Yf

 g =


u[k−L,k)

u[k,k+N)

y[k−L,k)

y[k,k+N)

 . (2.19)

In (DeePC), g is the only independent variable, while u[k,k+N) and y[k,k+N) are both decided
by g via the second and fourth block rows of (2.19). Note that (2.19) is obtained directly
from (2.18) and the fact that (2.14) holds.

Remark 2.10 (Uniqueness of Output Prediction in DeePC). Although the output-
prediction constraint (2.19) of DeePC does not follow the exact form in (2.17), it uniquely

determines the future output y[k,k+N) with given u[k,k+N) and

[
u[k−L,k)

y[k−L,k)

]
, in the case of

L ≥ l(B), according to Lemma 2.7. In this sense, (2.19) specifies y[k,k+N) as an implicit

function of u[k,k+N) and

[
u[k−L,k)

y[k−L,k)

]
, thereby equivalent to the form of (2.17).

The optimization problem of SPC at control step t = k is the following,

minimize
u,y

(2.8) subject to (2.20) and (2.7) (SPC)

whose output-prediction constraint (2.20) is

y[k,k+N) = Yf

Up

Uf

Yp

†

︸ ︷︷ ︸
=:Pspc

u[k−L,k)

u[k,k+N)

y[k−L,k)

 . (2.20)
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The output-prediction constraints (2.19) of DeePC and (2.20) of SPC can be related by
observing that

g =

Up

Uf

Yp

† u[k−L,k)

u[k,k+N)

y[k−L,k)


is one solution for g to the first three block rows of (2.19) [50, 88].

Remark 2.11 (Uniqueness of DeePC and SPC Solutions). The optimal u[k,k+N) and
y[k,k+N) are unique from both problems (DeePC) and (SPC), when the cost (2.8) is a
strictly convex function of u[k,k+N). This is because y[k,k+N) is a function of u[k,k+N) via
each of the constraints (2.19) and (2.20) of DeePC and SPC, respectively; recall Remark
2.10. The optimal g from (DeePC) may not be unique, as the matrix equation (2.19) can
be under-determined.

Both DeePC and SPC have their advantages over each other. Computationally, SPC
is more efficient than DeePC, because of the extra variable g in DeePC. In application
where DeePC and SPC are both regularized (see Section 2.6), regularized DeePC has more
parameters of regularization than regularized SPC does [50] and thus is more flexible in
algorithm design and parameter tuning.

There is no sufficient evidence showing which of DeePC and SPC outperforms the other.
For deterministic LTI systems, both DeePC and SPC have equivalent performances with
MPC, as to be shown in Section 2.5. In practical experiments where data is corrupted,
regularized DeePC sometimes outperformed regularized SPC [41], while other times the
former performed worse than the latter [50], and in some cases, the performances of both
were comparable [43].

2.5 Equivalence of MPC and DDPC for Deterministic

LTI Systems

In the following proposition, we show that for deterministic LTI systems, both DeePC and
SPC yield control actions equivalent to those obtained from MPC.

Proposition 2.12 (Equivalence of DeePC, SPC and MPC [38, Cor. 5.1] [50, Thm. 1]).
Consider the LTI system S in (2.1). Let col(ud

[1,T ], y
d
[1,T ]) ∈ BS

T be an offline data trajectory

from the system. At control step t = k, for integers L ≥ l(BS) and N ∈ N, assume that
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(i) the behavior of S is controllable in the sense of Definition 2.6, and
(ii) ud

[1,T ] is persistently exciting of order L+N + n(BS).

Suppose the recent trajectory u[k−L,k), y[k−L,k) is known and the state is estimated exactly,
i.e., xk = x̂k. Then,

• the unique optimal trajectory u[k,k+N), y[k,k+N) by (DeePC),
• the unique optimal trajectory u[k,k+N), y[k,k+N) by (SPC), and
• the unique optimal trajectory u[k,k+N), y[k,k+N) by (MPC)

are all the same.

Proposition 2.12 demonstrates the performance equivalence of both DeePC and SPC
to MPC. This performance guarantee indicates that DeePC and SPC are “perfect” data-
driven substitutes of MPC in the deterministic LTI case. However, this conclusion is
limited to deterministic LTI systems. For more general types of systems (e.g. stochastic,
non-linear and time-varying), the theoretical support is still an open question. In Chapter 3
and Chapter 4, our research will contribute to extending these results beyond deterministic
LTI systems.

2.6 Regularization of DeePC and SPC

DeePC and SPC are direct data-driven methods with equivalent performances with MPC
for deterministic LTI systems, as shown in Proposition 2.12. However, both algorithms
are sensitive to perturbation of data. In particular, the constraint (2.19) may be over-
determined when offline data and online measurements are perturbed, and consequently
the problem (DeePC) may become infeasible. The pseudo-inverse operation in (2.20) is also
sensitive to small perturbations, making the solution to problem (SPC) highly sensitive to
small variations in the data.

Since real-world control systems are typically stochastic and nonlinear, measured data
often contain noise and linearization errors. As a result, both problems (DeePC) and
(SPC) problems must be modified or robustified to account for perturbed data. In the
literature, conventional robustification techniques include regularization of optimization
problems and low-rank approximation of data matrices (see e.g. [38]). Here we review
regularization techniques of DeePC and SPC.
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Regularization of DeePC

There exist several versions of regularized DeePC [38, 39, 61, 62, 50]. Take [61] as an
example, where the regularized DeePC optimization problem at control step t = k is

minimize
u,y,g,σy

(2.8) + λg∥g∥22 + λy∥σy∥22

subject to (2.21) and (2.7)
(reg. DeePC)

wherein σy ∈ RpL is a slack variable, λg > 0 and λy > 0 are user-selected parameters, and
the constraint (2.21) is a modification from (2.19) as

Up

Uf

Yp

Yf

 g =


u[k−L,k)

u[k,k+N)

y[k−L,k)

y[k,k+N)

+


0
0
σy

0

 . (2.21)

With the introduction of slack variable σy, we relax the hard constraint Ypg = y[k−L,k)

in (2.19) into a soft constraint Ypg = y[k−L,k) + σy as in (2.21), so as to improve robust-
ness to noise-corrupted output data in both Yp and y[k−L,k). The objective function in
(reg. DeePC) is now the cost (2.8) augmented by penalization of the magnitudes of g and
σy. Although the penalizing terms in (reg. DeePC) are illustrated based on L2-norms,
they can also alternatively be L1-norms [38, 39] or other convex functions [62]. Other
regularized DeePC formulations may also relax the constraint Upg = u[k−L,k) in (2.21) into
a soft constraint Upg = u[k−L,k) + σu with slack variable σu ∈ RmL and similarly penalize
the magnitude of σu in the objective function [50].

Regularization of SPC

There are several ways to regularize the formulation of SPC. Typically, the computation
of matrix Pspc in (2.20) is robustified with some numerical methods. For example, in the
pseudo-inverse operation in (2.20), one can treat as zero the singular values smaller than a
chosen threshold σthre [41, 42]. Another way of robust the computation of Pspc is to utilize
Tikhonov regularization, also known as ridge regression [43], where the pseudo-inverse Z†

of Z := col(Up, Uf , Yp)
† in (2.20) is replaced by (ZTZ + λI)−1ZT, with a regularization

parameter λ > 0.
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Chapter 3

Data-Driven Predictive Control for
Linear Time-Periodic Systems

In this chapter, we focus linear time-periodic (LTP) system, as a specific type of time-
varying systems. LTP systems can arise from linearization of nonlinear systems around
periodic trajectories, such as in models of helicopters [89] and wind turbines [90] etc. The
work in this chapter refers to our work [77]. Leveraging the standard lifting technique
of LTP systems, we develop the behavioral systems theory for LTP systems, including
the LTP extension of Willems’ fundamental lemma. We also develop the LTP versions
of the DeePC and SPC methods, namely Periodic DeePC (P-DeePC) and Periodic SPC
(P-SPC), and prove that the P-DeePC and P-SPC methods produce equivalent control
actions as those from MPC for deterministic LTP systems. The proposed control methods
are validated through simulations.

3.1 Problem Statement: Deterministic LTP Case

Linear Time-Periodic System

In this section, we state a data-driven control problem for linear time-periodic systems.
Consider a discrete-time linear time-varying (LTV) system

S :

{
xt+1 = Atxt +Btut

yt = Ctxt +Dtut

(3.1)
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with initial time t0 ∈ Z, where xt ∈ Rn, ut ∈ Rm, and yt ∈ Rp are the state, input, and
output of the system. The system (3.1) is said to be linear time-periodic (LTP) if there
exists T ∈ N (a period) such that

At+T = At, Bt+T = Bt, Ct+T = Ct, Dt+T = Dt, (3.2)

for all t ∈ Z. The smallest T satisfying this condition is the fundamental period ; without
loss of generality, we assume going forward that T is the fundamental period. Note that
when T = 1, the system (3.1) is linear time-invariant (LTI). A discrete-time LTP model
may arise naturally in discrete time, or may have been obtained via appropriate sampling
of a continuous-time LTP system.

Control Problem

Consider an LTP system (3.1) satisfying the periodicity condition (3.2) with fundamental
period T ∈ N. Similarly as Section 2.1, in the data-driven scenario, the system matrices
At, Bt, Ct, Dt in (3.1) are unknown; we have access only to the input ut and output yt in
(3.1). In a reference tracking problem, the objective is for the output yt to follow a specified
reference signal rt ∈ Rp. The trade-off between the tracking error yt − rt and the control
effort ut may be encoded in the instantaneous cost (2.2), reproduced as

Jt(ut, yt) := ∥yt − rt∥2Q + ∥ut∥2R, (2.2)

whose accumulation over a horizon is to be minimized, where Q ∈ Sp
+ and R ∈ Sm

++ are
user-selected parameters. This tracking should be achieved subject to constraints on the
inputs and outputs in the form of (2.3), reproduced as

ut ∈ U , yt ∈ Y , (2.3)

for time t ∈ N≥0, where the constraint sets U ⊆ Rm and Y ⊆ Rp are assumed to be convex,
non-empty and closed.
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Notations based on System Model

For the LTV system (3.1) and integers t1, t2 with t1 ≤ t2, the state-transition matrix
Φt2

t1 ∈ Rn×n and impulse response matrix Gt2
t1 ∈ Rp×m from step t1 to t2 are defined as

Φt2
t1 :=

{
I, if t2 = t1

At2−1At2−2 · · ·At1 , if t2 > t1,
(3.3a)

Gt2
t1 :=

{
Dt1 , if t2 = t1

Ct2Φ
t2
t1+1Bt1 , if t2 > t1.

(3.3b)

Similarly, the associated (reversed) extended controllability matrix Ct2t1 ∈ Rn×(t2−t1+1)m, the
extended observability matrix Ot2

t1 ∈ R(t2−t1+1)p×n, and the block matrix Gt2t1 of impulse-
response coefficients are defined as

Ct2t1 :=
[
Φt2+1

t1+1Bt1 , Φ
t2+1
t1+2Bt1+1, . . . , Φ

t2+1
t2+1Bt2

]
, (3.4a)

Ot2
t1 := col

(
Ct1Φ

t1
t1 , Ct1+1Φ

t1+1
t1 , . . . , Ct2Φ

t2
t1

)
, (3.4b)

Gt2t1 :=


Gt1

t1

Gt1+1
t1 Gt1+1

t1+1
...

...
. . .

Gt2
t1 Gt2

t1+1 · · · Gt2
t2

 . (3.4c)

With this notation, the unique solution of (3.1) with initial condition xt1 at time t = t1
can be expressed as

xt2 = Φt2
t1xt1 + Ct2−1

t1 u[t1,t2), (3.5a)

y[t1,t2) = O
t2−1
t1 xt1 + Gt2−1

t1 u[t1,t2), (3.5b)

for any future time t2 > t1. The notations in (3.4) extend the notations in (2.4), and the
result in (3.5) generalizes (2.5), from LTI systems to LTV systems.

3.2 Lifting an LTP System to an LTI System

We now recall a classical technique for “lifting” an LTP system into an LTI system [91].

30



Definition 3.1 (Lift of an LTP System). For an LTP system S as in (3.1) of period T
and an initial time t0 ∈ Z, the associated lifted system SL(t0) of S with initial time t0 is
the LTI system

SL(t0) :
{
xτ+1 = Axτ +Buτ

yτ = Cxτ +Duτ

(3.6)

with state xτ ∈ Rn, input uτ ∈ RmT , output yτ ∈ RpT , and time τ ∈ Z, where

A := Φt0+T
t0 , B := Ct0+T−1

t0 , C := Ot0+T−1
t0 , D := Gt0+T−1

t0 . (3.7)

The idea behind lifting is that each time step τ of the lifted system SL(t0) corresponds
to T successive time steps of the original LTP system S. The state/input/output of SL(t0)
are related to the state/input/output of S via

xτ = xt0+τT , uτ = u[t0+τT, t0+(τ+1)T ), yτ = y[t0+τT, t0+(τ+1)T ).

Each input vector uτ (or output vector yτ ) of SL(t0) stacks the inputs (or outputs) of S
over one period, and the state vector xτ is the state of S at the “beginning” of this period,
as specified by the initial time t0; see Fig. 3.1. Note from (3.7) that the matrices A,B,C,D
depend on the initial time t0. Nonetheless, some properties of the lifted system — such as
the eigenvalues of A — are invariant under the choice of the initial time t0. See [92] for
more information on lifting and properties of the lifted system.

3.3 Behavioral Systems Theory for LTP Systems

We have reviewed the behavioral systems theory for LTI systems in Section 2.3. In this
section, we generalize some results on behavioral systems theory for LTV systems or LTP
systems.

3.3.1 Behavioral Representation of LTV Systems

In the framework of behavioral systems theory, the input-output trajectories of the system
(3.1) are described independent of the state representation through the behavior. For a
linear time-varying system S in (3.1), its dynamics is generally different at different time
steps, so we define its behavior based on specific initial time.
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Figure 3.1: The states, inputs and outputs of an LTP system and its lifted system.

Definition 3.2 (Behavior of LTV Systems). For the finite-dimensional LTV system S in
(3.1) and t0 ∈ Z, the behavior BS

[t1,∞) of S on time interval Z[t1,∞) is the set

BS
[t1,∞) :=

{[
u[t1,∞)

y[t1,∞)

] ∣∣∣∣ ∃xt1 s.t. (3.1) holds for all t ∈ Z[t1,∞)

}
.

For integer t2 ≥ t1, let BS
[t1,t2]

denote the restriction of the behavior BS
[t1,∞) on time

interval Z[t1,t2], that is,

BS
[t1,t2]

:=

{[
u[t1,t2]

y[t1,t2]

] ∣∣∣∣ ∃xt1 s.t. (3.1) holds for all t ∈ Z[t1,t2]

}
.

In the case t2 > t1, we let BS
[t1,t2)

:= BS
[t1,t2−1]. We write a behavior (resp. a restricted

behavior) as B[t1,∞) (resp. B[t1,t2] or B[t1,t2)) when the underlying system model is not
emphasized. We say that B is an LTI/LTV/LTP behavior if it is equal to the behavior
BS of some LTI/LTV/LTP system S by Definition 3.2.

The behavior defines a subspace of the vector space of semi-infinite sequences, and
contains all possible input-output trajectories of the system. Going forward, we focus pri-
marily on the restricted behavior. Similar to Lemma 2.2 and Corollary 2.2.1, the following
results state that the restricted behavior is a finite-dimensional vector space.
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Lemma 3.3. The restricted behavior BS
[t1,t2]

of the LTV system S in (3.1) is a finite-
dimensional vector space and

BS
[t1,t2]

= ColSpan

[
0 I
Ot2

t1 G
t2
t1

]
.

Proof. The definition of BS
[t1,t2]

can be rewritten as

BS
[t1,t2]

=

{[
u[t1,t2]

y[t1,t2]

] ∣∣∣∣ ∃xt1 s.t. (3.5b) holds

}
.

The result now follows immediately by eliminating y[t1,t2] above using (3.5b).

Corollary 3.3.1. dimBS
[t1,t2]

= rank(O t2
t1 ) +m(t2 − t1 + 1).

Proof. The result follows from Lemma 3.3, with

[
0 I
Ot2

t1 G
t2
t1

]
block-triangular.

When S is an LTI system, the behavior is invariant under shift of the time interval,
meaning that

BS
[t1,t2]

= BS
[t1+s,t2+s] for all s ∈ Z.

This follows from Definition 2.1, due to shift-invariance of the system matrices. A similar
result holds when S is an LTP system of period T , namely that

BS
[t1,t2]

= BS
[t1+sT,t2+sT ] for all s ∈ Z.

Unlike the case of LTI or LTP systems, the behavior of a general LTV system is not a
shift-invariant subspace. However, given the behavior over an interval, the behavior on the
first several steps can be easily constructed.

Lemma 3.4. For the LTV system S in (3.1) and integers t0 ≤ t1 ≤ t2, if

BS
[t0,t2]

= ColSpan
(
col(Ut0 , . . . , Ut2 , Yt0 , . . . , Yt2)

)
for some matrices Ut0 , . . . , Ut2 ∈ Rm×h and Yt0 , . . . , Yt2 ∈ Rp×h with some h ∈ N, then

BS
[t0,t1]

= ColSpan
(
col(Ut0 , . . . , Ut1 , Yt0 , . . . , Yt1)

)
.

Proof. See Section 3.7.1.
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Different state-space models may correspond to the same behavior. The following
result characterizes when different LTV systems have the same restricted behavior, being
an extension of Lemma 2.4.

Lemma 3.5 (Different State-Space Representations of Same LTV Behavior). For LTV
systems SI,SII and integers t1 ≤ t2, we have BSI

[t1,t2]
= BSII

[t1,t2]
if, and only if,

ColSpan
(
[OI]

t2
t1

)
= ColSpan

(
[OII]

t2
t1

)
⊇ ColSpan

(
[GI]t2t1 − [GII]t2t1

)
where matrices [OI]

t2
t1 and [GI]t2t1 (resp. matrices [OII]

t2
t1 and [GII]t2t1) are defined as in (3.4b)

and (3.4c) for system SI : (AI, BI, CI, DI) (resp. system SII : (AII, BII, CII, DII)).

Proof. See Section 3.7.2.

Controllability of LTV Behaviors

In the behavioral framework, controllability is defined in a trajectory-based sense, as op-
posed to the more classical notion of state-controllability. The controllability of LTV
behaviors is defined as follows, similar to Definition 2.6.

Definition 3.6 (Controllability of LTV Behaviors [23, 93]). An LTV behavior B is con-
trollable if for any t0 ∈ Z, any two trajectories wI

[t0,∞), w
II
[t0,∞) ∈ B[t0,∞), and any time

t1 ≥ t0, there exists a time t2 ≥ t1 and a trajectory w⋄
[t0,∞) ∈ B[t0,∞) such that

w⋄
[t0,t1)

= wI
[t0,t1)

, w⋄
[t2,∞) = wII

[t2,∞), (3.8)

where we let w[s1,s2] := col(u[s1,s2], y[s1,s2]) for integers s1 ≤ s2 denote a trajectory.

Put differently, an LTV behavior is controllable if we can “drive” from one trajectory to
any other trajectory in a finite number of time steps; see Figure 3.2 for visualization. Recall
that, when B is an LTI behavior, the controllability of B has been defined in Definition
2.6, which is similar to Definition 3.6 with a slight difference that the second equality in
(3.8) is replaced by w⋄

[t2,∞) = wII
[t0,∞) as in (2.9). Nonetheless, those two definitions of

controllability are equivalent for LTI behaviors [93, Remark 4(i)] [23, Sec. 2.4].
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Figure 3.2: Controllability of LTV behavior.

3.3.2 A Definition of Order and Lag for LTV Systems

In behavioral systems theory, the order and lag are so-called integer invariants of an
LTI system, and can be expressed using a minimal state representation of the behavior,
as introduced in Section 2.3.4. In this subsection, we generalize those notions to LTV
systems, and do so in a manner that avoids introducing notions of minimality for LTV
models, which is considerably more complicated than LTI minimality.

First, we briefly recall the LTI definitions of order and lag [80, 23] reviewed in Section
2.3.4. For an LTI state-space model S : (A,B,C,D) in (2.1), the order and lag of its
behavior BS can be represented as (2.13) based on the system model S. Motivated by the
this result with LTI systems, we define order and lag for LTV system as follows.

Definition 3.7 (Order and Lag for LTV State-Space Models). For the LTV system S :
(At, Bt, Ct, Dt) in (3.1), the order n(S, t) at time t and lag l(S, t) at time t are

n(S, t) := lim
s→∞

rank(Ot+s−1
t ), (3.9a)

l(S, t) := min{s ∈ N : rank(Ot+s−1
t ) = n(S, t)}, (3.9b)

with Ot2
t1 defined in (3.4b).

Remark 3.8 (Well-definedness). Both n(S, t) and l(S, t) are well-defined through (3.9).
n(S, t) is well-defined in (3.9a) since the sequence rank(Ot+s−1

t ) of index s is bounded
by the state dimension n and is non-decreasing as we increase s as Ot+s−1

t expands with
extra rows. With n(S, t) well-defined, l(S, t) is also well-defined by (3.9b), for a finite-
dimensional system S.

When S is an LTI system, we can write its order and lag in the sense of (3.7) as
n(S) and l(S) respectively, since they are time-independent. The definitions in (3.7) are
consistent with (2.13) in the LTI case. Moreover, via Corollary 3.3.1 and (3.9a), we have

dimBS
[t,t+L) = n(S, t) +mL (3.10)
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for all integers t ∈ Z and L ≥ l(S, t), which coincides with an established result [80, Cor.
5] [23, Eq. 1] in the LTI case.

Recall from (2.12) in Section 2.3.4 that both order n(B) and lag l(B) are properties
of behavior B in the LTI case, while in Definition 3.7 the order n(S, t) and lag l(S, t) are
defined as properties based on the system model S, which appears inconsistent with the
original behavioral theory discussed in Section 2.3.4. In fact, the order and lag defined
in Definition 3.7 are invariant over different state-space representations of a behavior, as
described in the lemma below.

Lemma 3.9. For LTV state-space models SI,SII and integer t ∈ Z, if BSI

[t,∞) = BSII

[t,∞),

then we have n(SI, t) = n(SII, t) and l(SI, t) = l(SII, t), with n(·) and l(·) in Definition 3.7.

Proof. Since BSI

[t,∞) = BSII

[t,∞), the restricted behaviors BSI

[t,s) = BSII

[t,s) are also equal for all
s ∈ N. It follows from Corollary 3.3.1 that

rank
(
[OI]

t+s−1
t

)
= rank

(
[OII]

t+s−1
t

)
,

where matrices [OI]
t+s−1
t and [OII]

t+s−1
t are defined as in (3.4b) for SI : (AI, BI, CI, DI) and

SII : (AII, BII, CII, DII), respectively. With the relation above, the order and lag in the
sense of Definition 3.7 are the same for systems SI and SII.

Given Lemma 3.9, we can modify Definition 3.7 and alternatively define the order and
lag as Definition 3.10, so that order and lag are properties of behavior.

Definition 3.10 (Order and Lag for LTV Behaviors). For an LTV behavior B, its order
n(B, t) at time t and lag l(B, t) at time t are

n(B, t) := lim
s→∞

rank(Ot+s−1
t ),

l(B, t) := min
{
s ∈ N : rank(Ot+s−1

t ) = n(B, t)
}
,

with Ot2
t1 defined in (3.4b), where S : (At, Bt, Ct, Dt) is an arbitrary state-space represen-

tation of B.

Given Lemma 3.9, n(B, t) and l(B, t) in Definition 3.10 are invariant over different
state-space representations S of the behavior B, and thus are well-defined. Definition 3.10
is a genuine extension of the concepts of order and lag from LTI systems to LTV systems,
while Definition 3.7 is an equivalent definition, with a slight abuse of notation, based on
a specific state-space representation. For simplicity, going forward, we mainly apply the
order n(S, t) and lag l(S, t) specified in Definition 3.7.
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Specification of Initial Condition

As in Section 2.3.5, the lag specifies a sufficient length of a trajectory such that, with
any subsequent input, the resulting output after the trajectory is uniquely determined, as
captured in Lemma 3.11(ii). The following result generalizes Lemma 2.7 from the LTI case
to the LTV case. Lemma 3.11(iii) gives an expression for the unique output, generalizing
[50, Lemma 2] as the LTI case.

Lemma 3.11 (Initial-Condition Specification). Consider LTV system S in (3.1), a time
step t ∈ Z, and integers L,N ∈ N. The following statements hold:

(i) For any past trajectory col(u[t−L,t), y[t−L,t)) ∈ BS
[t−L,t) and any future input u[t,t+N),

there exists a future output y[t,t+N) satisfying

col(u[t−L,t), u[t,t+N), y[t−L,t), y[t,t+N)) ∈ BS
[t−L,t+N). (3.11)

(ii) If L ≥ l(S, t− L), then the output y[t,t+N) from (i) is unique.

(iii) Moreover, if the restricted behavior BS
[t−L,t+N) can be expressed as

BS
[t−L,t+N) = ColSpan

(
col(Up, Uf , Yp, Yf)

)
(3.12)

for some matrices Up ∈ RmL×h, Uf ∈ RmN×h, Yp ∈ RpL×h, Yf ∈ RpN×h with some
h ∈ N, then the unique output y[t,t+N) from (ii) is given as

y[t,t+N) = Yf

Up

Uf

Yp

† u[t−L,t)

u[t,t+N)

y[t−L,t)

 . (3.13)

Proof. See Section 3.7.3.

3.3.3 Behavioral Systems Theory for LTP Systems

Now we limit our discussion to LTP systems. We first establish the relationship between
the behavior of an LTP system and the behavior of any corresponding lifted system.

Lemma 3.12. For an LTP system S of period T and its lifted system SL(t0) with initial
step t0 ∈ Z, it holds that

BS
[t0, t0+sT ) = BSL(t0)

[0,s) ∀s ∈ N.
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Proof. Let (3.1) be the model of S, and (3.6) be the model of SL(t0). Define matrices Ot2
t1

and Gt2t1 (resp. Ôt2
t1 and Ĝt2t1 ) via (3.4b) and (3.4c) for system S (resp. SL(t0)). By Lemma

3.3, the respective behaviors can be expressed as

BS
[t0, t0+sT ) = ColSpan

[
0 I

Ot0+sT−1
t0 Gt0+sT−1

t0

]
,

BSL(t0)
[0,s) = ColSpan

[
0 I

Ôs−1
0 Ĝs−1

0

]
.

(3.14)

Note that Ôs−1
0 and Ĝs−1

0 are defined based on A,B,C,D. Using the definitions of A,B,C,D
from (3.7) and the periodicity of S, one can verify that for all s ∈ N

Ot0+sT−1
t0 = Ôs−1

0 , Gt0+sT−1
t0 = Ĝs−1

0 ,

and hence the column spans in (3.14) are equal.

Remark 3.13 (Dependence on Initial Step t0). The lifted system and its behavior
depend on the initial step t0. For instance, consider the following single-state single-input-
single-output (SISO) LTP system S of period T = 2,

S :

{
xt+1 = xt + (−1)tut

yt = xt

whose corresponding lifted system SL(t0) for t0 ∈ Z.

SL(t0) :

{xτ+1 = xτ + (−1)t0
[
1 −1

]
uτ

yτ =

[
1
1

]
xτ + (−1)t0

[
0 0
1 0

]
uτ

It follows (via Lemma 3.3) that for t0 ∈ Z the restricted behavior of SL(t0) on interval [0, 0]
is

BSL(t0)
[0,0] = ColSpan


0 1 0
0 0 1
1 0 0
1 (−1)t0 0

 .

One can now observe that BSL(0)
[0,0] and BSL(1)

[0,0] are different subspaces. Hence, it is necessary
to specify the initial time t0 when introducing the lifted system.
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Order and Lag

Notions of order and lag for LTV systems have been introduced in Definition 3.7. The next
result relates the order and lag of an LTP system to the order and lag of its lifted system.

Lemma 3.14. For an LTP system S of period T , we have (i) n(SL(t)) = n(S, t), and (ii)
l(SL(t)) = ⌈l(S, t)/T ⌉.

Proof. Let (3.1) be the model of S, and (3.6) be the model of SL(t). Define matrix Ot2
t1

(resp. Ôt2
t1) via (3.4b) for system S (resp. SL(t)). Using the definitions of A and C from

(3.7) and the periodicity of S, one can verify that

Ôs−1
0 = Ot+sT−1

t ∀s ∈ N.

Let as := rank(Ot+s−1
t ) and bs := rank(Ôs−1

0 ). It follows from the above relation that
bs = asT . By (3.9a), we now compute that

n(SL(t)) = lim
s→∞

bs = lim
s→∞

asT = lim
s′→∞

as′ = n(S, t),

which shows (i). Similarly, we compute from (3.9b) that

l(SL(t)) = min{s ∈ N : bs = n(SL(t))} = min{s ∈ N : asT = n(S, t)}, (3.15a)

l(S, t) = min{s′ ∈ N : as′ = n(S, t)}. (3.15b)

We know from the minimality in (3.15a) that

a[l(SL(t))−1]T ̸= n(S, t), al(SL(t))T = n(S, t).
By the minimality in (3.15b), the above relations imply that

[l(SL(t))− 1]T < l(S, t) ≤ l(SL(t))T,
which is equivalent to (ii).

For unknown LTP systems with known periods and state dimensions, we can establish
bounds of their orders and lags.

Corollary 3.14.1. For an LTP system S as in (3.1) of period T , we have (i) n(S, t) ≤ n,
and (ii) l(S, t) ≤ nT .

Proof. (i) follows from (3.9a), as rank(Ot2
t1) is bounded by the row size n of Ot2

t1 . (ii) is
shown below:

l(S, t) ≤ l(SL(t))T ≤ n(SL(t))T = n(S, t)T ≤ nT,

where the first inequality is by Lemma 3.14(ii), and the second inequality is because
l(SL(t)) ≤ n(SL(t)) for the LTI system SL(t) [23, Eq. 2].
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Controllability

The controllability of an LTP system is equivalent to the controllability of its lifted systems.

Lemma 3.15. The behavior of an LTP system S is controllable if, and only if, the behavior
of its lifted systems SL(t0) are controllable for all t0 ∈ Z.

Proof. Let T be the period of S. Let w[t1,t2] :=

[
u[t1,t2]

y[t1,t2]

]
and w[τ1,τ2] :=

[
u[τ1,τ2]

y[τ1,τ2]

]
denote a

trajectory of the system S and the lifted system SL(t0), respectively. Given a trajectory
w[t0,∞) of S, let w[0,∞) be the trajectory of SL(t0) equal to w[t0,∞), and vise versa, where

we implicitly used BS
[t0,∞) = BSL(t0)

[0,∞) via Lemma 3.12.

If. For t0 ∈ Z, consider trajectories wI
[t0,∞), w

II
[t0,∞) ∈ BS

[t0,∞) and an arbitrary integer

t1 ≥ t0. Choose some τ1 ∈ Z such that t0 + τ1T ≥ t1. Since wI
[0,∞) and wII

[0,∞) are

trajectories of SL(t0), by controllability of SL(t0), there exists an integer τ2 ≥ τ1 and a

trajectory w⋄
[0,∞) ∈ BSL(t0)

[0,∞) such that

w⋄
[0,τ1)

= wI
[0,τ1)

, w⋄
[τ2,∞) = wII

[τ2,∞) (3.16)

Let t2 := t0+τ2T . From (3.16) and the equivalence of w and w, w⋄
[t0,∞) is such a trajectory

that (2.9) holds. Since t0 and t1 are arbitrary, S is controllable by Definition 2.6.

Only if. Consider trajectories wI
[0,∞),w

II
[0,∞) ∈ BSL(t0)

[0,∞) and an arbitrary integer τ1 ≥ 0.

Since wI
[t0,∞) and wII

[t0,∞) are trajectories of S, from controllability of S there exists an

integer t2 ≥ t1 := t0 + τ1T and a trajectory w⋄
[t0,∞) ∈ BS

[t0,∞) such that (2.9) holds. Choose

some τ2 ∈ Z satisfying t0 + τ2T ≥ t2. From (2.9) and the equivalence of w and w, the
trajectory w⋄

[0,∞) satisfies (3.16). Since τ1 is arbitrary, the LTI system SL(t0) is controllable
by Definition 2.6.

3.3.4 A Fundamental Lemma for LTP Systems

According to the so-called Fundamental Lemma, under technical conditions, the restricted
behavior of an LTI system can be completely described via recorded historical data. This
result has been reviewed in Lemma 2.9. Based on the lifting operation, we now define a
natural extension of persistent excitation for LTP systems, and present a corresponding
version of the fundamental lemma.
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Definition 3.16 (Periodic Persistent Excitation). A sequence z[t1,t2] is T -periodically per-
sistently exciting (p.p.e.) of order K, for K,T ∈ N satisfying K ≤ t2 − t1 + 1, if

H T
K (z[t1,t2]) :=


zt1 zt1+T · · · zt1+PT

zt1+1 zt1+T+1 · · · zt1+PT+1
...

...
. . .

...
zt1+K−1 zt1+T+K−1 · · · zt1+PT+K−1


has full row rank, where P := ⌊(t2 − t1 −K + 1)/T ⌋.

Remark 3.17. One can observe that HT
K(z[t1,t2]) is composed of every T -th column of

HK(z[t1,t2]).

Lemma 3.18 (Fundamental Lemma for LTP Systems). Let S be an LTP system of period
T , and let col(ud

[t1,t2]
, yd[t1,t2]) ∈ BS

[t1,t2]
be a trajectory of S on interval [t1, t2]. For K ∈ N, if

(i) the behavior of S is controllable in the sense of Definition 3.6, and
(ii) ud

[t1,t2]
is T -p.p.e. of order (⌈K/T ⌉+ n(S, t1))T ,

then we have

ColSpan

[
H T

K (ud
[t1,t2]

)

H T
K (yd[t1,t2])

]
= BS

[t1,t1+K).

Proof. See Section 3.7.4.

When n(S, t1) is unknown but bounded by some n ∈ Z, we may obtain (ii) in Lemma
3.18 by requiring the input ud

[t1,t2]
to be T -p.p.e. of a sufficient order (⌈K/T ⌉+ n)T . This

is because by definition a signal being T -p.p.e. of order K ′ is also T -p.p.e. of any smaller
order K ′′ ≤ K ′.

3.4 DDPC Methods for LTP Systems

Based on our previous results extending behavioral systems theory to LTP systems, we
develop a DDPC method for the LTP systems S in (3.1) of known period T .
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Prediction, Control, and Initial Horizons

We consider a receding-horizon control strategy, in which at control step t = k the control
signal u on interval Z[k,k+Nc) (the control horizon) is computed by minimizing an appropri-
ate cost function of the predicted trajectory over a finite horizon Z[k,k+N) (the prediction
horizon), where Nc, N ∈ N are design parameters with Nc ≤ N .

In the present data-driven scenario, the initial condition of the system at step k is
specified by the recent trajectory in a past interval Z[k−L,k) called the initial horizon, with
parameter L ∈ N. According to Lemma 3.11, if L ≥ l(S, k−L), we can uniquely predict the
future output, given any future input. Notice via Corollary 3.14.1 that the lag l(S, k − L)
is bounded by nT , so the output prediction is always unique when we select L ≥ nT . We
call the union Z[k−L,k+N) of the initial and prediction horizons as the total horizon; see Fig.
2.4 in Section 2.4.1.

3.4.1 Offline Data Collection

The restricted behavior BS
[k−L,k+N) on the total horizon must be known for us to predict

future trajectories and compute control actions in the DDPC framework. In DDPC for
LTI systems, the behavior BS

[k−L,k+N) can be represented using recorded offline data. We
may extend this strategy to the case where S is an LTP system. However, since the
system is periodic, its behavior BS

[k−L,k+N) can equal one of T different possible subspaces,

depending on the time step k. Fortunately, all T possibilities for the behavior BS
[k−L,k+N)

can be covered using collected data.

Offline Data and Data Matrices

Let ud
[td1,td2]

, yd[td1,td2] be offline data collected from the system S on the interval [td1, td2],

where we require that the input signal ud
[td1,td2]

is T -periodically persistently exciting of order

(⌈K/T ⌉+ n(S, td1))T , with K := L+N + T − 1. Arrange the data into the “uncropped”
data matrices Ud ∈ RmK×h and Y d ∈ RpK×h:

Ud := H T
K (ud

[td1,td2]
), Y d := H T

K (yd[td1,td2]),

where h denotes the common width of Ud and Y d, given by h := ⌊(td2−td1−K+1)/T ⌋+1.
We extract from Ud and Y d the T sets of data matrices Up(θ) ∈ RmL×h, Uf(θ) ∈ RmN×h,
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Yp(θ) ∈ RpL×h and Yf(θ) ∈ RpN×h, defined as

Up(θ) := Ud|[θ,θ+L−1],

Yp(θ) := Y d|[θ,θ+L−1],

Uf(θ) := Ud|[θ+L,θ+L+N−1],

Yf(θ) := Y d|[θ+L,θ+L+N−1],
(3.17)

where each set has an exclusive index θ ∈ {1, . . . , T}. In (3.17), we let Ud|[r1,r2] ∈
Rm(r2−r1+1)×h denote the sub-matrix consisting of the r1-th, ..., r2-th block rows of Ud,
and similarly for Y d|[r1,r2] ∈ Rp(r2−r1+1)×h.

Representation of Behavior

The matrices Up(θ), Uf(θ), Yp(θ), Yf(θ) built from offline data can represent the behavior
on the total horizon at control step k = k(θ) := td1 + θ + L − 1, as said in the following
lemma; see Fig. 3.3.

Lemma 3.19. Consider an LTP system S as in (3.1) of period T . For L,N ∈ N, construct
data matrices Up(θ), Uf(θ), Yp(θ), Yf(θ) from (3.17) with data wd

[td1,td2]
. If S is controllable

and ud
[td1,td2]

is T -p.p.e. of order (⌈K/T ⌉+ n(S, td1))T with K := L+N + T − 1, then for

θ ∈ {1, . . . , T} we have

ColSpan
(
col(Up(θ), Uf(θ), Yp(θ), Yf(θ))

)
= BS

[k(θ)−L,k(θ)+N), (3.18)

where k(θ) := td1 + θ + L− 1.

Proof. Let s1(θ) := td1 + (θ − 1) and s2(θ) := td2 − (T − θ), and notice that

col(Up(θ), Uf(θ), Yp(θ), Yf(θ)) =

[
H T

K (ud
[s1(θ),s2(θ)]

)

H T
K (yd[s1(θ),s2(θ)])

]
Also let H := (⌈(L+N)/T ⌉+ n(S, td1))T and Ĥ := (⌈K/T ⌉+ n(S, td1))T .

We first conclude that ud
[s1(θ),s2(θ)]

is T -p.p.e of order H, i.e., H T
H (ud

[s1(θ),s2(θ)]
) has full

row rank. This is because H T
Ĥ
(ud

[td1,td2]
) has full row rank (since ud

[td1,td2]
is T -p.p.e of order

Ĥ) and H T
H (ud

[s1(θ),s2(θ)]
) is a sub-matrix of H T

Ĥ
(ud

[td1,td2]
).

Then, the result follows from Lemma 3.18, with controllability of S and periodic per-
sistent excitation of ud

[s1(θ),s2(θ)]
.
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The column span of: is the restricted behavior on:

col(Up(1), Uf(1), Yp(1), Yf(1)) time step· · · · · · · · · · · ·

step
k(1)−L

step
k(1)+N−1

col(Up(2), Uf(2), Yp(2), Yf(2)) time step· · · · · · · · · · · ·

step
k(2)−L

step
k(2)+N−1

...
...

col(Up(T ), Uf(T ), Yp(T ), Yf(T )) time step· · · · · · · · · · · ·

step
k(T )−L

step
k(T )+N−1

Figure 3.3: The column span of col(Up(θ), Uf(θ), Yp(θ), Yf(θ)) is the restricted behavior on
time interval [k(θ)− L,k(θ) +N).

Since {k(θ)}Tθ=1 are consecutive time steps in one period, by periodicity of S, the
subspaces BS

[k(θ)−L,k(θ)+N) with different selections of the index θ ∈ {1, . . . , T} cover all

T possibilities of the behavior BS
[k−L,k+N) for different control steps k. Define the proper

index Θ(t) at control step k.

Θ(k) := 1 + (k − td1 − L mod T ) (3.19)

Thus, θ = Θ(k) is the “correct” index θ such that the data matrices Up(θ), Uf(θ), Yp(θ),
Yf(θ) represent the behavior on the total horizon at control step k, i.e.,

ColSpan


Up(Θ(k))
Uf(Θ(k))
Yp(Θ(k))
Yf(Θ(k))

 = BS
[k−L,k+N), (3.20)

because of (3.18), periodicity of S and the fact that k − k(Θ(k)) is a multiple of T .

3.4.2 Online Warm-Up Process

Now we introduce the online process of the algorithm. Suppose we have collected the
offline data in Section 3.4.1. Before controlling the system, we start by recording an initial
trajectory and then finish a so-called “index test”; see Fig. 3.4. Throughout the warm-up
process, no control algorithm is executed, and a stabilizing input is applied to the system.
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· · ·

initial
trajectory
· · ·

index
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Figure 3.4: The entire online process with a warm-up process.
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Figure 3.5: Accumulating the errors δθt into ∆θ
t .

Initial Trajectory

At the beginning of the online process, we apply no algorithm and simply record an initial
trajectory of at least L steps. This initial trajectory is used to initialize the subsequent
procedures.

Index Test

After the initial trajectory is recorded, the next process is an “index test”. Although
the required proper index Θ(t) is clearly defined in (3.19), this value will be unknown
unless td1 is known during the data collection process, and will generally be unknown in a
practical implementation. Due to this consideration, a process is required to identify Θ(t)
at current time t. We propose a heuristic index-testing which supports both deterministic
and stochastic LTP systems.

At time t, consider the recorded past trajectory u[t−L,t), y[t−L,t) and recall the offline
data matrices Up(θ), Yp(θ) in (3.17). We compute the SVD of the matrix col(Up(θ), Yp(θ))
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and the error

δθt :=
∥∥∥Np(θ)

T

[
u[t−L,t)

y[t−L,t)

] ∥∥∥
2
, (3.21)

where the columns of the matrix Np(θ) ∈ R(m+p)L×• are the “non-dominant” left-singular
vectors of col(Up(θ), Yp(θ)) that correspond to singular values not exceeding some specified
threshold σIT > 0. In the deterministic case with σIT = 0, we have δθt = 0 if, and only
if, col(Up(θ), Yp(θ)) ∈ BS

[k(θ)−L,k(θ)) (because BS
[k(θ)−L,k(θ)) = ColSpan(col(Up(θ), Yp(θ)) =

Null(Np(θ)), where the first equality is by (3.20) and Lemma 3.4, and second equality
follows from the definition of Np(θ) with σIT = 0), so the indices θ with δθt ̸= 0 are
discarded as possibilities of Θ(t). In the general case, we regard δθt as a “score” to falsify
the hypothesis that the index θ is proper at time t.

We repeat the above computation on multiple time steps. Define accumulated errors
∆θ

t ∈ R for θ ∈ {1, . . . , T}, which are initialized to zero and updated in the following way,

∆θ
t := ∆

prev(θ)
t−1 + δθt (3.22)

where prev(θ) denotes the “cyclically previous” index of θ.

prev(θ) :=

{
θ − 1, for θ ∈ {2, . . . , T}
T, for θ = 1

See Fig. 3.5: each ∆θ
t is obtained from updating ∆

prev(θ)
t−1 ; the red boxes and thick arrows

show for example the “correct path” in which the index θ = Θ(t) is proper at all time t;
the “correct path” is expected to have the lowest values of both δθt and ∆θ

t . The reason we

obtain ∆θ
t by updating ∆

prev(θ)
t−1 in (3.22) is that an index θ is proper at time t if, and only

if, prev(θ) is the proper index at the last step t− 1. Thus, ∆θ
t is the “cumulative score” to

falsify the hypothesis that θ = Θ(t), considering all errors computed so far. The number of
iterations NIT of this process is user-specified. When the algorithm terminates, the index
θ with the smallest ∆θ

t is selected as the estimated proper index Θ̂(t) at the current time
t. The entire index-testing process is outlined in Algorithm 3.

Once we obtain Θ̂(t) at time t, the estimated proper index Θ̂(t′) for any future time
t′ ≥ t is derived according to

Θ̂(t+ 1) :=

{
Θ̂(t) + 1, if Θ̂(t) ∈ {1, . . . , T − 1},
1, if Θ̂(t) = T,

which is the same way that Θ(t) evolves with time t.

46



Algorithm 3 Index Test

Input: the time step t and the data matrices Up(θ), Yp(θ) for all θ ∈ {1, . . . , T}.
1: Compute Np(θ) as described in Section 3.4.2 for all θ.
2: Initialize the accumulators ∆θ

t−1 = 0 for all θ.
3: for i from 1 to NIT do
4: Compute δθt from (3.21) for all θ.
5: Update ∆θ

t via (3.22) for all θ.
6: if i < NIT then
7: Input a user-defined ut to the system S.
8: Set t← t+ 1.

Output: the estimated proper index Θ̂(t)← argminθ ∆
θ
t .

3.4.3 Online Control Process

With the proper index identified or known, we can start the control process. We provide
for the LTP system S two alternative controllers, which generalize Data-enabled Predictive
Control (DeePC) and Subspace Predictive Control (SPC) methods in the literature.

Let u and y denote the future input and predicted output respectively. At control step
t = k, we consider the cost (2.8), reproduced as

k+N−1∑
t=k

Jt(ut, yt)

with used-selected cost function Jt in the form of (2.2), and constrain the future input-
output signal as (2.7), reproduced as

ut ∈ U , yt ∈ Y , t ∈ Z[k,k+N),

with user-defined constraint sets U ⊆ Rm and Y ⊆ Rp. The periodic DeePC (P-DeePC)
problem at control step t = k is

minimize
g,u,y

(2.8) s.t. (3.23) and (2.7) (P-DeePC)

with an auxiliary variable g ∈ Rh, where (3.23) is given as
Up(Θ̂(k))

Uf(Θ̂(k))

Yp(Θ̂(k))

Yf(Θ̂(k))

 g =


u[k−L,k)

u[k,k+N)

y[k−L,k)

y[k,k+N)

 . (3.23)
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The periodic SPC (P-SPC) problem at control step t = k

minimize
u,y

(2.8) s.t. (3.24) and (2.7) (P-SPC)

with (3.24) given as

y[k,k+N) = Yf(Θ̂(k))

Up(Θ̂(k))

Uf(Θ̂(k))

Yp(Θ̂(k))


† u[k−L,k)

u[k,k+N)

y[k−L,k)

 . (3.24)

After solving the optimal future trajectory u[k,k+N) from either (P-DeePC) or (P-SPC), we
apply the first Nc inputs u[k,k+Nc) to the system S. The whole control process is illustrated
in Algorithm 4.

Algorithm 4 Online Control Process of P-DeePC and P-SPC

Input: initial-, prediction- and control-horizon lengths L,N,Nc, stage-cost function Jt(·),
and constraint sets U ,Y , and offline data ud, yd.

1: Obtain the index estimate Θ̂(·) through Algorithm 3.
2: Record the initial trajectory u[−L,0), y[−L,0) of the system.
3: Initialize the control step k ← 0.
4: while true do
5: Solve control actions u[k,k+N) from problem (P-DeePC) or problem (P-SPC).
6: for t from k to k +Nc − 1 do
7: Apply input ut ← ut to the system (3.1).
8: Measure output from the system (3.1).

9: Set k ← k +Nc and update Θ̂(t) correspondingly.

Performance Guarantee

In the deterministic case, both P-DeePC and P-SPC produce the same control actions that
one would obtain from traditional MPC applied to the LTP system. The MPC problem
for system (3.1) at control step t = k,

minimize
x,u,y

(2.8) s.t. (3.25) and (2.7) (LTV-MPC)

48



where (3.25) is the time-varying case of (2.6), given as follows.

xt+1 = Atxt +Btut, t ∈ Z[k,k+N)

yt = Ctxt +Dtut, t ∈ Z[k,k+N)

xk = x̂k

(3.25)

Proposition 3.20. Consider an LTP system S as in (3.1) of period T . Let ud
[td1,td2]

, yd[td1,td2]
be offline data from S on interval [td1, td2]. At control step t = k, for integer L,N ∈ N
such that L ≥ l(S, k − L), assume that

(i) the behavior of S is controllable in the sense of Definition 2.6,
(ii) ud

[td1,td2]
is T -p.p.e. of order (⌈K/T ⌉+ n(S, td1))T , with K := L+N + T − 1, and

(iii) Θ̂(k) = Θ(k).

Suppose the recent trajectory u[k−L,k), y[k−L,k) is known and the state is estimated exactly,
i.e., xk = x̂k. Then,

• the unique optimal trajectory u[k,k+N), y[k,k+N) by (P-DeePC),
• the unique optimal trajectory u[k,k+N), y[k,k+N) by (P-SPC), and
• the unique optimal trajectory u[k,k+N), y[k,k+N) by (LTV-MPC)

are all the same.

Proof. See Section 3.7.5.

This result generalizes Proposition 2.12, which claims the equivalence of DeePC, SPC
and MPC for LTI systems.

Remark 3.21. Our extension of DeePC and SPC to LTP systems is based on the insight that
the data collected from an LTP system is equivalent to data collected from an appropriate
LTI lifted system. In particular, after stacking LTP-system data into lifted-system data,
we can apply the established LTI DDPC methods and compute control signals for the
lifted system, and thereby obtain control signals for the original LTP system. A benefit of
our treatment here is that discussion of lifted systems can be entirely omitted once proper
behavioral systems concepts are defined directly on the LTP system, as we have done in
Section 3.3.

Regularization

To adapt our methods for stochastic LTP systems with noisy measurements, we may
regularize both P-DeePC and P-SPC. Regularizing P-DeePC is similar as regularizing

49



DeePC [39, 40, 61, 62]. Here we exhibit quadratic regularization, where problem (P-DeePC)
is modified as follows,

minimize
g,u,y,σy

(2.8) + λy∥σy∥22 + λg∥g∥22 s.t. (3.26) and (2.7)

with a slack variable σy ∈ RpL, positive parameters λy, λg, and (3.26) a modified constraint
from (3.23). 

Up(Θ̂(k))

Uf(Θ̂(k))

Yp(Θ̂(k))

Yf(Θ̂(k))

 g =


u[k−L,k)

u[k,k+N)

y[k−L,k)

y[k,k+N)

+


0
0
σy

0

 . (3.26)

To regularize P-SPC, in the computation of the pseudo-inverse in (3.24), we treat as zero
the singular values smaller than a selected threshold σSPC; the remainder of the settings in
regularized P-SPC are same as in P-SPC.

3.5 Simulations

We illustrate the algorithm proposed in Section 3.4 and its robustness to noisy data via
numerical example. Consider the mass-spring-damper system in Fig. 3.6.

The control objective is reference tracking for the positions (x1, x2, x3) of the three
masses. There are three control inputs: the force F applied to the mass m1, and the end
positions x4 and x5 of the free ends of the springs k4 and k5. The stiffness and damping

m1

x1

F

m3

x3

m2

x2

k1

c1

k3

c3

k2

c2

k5

c5

x5

k4

c4

x4

Figure 3.6: A spring-mass-damper model for simulation.
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Quantity (Unit) Symbol Valuea

Mass (kg) m1,m2,m3 6, 4, 3 respectively

Spring Stretch
(N/m)

k1 10− 4 sin(2πt) + 2 sin(4πt)
k2, k3 7− 3 cos(4πt)
k4, k5 4− 2 sin(4πt)

Viscosity
(N · s/m)

c1 9 + 3 sin(2πt)
c2, c3 5 + 2 cos(2πt)
c4, c5 15

aVariable t is the time in seconds.

Table 3.1: Physical quantities of the simulated system.

Parameter Value

initial horizon length L 30
prediction horizon length N 30
control horizon length Nc 1

tracking cost matrix Q in (2.2) diag(1, 1, 1)
input cost matrix R in (2.2) diag(10−6, 10−4, 10−4)

input constraint set U in (2.3) [−8, 8]× [−3, 3]× [−3, 3]
output constraint set Y in (2.3) [−20, 20]3

iteration number NIT in the index test 12
SV threshold σIT in the index test 1

regularization parameter λy for P-DeePC 106

regularization parameter λg for P-DeePC 10−3

SV threshold σSPC in regularized P-SPC 0.5

Table 3.2: Control parameters in simulation.
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parameters ki and ci are periodic functions of time, given in Table 3.1, and each has a
period of 1 second. We discretize the system with a sampling time 0.2s, and thus the

period of the discretized system is T = 5. A process noise wt
i.i.d∼ N (06×1, σ

2I6) and a

measurement noise vt
i.i.d∼ N (03×1, σ

2I3) are added to the discrete-time model, with noise
amplitude σ2 = 10−3. The control and index-test parameters are selected in Table 3.2.

For collection of offline data, we apply a random input signal ud
t

i.i.d.∼ N (03×1, I3) and
measure the resulting positions (x1, x2, x3). The online process starts at time t = 0; in

the warm-up process, the input is random ut
i.i.d.∼ N (03×1, I3/10), so that heuristically the

index test gives a correct result. After recording an initial trajectory on interval [0, 29], we
start the index test at time t = 29, and terminate the process at time t = 40 (as NIT = 12).
In our simulation, the proper index Θ(t) was identified correctly.

We start control at time t = 40, and apply sequential changes in the reference signals
given by rt = [0, 0, 0]T for 40 ≤ t < 60, rt = [5, 0, 0]T for 60 ≤ t < 80, rt = [5, 15, 0]T for
80 ≤ t < 100, and rt = [5, 15,−10]T for t ≥ 100. We evaluate the control performance via
the one-step cost ∥yt − rt∥2Q + ∥ut∥2R, and the results are shown in Fig. 3.7.

For comparison purposes, we also plot the closed-loop responses under (i) MPC using
a perfect system model with full-state measurements, and (ii) the regularized DeePC and
regularized SPC methods for LTI systems. For the latter, the settings are the same as for P-
DeePC (resp. P-SPC), except that we replace the matrices Up(Θ̂(t)), Uf(Θ̂(t)), Yp(Θ̂(t)),

Yf(Θ̂(t)) in (3.26) (resp. (3.24)) by Up(1), Uf(1), Yp(1), Yf(1) respectively, i.e., we use a
single set of data matrices at all time t. Around the step changes of the reference signal,
all controllers have comparable performances with similar cost values. For the steady-state
performance when the reference signal stays constant, the proposed regularized P-DeePC
(resp. P-SPC) method outperforms the direct use of regularized DeePC (resp. SPC) of
LTI systems. This significant difference indicates the necessity of using different sets of
data matrices Up(θ), Uf(θ), Yp(θ), Yf(θ) with different indices θ as in (3.26) and (3.24) for
P-DeePC and P-SPC respectively at different time steps.

3.6 Chapter Conclusions

We proposed a DDPC algorithm for unknown LTP systems with known periods. For
deterministic LTP systems, the method is equivalent to classical MPC, but without the
requirement of a parametric model. The approach is supported by extensions of results
from behavioral systems theory to LTV and LTP systems. Simulation results provide
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Figure 3.7: Tracking cost of the simulated LTP system with different controllers.
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evidence that the approach is robust to measurement noise and stochasticity, and that it
significantly outperforms a naive application of data-driven LTI control methods.

There are several open directions for future work. First, as our design requires a priori
knowledge of the period T , relaxing this assumption is of interest, as is investigating the
robustness of the approach to errors in the selected period. Second, we will seek to develop
a rigorous performance guarantee for the “index test” outlined in Section 3.4.2. Finally,
we note that there remain open questions in the behavioral theory of LTP systems, such
as what relationships can be established between the behaviors of the T different lifted
systems arising from a given LTP system.

3.7 Appendices

In this section, we present proofs of some results in the chapter.

3.7.1 Proof of Lemma 3.4

Proof. In this proof, let

D t1
t0 := ColSpan

(
col(Ut0 , . . . , Ut1 , Yt0 , . . . , Yt1)

)
.

Construct a truncation mapping ftrc : R(t2−t0+1)(m+p) → R(t1−t0+1)(m+p)

ftrc

([
u[t0,t2]

y[t0,t2]

])
:=

[
u[t0,t1]

y[t0,t1]

]
for all input-output signals u, y. Through this mapping, D t1

t0 is the image of D t2
t0 , and the

image of BS
[t0,t2]

is

E t1
t0 :=

{[
u[t0,t1]

y[t0,t1]

]∣∣∣∣[u[t0,t2]

y[t0,t2]

]
∈ BS

[t0,t2]

}
.

Now we show that E t1
t0 = BS

[t0,t1]
. From Lemma 3.3, we have

BS
[t0,t2]

= ColSpan

[
0 I
Ot2

t0 G
t2
t0

]

= ColSpan


0 I 0
0 0 I
Ot1

t0 Gt1t0 0
Ot2

t1+1Φ
t1+1
t0 Ot2

t1+1Ct1t0 G
t2
t1+1
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where the second equality can be verified by expanding Φt2
t1 , C

t2
t1 ,O

t2
t1 ,G

t2
t1 into system ma-

trices via (3.3a), (3.4a), (3.4b), (3.4c) respectively. Through the truncating operation ftrc,
the image E t1

t0 of BS
[t0,t2]

is therefore

E t1
t0 = ColSpan

[
0 I
Ot1

t0 G
t1
t0

]
which equals BS

[t0,t1]
by Lemma 3.3, so BS

[t0,t1]
is the image of BS

[t0,t2]
by operation ftrc. The

result BS
[t0,t1]

= D t1
t0 follows because the images of equal sets BS

[t0,t2]
= D t2

t0 are equal.

3.7.2 Proof of Lemma 3.5

Proof. Define the subspaces OI,OII,G ⊆ R(t2−t1+1)p as

OI := ColSpan
(
[OI]

t2
t1

)
, OII := ColSpan

(
[OII]

t2
t1

)
, G := ColSpan

(
[GI]t2t1 − [GII]t2t1

)
If. From OI ⊇ G , there exists a matrix L ∈ Rn×n such that

[GI]t2t1 − [GII]t2t1 = [OI]
t2
t1L.

Given OI = OII and the relation above, we have

ColSpan

[
0 I

[OI]
t2
t1 [GI]t2t1

]
= ColSpan

[
0 I

[OI]
t2
t1 [GII]t2t1 + [OI]

t2
t1L

]
by column
operation
== ColSpan

[
0 I

[OI]
t2
t1 [GII]t2t1

]
via OI = OII== ColSpan

[
0 I

[OII]
t2
t1 [GII]t2t1

]
which implies BSI

[t1,t2]
= BSII

[t1,t2]
via Lemma 3.3.

Only if. Define matrices VI and VII,

VI :=
[

0 I
[OI]

t2
t1 [GI]t2t1

]
, VII :=

[
0 I

[OII]
t2
t1 [GII]t2t1

]
and by Lemma 3.3 VI and VII have the same column span. As ColSpan(VI) ⊇ ColSpan(VII),
there exist matrices M ∈ Rn×n, N ∈ Rn×mL, P ∈ RmL×n and Q ∈ RmL×mL, where
L := t2 − t1 + 1, such that[

0 I
[OI]

t2
t1 [GII]t2t1

] [
M N
P Q

]
=

[
0 I

[OI]
t2
t1 [GII]t2t1

]
.
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Compute the left-hand side above and compare the result to the right-hand side, and then
we have P = 0, Q = I and

[OI]
t2
t1M = [OII]

t2
t1 , [GI]t2t1 − [GII]t2t1 = −[OI]

t2
t1N .

Recall the definitions of OI,OII,G . Thus, the above equations imply that G is a subspace
of OI, and OII is a subspace of OI. Similarly, as ColSpan(VI) ⊆ ColSpan(VII), we have the
converse result that OI is a subspace of OII. Hence, the result OI = OII ⊇ G is obtained.

3.7.3 Proof of Lemma 3.11

Proof. With abuse of notation, we let

Φp := Φt
t−L, Cp := Ct−1

t−L,

Op := Ot−1
t−L, Of := Ot+N−1

t , Opf := Ot+N−1
t−L ,

Gp := Gt−1
t−L, Gf := Gt+N−1

t , Gpf := Gt+N−1
t−L ,

in this proof, where the subscript “p” stands for the past interval [t − L, t), “f” for the
future interval [t, t+N), and “pf” their union. One can verify that

Opf =

[
Op

OfΦp

]
, Gpf =

[
Gp 0
OfCp Gf

]
, (3.27)

by expanding Φt2
t1 , C

t2
t1 ,O

t2
t1 ,G

t2
t1 into system matrices via (3.3a), (3.4a), (3.4b), (3.4c) respec-

tively.

(i): Since col(u[t−L,t), y[t−L,t)) ∈ BS
[t−L,t), by definition there exists some initial state

xt−L such that y[t−L,t) is the output resulting from input u[t−L,t), with the resulting state
xt at time t. From (3.5a) and (3.5b) we have

xt = Φpxt−L + Cpu[t−L,t), (3.28)

y[t−L,t) = Opxt−L + Gpu[t−L,t). (3.29)

Thus, via (3.5b) the resulting output with the initial state xt and input u[t,t+N) is

y[t,t+N) = Ofxt + Gfu[t,t+N), (3.30)

which is an existing y[t,t+N) that satisfies (3.11).
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(ii): Substituting (3.28) into (3.30), we have

y[t,t+N) = Of(Φpxt−L + Cpu[t−L,t)) + Gfu[t,t+N). (3.31)

To show the uniqueness of y[t,t+N), it suffices to show that the term OfΦpxt−L in (3.31)
is unique, although xt−L may not be unique. Since L ≥ l(S, t − L), it follows from the
definition of lag in (3.9b) and the definitions of Op,Opf that

rank(Op) = rank(Opf).

Due to the rank equality above and the segmentation Opf = col(Op,OfΦp) in (3.27), we
conclude that the rows in OfΦp are linearly dependent to the rows in Op, so there exists a
matrixM∈ RpN×pL such that

OfΦp =MOp. (3.32)

Then, we obtain that

OfΦpxt−L
via (3.32)
== MOpxt−L =MOpOp

†Opxt−L

via (3.32)
== OfΦpOp

†Opxt−L

via (3.29)
== OfΦpOp

†(y[t−L,t) − Gpu[t−L,t))

is unique, which implies uniqueness of y[t,t+N) via (3.31).

(iii): It follows from (3.11) and (3.12) that
u[t−L,t)

u[t,t+N)

y[t−L,t)

y[t,t+N)

 ∈ ColSpan


Up

Uf

Yp

Yf

 .

By definition of column span, there exists g ∈ Rh such that
Up

Uf

Yp

Yf

 g =


u[t−L,t)

u∗
[t,t+N)

y[t−L,t)

y∗[t,t+N)

 . (3.33)
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Now, we show that Yf can be written asN [Up;Uf ;Yp] with some matrixN ∈ RpN×(mL+mN+pL).
From Lemma 3.3,

BS
[t−L,t+N) = ColSpan

[
0 I
Opf Gpf

]

via (3.27)
== ColSpan


0 I 0
0 0 I
Op Gp 0
OfΦp OfCp Gf


Notice that the above column span and the column span in (3.12) are both equal to
BS

[t−L,t+N). Hence, there exist matrices P ∈ Rn×h,Q ∈ RmL×h,R ∈ RmN×h such that
Up

Uf

Yp

Yf

 =


0 I 0
0 0 I
Op Gp 0
OfΦp OfCp Gf


PQ
R

 .

Computing the right-hand side above and then comparing the result to the left-hand side,
we have Q = Up, R = Uf , and

Yp = OpP + GpUp, (3.34)

Yf = OfΦpP +OfCpUp + GfUf . (3.35)

Therefore, we can represent Yf into the form N col(Up, Uf , Yp),

Yf
via (3.35)
== OfΦpP +OfCpUp + GfUf

via (3.32)
== MOpP +OfCpUp + GfUf

via (3.34)
== M(Yp − GpUp) +OfCpUp + GfUf

= N col(Up, Uf , Yp) (3.36)

with matrix N := col(OfCp −MGp,Gf ,M). The result (3.13) then follows:

y[t,t+N)

via (3.33)
== Yfg

via (3.36)
== NHg = NHH†Hg

via (3.36)
== YfH†Hg via (3.33)

== YfH†

u[t−L,t)

u[t,t+N)

y[t−L,t)

 ,

where we let H denote col(Up, Uf , Yp).
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3.7.4 Proof of Lemma 3.18

Proof. We first prove the case when K is a multiple of T , i.e., where K = K1T for

some K1 ∈ N. Let w[t1,t2] :=

[
u[t1,t2]

y[t1,t2]

]
and w[τ1,τ2] :=

[
u[τ1,τ2]

y[τ1,τ2]

]
denote a trajectory of the

system S and the lifted system SL(t0), respectively. From Lemma 3.12, we know that

BSL(t1)
[0,s) = BS

[t1,t1+sT ) for all s ∈ N, so we can establish such a trajectory wd
[0,P ) ∈ BSL(t1)

[0,P )

that

wd
[0,P ) := wd

[t1,t1+PT )

with P := ⌊(t2 − t1 + 1)/T ⌋, i.e., P is the number of whole periods in the interval [t1, t2].
With abuse of notation, we let n := n(S, t1) and nL := n(SL(t1)) in this proof, then we
have n = nL via Lemma 3.14(i). By direct substitution, one can verify that

HK1+nL
(ud

[0,P )) = H T
(K1+n)T (u

d
[t1,t2]

), (3.37)

HK1(w
d
[0,P )) = H T

K (wd
[t1,t2]

). (3.38)

(Note that in (3.37), the block rows on the left-hand side are of size mT , where m is the
input dimension of S, while on the right-hand side, the block rows are of size m. Similarly
for (3.38).) Since ud

[t1,t2]
is T -p.p.e. of order (K1 + n)T (i.e., the right-hand side of (3.37)

has full row rank), we know that ud
[0,P ) is persistently exciting of order K1 + nL (as the

left-hand side of (3.37) has full row rank). We also know via Lemma 3.15 that SL(t1) is
controllable because S is controllable. Thus by Lemma 2.9 we have

ColSpan(HK1(w
d
[0,P ))) = BSL(t1)

[0,K1)
. (3.39)

Substitute (3.38) into the left-hand side of (3.39), and replace the right-hand side of (3.39)

using BSL(t1)
[0,K1)

= BS
[t1,t1+K) via Lemma 3.12, and then we obtain the result.

Next, we show the result for all K ∈ N. Let K1 := ⌈K/T ⌉ and K̂ := K1T , i.e., K̂ is

the smallest multiple of T greater than or equal to K. Since ⌈K/T ⌉ = ⌈K̂/T ⌉, ud
[t1,t2]

is

T -p.p.e. of order (⌈K̂/T ⌉ + n(S, t1))T , we have the condition (ii) of this lemma for the

case K ← K̂ as a multiple of T , which case we have already proved. We therefore have

ColSpan(H T
K̂
(wd

[t1,t2]
)) = BS

[t1,t1+K̂)
. (3.40)

Define H△ := H T
K (wd

[t1,t2−(K̂−K)]
). One can verify that H T

K (ud
[t1,t2−(K̂−K)]

) consists of the

first K block rows of H T
K̂
(ud

[t1,t2]
), and similarly for yd. Hence, applying Lemma 3.4 for

(3.40) we have
ColSpan(H△) = BS

[t1,t1+K). (3.41)
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However, note that

ColSpan(H△) ⊆ ColSpan(H T
K (wd

[t1,t2]
)) ⊆ BS

[t1,t1+K), (3.42)

where the first inclusion (⊆) above is because H△ is a sub-matrix of H T
K (wd

[t1,t2]
) with the

same column size, and the second inclusion above is because each column of H T
K (wd

[t1,t2]
)

is a vector in the behavior set BS
[t1,t1+K). The result now follows by combining (3.41) and

(3.42).

3.7.5 Proof of Proposition 3.20

Proof. Equivalence of Optimal Sets. We first show that the problems (P-DeePC),
(P-SPC) and (LTV-MPC) have the same set of optimal trajectories u[t,t+N), y[k,k+N). Since
the three problems have the same cost function (2.8) and a common constraint (2.7), it
suffices to show the rest constraints, i.e. the following statements, are equivalent:

a) u[k,k+N) and y[k,k+N) satisfy (3.23) for some g ∈ Rh;
b) u[k,k+N) and y[k,k+N) satisfy (3.24);
c) u[k,k+N) and y[k,k+N) satisfy (3.25) for some x[t,t+N ].

With assumptions (i) and (ii), we obtain (3.20) as discussed in Section 3.4.1, where we
used Lemma 3.19 and the definition of the proper index Θ(t). It follows from assumption

(iii), i.e., Θ̂(k) = Θ(k) and (3.20) that

ColSpan


Up(Θ̂(k))

Uf(Θ̂(k))

Yp(Θ̂(k))

Yf(Θ̂(k))

 = BS
[k−L,k+N). (3.43)

For showing the equivalence of a), b) and c), we introduce an auxiliary statement:

d) u[k,k+N) and y[k,k+N) satisfy (3.11).

a) ⇐⇒ d): By definition of column span, a) is same as
u[k−L,k)

u[k,k+N)

y[k−L,k)

y[k,k+N)

 ∈ ColSpan


Up(Θ̂(k))

Uf(Θ̂(k))

Yp(Θ̂(k))

Yf(Θ̂(k))

 .
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From (3.43), the expression above is equivalent to d).

b) ⇐⇒ d): Given L ≥ l(S, k − L) and (3.43), via Lemma 3.11(iii), for each u[k,k+N)

(3.24) specifies the unique y[k,k+N) that satisfies (3.11). Therefore, b) is equivalent to d).

c) =⇒ d): Since u[k,k+N), y[k,k+N) is a trajectory with initial state xk via (3.25) and
u[k−L,k), y[k−L,k) is a trajectory with final state xk, the two trajectories can be connected
into a single trajectory, i.e. (3.11) holds.

d) =⇒ c): Define y∗[k,k+N) the unique output resulting from the initial state xt and

input u∗
[t,t+N). Since u[k−L,k), u[k−L,k) is a trajectory with final state xk and u[k,k+N), y

∗
[k,k+N)]

is a trajectory with initial state xk, their connection is also a trajectory and satisfies the
following.

col(u[k−L,k), u[k,k+N), y[k−L,k), y
∗
[t,t+N)) ∈ BS

[k−L,k+N)

Comparing (3.11) to the above, due to the uniqueness in Lemma 3.11(ii) (where we used
(i) of this proposition), we conclude that y[k,k+N) = y∗[k,k+N). Hence, y[k,k+N) is the output

resulting from the initial state xt and input u[k,k+N), i.e., (3.25) holds.

Uniqueness of Future Trajectory. Finally, we show that the optimal trajectory
u[k,k+N), y[k,k+N) of each problem is unique. (LTV-MPC) has a unique optimal solution
u[k,k+N), y[k,k+N), because x[k,k+N ] and y[k,k+N) are both dependent on u[k,k+N) via (3.25)
and hence the cost function (2.8) with R ≻ 0 is strictly convex of the only independent
variable u[k,k+N). Following from the equivalence of the optimal sets, the optimal trajec-
tories u[k,k+N), y[k,k+N) of (P-DeePC) and (P-SPC) are also unique. This completes the
proof.
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Chapter 4

Stochastic Data-Driven Predictive
Control

In this chapter, we present our contributions to DDPC methods for stochastic systems,
as outlined in our works [78, 79]. Section 4.1 outlines the stochastic control problem,
considering both the Gaussian distribution setup and the distributionally robust setup. In
Section 4.2, we examine a Stochastic MPC framework that integrates several established
techniques from the literature. Our proposed Stochastic DDPC method is presented in
Section 4.3, where we prove that it generates control inputs equivalent to those obtained
using the investigated Stochastic MPC approach, under several tuning conditions and the
assumption that offline data is noise-free. Simulation results in Section 4.4 validate our
data-driven control method, showcasing improved performance compared to benchmark
control methods.

4.1 Problem Statement: Stochastic LTI Case

We consider a stochastic linear time-invariant (LTI) system

xt+1 = Axt +But + wt, (4.1a)

yt = Cxt +Dut + vt, (4.1b)

with input ut ∈ Rm, state xt ∈ Rn, output yt ∈ Rp, process noise wt ∈ Rn, and measure-
ment noise vt ∈ Rp. The initial state x0 is uncertain with a given mean µx

ini and with a
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variance set to the steady-state value determined by a Kalman filter, which will be intro-
duced in Section 4.2.1. The system matrices A,B,C,D are unknown and the state xt is
unmeasured ; we have access only to the input ut and output yt in (4.1). The assumptions
regarding the disturbances wt and vt will be detailed separately in Section 4.1.1 and Section
4.1.2, where we investigate two different setups of the stochastic system (4.1). We assume
the system (A,B,C,D) is a minimal realization (i.e., controllable and observable), where
controllability is required for control purposes and observability is assumed without loss
of generality for an unknown system [23, Sec. 2.4]. Let L ∈ N be such that the extended
observability matrix O := col(C,CA, . . . , CAL−1) has full column rank; such smallest L is
the lag of the system [23, 24]. Finally, we assume the pair (A,Σw) is stabilizable, which
implies that (A, (Σw)1/2) is stabilizable and will subsequently ensure uniqueness of the state
variance by the Kalman filter [94].

In a reference tracking problem, the objective is for the output yt to follow a specified
reference signal rt ∈ Rp. The trade-off between tracking error and control effort may be
encoded in the cost (2.2), reproduced as

Jt(ut, yt) := ∥yt − rt∥2Q + ∥ut∥2R, (2.2)

to be minimized over a horizon, where Q ∈ Sp
++ and R ∈ Sm

++ are user-selected parameters.
This tracking should be achieved subject to constraints on the inputs and outputs. We
consider a polytopic constraint in the form

E

[
ut

yt

]
≤ f (4.2)

for t ∈ N≥0, where E ∈ Rq×(m+p) is a fixed matrix, f ∈ Rq is a fixed vector, with some
q ∈ N. In the stochastic setting, the deterministic constraint (4.2) can be adapted to
probabilistic constraints, as we will again discuss separately in Section 4.1.1 and Section
4.1.2, depending on the different setups of disturbances wt and vt.

Remark 4.1 (Output Constraints and Output Tracking). State constraints and costs
are commonly considered in MPC and SMPC methods [5, 10, 11, 12], being used to en-
force safety conditions and quantify control performance, respectively. Our problem setup
focuses on output control, with the internal state being unknown and unrealized. For
this reason, we instead considered input-output constraint (4.4) for safety conditions and
output-tracking cost (2.2) for performance evaluation, which are both common in DDPC
methods such as [38].

63



4.1.1 Gaussian Distribution Case

We first describe the problem formulation where all random variables are normally dis-
tributed. The disturbances wt and vt in (4.1) are independent of each other and of x0, and
are independently and identically distributed (i.i.d.) normally with zero mean and with
variances Σw ∈ Sn

+ and Σv ∈ Sp
++ respectively, i.e.,

wt
i.i.d.∼ N (0n×1,Σ

w), vt
i.i.d.∼ N (0p×1,Σ

v). (4.3)

The deterministic constraint (4.2) is modelled in the stochastic setting as a probabilistic
chance constraint

P
{
E

[
ut

yt

]
≤ f

}
≥ 1− p (4.4)

for t ∈ N≥0, where E ∈ Rq×(m+p) is a fixed matrix, f ∈ Rq is a fixed vector, with some
q ∈ N, and p ∈ (0, 1) is a probability bound of constraint violation. One can similarly
impose multiple chance constraints, e.g., separate input and output chance constraints, in
the form of (4.4).

4.1.2 Distributionally Robust Case

As an alternative problem setup, we consider the case where the random variables have
unknown distributions. The probability distributions of wt and vt are unknown, but we
assume that wt and vt have zero mean and zero auto-correlation (white noise), are uncorre-
lated, and their variances Σw ∈ Sn

+ and Σv ∈ Sp
++ are known. The initial state x0 has given

mean µx
ini and variance Σx and is uncorrelated with the noise. We record these conditions

as

E
[ [

wt

vt

] ]
= 0, E

[ [
wt

vt

] [
ws

vs

]T ]
=

[
δtsΣ

w 0
0 δtsΣ

v

]
, (4.5)

E[x0] = µx
ini, Var[x0] = Σx, E

[
x0

[
wt

vt

]T ]
= 0, (4.6)

with δts the Kronecker delta.

We can equivalently express the constraints (4.2) as the single constraint h(ut, yt) ≤ 0,
where

h(ut, yt) := max
i∈{1,...,q}

eTi

[
ut

yt

]
− fi, (4.7)
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with ei ∈ Rm+p the transposed i-th row of E and fi ∈ R the i-th entry of f . For the
system (4.1) which is subject to (possibly unbounded) stochastic disturbances, the deter-
ministic constraint h(ut, yt) ≤ 0 must be relaxed. Beyond a traditional chance constraint
P[h(ut, yt) ≤ 0] ≥ 1− α with a violation probability α ∈ (0, 1), a conditional value-at-risk
(CVaR) constraint is more conservative; the CVaR at level α of h(ut, yt) is defined as the
expected value of h(ut, yt) in the α· 100% worst cases, and takes extreme violations into
account. With the noise distributions unknown, we must further guarantee satisfaction
of the CVaR constraint for all possible distributions under consideration. Let D denote
a joint distribution of all random variables in (4.1) satisfying (4.5) and (4.6), and let the
ambiguity set D be the set of all such distributions. The distributionally robust CVaR
(DR-CVaR) constraint [95, 96] is then

supD∈D D-CVaRα[h(ut, yt)] ≤ 0, (4.8)

where D-CVaRα[z] is the CVaR value of a random variable z ∈ R at level α given distri-
bution D.

4.1.3 Our Objective: An Equivalent Data-Driven Method

In a model-based setting where A,B,C,D are known, the general control problem above
can be addressed by SMPC, as will be reviewed in Section 4.2. Our broad objective is to
construct a direct data-driven method that addresses the same stochastic control problem
and is equivalent, under certain tuning conditions, to SMPC.

In direct data-driven control methods such as DeePC and SPC for deterministic sys-
tems, a sufficiently long and sufficiently rich set of noise-free input-output data is collected.
Under technical conditions, this data provides an equivalent representation of the under-
lying system dynamics, and is used to replace the parametric model in predictive control
schemes, yielding control algorithms which are equivalent to model-based predictive control
[38, 15]. Motivated by this equivalence, our goal here is to develop a direct data-driven
control method that produces the same input-state-output sequences as produced by the
SMPC method reviewed in Section 4.2 when applied to the same system (4.1) with same
initial condition x0 and same realizations of process and sensor noises wt, vt. Put simply,
we seek a direct data-driven counterpart to SMPC.

As in the described cases of equivalence for DeePC and SPC, we will subsequently show
equivalence of our data-driven method to SMPC in the idealized case where we have access
to noise-free offline data. While this may initially seem peculiar in an explicitly stochastic
control setting, we view this as the most reasonable theoretical result to aim for, given
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that the prediction model must be replaced using only a finite amount of recorded data.
Moreover, remark that (i) noisy offline data can be accommodated in a robust fashion
through the use of regularized least-squares (Section 4.3.1), as supported by simulation
results in Section 4.4, and (ii) our stochastic control approach will fully take into account
process and sensor noise during the online execution of the control process.

4.2 Stochastic Model Predictive Control

Several formulations of SMPC methods have been developed in the literature [10, Table 2].
Our focus is on output-feedback SMPC [97, 98, 99, 100, 101], which is typically approached
by enforcing a separation principle within the design, augmenting full-state-feedback SMPC
with state estimation. Our formulation here is based on an affine feedback-policy parame-
terization, following e.g., [98, 99], with the modifications that we consider output tracking
and output constraints, as opposed to state objectives. The SMPC method under consid-
eration here also integrates interpolation of initial condition [102, 103], which is required
for recursive feasibility with unbounded noise, and approximation of chance constraints
[104], which leads to a tractable optimization problem. In this section, we assume the
exact system model (A,B,C,D) in (4.1) is given, while in practice, such as the simulations
in Section 4.4, an identified model should be used instead.

4.2.1 Initial Condition and State Estimation

SMPC follows a receding-horizon strategy and makes decisions for N upcoming steps at
each control step. At control step t = k, the initial condition of the state xk is modeled in
the Gaussian distribution setting (Section 4.1.1) as

xk ∼ N (µx
k,Σ

x), (4.9)

or alternatively modeled in the distributionally robust setting (Section 4.1.2) as

E[xk] = µx
k, Var[xk] = Σx, (4.10)

where the mean µx
k ∈ Rn depends on a decision variable θ ∈ [0, 1], according to an interpo-

lation technique to be introduced in Section 4.2.2. The state variance Σx ∈ Sn
+ in (4.9) and

(4.10) is fixed and induced by the steady-state Kalman filter. Specifically, Σx is the unique
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positive semidefinite solution to the associated discrete-time algebraic Riccatti equation
(DARE) [94]

Σx = (A− LLC)ΣxAT + Σw (4.11a)

LL := ALK, LK := ΣxCT(CΣxCT + Σv)−1 (4.11b)

given detectable (A,C) and stabilizable (A,Σw), where we let LK ∈ Rn×p denote the
steady-state Kalman gain and LL ∈ Rn×p the associated Luenberger observer gain.

With the initial condition (4.9) or (4.10), we simulate the noise-free model for future
N time steps,

xt+1 := Axt +But, t ∈ Z[k,k+N) (4.12a)

yt := Cxt +Dut, t ∈ Z[k,k+N) (4.12b)

xk := µx
k (4.12c)

where the nominal inputs ut ∈ Rm for t ∈ Z[k,k+N) will be decision variables in optimization,
with resulting nominal states xt ∈ Rn and nominal outputs yt ∈ Rp.

After the reveal of future measurements, estimates of the future states over the desired
horizon will be computed through the steady-state Kalman filter, with LK in (4.11b),

νt := yt − Cx̂-t −Dut, t ∈ Z[k,k+N) (4.13a)

x̂+t := x̂-t + LKνt, t ∈ Z[k,k+N) (4.13b)

x̂-t+1 := Ax̂+t +But, t ∈ Z[k,k+N) (4.13c)

x̂-k := µx
k (4.13d)

where x̂+t and x̂-t denote the posterior and prior estimates of xt, respectively, and νt ∈ Rp

is the innovation. The steady-state Kalman filter (4.13) is equivalent to a Luenberger
observer as in [98, 97] with observer gain LL in (4.11b), and is the stationary case of
time-varying Kalman filters used in [99, 100, 101].

4.2.2 Interpolation of Initial Condition

A common choice of µx
k in (4.9) and (4.10) is the prior state estimate x̂-k produced by the

estimator (4.13) in the previous control step [100, 99, 101]; we denote this choice by µx̂
k.

However, in our setting the state estimates are normally distributed and thus unbounded.
The choice µx

k = µx̂
k may lead to an extreme value of µx

k, which in turn could render the
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constraint (4.4) infeasible. A different choice of µx
k is the deterministic prediction xk of

state the xk, obtained via (4.12) at the last control step [98]; we denote this choice by µx̄
k.

Choosing µx
k = µx̄

k can guarantee feasibility, with proper design of the control optimization
problem; however, the value µx̄

k does not incorporate feedback from past measurements.

Trading off the two options, we let the initial condition µx
k in (4.9) and (4.10) interpolate

between µx̂
k and µx̄

k [102, 103] as

µx
k := (1− θ)µx̂

k + θ µx̄
k, (4.14)

where θ ∈ [0, 1] is a decision variable, and both µx̂
k, µ

x̄
k ∈ Rn are fixed and known at time

t = k. At initial control step k = 0, µx
0 is equal to a given parameter µx

ini, i.e., we let
µx̂
0 := µx

ini and µx̄
0 := µx

ini.

4.2.3 Feedback Control Policies: Output Feedback

Stochastic state-feedback control requires the determination of (causal) feedback policies
πt which map the observation history into control actions. As the space of policies is an
infinite-dimensional function space, a simple affine feedback parameterization is typically
used in SMPC to obtain a tractable finite-dimensional optimization problem, written as
(cf. [97, 98, 99])

ut = πt(x̂
-
t ) := ut −K(x̂-t − xt), (4.15)

where K ∈ Rm×n is a fixed feedback gain such that A−BK is Schur stable. Through the
policy (4.15), the control action ut depends both on the decision ut optimized at the control
step, and on the state estimate x̂-t via (4.13) which is decided after the measurement of
y[k,t) and embodies feedback from the measurements. Based on the cost (2.2), we select
the gain matrix K in (4.15) as the infinite-horizon LQR gain of system (4.1) with LQR
stage cost ∥Cxt +Dut∥2Q + ∥ut∥2R (i.e., with state weight CTQC, input weight R+DTQD
and cross weight CTQD),

K := (R +BTPB +DTQD)−1(BTPA+DTQC) (4.16)

where P ∈ Sn
+ is the unique positive semidefinite solution to the discrete-time algebraic

Riccati equation (DARE) [94]

P = ATP (A−BK) + CTQ(C −DK), (4.17)
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given stabilizable (A,B), detectable (A,C) and Q ≻ 0. We remark that an equivalent
form πt(x̂

-
t ) := ct − Kx̂-t of (4.15) with decision variable ct has been used in [97] and in

many SMPC examples surveyed in [10]. A time-varying-gain version of (4.15) is adopted
in [98], and [99] uses x̂+t in place of x̂-t in the control policy. Affine disturbance feedback is
sometimes considered in SMPC methods, e.g. [100], and it is shown that affine disturbance
feedback control policies and affine state feedback control policies lead to equivalent control
inputs [105]; here we focus on the state-feedback parameterization.

Remark 4.2 (Input Chance Constraints). Hard input constraints are difficult to inte-
grate with the affine policy (4.15), as under our previous assumptions the resulting control
input is normally distributed and unbounded. Chance constraint (4.4) on input is thus
used in its place, as in [98]. Another option as in [101] is to use (nonlinear) saturated
policies in place of (4.15), but then the resulting inputs and outputs are no longer linear in
decision variables and our further analysis would be much more complicated. Ultimately in
implementation of course, one can saturate input actions to satisfy hard input constraints.

Resulting Input-Output Distribution or Mean-Variance

In the Gaussian noise setting (Section 4.1.1), with (4.1), (4.3), (4.9), (4.12), (4.13) and
(4.15), at control step t = k, the resulting future inputs ut and outputs yt for t ∈ Z[k,k+N)

are distributed as [
ut

yt

]
∼ N

([
ut

yt

]
, ∆t−k

)
, (4.18)

where the covariance matrix ∆s ∈ Sm+p
+ for s ∈ Z[0,N) can be computed as (4.19a) using

Λs ∈ Sn
+ defined by (4.19b),

∆s :=

[
−K

C−DK

]
Λs

[
−K

C−DK

]T
+Diag(0m×m,Ξ) (4.19a)

Λs :=
∑s−1

r=0(A−BK)r LL ΞLL
T (A−BK)rT (4.19b)

with LL in (4.11b) and Ξ := CΣxCT + Σv ∈ Sp
++. A derivation of (4.18) can be found

in Section 4.6.1. Note that the matrices ∆0,∆1, . . . ,∆N−1 are fixed and can be computed
offline.

In the distributionally robust setting (Section 4.1.2), we consider (4.5) instead of (4.3)
and consider (4.10) instead of (4.9), and we obtain the same input-output mean and
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variance as in (4.18), i.e.,

E
[ [

ut

yt

] ]
=

[
ut

yt

]
, Var

[ [
ut

yt

] ]
= ∆t−k. (4.20)

Resulting Expected Cost

SMPC problems typically consider the expectation of cost (2.2) summing over the desired
horizon. Given the distribution in (4.18) or the mean and variance in (4.20), the expected
cost is known as a deterministic value

k+N−1∑
t=k

E[Jt(ut, yt)] =
k+N−1∑
t=k

Jt(ut, yt) + Jconst, (4.21)

where Jconst :=
∑N−1

s=0 Trace(∆sDiag(R,Q)) is a constant independent of decision variables
u and θ.

4.2.4 Feedback Control Policies: Output Error Feedback

Section 4.2.3 was based on an affine feedback policy (4.15) with a fixed feedback gain K.
Here we investigate alternative control policies where the feedback gain is a time-varying
decision variable. Note that the naive parameterization modified from (4.15)

ut ← ut −Kt(x̂t − xt) (4.22)

leads to non-convex bilinear terms of the decision variables u and Kt, as x̂t, xt depend on
u[k,t) via (4.13), (4.12). Here we apply an output error feedback control policy [106]

ut ← πt(ν[k,t)) := ut +
t−1∑
s=k

M s
t νs (4.23)

where the nominal input ut and feedback gains M s
t ∈ Rm×p are both decision variables,

with innovation ν in (4.13a). The policy parameterization (4.23) contains within it the
policy (4.22) as a special case: indeed, for a sequence of gains K[k,k+N), the selection for
all s, t ∈ Z[k,k+N), s ≤ t

M s
t ← (A−BKt−1)(A−BKt−2) · · · (A−BKs)LL (4.24)

reduces (4.23) to (4.22). Crucially, the output-error-feedback policy (4.23) leads to jointly
convex optimization in decision variables u and M s

t , as we will see next.
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Resulting Input-Output Distribution or Mean-Variance

Define ηk := col(xk − µx
k, w[k,k+N), v[k,k+N)) ∈ Rnη as a vector of uncorrelated zero-mean

random variables of dimension nη := n+ nN + pN . Then, both input ut and output yt of
(4.1) can be written as affine functions of the decision variables u and M s

t through direct
calculation given the estimator (4.13) and policy (4.23),[

ut

yt

]
=

[
ut

yt

]
+ Λt ηk, t ∈ Z[k,k+N), (4.25)

with y in (4.12b), where the matrix Λt ∈ R(m+p)×nη in (4.25) is linearly dependent on the
gain matrices M s

t as

Λt :=

[
∆U

t−k

∆Y
t−k

]
M∆M +

[
0m×nη

∆A
t−k

]
, t ∈ Z[k,k+N), (4.26)

whereM∈ RmN×pN is a concatenation of M s
t

M :=


Mk

k

Mk
k+1 Mk+1

k+1
...

...
. . .

Mk
k+N−1 Mk+1

k+N−1 · · · Mk+N−1
k+N−1

 (4.27)

and where ∆U
i ∈ Rm×mN ,∆Y

i ∈ Rp×mN ,∆A
i ∈ Rp×nη and ∆M ∈ RpN×nη are independent of

both decision variables u and M s
t , defined as follows,

col
(
∆U

0 , . . . ,∆
U
N−1

)
:= ImN

col
(
∆Y

0 , . . . ,∆
Y
N−1

)
:= Ξ(A) (IN ⊗B)

col
(
∆A

0 , . . . ,∆
A
N−1

)
:= [Θ(A),Ξ(A), IpN ]

∆M := [Θ(AL),Ξ(AL), IpN − Ξ(AL) (IN ⊗ LL)]

where we define Θ(A) := col(C,CA, . . . , CAN−1) ∈ RpN×n and Ξ(A) ∈ RpN×nN ,

Ξ(A) :=


0p×n

C 0p×n
...

...
. . .

CAN−2 · · · C 0p×n
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and similarly define Θ(AL),Ξ(AL) with AL := A− LLC.

In the Gaussian noise setting (Section 4.1.1), ηk has the distribution ηk ∼ N (0,ΛtΣ
ηΛT

t )
via (4.3) and (4.9), and thus given (4.25) we have the input-output distribution as[

ut

yt

]
∼ N

([
ut

yt

]
,ΛtΣ

ηΛT
t

)
. (4.28)

In the distributionally robust setting (Section 4.1.2), ηk has zero mean E[ηk] = 0 and has
the variance Var[ηk] = ΛtΣ

ηΛT
t via (4.5) and (4.10), so we have the mean and variance of

the input and output via (4.25) as

E
[ [

ut

yt

] ]
=

[
ut

yt

]
, Var

[ [
ut

yt

] ]
= ΛtΣ

ηΛT
t . (4.29)

Resulting Expected Cost

SMPC problems typically consider the expected cost
∑k+N−1

t=k E[Jt(ut, yt)] summing (2.2)
over the horizon, which is equal to a deterministic quadratic function of u and M s

t ,

k+N−1∑
t=k

[
Jt(ut, yt) + ∥Diag(R,Q)

1
2Λt(Σ

η)
1
2∥2F

]
, (4.30)

given the mean and variance of col(ut, yt) and given that E[∥z∥2S] = ∥E[z]∥2S+∥S
1
2Var[z]

1
2∥2F

for any random vector z and fixed matrix S; ∥ · ∥F denotes the Frobenius norm.

4.2.5 Deterministic Approximation of Chance Constraint

In the Gaussian noise setting (Section 4.1.1), despite known input-output distribution
(4.18) or (4.28), an exact deterministic representation of the joint chance constraint (4.4)
is difficult, as it requires integration of a multivariate probability density function over a
polytope and generally no analytic representation is available [12, Sec. 2.2]. For this reason,
the joint constraint (4.4) is commonly approximated by, e.g., being split into individual
chance constraints [104], for each time t ∈ Z[k,k+N),

P
{
eTi

[
ut
yt

]
≤ fi

}
≥ 1− pi,t, i ∈ Z[1,q] (4.31)
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where ei ∈ Rm+p is the transposed i-th row of E, and fi ∈ R is the i-th entry of f . The
allocated risk probabilities pi,t > 0 in (4.31) are introduced as additional decision variables,
such that p1,t, p2,t, . . . , pq,t sum up to the total risk p for each time t. Note that (4.31) is
a conservative approximation (or a sufficient condition) of (4.4), due to subadditivity of
probabilities. Here, we focus on the distribution (4.18) resulting from output feedback,
while similar results can be derived for the distribution (4.28) arising from output error
feedback. The chance constraints (4.31) are converted into an equivalent deterministic
form, cf. [98, 104],

eTi

[
ut

yt

]
≤ fi −

√
eTi ∆t−k ei icdfn(1− pi,t), i ∈ Z[1,q] (4.32a)

q∑
i=1

pi,t = p, pi,t > 0, i ∈ Z[1,q] (4.32b)

for t ∈ Z[k,k+N), where icdfn(z) :=
√
2 erf−1(2z − 1) is the inverse cumulative distribution

function (inverse c.d.f.) or the z-quantile of the standard normal distribution, with erf−1

the inverse error function. The constraints (4.32) are convex when we require p ∈ (0, 1
2
]

[104, Thm. 1].

Remark 4.3 (Gaussian Signals). We have assumed through (4.3) and (4.9) that random
variables are normally distributed. In the case where random signals are non-Gaussian
but with the same means and variances in (4.3) and (4.9), the resulting inputs ut and
outputs yt still possess the mean and variance in (4.18), and thus the expected cost is
still (4.21). However, the inverse c.d.f. in (4.32a) should change correspondingly to the
actual distribution (if known), or be replaced into an upper bound

√
(1− pi,t)/pi,t via

Chebyshev–Cantelli inequality that guarantees the worse case over all distributions [64, 66].

4.2.6 Deterministic Reformulation of DR-CVaR Constraint

In the distributionally robust setting (Section 4.1.2), the DR-CVaR constraint (4.8) can
be equivalently written as a deterministic constraint. With output error feedback (4.23)
in Section 4.2.4, constraint (4.8) is reformulated as a second-order cone (SOC) constraint
on the decision variables u and M s

t in the following lemma.

Lemma 4.4 (SOC Expression of DR-CVaR Constraint). With h(ut, yt) as in (4.7), for
t ∈ Z[k,k+N), (4.8) holds iff

2
(1− α

α

)1
2

∥∥(Ση)
1
2ΛT

t ei
∥∥
2
≤ −eTi

[
ut

yt

]
+ fi, i ∈ Z[1,q]. (4.33)

73



Proof. Substituting (4.25) into (4.7), h(ut, yt) can be written as

h(ut, yt) = max
i∈{1,...,q}

eTi Λtηk + eTi col(ut, yt)− fi,

where the random variable ηk has zero mean and variance Ση. According to [96, Thm.
3.3], (4.8) holds if and only if there exist θt ∈ R and Θt ∈ Snη+1

+ satisfying the LMIs

0 ≥ αθt + Trace
[
ΘtDiag(Σ

η, 1)
]

Θt ⪰
[
0nη×nη ΛT

t ei

eTi Λt eTi col(ut, yt)− fi − θt

]
, i ∈ Z[1,q].

From [107, Thm. 1], these LMIs are feasible in (θt,Θt) if and only if (4.33) holds, which
completes the proof.

With output feedback (4.22) in Section 4.2.3, one can similarly reformulate constraint
(4.8) as the deterministic SOC constraint (4.33) on the decision variable u, where the value
of M s

t underlying Λt in (4.26) is fixed as follows

M s
t ← (A−BK)t−sLL, (4.34)

as similar to (4.24). This is because the output-feedback policy (4.15) is a special case of
the output-error-feedback policy (4.23) where M s

t is selected as in (4.34).

4.2.7 Terminal Condition

Terminal constraints are considered in (S)MPC frameworks to ensure recursive feasibility
and closed-loop stability. Assume N ≥ L going forward. Here, we impose a terminal
equality constraint [46, 47, 48, 49],

uk+N−L = uk+N−L+1 = · · · = uk+N−1 (4.35a)

yk+N−L = yk+N−L+1 = · · · = yk+N−1 (4.35b)

that requires the nominal input-output trajectory to stay at some setpoint for final L
steps in the prediction horizon. Terminal set constraints are also leveraged in (S)MPC
methods, bounding the final nominal state in a positively invariant set [97, 98, 99, 102];
here we find the input-output terminal constraint (4.35) more straightforward to adapt to
the data-driven case.
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4.2.8 SMPC Optimization Problem and Implementation

With the expected cost (4.21), the approximation (4.32) of the constraint (4.4), the in-
terpolation (4.14) and the terminal constraint (4.35), the SMPC problem is formulated
as

minimize
u, θ, pi,t

k+N−1∑
t=k

Jt(ut, yt) + λθ θ

subject to (4.32) for t ∈ Z[k,k+N), (4.12), (4.14), (4.35),

(SMPC)

with an interpolation penalty term of parameter λθ > 0 [103]. With R ≻ 0 and λθ > 0, the
cost in (SMPC) is jointly strongly convex in u and θ, and thus problem (SMPC) possesses
a unique optimal (u, θ) if feasible, although optimal pi,t may not be unique. Problem
(SMPC) can be efficiently solved by the Iterative Risk Allocation method [104]; see [78,
Appendix B] for more details of our implementation.

While problem (SMPC) is based on the chance constraint (4.4) from Section 4.1.1
and the fixed-gain output feedback (4.15) from Section 4.2.3, alternative setups are also
available. The SMPC problem can be formulated based on the DR-CVaR constraint (4.8)
from Section 4.1.2 by replacing constraint (4.32) in (SMPC) into constraint (4.33), as
discussed in Section 4.2.6. For an SMPC problem with output error feedback (4.23) from
Section 4.2.4, the objective function should be selected as (4.30) plus the penalty term
λθ θ. In the remainder of Section 4.2 and in Section 4.3, we focus on the setup in (SMPC)
with the chance constraint and output feedback, while the simulations in Section 4.4 will
compare the performance of these different setups.

The nominal inputs u[k,k+N) and interpolation variable θ determined from problem
(SMPC) complete the parameterization of the control policies π[k,k+N) in (4.15). The up-
coming Nc control inputs u[k,k+Nc) are decided by the first Nc policies π[k,k+Nc) respectively,
with a parameter Nc ∈ Z[1,N ]. Then, the next control step is set as t = k+Nc. At the new
control step, the initial condition µx

k+Nc
interpolates between two fixed options µx̂

k+Nc
and

µx̄
k+Nc

which are decided by

µx̂
k+Nc

:= x̂-k+Nc
, µx̄

k+Nc
:= xk+Nc , (4.36)

as described in Section 4.2.2. The entire SMPC control process is shown in Algorithm 5.

4.2.9 Closed-Loop Properties

The investigated SMPC framework possesses recursive feasibility and closed-loop stability.
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Algorithm 5 A Framework of Stochastic Model Predictive Control (SMPC)

Input: horizon lengths L,N,Nc, system matrices A,B,C,D, noise variances Σw,Σv, initial
state mean µx

ini, cost matrices Q,R, constraint coefficients E, f , probability bound p,
interpolation penalty coefficient λθ.

1: Compute Kalman gain LK via (4.11b), feedback gain K via (4.16), and covariance
matrices ∆[0,N) via (4.19).

2: Initialize the control step k ← 0 and set the initial condition µx̂
0 ← µx

ini and µx̄
0 ← µx

ini.
3: while true do
4: Solve u[k,k+N) and θ from problem (SMPC).
5: Obtain µx

k via (4.14) and obtain x[k,k+N ] via (4.12).
6: Obtain policies π[k,k+N) from (4.15).
7: for t from k to k +Nc − 1 do
8: Compute x̂-t via (4.13).
9: Input ut ← πt(x̂

-
t ) to the system (4.1).

10: Measure yt from the system (4.1).
11: Set µx̂

k+Nc
← x̂-k+Nc

and µx̄
k+Nc

← xk+Nc as (4.36).
12: Set k ← k +Nc.

Lemma 4.5 (SMPC Recursive Feasibility). Assume p ∈ (0, 1
2
]. In Algorithm 5, if the

problem (SMPC) is feasible at control step k = κ, then it is feasible at next control step
k = κ+Nc.

Proof. See Section 4.6.3.

With Lemma 4.5, problem (SMPC) is feasible at all control steps if it is feasible at the
initial control step, where initial feasibility can be achieved by a proper choice of parameters
µx
ini, E, f, p. Closed-loop stability is captured as finiteness of the asymptotic expected cost.

Lemma 4.6 (SMPC Closed-loop Stability). Consider system (4.1) with input decided
by Algorithm 5, where problem (SMPC) is assumed feasible at all control steps. Let the
reference signal rt = r be time-invariant. Assume {z ∈ Rm+p |Ez ≤ f} is a bounded set.
Then, the asymptotic expected cost is upper bounded by some c ≥ 0 as

lim
T→∞

1

T

T−1∑
t=0

E[Jt(ut, yt)] ≤ c.

Proof. See Section 4.6.4.
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4.3 Stochastic Data-Driven Predictive Control

This section develops a data-driven control method whose performance will be shown to be
equivalent to SMPC under certain tuning conditions. In the spirit of DeePC and SPC, our
proposed control method consists of an offline process, where data is collected and used
for system representation, and an online process which controls the system.

At a high level, our technical approach has three key steps. First, we collect offline
input-output data (Section 4.3.1), and use this offline data to parameterize an auxiliary
model (Section 4.3.2-1). This auxiliary model will take the place of the original paramet-
ric system model (4.1) in the design procedure. Second, we will formulate a stochastic
predictive control method using the auxiliary model (Section 4.3.2, Section 4.3.3-1, Sec-
tion 4.3.4-1). Third and finally, we will establish theoretical equivalences between the
model-based and data-based control methods (Section 4.3.3-2, Section 4.3.4-2).

4.3.1 Use of Offline Data

In data-driven control, sufficiently rich offline data must be collected to capture the internal
dynamics of the system. In this subsection, we demonstrate how offline data is collected,
and use the data to compute some quantities that are useful to formulate our control
method in the rest of the section. We first develop results with data from deterministic
LTI systems, and then address the case of noisy data.

Deterministic Offline Data

Consider the deterministic version of system (4.1), namely the deterministic LTI system
(2.1), reproduced as follows,

xt+1 = Axt +But

yt = Cxt +Dut

(2.1)

where with a slight abuse of notation, we temporarily in this section let xt and yt denote
the state and output of system (2.1). By assumption, (2.1) is minimal; recall L ∈ N in
Section 4.1 such that O := col(C,CA, . . . , CAL−1) has full column rank. Let ud

[1,Td]
, yd[1,Td]

be a Td-length trajectory of input-output data collected from (2.1). The input sequence
ud
[1,Td]

is assumed to be persistently exciting of order Kd := L + n + 1, i.e., its associated
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Kd-depth block-Hankel matrix HKd
(ud

[1,Td]
), defined as

HKd
(ud

[1,Td]
) :=


ud
1 ud

2 · · · ud
Td−Kd+1

ud
2 ud

3 · · · ud
Td−Kd+2

...
...

. . .
...

ud
Kd

ud
Kd+1 · · · ud

Td

 ,

has full row rank. To achieve persistent excitation, one must collect at least Td ≥ (m +
1)Kd − 1 data samples [38]. We formulate data matrices U1 ∈ RmL×h, U2 ∈ Rm×h, Y1 ∈
RpL×h and Y2 ∈ Rp×h of a common width h := Td − L by partitioning associated Hankel
matrices as [

U1

U2

]
:= HL+1(u

d
[1,Td]

),

[
Y1

Y2

]
:= HL+1(y

d
[1,Td]

). (4.37)

The data matrices in (4.37) will now be used to represent some quantities related to the
system (2.1). Before stating the result, we introduce some additional notation. Define a
system-related matrix Γ ∈ Rp×(m+p)L as

Γ =
[
ΓU ΓY

]
:=

[
CC CAL

] [ImL 0mL×n

G O

]†
. (4.38)

with sub-blocks ΓU ∈ Rp×mL and ΓY ∈ Rp×pL, where C := [AL−1B, . . . , AB,B] is the
extended (reversed) controllability matrix, and G ∈ RpL×mL is an impulse-response matrix

G :=


D
CB D
...

. . . . . .

CAL−2B · · · CB D

 . (4.39)

The following result provides expressions for the quantity Γ and the system matrix D in
terms of raw data.

Lemma 4.7 (Data Representation of Model Quantities). Given the data matrices
in (4.37), if system (2.1) is controllable and the input data ud

[1,Td]
is persistently exciting of

order L+ n+ 1, then the matrix Γ defined in (4.38) and the matrix D in the model (2.1)
can be expressed as [

ΓU ΓY D
]
= Y2 col(U1, Y1, U2)

†.
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Proof. See Section 4.6.5 for a proof. The data-expression of the impulse response, e.g., D
and G, is present in SPC literature [15]. Our contribution here is the data-representation
of Γ.

With Lemma 4.7, the matrices Γ and D can be represented using offline data collected
from system (2.1), and these matrices will be used as part of the construction for our
data-driven control method.

The Case of Stochastic Offline Data

Lemma 4.7 holds for the case of noise-free data. When the measured data is corrupted by
noise, as will usually be the case, the pseudoinverse computations in Lemma 4.7 are fragile
and do not recover the desired matrices Γ and D. A standard technique to robustify these
computations is to replace the pseudoinverse W † of W := col(U1, Y1, U2) in Lemma 4.7
with its Tikhonov regularization W tik := (WTW + λIh)

−1WT where λ > 0 is the regular-
ization parameter. To interpret this, recall that P := Y2W

† is a least-square solution to
argminP ∥Y2−PW∥2F. Correspondingly, the regularization Y2W

tik is the solution to a ridge-
regression problem argminP ∥Y2 − PW∥2F + λ∥P∥2F, which gives a maximum-likelihood or
worst-case robust solution to the original least-square problem argminP ∥Y2−PW∥2F whose
multiplicative parameter W has uncertain entries; see [24] sidebar “Roles of Regulariza-
tion” for more details. Hence in the stochastic case, we estimate matrices Γ and D by
applying Lemma 4.7 with P = Y2W

† replaced by P̂ := Y2W
tik.

4.3.2 Data-Driven State Estimation and Output Feedback

The SMPC approach of Section 4.2 uses as sub-components a state estimator and an affine
feedback law. We now leverage the offline data as described in Section 4.3.1 to directly
design analogs of these components based on data, and without knowledge of the system
matrices.

Auxiliary State-Space Model

We begin by constructing an auxiliary state-space model which has equivalent input-output
behavior to (4.1), but is parameterized only by the recorded data sequences of Section 4.3.1.
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Define auxiliary signals xt,wt ∈ Rnaux of dimension naux := mL+ pL+ pL2 for system (4.1)
by

xt :=

 u[t−L,t)

y◦[t−L,t)

ρ[t−L,t)

 , wt :=


0mL×1

0pL×1

0pL(L−1)×1

ρt

 (4.40)

where y◦t := yt − vt ∈ Rp is the output excluding measurement noise, and ρt := Owt ∈
RpL stacks the system’s response to process noise wt on time interval [t + 1, t + L]. The
construction of the auxiliary state xt was inspired by [108]. The auxiliary signals xt,wt

together with ut, yt, vt then satisfy the relations given by Lemma 4.8.

Lemma 4.8 (Auxiliary Model). For system (4.1), signals ut, yt, vt and the auxiliary signals
xt,wt in (4.40) satisfy

xt+1 = Axt +But +wt, (4.41a)

yt = Cxt +Dut + vt, (4.41b)

with A ∈ Rnaux×naux, B ∈ Rnaux×m, C ∈ Rp×naux given by

A :=



Im(L−1)

0m×m
0 0

0
ΓU

0 Ip(L−1)

ΓY

0
F− ΓYE

0 0
IpL(L−1)

0pL×pL



B :=


0m(L−1)×m

Im
0p(L−1)×m

D
0pL2×m

 , C :=
[
ΓU ΓY F− ΓYE

]

with matrices ΓU,ΓY in (4.38), matrix D in (4.1), and zero-one matrices E ∈ RpL×pL2

and F ∈ Rp×pL2
composed by selection matrices Sj := [0p×(j−1)p, Ip, 0p×(L−j)p] ∈ Rp×pL for
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j ∈ {1, . . . , L} as

[
E
F

]
:=


0p×pL

S1 0p×pL
...

. . . . . .

SL−1 · · · S1 0p×pL

SL · · · S2 SL

 .

Proof. See Section 4.6.6.

The output noise signal vt in (4.41) is precisely the same as in (4.1); the signal wt

appears now as a new disturbance; wt and vt are independent and follow the i.i.d. zero-
mean normal distributions

wt
i.i.d.∼ N (0naux×1,Σ

w), vt
i.i.d.∼ N (0p×1,Σ

v) (4.42)

with variances Σw ∈ Snaux
+ and Σv ∈ Sp

++,

Σw := Diag
(
0(naux−pL)×(naux−pL), Σ

ρ
)

(4.43)

where Σρ := OΣwOT ∈ SpL
+ is the variance of ρt. The matrices A,B,C, D are known

given offline data described in Section 4.3.1, since they by definition only depend on ma-
trices Γ and D which are data-representable via Lemma 4.7. Hence, the auxiliary model
(4.41) can be interpreted as a non-minimal data-representable realization of system (4.1).
Nonetheless, the model is indeed stabilizable and detectable.

Lemma 4.9. For the auxiliary model (4.41) and matrix Σw in (4.43), the pairs (A,B)
and (A,Σw) are stabilizable and the pair (A,C) is detectable.

Proof. See Section 4.6.7.

Auxiliary State Initial Condition

The auxiliary model (4.41) will now be used for both state estimation and control purposes.
Suppose we are at a control step t = k in a receding-horizon process. Similar to (4.9), we
model the auxiliary state xk from (4.41) following a prior distribution,

xk ∼ N (µx
k,Σ

x) (4.44)

81



where the mean µx
k ∈ Rnaux interpolates between two fixed vectors µx̂

k,µ
x̄
k ∈ Rnaux with a

decision variable θ ∈ [0, 1],

µx
k := (1− θ)µx̂

k + θµx̄
k (4.45)

wherein µx̂
k and µx̄

k are produced by a state estimator (see (4.48)) and a noise-free model
(see (4.49)), respectively, of last control step; at initial time k = 0, the initial state mean
µx

0 is given as a parameter µx
ini ∈ Rnaux , i.e., we let µx̂

0 := µx
ini and µx̄

0 := µx
ini. The variance

Σx ∈ Snaux
+ in (4.44) is fixed as the unique positive semidefinite solution to the DARE

(4.46a),

Σx = (A− LLC)ΣxAT +Σw (4.46a)

LL := ALK, LK := ΣxCT(CΣxCT + Σv)−1 (4.46b)

given detectable (A,C) and stabilizable (A,Σw) via Lemma 4.9, where we define the
Kalman gain LK ∈ Rnaux×p and the Luenberger observer gain LL ∈ Rnaux×p. Not surprisingly,
there is a close relationship between the distributions of xk and xk, as described in the
next technical result, which will be leveraged in establishing equivalence between SMPC
and our proposed method.

Lemma 4.10 (Related Means of xk and xk). For system (4.1) and auxiliary state xt in
(4.40), if µk is the mean of xk and µk is the mean of xk, then we have

µk = Φorig µ̃k, µk = Φaux µ̃k, (4.47)

for some µ̃k ∈ RmL+n(L+1), with matrices Φorig and Φaux defined in Claim 4.8.1 in 4.6.6.

Proof. Given xk = Φorig ξk and xk = Φaux ξk via Claim 4.8.1, we have (4.47) by choosing µ̃k

as the mean of ξk.

Auxiliary State Estimation and Feedback

The Kalman filter of system (4.1) was given in (4.13). Here, we analogously formulate a
Kalman filter for the auxiliary model (4.41) as

x̂+
t := x̂-t + LK(yt −Cx̂-t −Dut), t ∈ Z[k,k+N) (4.48a)

x̂-t+1 := Ax̂+
t +But, t ∈ Z[k,k+N) (4.48b)

x̂-k := µx
k (4.48c)
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where x̂+
t and x̂-t are the posterior and prior estimates of xt, respectively, with LK ∈ Rnaux×p

in (4.46b). A noise-free model can be formed similarly as (4.12), given initial condition
(4.44),

xt+1 := Axt +But, t ∈ Z[k,k+N) (4.49a)

yt := Cxt +Dut, t ∈ Z[k,k+N) (4.49b)

xk := µx
k, (4.49c)

where ut ∈ Rm is the nominal input decided through optimization, and xt ∈ Rnaux and
yt ∈ Rp are the resulting nominal state and output, respectively. The affine output feedback
policy (4.15) from SMPC is now extended as πt(·),

ut ← πt(x̂
-
t ) := ut −K(x̂-t − xt) (4.50)

where the feedback gain K ∈ Rm×naux must be selected such that A−BK is Schur stable.
Given the stabilizability of (A,B) and detectability of (A,C) by Lemma 4.9, we may again
use an LQR-based design as in (4.16), yielding

K := (R +BTPB+DTQD)−1(BTPA+DTQC), (4.51)

where P ∈ Snaux
+ is the unique positive semidefinite solution to the DARE

P = ATP(A−BK) +CTQ(C−DK). (4.52)

Although the use of state estimation was eliminated in some data-driven methods [38, 39,
40], our data-driven controller still incorporates the state estimator to enable output feed-
back. Some data-driven control methods also used state estimation for denoising purposes
[108].

4.3.3 Optimization Problem

SDDPC Optimization Problem

With results of Section 4.3.2, we are now ready to mirror the steps which led to (SMPC) and
formulate a Stochastic Data-Driven Predictive Control (SDDPC) optimization problem.

First, following a similar process as that which led to (4.18), we may combine (4.41),
(4.42), (4.44), (4.48), (4.49) and (4.50), to conclude that the input-output trajectory
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col(ut, yt) for t ∈ Z[k,k+N) is normally distributed as N (col(ut,yt),∆t−k), where the co-
variance matrices ∆s ∈ Sm+p

+ for s ∈ Z[0,N) are computed as (4.53a) using Λs ∈ Snaux
+

defined as (4.53b),

∆s :=

[
−K

C−DK

]
Λs

[
−K

C−DK

]T
+Diag(0m×m,Ξ) (4.53a)

Λs :=
s−1∑
r=0

(A−BK)r LLΞLL
T (A−BK)rT (4.53b)

with LL in (4.46b) and Ξ := CΣxCT+Σv ∈ Sp
++. Then, the SDDPC problem for computing

u and θ at control step t = k is written as

minimize
u, θ, pi,t

∑k+N−1
t=k Jt(ut,yt) + λθ θ

subject to (4.54) for t ∈ Z[k,k+N), (4.45), (4.49), (4.55),
(SDDPC)

with the safety constraint

ei
T

[
ut

yt

]
≤ fi −

√
eiT∆t−k ei icdfn(1− pi,t), i ∈ Z[1,q]

q∑
i=1

pi,t = p, pi,t > 0, i ∈ Z[1,q]

(4.54)

for t ∈ Z[k,k+N), and with the terminal equality constraint

uk+N−L = uk+N−L+1 = . . . = uk+N−1,

yk+N−L = yk+N−L+1 = . . . = yk+N−1.
(4.55)

Equivalence to SMPC Optimization Problem

We now establish that the SDDPC problem (SDDPC) and the SMPC problem (SMPC)
have equal feasible sets and equal optimal sets, when the initial-condition parameters are
related in the form of (4.47).

Proposition 4.11 (Equivalence of Optimization Problems). If the parameters µx̂
k, µ

x̄
k,µ

x̂
k,µ

x̄
k

satisfy

µx̂
k = Φorig µ̃

x̂
k , µx̂

k = Φaux µ̃
x̂
k ,

µx̄
k = Φorig µ̃

x̄
k , µx̄

k = Φaux µ̃
x̄
k ,

(4.56)
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for some vectors µ̃ x̂
k , µ̃

x̄
k ∈ RmL+n(L+1), then the optimal (resp. feasible) solution set of

SDDPC problem (SDDPC) is equal to the optimal (resp. feasible) solution set of SMPC
problem (SMPC).

Proof. We first claim that, for ∆s in (4.19a) and ∆s in (4.53a),

∆s = ∆s, s ∈ Z[0,N). (4.57)

Moreover, for any u[k,k+N) and θ, the resulting nominal outputs from (4.12), (4.14) and
from (4.49), (4.45) are equal, i.e.,

yt = yt, t ∈ Z[k,k+N) (4.58)

The proof of (4.57) and (4.58) can be found in Section 4.6.8. Given (4.57) and (4.58),
the objective functions of problems (SMPC) and (SDDPC) are equal, and the constraint
(4.32) in problem (SMPC) and the constraint (4.54) in problem (SDDPC) are equivalent.
Thus problems (SMPC) and (SDDPC) have the same objective function and constraints,
and the result follows.

We conclude by noting that problem (SDDPC) produces a unique optimal (u, θ) when
feasible, following from Proposition 4.11 and the fact that problem (SMPC) gives a unique
optimal (u, θ) when it is feasible, as mentioned in Section 4.2.

4.3.4 Online Control Algorithm

SDDPC Control Algorithm

We now describe the online implementation of our SDDPC. At time t = k, the nominal
input sequence u[k,k+N) and the interpolation variable θ are computed from (SDDPC). We
then construct the policies π[k,k+N) via (4.50), and apply the first Nc policies to the system.
Then, t = k + Nc is set as the next control step. The initial condition (4.44) at the new
control step interpolates between two vectors µx̂

k+Nc
and µx̄

k+Nc
decided as

µx̂
k+Nc

:= x̂-k+Nc
, µx̄

k+Nc
:= xk+Nc , (4.59)

which are fixed and known at time t = k + Nc. The method is formally summarized in
Algorithm 6.

85



Algorithm 6 Stochastic Data-Driven Predictive Control (SDDPC)

Input: horizon lengths L,N,Nc, offline data ud, yd, noise variances Σρ,Σv, initial-state
mean µx

ini, cost matrices Q,R, constraint coefficients E, f , probability bound p, inter-
polation penalty coefficient λθ.

1: Compute matrices Γ andD as in Section 4.3.1 using data ud, yd, and formulate matrices
A,B,C as in Section 4.3.2.

2: Compute Kalman gain LK via (4.46b), feedback gain K via (4.51), and covariance
matrices ∆[0,N) via (4.53).

3: Initialize the control step k ← 0 and set the initial condition µx̂
0 ← µx

ini and µx̄
0 ← µx

ini.
4: while true do
5: Solve u[k,k+N) and θ from problem (SDDPC).
6: Obtain µx

k via (4.45) and obtain x[k,k+N ] via (4.49).
7: Obtain policies π[k,k+N) from (4.50).
8: for t from k to k +Nc − 1 do
9: Compute x̂-t via (4.48).
10: Input ut ← πt(x̂

-
t ) to the system (4.1).

11: Measure yt from the system (4.1).
12: Set µx̂

k+Nc
← x̂-k+Nc

and µx̄
k+Nc

← xk+Nc as (4.59).
13: Set k ← k +Nc.

Closed-loop Properties of SDDPC

Similar to Lemma 4.5 and Lemma 4.6, Algorithm 6 possesses recursive feasibility and
closed-loop stability, as formally stated below.

Corollary 4.5.1 (SDDPC Recursive feasibility). Assume p ∈ (0, 1
2
]. In Algorithm 6, if

the problem (SDDPC) is feasible at control step k = κ, then it is feasible at next control
step k = κ+Nc.

Corollary 4.6.1 (SDDPC Closed-loop Stability). Consider system (4.1) with input decided
by Algorithm 6, where problem (SDDPC) is assumed feasible at all control steps. Let the
reference signal rt = r be time-invariant. Assume {z ∈ Rm+p |Ez ≤ f} is a bounded set.
Then, the asymptotic expected cost is upper bounded by some c ≥ 0 as

lim
T→∞

1

T

T−1∑
t=0

E[Jt(ut, yt)] ≤ c.

The proofs of the above corollaries are analogous to the proofs of Lemma 4.5 and
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Lemma 4.6, respectively, where the auxiliary model (4.41) is considered in place of model
(4.1).

Equivalence to SMPC Algorithm

We present in Theorem 4.13 our main result, which says that under idealized conditions,
our proposed SDDPC control method and the benchmark SMPC method will result in
identical control actions.

Assumption 4.12 (SDDPC Parameter Choice w.r.t. SMPC). Given the parameters in
Algorithm 5, we assume the parameters in Algorithm 6 satisfy the following.

(a) L is sufficiently large so that O has full column rank.

(b) Data ud, yd comes from the deterministic system (2.1), and input data ud is persistently
exciting of order L+ n+ 1.

(c) Given Σw in Algorithm 5, the parameter Σρ in Algorithm 6 is set equal to OΣwOT.

(d) Given µx
ini in Algorithm 5, the parameter µx

ini in Algorithm 6 is selected as Φauxµ̃
x
ini for

some µ̃ x
ini ∈ RmL+(n+1)L satisfying µx

ini = Φorigµ̃
x
ini, with matrices Φorig,Φaux defined in

4.6.6. (Such µ̃ x
ini always exists because Φorig has full row rank.)

Theorem 4.13 (Equivalence of SMPC and SDDPC). Consider the stochastic system
(4.1) with a specific initial state x0 and a specific noise realization {wt, vt}∞t=0, and consider
the following two control processes:

a) decide control actions {ut}∞t=0 by executing Algorithm 5;

b) decide control actions {ut}∞t=0 by executing Algorithm 6, where the parameters satisfy
Assumption 4.12.

Then, the state-input-output trajectories {xt, ut, yt}∞t=0 resulting from process a) and from
process b) are the same.

Proof. Let {xa
t , u

a
t , y

a
t } denote the trajectory produced by process a), and {xb

t , u
b
t , y

b
t } the

trajectory from process b). We make the following claim, whose proof can be found in
4.6.9.

Claim 4.13.1. At control step t = k in processes a) and b), if
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i) the states xa
k = xb

k are equal in processes a) and b), and
ii) the parameters µx̂

k, µ
x̄
k in process a) and the parameters µx̂

k,µ
x̄
k in process b) satisfy

(4.56),

then

1) the states xa
t = xb

t are equal for time t ∈ Z[k,k+Nc], and the inputs ua
t = ub

t and outputs
yat = ybt are equal for time t ∈ Z[k,k+Nc), and

2) parameters µx̂
k+Nc

, µx̄
k+Nc

in process a) and parameters µx̂
k+Nc

,µx̄
k+Nc

in process b) satisfy
(4.56) with k ← k +Nc.

We finish the proof by showing that the results 1) and 2) in Claim 4.13.1 are true for
all control steps k ∈ {0, Nc, 2Nc, . . .}, by induction on k. Base Case. For k = 0, condition
i) is true given that both processes start with a common initial state x0, and condition
ii) holds due to Assumption 4.12(d) and due to the selections (µx̂

0, µ
x̄
0) ← (µx

ini, µ
x
ini) in

Algorithm 5 and (µx̂
0,µ

x̄
0)← (µx

ini,µ
x
ini) in Algorithm 6. With conditions i) and ii) satisfied,

the results 1) and 2) in Claim 4.13.1 are true for k = 0. Inductive Step. For k = κ,
assume results 1) and 2), which imply the conditions i) and ii) respectively for k = κ+Nc.
Thus, through Claim 4.13.1, the results 1) and 2) are true for k = κ + Nc. By induction
on k, we have results 1) and 2) for all control steps k ∈ {0, Nc, 2Nc, . . .}. The result 1) for
all k suffices to prove the theorem.

Theorem 4.13 should be interpreted as equivalence between SMPC and SDDPC in
the idealized setting. Specifically, it establishes that if the proposed SDDPC algorithm is
provided with noise-free offline data, if the initial conditions set within SMPC and SDDPC
match, and if the process noise variance Σρ in the algorithm is set in a specific idealized
fashion relative to the original process noise variance Σw, then the method will produce
identical results to those obtained by applying SMPC. While in practice these assumptions
will not hold, noisy offline data can be accommodated as discussed in Section 4.3.1, and
Σρ becomes a tuning parameter of our SDDPC method.

4.4 Simulations

4.4.1 Simulations on Grid-Connected Power Converter System

In this section, we numerically test our proposed method on the nonlinear grid-connected
power converter system from [61], shown in Fig. 4.1, and we compare the results with
those of several benchmark model-based and data-based techniques.
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Figure 4.1: The one-line diagram of a grid-connected power converter.

The AC grid in the power part of Fig. 4.1 is modeled as an infinite bus with fixed
voltage (1 p.u.) and fixed frequency (1 p.u.). This model has n = 6 states, m = 3 inputs
and p = 3 outputs. The inputs are the angular frequency correction ∆ω and current
references Irefd and Irefq of d- and q-axes, respectively. The outputs to be controlled are
the q-axis voltage Vq, the active power PE and the reactive power QE. The LCL-filter
parameters and the PI parameters in Fig. 4.1 are consistent with [61], whereas we choose
the load resistance Rload as a Gaussian signal with mean 4 p.u. and noise power 10−3 p.u.,
which introduces process noise. The measurement noise on each output is Gaussian with
noise power 10−7 p.u., consistent with [61].

Benchmark Control Methods

Several existing receding-horizon control methods are performed in our simulations and
compared to our proposed SDDPC method. Here, we introduce the benchmark control
methods in our simulations.
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We investigate two benchmark model-based methods, namely Stochastic MPC (SMPC)
(Section 4.2) and deterministic MPC (or MPC) (Section 2.2). For both SMPC and MPC,
we use an identified system model in place of the true model (A,B,C,D), through N4SID
system identification method [109] using offline data ud, yd collected from the system. In
MPC, the control action ut is equal to the decision ut by optimization, instead of using
a feedback policy. The SMPC and MPC optimization problems at control step t = k are
(SMPC) and (MPC), respectively, whereas the deterministic constraint (2.7) in problem
(MPC) is here replaced by

E

[
ut

yt

]
≤ f (4.60)

according to the constraint specified in (4.2).

We also investigate L2-regularized DeePC [61] and regularized SPC [15] as bench-
mark data-driven methods. In DeePC and SPC, the decisions ut of optimization are
applied as control actions ut. The regularized DeePC and SPC optimization problems
are (reg. DeePC) and (SPC), respectively, whereas the constraint (2.7) in both problems
(reg. DeePC) and (SPC) is here replaced by (4.60), given the specified constraint (4.2).
Moreover, the SPC predictive matrix Pspc in constraint (3.24) of problem (SPC) is re-
placed by its Tikhonov regularization, as introduced in Section 2.6, with a regularization
parameter λ > 0.

Offline Data Collection

Offline data is required in all our investigated control methods, for use in either data
matrices (SDDPC, DeePC and SPC) or for system identification (MPC and SMPC). In our
simulation, the data collection process lasted for 1 second and produced a data trajectory
of length Td = 1000 with a sampling period of 1ms. The input data was generated as
follows: ∆ω (input 1) was set as the phase-locked loop (PLL) control action (see e.g. [41])
plus a white-noise signal, Irefd (input 2) was set as 0.4 p.u. plus a white-noise signal, and
Irefq (input 3) was set at 0 p.u. plus a white-noise signal. Each white noise signal had noise
power of 10−6 p.u..

Simulation Results

All controller parameters are reported in Table 4.1. Our simulation consists of two parts.
In the first part, we compare the tracking performances of the different controllers. In the
second part, we examine the ability of the controllers to maintain safety constraints.
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Time Horizon Lengths

Initial-condition horizon length L = 5
Prediction horizon length N = 30
Control horizon length Nc = 10

Problem Setup Parameters

Sampling Period Ts = 1ms
Cost matrices Q = 104Ip, R = Im
Constraint coefficients E = Im+p ⊗ [ 1

−1 ],

f =
[
0.6×12m×1

0.4×12p×1

]
Risk probability bound p = 0.2
Interpolation penalty λθ = 10
Variance of vt for SMPC/SDDPC Σv = 10−8Ip
Variance of ρt for SDDPC Σρ = 10−4IpL
Variance of wt for SMPCa Σw = O†ΣρO†T

Regularization Parameters

Regularization in DeePC λy = 106, λg = 103

Regularization of P in SDDPC λ = 10−3

Regularization of Pspc in SPC λ = 10−3

aIn computation of Σw, matrix O is obtained given the
identified system (A,B,C,D) in SMPC.

Table 4.1: Control parameters of the grid-connected power-converter system.

Tracking Performance. For each controller, we perform the following control process.
From time 0s to time 0.2s, the controller is switched off, and the inputs Irefd and Irefq are
set to zero, with ∆ω generated from the PLL. After time 0.2s, the controller is switched
on, and the output reference signal is rt = [0, 0, 0]T before time 0.5s and rt = [0, 0.3, 0]T

after time 0.5s. To quantitatively compare the results, Fig. 4.2 shows the stage cost
accumulated over the first two seconds for each controller. The result shows that the
stochastic control methods (SMPC and SDDPC) outperformed the deterministic control
methods (DeePC, SPC and MPC) in terms of their cumulative costs. This observation
aligns with our expectation that stochastic control performs better with stochastic systems,
since the stochastic control methods receive feedback at each time step – more frequently
than the deterministic control methods which receive feedback only at each control step,
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Figure 4.2: Cumulative stage cost with different controllers, Nc = 10.
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Figure 4.3: Cumulative stage cost with different controllers, Nc = 1.
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constraint satisfaction test.

Controller Violation Rate
Total Violation

Amount

SDDPC (p = 0.2) 0.15 1.10
SDDPC (p = 0.05) 0.03 0.05

SysID+SMPC (p = 0.2) 0.19 1.55
SysID+SMPC (p = 0.05) 0.11 0.52
SysID+MPC 0.57 6.79
DeePC 0.20 1.46
SPC 0.49 8.42

Table 4.2: Statistics of constraint violation of the second output channel from 0.5s to 2.0s.
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i.e., every Nc = 10 time steps. However, this benefit of stochastic control vanishes when we
select shorter control horizons. Fig. 4.3 shows the cumulative stage costs when the control
horizon has length Nc = 1, where we no longer observe a performance gap between all
stochastic methods and all deterministic methods. SDDPC and SPC outperformed other
controllers. Although we showed the results with different Nc, we emphasize significance
of the Nc = 10 setting, which requires less computation since the optimization problems
are solved less frequently.

Output Constraint Satisfaction. We next evaluate for each controller its ability to meet
the output safety constraints. We repeat the control process above, but the reference signal
becomes rt = [0, 0, 0]T before time 0.5s and rt = [0, 0.5, 0]T after time 0.5s. Note that the
reference value 0.5 for the second output channel after time 0.5s is beyond the range of
output safety constraint (with E, f in TABLE 4.1), which restricts all output channels
within the range of [−0.4, 0.4]. As a result, in our simulations, the second output channel
remained close to the upper safety bound of 0.4 after time 0.5s for all controllers; for
example, the trace of the second output under SPC and SDDPC is displayed in Fig. 4.4.

To quantify the constraint satisfaction with each controller, from time 0.5s to time
2.0s (1500 time steps), we count the number and compute the rate of time steps where
the measurement of the second output channel violates the safety constraint. As a second
metric, we sum the amount of constraint violation that occurs between 0.5s to 2.0s for each
controller. The results are displayed in TABLE 4.2, where we also displayed the results of
SMPC and SDDPC with parameter p changed from 0.2 (as in TABLE 4.1) to 0.05. As
the result shows, both violation rates of SMPC and SDDPC declined as we decrease p,
while the violation rate of SDDPC shrank more effectively than that of SMPC. The total
violation amounts of SMPC and SDDPC also reduced when we decrease p. Among the
methods using deterministic safety constraint, DeePC had a lower violation rate and a
smaller violation amount than MPC and SPC.

4.4.2 Simulations on Batch Reactor System

In this section, we numerically test our proposed method on a batch reactor system intro-
duced in [110] and applied in [33, 74]. The system has n = 4 states, m = 2 inputs and
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Time horizon lengths L = 5, N = 15, Nc = 5
Cost matrices Q = 103Ip, R = Im
Safety constraint coefficients E = Im+p ⊗ [ 1

−1 ]
f = [.1 .1 .5 .1 .4 .4 .4 .4]T

CVaR levela α = 0.3
Variance of vt for SMPC/SDDPC Σv = 5× 10−7Ip
Variance of ρt for SDDPC Σρ = 10−7IpL
Variance of wt for SMPCb Σw = O†ΣρO†T

aα is used as the risk bound for chance constrained controllers.
bO is obtained given the identified model (A,B,C,D) in SMPC.

Table 4.3: Control parameters of the batch reactor system.

Controller
Total Tracking Cost Cumulative Violation
0s to 30s 30s to 60s from 60s to 90s

DR/O-SDDPCa 0.02 64.2 0
DR/F-SDDPC 0.02 68.9 0
CC/F-SDDPC 0.02 64.9 0.03

DR/O-SMPC 0.02 64.2 0
DR/F-SMPC 0.02 68.0 0
CC/F-SMPC 0.02 64.9 0.01

deterministic MPC 0.09 64.6 0.20
SPC 0.18 65.5 2.23
DeePC 0.18 64.7 0.19
aDR – distributionally robust constrained, CC – chance constrained,
O – with optimized feedback gain, F – with fixed feedback gain.

Table 4.4: Simulation results of the batch reactor system.
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Figure 4.5: The system’s first output signal with DR/O-SDDPC.

p = 2 outputs, and the discrete-time system matrices with sampling period 0.1s are

[
A B
C

]
=


1.178 .001 .511 −.403 .004 −.087
−.051 .661 −.011 .061 .467 .001
.076 .335 .560 .382 .213 −.235
0 .335 .089 .849 .213 −.016
1 0 1 −1
0 1 0 0

 .

The process/sensor noise on each state/output follows the t-distribution of 2 DOFs scaled
by 10−4, which is a heavy-tailed distribution. Control parameters are reported in TABLE
4.3. We collected offline data of length Td = 600 from the noisy system, where the input

data was the outcome of a PI controller U(s) =
[

0 −1/s
2+1/s 0

]
Y (s) plus a white-noise signal

of noise power 10−2. In the online control process, the reference signal is rt = [0, 0]T

from time 0s to time 30s, alternates between [0, 0]T and [0.3, 0]T from 30s to 60s, and is
rt = [0.5, 0]T from 60s to 90s.

For comparison, we implement the simulation with different controllers. Specifically,
we perform SMPC and SDDPC under different configurations of stochastic constraints
and feedback gains. In addition to the SMPC and SDDPC schemes in Algorithm 5 and
Algorithm 6, which utilized chance constraints in Section 4.1.1 and a fixed feedback gain
in Section 4.2.3 (CC/F), we also consider analogous SMPC and SDDPC frameworks based
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on distributionally robust constraints in Section 4.1.2 and an optimized feedback gain in
Section 4.2.4 (DR/O). To observe separate impacts of using different stochastic constraints
and different feedback policies, we also implement SMPC and SDDPC with distributionally
robust constraints and a fixed feedback gain (DR/F). We also compare to DeePC, SPC
and deterministic MPC as benchmarks. The model used in deterministic and stochastic
MPC methods is identified from the same offline data in the data-driven controllers.

Fig. 4.5 shows the first output signal with our proposed DR/O-SDDPC method; the
signal remains around 0.4 from 60s to 90s because of the safety constraint specified in
TABLE 4.3. The simulation results with all examined controllers are summarized in TA-
BLE 4.4. We evaluate (i) the controllers’ tracking performance through the tracking cost
from 0s to 60s and (ii) the controllers’ ability to satisfy constraints according to the cu-
mulative amount of constraint violation between 60s and 90s, when the first output signal
hits the constraint margin. When the reference signal is constant (0s–30s), SMPC and
SDDPC tracked better than other methods, aligning with the observation in Section 4.4.1.
Comparing DR/F and CC/F methods, the controllers with DR constraints achieved lower
amounts of constraint violation (60s–90s), while the tracking performance is slightly worse
during 30s–60s when the reference signal has frequent step changes. Comparing DR/O and
DR/F methods, we observe that the methods with optimized gain achieved lower tracking
costs when the reference signal changes frequently (30s–60s).

4.5 Chapter Conclusions

We introduced a novel direct data-driven control framework named Stochastic Data-Driven
Predictive Control (SDDPC). Analogous to Stochastic MPC (SMPC), SDDPC accounts
for process and measurement noise in the control design, and produces closed-loop con-
trol policies through optimization. On the theoretical front, we proved that SDDPC can
produce control inputs equivalent to those of SMPC under specific conditions. Simulation
results indicate that the proposed approach provides benefits in terms of both cumulative
stage cost and output constraint violation. Future work will seek to improve the compu-
tational efficiency of the approach, and explore the robustness with noise-corrupted offline
data.
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4.6 Appendices

In this section, we present proofs for several results in the chapter and introduce the Itera-
tive Risk Allocation technique (Section 4.6.2) for solving SMPC and SDDPC optimization
problems.

4.6.1 Proof of (4.18)

Proof. Define et := col(xt−x̂-t , x̂-t −xt) ∈ R2n. We first show that et follows the distribution

et ∼ N
(
02n×1,

[
Σx

Λt−k

])
(4.61)

for t ∈ Z[k,k+N), with Λs in (4.19b), by induction on t. Base Case t = k. With x̂-k = µx
k

as (4.13d) and xk = µx
k as (4.12c), we have ek = col(xk − µx

k, 0n×1) which is distributed as
N (02n×1,Diag(Σ

x, 0n×n)) via (4.9). This shows the t = k case of (4.61) given Λ0 = 0n×n

from (4.19b). Inductive Step. Assume (4.61) for t = τ ∈ Z[k,k+N−2]. Note the relation
[98]

eτ+1 = Θ0eτ +Θ1

[
wτ

vτ

]
(4.62)

by expressing xτ+1, x̂
-
τ+1, xτ+1 in terms of xτ , x̂

-
τ , xτ , wτ , vτ given (4.1a), (4.12a), (4.13b),

(4.13c), (4.15), where we define

Θ0 :=

[
A− LLC 0n×n

LLC A−BK

]
, Θ1 :=

[
In −LL

0n×n LL

]
. (4.63)

Through the system (4.1) and the estimator (4.13), both wτ and vτ are independent of xτ

and x̂-τ and thus independent of eτ . It follows from the relation (4.62), the (independent)
distribution of wτ , vτ in (4.3) and the distribution of eτ in (4.61) that eτ+1 is distributed
as

eτ+1 ∼ N
(
02n×1, Θ0

[
Σx

Λτ−k

]
ΘT

0 +Θ1

[
Σw

Σv

]
ΘT

1

)
. (4.64)

The variance in (4.64) is equal to what follows, by substitution of Θ0 and Θ1 in (4.63) and
direct matrix multiplication,[

S0 − S1 − ST
1 + S2 + Σx ST

1 − S0
S1 − S0 S0 + (A−BK)Λτ−k(A−BK)T

]
(4.65)
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where we use shortcuts S0 := LL(CΣxCT + Σv)LL
T, S1 := LLCΣxAT and S2 := AΣxAT +

Σw −Σx. Notice that S0 = S1 by definition of LL in (4.11b), and S1 = S2 via (4.46a). One
can also verify that S0 + (A− BK)Λs(A− BK)T = Λs+1 for all s ∈ N≥0, using definition
(4.19b). Thus, the matrix (4.65) is equal to Diag(Σx,Λτ−k+1), which implies that (4.64) is
the t = τ + 1 case of (4.61). Induction on t shows (4.61) for t ∈ Z[k,k+N).

Finally, we show (4.18) for t ∈ Z[k,k+N) by noting that[
ut

yt

]
=

[
ut

yt

]
+Ψet +

[
0m×1

vt

]
with Ψ :=

[
0m×n −K
C C −DK

]
, (4.66)

given (4.1b) and (4.15). With the distribution (4.61) of et and the distribution of vt in
(4.3), where et and vt are independent, it follows from (4.66) that[

ut

yt

]
∼ N

([
ut

yt

]
, Ψ

[
Σx

Λt−k

]
ΨT +

[
0m×m

Σv

])
,

in which the variance can be verified equal to ∆t−k defined in (4.19a) through direct
calculation, and thus the above distribution is equivalent to (4.18).

4.6.2 Iterative Risk Allocation

We record here an efficient method for solving the convex problem (SMPC), known as
Iterative Risk Allocation [104], described in Algorithm 7.

To begin, note that if we fix all variables pi,t, then problem (SMPC) is reduced into the
quadratic problem

minimize
u, θ

k+N−1∑
t=k

Jt(ut, yt) + λθ θ

subject to (4.32a) for t ∈ Z[k,k+N), (4.12), (4.14), (4.35),

(4.67)

which can be efficiently solved. The optimal solution to (SMPC) is the infimum of the
solution to (4.67) over all pi,t satisfying (4.32b). Hence, we solve problem (4.67) repeatedly
with updated pi,t until the objective value converges with no significant change. The
entire process shows in Algorithm 7, which extends [104, Algorithm 1] from their single
chance constraint into our separate chance constraints over time steps. Newly introduced
parameters are a shrinkage rate α ∈ (0, 1) and a termination threshold ε > 0. The
initialization at line 1 ensures feasibility of problem (4.67), due to recursive feasibility.
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From line 6, we obtain binary indicators ai,t ∈ {0, 1} showing whether constraint (4.32a)
is active or not for each (i, t). This indicator is utilized in the process of updating pi,t
in lines 9-14. Note that, when the condition in line 8 is true, the update routine in lines
9-14 no longer makes change on pi,t, so in this case the iteration terminates. In line 11,
cdfn(z) := 1

2
+ 1

2
erf(z/

√
2) is the cumulative density function (c.d.f.) of the standard

normal distribution, with erf the error function.

Similarly, problem (SDDPC) can also be solved by Algorithm 7 with A, B, C, µx
k, µ

x̂
k,

µx̄
k, ∆s, yt replaced by A, B, C, µx

k, µ
x̂
k, µ

x̄
k, ∆s, yt respectively.

Algorithm 7 Iterative Risk Allocation for solving (SMPC)

Input: horizon lengths L,N , system matrices A,B,C,D, interpolation options µx̂
k, µ

x̄
k, cost

matrices Q,R, constraint coefficients E, f , probability bound p, interpolation penalty
coefficient λθ, input-output variances ∆[0,N), shrinkage rate α, termination threshold
ε, and the risk allocation plasti,t solved at last control step.

Output: An approximate solution (u, θ, pi,t) to problem (SMPC).
1: Initialize pi,t ← plasti,s(t) for t ∈ Z[k,k+N) and i ∈ {1, . . . , q}, where s(t) := min(t, k +N −

Nc − 1).
2: Initialize J⋆

prev ← +∞.
3: while true do
4: Solve (u, y, θ) from problem (4.67) and obtain the cost value J⋆. Record whether

the constraints (4.32a) is active or not for each (i, t).
5: if |J⋆

prev − J⋆| ≤ ε then break else J⋆
prev ← J⋆.

6: For t ∈ Z[k,k+N) and i ∈ {1, . . . , q}, let ai,t ← 1 if constraint (4.32a) is active for
(i, t), otherwise ai,t ← 0.

7: asumt ←
∑q

i=1 ai,t for all t ∈ Z[k,k+N).
8: if asumt ∈ {0, q} for all t ∈ Z[k,k+N) then break.
9: for t ∈ Z[k,k+N) such that 0 < asumt < q do
10: for all i ∈ {1, . . . , q} such that ai,t = 0 do

11: pi,t ← αpi,t + (1− α)
(
1− cdfn

(fi − eTi col(ut, yt)√
eTi ∆t−kei

))
.

12: presidualt ← p−
∑q

i=1 pi,t.
13: for all i ∈ {1, . . . , q} such that ai,t = 1 do
14: pi,t ← pi,t + presidualt /asumt .
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4.6.3 Proof of Lemma 4.5

Proof. Let κ+ := κ+Nc, and let |k denote variables calculated at control step k ∈ {κ, κ+}.
Let (u∗, θ∗, p∗i,t)|κ be the optimal solution to problem (SMPC) at k = κ, and consider the
following solution (u⋄, θ⋄, p⋄i,t)|κ+ at k = κ+, cf. [102],

u⋄
t |κ+ := u∗

s(t)|κ, θ⋄|κ+ := 1, p⋄i,t|κ+ := p∗i,s(t)|κ, (4.68)

for all t ∈ Z[κ+,κ++N) and i ∈ Z[1,q], where we let s(t) := min(t, κ +N − 1). In this proof,
we will show that (4.68) is a feasible solution to problem (SMPC). Let y∗|κ (resp. y⋄|κ+)
denote the resulting nominal output via (4.12), (4.14) given (u∗, θ∗)|κ (resp. (u⋄, θ⋄)|κ+),
and we have the following.

Claim 4.5.1. Given (u⋄, θ⋄)|κ+ in (4.68), the nominal output is y⋄t |κ+ = y∗s(t)|κ for t ∈
Z[κ+,κ++N).

Proof. Since we choose θ⋄|κ+ = 1 in (4.68), the nominal states xκ+ are the same over
control steps k ∈ {κ, κ+}, as

x⋄
κ+ |κ+

via (4.12c)
= µx

κ+
via (4.14)

= µx̄
κ+

via (4.36)
= x∗

κ+|κ. (4.69)

Given the same nominal states xκ+ in (4.69) and same nominal inputs u[κ+,κ+N) via (4.68)
over control steps k ∈ {κ, κ+}, the resulting nominal states and outputs are the same, i.e.,

x⋄
t |κ+ = x∗

t |κ, t ∈ Z[κ+,κ+N ], (4.70a)

y⋄t |κ+ = y∗t |κ, t ∈ Z[κ+,κ+N). (4.70b)

Due to the terminal condition (4.35) at k = κ where L is at least the system lag and the sys-
tem is observable, the terminal state-input-output (x∗

κ+N , u
∗
κ+N−1, y

∗
κ+N−1)|κ is an equilib-

rium [48, Sec. 2.3]. (In the case where the system is unobservable, (xobsv ∗
κ+N , u∗

κ+N−1, y
∗
κ+N−1)|κ

is an equilibrium, where xobsv ∗
t denotes the observable component of x∗

t .) Hence, with
x⋄
κ+N |κ+ = x∗

κ+N |κ via (4.70a) and u⋄
t |κ+ = u∗

κ+N−1|κ via (4.68) for t ∈ Z[κ+N,κ++N), we
have the nominal output

y⋄t |κ+ = y∗κ+N−1|κ, t ∈ Z[κ+N,κ++N),

which result together with (4.70b) shows the claim. ♦
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We finish the proof by showing that the solution (4.68) satisfies both constraints (4.32)
and (4.35). The terminal constraint (4.35) holds with solution (4.68), since we have
(u⋄

t , y
⋄
t )|κ+ for t ∈ Z[κ++N−L,κ++N) all equal to

(u⋄
t , y

⋄
t )|κ+ = (u∗

s(t), y
∗
s(t))|κ = (u∗

κ+N−1, y
∗
κ+N−1)|κ,

where the first equality is from (4.68) and Claim 4.5.1, and the second equality is because
constraint (4.35) holds at k = κ. Before showing satisfaction of (4.32), we claim a useful
result.

Claim 4.5.2. For ∆s in (4.19), we have ∆0 ⪯ ∆1 ⪯ · · · ⪯ ∆N−1.

Proof. Given (4.19a), the result follows from the fact Λ0 ⪯ Λ1 ⪯ · · · ⪯ ΛN−1, which is
clear from (4.19b). ♦

Define R(∆t−k) ⊆ Rm×Rp×Rq the set of all (ut, yt, p·,t) satisfying (4.32), where we let
p·,t := col(p1,t, . . . , pq,t) ∈ Rq. To show that constraint (4.32) is satisfied by solution (4.68),
it is equivalent to show that

(u⋄
t , y

⋄
t , p

⋄
·,t)|κ+ = (u∗

s(t), y
∗
s(t), p

∗
·,s(t))|κ ∈ R(∆s(t)−κ) ⊆ R(∆t−κ+)

for all t ∈ Z[κ+,κ++N), where the first equality uses (4.68) and Claim 4.5.1, the belong sign
(∈) is because constraint (4.32) holds at k = κ, and the final inclusion (⊆) comes from the
fact s(t) − κ ≥ t − κ+ (implied by definition of s(t), κ+) for t ∈ Z[κ+,κ++N) and the fact
R(∆0) ⊇ R(∆1) ⊇ . . . ⊇ R(∆N−1), which is obtained given the definition of R(·) referring
to (4.32), given Claim 4.5.2 and given the fact icdfn(1− pi,t) > 0 for all pi,t < p ≤ 1

2
.

Thus, the solution (4.68) at k = κ+ satisfies both constraints (4.32) and (4.35), and the
recursive feasibility is proved.

4.6.4 Proof of Lemma 4.6

Proof. Let J(ut, yt) := ∥yt − r∥2Q + ∥ut∥2R be the cost (2.2) with the constant reference.
At control step k, let (u∗, θ∗, p∗i,t)|k be the optimal solution to problem (SMPC), and the
optimal value is

V ∗
k :=

k+N−1∑
t=k

J(u∗
t , y

∗
t )|k + λθθ

∗|k, (4.71)
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where y∗|k is the resulting nominal output given (u∗, θ∗)|k. Through (4.68) with (k, k+Nc)
in place of (κ, κ+), we have a feasible solution (u⋄, θ⋄, p⋄i,t)|k+Nc to problem (SMPC) at the
next control step k +Nc, where the objective value is

V ⋄
k+Nc

:=
k+Nc+N−1∑
t=k+Nc

J(u⋄
t , y

⋄
t )|k+Nc + λθθ

⋄|k+Nc

=
k+Nc+N−1∑
t=k+Nc

J(u∗
s(t), y

∗
s(t))|k + λθ

=
k+N−1∑
t=k+Nc

J(u∗
t , y

∗
t )|k +NcJ

ter
k + λθ (4.72)

with J ter
k := J(u∗

k+N−1, y
∗
k+N−1)|k, where the second equality is via (4.68), and the third

equality used the definition of s(t) in (4.68). Recall the sets R(·) defined in 4.6.3. Let
Jsup be the supremum of J(ut, yt) over all ut, yt in R(∆N−1) with some pi,t; such Jsup is
finite since R(∆N−1) is bounded given {z|Ez ≤ f} bounded. Since (u∗

k+N−1, y
∗
k+N−1)|k is

in R(∆N−1) by feasibility, J ter
k is upper bounded by Jsup. We therefore have

V ∗
k+Nc

− V ∗
k ≤ V ⋄

k+Nc
− V ∗

k

= NcJ
ter
k + λθ(1− θ∗|k)−

k+Nc−1∑
t=k

J(u∗
t , y

∗
t )|k

≤ NcJsup + λθ −
k+Nc−1∑

t=k

J(u∗
t , y

∗
t )|k, (4.73)

where the first inequality is due to the optimality of V ∗
k+Nc

(i.e., V ∗
k+Nc

≤ V ⋄
k+Nc

), the
equality is by substituting (4.71) and (4.72) and canceling identical terms, and the final
inequality is due to θ∗|k ∈ [0, 1] and J ter

k ≤ Jsup. Using (4.21) with Nc in place of N , the
expected cost over the control horizon [k, k +Nc) is (cf. [74, 75, 76])

k+Nc−1∑
t=k

E[J(ut, yt)] =
k+Nc−1∑

t=k

J(u∗
t , y

∗
t )|k + Jvar

≤ NcJsup + Jvar + λθ + (V ∗
k+Nc

− V ∗
k ) (4.74)
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with Jvar :=
∑Nc−1

s=0 Trace(∆sDiag(R,Q)), and the inequality above applied (4.73). Sum-
ming (4.74) over control steps k ∈ {0, Nc, 2Nc, . . . , (I − 1)Nc} with some I ∈ N, we have

INc−1∑
t=0

E[J(ut, yt)] ≤ I(NcJsup + Jvar + λθ) + (V ∗
INc
− V ∗

0 ),

and thus the result is obtained by dividing the above by T := INc and taking I → ∞,
with c := Jsup + (Jvar + λθ)/Nc.

4.6.5 Proof of Lemma 4.7

Proof. Let (xd, ud, yd) be the state-input-output trajectory of (2.1), and define X1, X2 ∈
Rn×h as

X1 :=
[
xd
1, x

d
2, . . . , x

d
h

]
, X2 :=

[
xd
1+L, x

d
2+L, . . . , x

d
h+L

]
.

It follows by straightforward algebra that data matrices satisfy

X2 = ALX1 + CU1, (4.75a)

Y1 = OX1 + GU1, (4.75b)

Y2 = CX2 +DU2. (4.75c)

Under our assumptions of controllability and persistent excitation, it follows from [31,

Corollary 2(iii)] that the matrix col(X1, U1, U2) has full row rank. Moreover,

[
ImL

G O

]
has full column rank, as it is block lower triangular and its diagonal blocks each has full
column rank (Section 4.3.1).

First, the matrix Y2 can be represented in terms of X1, U1, U2 by combining (4.75a) and
(4.75c) and eliminating X2, i.e.,

Y2 =
[
CC, CAL, D

]
col(U1, X1, U2). (4.76)

We can also represent col(U1, Y1, U2) in terms of X1, U1, U2 using (4.75b) as

col(U1, Y1, U2) = Diag
([

ImL

G O

]
, Im

)
col(U1, X1, U2).
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As we know that Diag
([

ImL

G O

]
, Im

)
has full column rank and col(U1, X1, U2) has full

row rank, the pseudo-inverse of above is [111]

col(U1, Y1, U2)
† = col(U1, X1, U2)

†Diag
([

ImL

G O

]
, Im

)†
.

By multiplying (4.76) and the relation above, we find the result

Y2 col(U1, Y1, U2)
† =

[
CC, CAL, D

]
Diag

([
ImL

G O

]
, Im

)†

=
[[
CC, CAL

][
ImL
G O

]†
D
]

via (4.38)
= [ΓU,ΓY, D].

4.6.6 Proof of Lemma 4.8

Proof. Before proving (4.41), we start with an intermediate result Claim 4.8.1. Let ξt :=
col(u[t−L,t), xt−L, w[t−L,t)) ∈ Rnξ with nξ := mL+ n(L+ 1).

Claim 4.8.1. For system (4.1) and the auxiliary state xt in (4.40), we have xt = Φorig ξt
and xt = Φaux ξt, where we define matrices Φorig ∈ Rn×nξ and Φaux ∈ Rnaux×nξ ,

Φorig := [C, AL, Cw], Φaux :=

ImL

G O Gw
IL ⊗O


with matrices O, C,G in Section 4.3.1, Cw := [AL−1, . . . , A, In] and

Gw :=


0p×n

C 0p×n
...

...
...

CAL−2 · · · C 0p×n

 .

Proof. Given the system model (4.1), the state xt and noise-free outputs y◦[t−L,t) can be
expressed in terms of the previous state xt−L, inputs u[t−L,t) and disturbances w[t−L,t) via

xt = AL xt−L + C u[t−L,t) + Cw w[t−L,t), (4.77a)

y◦[t−L,t) = O xt−L + G u[t−L,t) + Gw w[t−L,t). (4.77b)

Thus, we have xt = Φorig ξt given (4.77a) and the definitions of ξt and Φorig. Given the
definition of xt in (4.40) with ρt := Owt, we have xt = Φaux ξt implied by (4.77b). ♦
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Given Claim 4.8.1, we develop another intermediate result Claim 4.8.2 which directly
implies (4.41b) given (4.1b).

Claim 4.8.2. For system (4.1) and the auxiliary state xt in (4.40), we have Cxt = Cxt.

Proof. With Claim 4.8.1, it suffices to show that CΦorig = CΦaux. Given the definitions of
Φorig,Φaux,C, we calculate CΦorig as

CΦorig = [CC, CAL, CCw]

and calculate CΦaux as

CΦaux = [ΓU + ΓYG, ΓYO, ΓYGw + (F− ΓYE)(IL ⊗O)]
= [ΓU + ΓYG, ΓYO, CCw] = [CC, CAL, CCw],

where the second equality used the facts that CCw = F(IL⊗O) and Gw = E(IL⊗O) which
can be verified from the definitions of E,F, Cw,Gw, and the last equality above used the
relation

[ΓU + ΓYG, ΓYO] = [ΓU, ΓY]

[
ImL

G O

]
= [CC, CAL]

where the last equality is due to the definition [ΓU, ΓY] := [CC, CAL]

[
ImL

G O

]†
where[

ImL

G O

]
has full column rank. Comparing the above results of calculation, we have

CΦorig = CΦaux, and thus the result follows from Claim 4.8.1. ♦

We finally prove (4.41a). Using the definitions of xt,wt,A,B, where A consists of
upper-shift matrices and the matrix C, we know by direct calculation that Axt+But+wt

is equal to

col
([

u[t−L+1,t)

ut

]
,

[
y◦[t−L+1,t)

Cxt +Dut

]
,

[
ρ[t−L+1,t)

ρt

])
,

which by definition is xt+1, given the fact Cxt +Dut = yt − vt = y◦t using (4.41b). Thus,
(4.41a) is obtained.
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4.6.7 Proof of Lemma 4.9

Proof. The pair (A,C) is detectable by definition since there exists a matrix L∗ :=
col(0mL×p, 0p(L−1)×p, Ip, 0pL2×p) such that A− L∗C equal to

Diag
([

Im(L−1)

0m×m

]
,

[
Ip(L−1)

0p×p

]
,

[
IpL(L−1)

0pL×pL

])
is Schur stable.

We show stabilizability of (A,B) and (A,Σw) by establishing stabilizing gains. Recall
Φaux ∈ Rnaux×nξ and Φorig ∈ Rn×nξ defined in Claim 4.8.1, with naux := mL+ pL+ pL2 and
nξ := mL+ n+ nL. We start with some basic results.

Claim 4.9.1. For matrices A,B in (4.41) and Σw in (4.43), we have

AΦaux = ΦauxÃ, B = ΦauxB̃, Σw = ΦauxΣ̃
wΦT

aux,

with matrices Ã ∈ Rnξ×nξ , B̃ ∈ Rnξ×m, Σ̃w ∈ Snξ

+ defined as

Ã :=


Im(L−1)

0m×m

B 0n×m(L−1) A In 0n×n(L−1)

In(L−1)

0n×n

 ,

B̃ :=


0m(L−1)×m

Im
0n×m

0nL×m

 , Σ̃w :=

[
0(nξ−n)×(nξ−n)

Σw

]
.

(4.78)

Proof. Direct calculation. ♦

Claim 4.9.2. We have Φorig = ΦΦaux for matrices Φorig,Φaux defined in Claim 4.8.1 and
matrix Φ := [ΦU,ΦY,ΦP] ∈ Rn×naux whose sub-blocks are defined as

[ΦU,ΦY] := [C, AL]

[
ImL

G O

]†
∈ Rn×(mL+pL),

ΦW := Cw − ΦYGw ∈ Rn×nL, ΦP := ΦW(IL ⊗O†) ∈ Rn×pL2

.

Proof. Direct calculation, given O of full column rank. ♦
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With matrix Φ in Claim 4.9.2, define matrices K∗ ∈ Rm×naux , Kw ∈ Rnaux×naux , K̃∗ ∈
Rm×nξ and K̃w ∈ Rnξ×nξ ,

K∗ := KΦ, Kw := Φ†T
aux col(0(nξ−n)×n, K

w) Φ (4.79a)

K̃∗ := KΦorig, K̃w := col(0(nξ−n)×n, K
w) Φorig (4.79b)

where K is the feedback gain from (4.16) and Kw ∈ Rn×n is a matrix such that A−ΣwKw

is Schur stable. We then have another intermediate result.

Claim 4.9.3. For matrices Ã, B̃, Σ̃w in (4.78) and K̃∗, K̃w in (4.79b), both Ã− B̃K̃∗ and

Ã− Σ̃wK̃w are Schur stable.

Proof. Define ξt := col(u[t−L,t), xt−L, w[t−L,t)) ∈ Rnξ and δt := col(0(nξ−n)×1, wt) ∈ Rnξ . We
have the relation

ξt+1 = Ãξt + B̃ut + δt (4.80)

which can be verified given the system model (4.1a) and the definition of Ã, B̃ in (4.78).

To show that Ã−B̃K̃∗ is stable, consider the following process of system (4.1a) starting
at time t = −L: the initial state x−L, the inputs u[−L,0) and the noises w[−L,0) are arbitrarily
chosen (i.e., ξ0 is arbitrary), the noise is wt = 0 for t ≥ 0, and the inputs ut for t ≥ 0 are
generated by state feedback ut = −Kxt. With this process, we have xt+1 = (A − BK)xt

for t ≥ 0, and hence xt → 0 as t → ∞ because A − BK is Schur stable. We therefore
have ut, wt → 0 and thus ξt → 0 as t → ∞, given the definition of ξt and the relations
ut = −Kxt and wt = 0 for t ≥ 0. On the other hand, with the process, we have δt = 0
since wt = 0 for t ≥ 0, and the state feedback can be written as ut = −KΦorigξt given the

relation xt = Φorigξt from Claim 4.8.1, and thus ut = −K̃∗ξt with K̃∗ defined in (4.79b).

Therefore, the evolution (4.80) is reduced as ξt+1 = (Ã− B̃K̃∗)ξt for t ≥ 0, which implies

that ξt = (Ã− B̃K̃∗)tξ0 for t ≥ 0. Since ξt → 0 as t→∞ and ξ0 is arbitrarily chosen, we

conclude that (Ã− B̃K̃∗)t → 0 as t→∞, i.e., Ã− B̃K̃∗ is Schur stable.

To show that Ã−Σ̃wK̃w is stable, consider a similar process of system (4.1a) from initial
time t = −L: the initial state x−L, the inputs u[−L,0) and the noises w[−L,0) are arbitrarily
chosen (i.e., ξ0 is arbitrary), the input is ut = 0 for t ≥ 0, and the disturbances wt for
t ≥ 0 are realized as wt = −ΣwKwxt. With the process, we have xt+1 = (A−ΣwKw)xt for
t ≥ 0, and hence xt → 0 as t→∞ because A− ΣwKw is Schur stable. We therefore have
ut, wt → 0 and thus ξt → 0 as t→∞, given the definition of ξt and the relations ut = 0 and
wt = −ΣwKwxt for t ≥ 0. On the other hand, with the process, we have δt = −Σ̃wK̃wξt,
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given the definition of δt, the relation wt = −ΣwKwxt, the relation xt = Φorigξt from Claim

4.8.1 and the definitions of K̃w, Σ̃w in (4.79b), (4.78). Therefore, the evolution (4.80) is

reduced as ξt+1 = (Ã−Σ̃wK̃w)ξt for t ≥ 0, which implies that ξt = (Ã−Σ̃wK̃w)tξ0 for t ≥ 0.

Since ξt → 0 as t→∞ and ξ0 is arbitrarily chosen, we conclude that (Ã− Σ̃wK̃w)t → 0 as

t→∞, i.e., Ã− Σ̃wK̃w is Schur stable. ♦

It follows from Claim 4.9.1 and the definitions (4.79) that

(A−BK∗)Φaux = Φaux(Ã− B̃K̃∗), (4.81a)

(A−ΣwKw)Φaux = Φaux(Ã− Σ̃wK̃w), (4.81b)

given Φorig = ΦΦaux as Claim 4.9.2 and ΦT
auxΦ

†T
aux = Inξ

for Φaux of full column rank. By

applying (4.81a) repeatedly, we have (A − BK∗)tΦaux = Φaux(Ã − B̃K̃∗)t for all t ∈ N.
Combining this relation with the fact (Ã − B̃K̃∗)t → 0 as t → ∞ via Schur stability in
Claim 4.9.3, we have

(A−BK∗)tΦaux → 0 as t→∞, (4.82)

which implies Schur stability of A−BK∗ through Claim 4.9.4.

Claim 4.9.4. For matrices A,B in (4.41) and K∗ in (4.79a), if (4.82) holds, then A−BK∗

is Schur stable.

Proof. We calculate A−BK∗ as

=:A︷ ︸︸ ︷


0 Im(L−1)

−KΦU

0
−KΦY

0
(C −DK)ΦU

0 Ip(L−1)

(C −DK)ΦY


0

−KΦP

0
F− ΓYE

0
IpL(L−1)

0pL×pL

 ,

which is Schur stable if, and only if, its sub-matrix A is Schur stable. Moreover, since both

A − BK∗ =

[
A ∗
0 ∗

]
and Φaux =

[
S ∗
0 ∗

]
are upper block-triangular, (A − BK∗)tΦaux =[

AtS ∗
0 ∗

]
is also upper block-triangular. Since (A−BK∗)tΦaux → 0 as t→∞ via (4.82),

its sub-matrix yields AtS → 0 as t→∞.
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Let L := limt→∞At denote the limiting value. Given the definition [ΦU,ΦY] :=

[C, AL]S† where S denotes

[
ImL

G O

]
, A can be written as A = D + ES† where

D := Diag
([

Im(L−1)

0m×m

]
,

[
Ip(L−1)

0p×p

])
,

E := col(0m(L−1)×n,−K, 0p(L−1)×n, C −DK) [C, AL].

Define P := I − SS† as a projection matrix. With the fact S†P = S†(I − SS†) = 0, it
follows that

ASS† = A−AP = A− (D + ES†)P = A−DP .

Left-multiplying the above by At−1 and taking the limit as t→∞, we find that

lim
t→∞
AtSS† = lim

t→∞
At︸ ︷︷ ︸

=L

− lim
t→∞
At−1︸ ︷︷ ︸

=L

DP

Since AtS → 0 as t→∞, the left-hand side of above is zero, so the above further reduces
to 0 = L(I − DP). Therefore, to show L = 0, it suffices to show that I − DP is non-
singular. Suppose a vector z in Null(I −DP). If z /∈ Range(P), then ∥Pz∥2 < ∥z∥2 for a
projection matrix P , and then we have

∥z∥2 = ∥DPz∥2 ≤ ∥D∥2︸ ︷︷ ︸
=1

∥Pz∥2︸ ︷︷ ︸
<∥z∥2

< ∥z∥2,

which is a contradiction. Hence, we know that z ∈ Range(P), which implies that Pz = z
because P is projection. Combining z = DPz and Pz = z, we have (I − D)z = 0, which
implies z = 0 since I−D is non-singular. Therefore, we conclude that Null(I−DP) = {0}
and I−DP is non-singular, so we have L = 0, which implies that A is Schur stable. Thus,
A−BK∗ is Schur stable. ♦

Given A − BK∗ Schur stable, we further have Schur stability of A − ΣwKw through
Claim 4.9.5.

Claim 4.9.5. For matrices A,B in (4.41), Σw in (4.43) and K∗,Kw in (4.79a), A−BK∗

is Schur stable if, and only if, A−ΣwKw is Schur stable.
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Proof. Since Φaux ∈ Rnaux×nξ by definition has full column rank, there exists a matrix
Φorth ∈ Rnaux×(naux−nξ) such that Range(Φorth) = Null(ΦT

aux); it follows that

ΦauxΦ
†
aux + ΦorthΦ

†
orth = Inaux . (4.83)

Define matrices S∗,Sw,R∗,Rw,

S∗ := Φ†
orth(A−BK∗)Φorth, Sw := Φ†

orth(A−Σ
wKw)Φorth

R∗ := Φ†
aux(A−BK∗)Φorth, Rw := Φ†

aux(A−ΣwKw)Φorth

and it follows from (4.83) that

(A−BK∗)Φorth = ΦauxR∗ + ΦorthS∗,

(A−ΣwKw)Φorth = ΦauxRw + ΦorthSw.
(4.84)

We moreover notice that S∗ = Sw = Φ†
orthAΦorth given the definitions of S∗,Sw and the

facts Φ†
orthB = 0 and Φ†

orthΣ
w = 0 which follow from the fact Φ†

orthΦaux = 0 via (4.83) and

the relations B = ΦauxB̃ and Σw = ΦauxΣ̃
wΦT

aux from Claim 4.9.1.

Define Φfull := [Φaux,Φorth] ∈ Rnaux×naux which is non-singular given (4.83). The horizon-
tal stack of (4.81) and (4.84) yields

(A−BK∗)Φfull = Φfull

[
Ã− B̃K̃∗ R∗

0 S∗

]
,

(A−ΣwKw)Φfull = Φfull

[
Ã− Σ̃wK̃w Rw

0 Sw

]
.

(4.85)

Since Ã− B̃K̃∗ and Ã− Σ̃wK̃w are Schur stable through Claim 4.9.3, the matrix similarity
relations (4.85) imply that A−BK∗ (resp. A−ΣwKw) is Schur stable if, and only if, S∗

(resp. Sw) is Schur stable. Hence, the result follows from the fact S∗ = Sw. ♦

With both A − BK∗ and A − ΣwKw Schur stable, the pairs (A,B) and (A,Σw) are
stabilizable.

4.6.8 Proof of (4.57) and (4.58)

Here, we prove (4.57) and (4.58) which are critical results supporting the proof of Propo-
sition 4.11. The results are shown in Subsection D, while in Subsection A, Subsection B
and Subsection C we establish intermediate results.
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A. Preliminary Results

We begin by establishing some useful identities in Claim 4.11.1 that will be leveraged in
the remainder of the proof. Recall the matrices Φorig ∈ Rn×nξ , Φaux ∈ Rnaux×nξ defined in
Claim 4.8.1 and matrix Φ = [ΦU,ΦY,ΦP] ∈ Rn×naux defined in Claim 4.9.2, with naux :=
mL+ pL+ pL2 and nξ := mL+ n(L+ 1).

Claim 4.11.1. For the system (4.1) and auxiliary model (4.41), it holds for all t ∈ N≥0

that

xt = Φxt AΦΦaux = ΦAΦaux B = ΦB

wt = Φwt CΦΦaux = CΦaux Σw = ΦΣwΦT.

Proof. The relation xt = Φxt follows from Claim 4.8.1 and Claim 4.9.2. We have proved
CΦΦaux = CΦaux in the proof of Claim 4.8.2. To show wt = Φwt and Σw = ΦΣwΦT, recall
from the definition that wt = J0wt and Σw = J0Σ

wJT
0 where J0 := col(0(naux−pL)×n,O). By

direct calculation one can verify that ΦJ0 = In, using which we obtain wt = Φwt givenwt =
J0wt and obtain Σw = ΦΣwΦT givenΣw = J0Σ

wJT
0 . We have B = ΦorigB̃ = ΦΦauxB̃ = ΦB,

using Φorig = ΦΦaux as Claim 4.9.2, ΦauxB̃ = B from Claim 4.9.1 and B = ΦorigB̃ which

can be verified by definitions of Φorig and B̃. We finally have AΦΦaux = AΦorig = ΦorigÃ =

ΦΦauxÃ = ΦAΦaux, where we used Φorig = ΦΦaux as Claim 4.9.2, AΦaux = ΦauxÃ in Claim

4.9.1 and AΦorig = ΦorigÃ which can be verified given the definitions of Φorig and Ã. ♦

B. Relations of Feedback Gains

We relate the LQR feedback gains K and K as follows.

Claim 4.11.2. For matrices K in (4.16) and K in (4.51), it holds that KΦΦaux = KΦaux.

Proof. Let C̃ := CΦorig and let Ã, B̃ be as in (4.78). We first show the pair (Ã, C̃) is

detectable. For λ ∈ C, define Hobs := col(λInξ
− Ã, C̃), which can be permuted into the

form 
λImL −Dm

λInL −Dn

−B 0n×m(L−1) −In 0n×n(L−1) λIn − A
CC CCw CAL

 , (4.86)
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wherein Dq :=

[
Iq(L−1)

0q×q

]
. Since the blocks λImL − Dm and λInL − Dn in (4.86) are

non-singular for all λ ̸= 0, to show that (4.86) has full column rank when |λ| ≥ 1, we
only need to verify the rank of the last block column in (4.86). Since (A,C) is observable,
On := col(C,CA, . . . , CAn−1) has full column rank, so we have Null(OnA

L) = Null(AL)
where Null denotes the null space. Note that OnA

L is the observability matrix of the pair
(A,CAL), and thus Null(OnA

L) is the unobservable space of the pair (A,CAL). Given
Null(OnA

L) = Null(AL), all unobservable states xnobs of (A,CAL) satisfy ALxnobs = 0
and hence are strictly stable, which implies that (A,CAL) is detectable. From the Hautus
lemma, col(λIn−A,CAL) has full column rank for all λ that |λ| ≥ 1. With diagonal blocks
λImL −Dm, λInL −Dn and col(λIn −A,CAL) having full column rank, the matrix (4.86)
has full column rank when |λ| ≥ 1, and so does the pre-permutational matrix Hobs, which

implies that (Ã, C̃) is detectable through Hautus lemma.

Next, we show that P̃1 = P̃2 with

P̃1 := ΦT
origPΦorig, P̃2 := ΦT

auxPΦaux,

where P is the solution to (4.17) and P is the solution to (4.52). The equations (4.17) and
(4.52) are reproduced here as

0 = ATPA+ CTQC − P − (ATPB + CTQD)

(R +DTQD +BTPB)−1(BTPA+DTQC),
(4.87a)

0 = ATPA+CTQC−P− (ATPB+CTQD)

(R +DTQD +BTPB)−1(BTPA+DTQC).
(4.87b)

Left- and right-multiply (4.87a) by ΦT
orig and Φorig respectively, and we obtain that

0 = ΦT
origA

TPAΦorig + ΦT
origC

TQCΦorig − ΦT
origPΦorig

−(ΦT
origA

TPB + ΦT
origC

TQD)(R+DTQD+BTPB)−1

(BTPAΦorig +DTQCΦorig)

= Ã TP̃1Ã+ C̃ TQC̃ − P̃1 − (Ã TP̃1B̃ + C̃ TQD)

(R +DTQD + B̃ TP̃1B̃)−1(B̃ TP̃1Ã+DTQC̃),
(4.88)

where the second equality used the definitions C̃ := CΦorig and P̃1 := ΦT
origPΦorig and the
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facts that

ΦT
origA

TPAΦorig = Ã TΦT
origPΦorigÃ = Ã TP̃1Ã (4.89a)

BTPAΦorig = B̃ TΦT
origPΦorigÃ = B̃ TP̃1Ã (4.89b)

BTPB = B̃ TΦT
origPΦorigB̃ = B̃ TP̃1B̃ (4.89c)

in which we used relations AΦorig = AΦΦaux = ΦAΦaux = ΦΦauxÃ = ΦorigÃ and B = ΦB =

ΦΦauxB̃ = ΦorigB̃, given the identities Φorig = ΦΦaux as Claim 4.9.2, AΦΦaux = ΦAΦaux

and B = ΦB from Claim 4.11.1 and AΦaux = ΦauxÃ and B = ΦauxB̃ from Claim 4.9.1.
Similarly, left- and right-multiply (4.87b) by ΦT

aux and Φaux respectively, and we have

0 = ΦT
auxA

TPAΦaux + ΦT
auxC

TQCΦaux − ΦT
auxPΦaux

−(ΦT
auxA

TPB+ ΦT
auxC

TQD)(R+DTQD+BTPB)−1

(BTPAΦaux +DTQCΦaux)

= Ã TP̃2Ã+ C̃ TQC̃ − P̃2 − (Ã TP̃2B̃ + C̃ TQD)

(R +DTQD + B̃ TP̃2B̃)−1(B̃ TP̃2Ã+DTQC̃),
(4.90)

where the second equality above used the definition P̃2 := ΦT
auxPΦaux, the relation CΦaux =

CΦΦaux = CΦorig = C̃ given Φorig = ΦΦaux as Claim 4.9.2 and CΦaux = CΦΦaux from Claim
4.11.1, and the facts that

ΦT
auxA

TPAΦaux = Ã TΦT
auxPΦauxÃ = Ã TP̃2Ã (4.91a)

BTPAΦaux = B̃ TΦT
auxPΦauxÃ = B̃ TP̃2Ã (4.91b)

BTPB = B̃ TΦT
auxPΦauxB̃ = B̃ TP̃2B̃ (4.91c)

given AΦaux = ΦauxÃ and B = ΦauxB̃ from Claim 4.9.1. Observing (4.88) and (4.90), we

know that both P̃1 and P̃2 are (positive semi-definite) solutions to a similar DARE to (4.17)

and (4.52), for system (Ã, B̃, C̃,D). In fact, this DARE has a unique positive semi-definite

solution, given stabilizable (Ã, B̃) via Claim 4.9.3, detectable (Ã, C̃) as proved before and

Q ≻ 0. Hence, the solutions P̃1, P̃2 are equal.

Finally, we obtain the result by noting that BTPAΦorig = BTPAΦaux via (4.89b),

(4.91b) and BTPB = BTPB via (4.89c), (4.91c), given P̃1 = P̃2. Hence, it follows from
the definitions (4.16) and (4.51) of K and K that KΦorig = KΦaux, which is the result
given Φorig = ΦΦaux in Claim 4.9.2. ♦
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We mention some useful identities in Claim 4.11.3 which follow after Claim 4.9.1, Claim
4.11.1 and Claim 4.11.2 and will be used multiple times in the rest of the proof.

Claim 4.11.3. If v ∈ Rn, v ∈ Rnaux and ṽ ∈ Rnξ are such that v = Φv and v = Φauxṽ,
then

Cv = Cv, Kv = Kv, Av = ΦAv, Av = ΦauxÃṽ.

If M ∈ Sn
+, M ∈ Snaux

+ and M̃ ∈ Snξ

+ are such that M = ΦMΦT and M = ΦauxM̃ΦT
aux, then

CM = CMΦT, CMCT = CMCT, CMKT = CMKT,

KM = KMΦT, KMKT = KMKT.

Proof. Using CΦΦaux = CΦaux from Claim 4.11.1, we have

Cv = CΦv = CΦΦauxṽ = CΦauxṽ = Cv,

CM = CΦMΦT = CΦΦauxM̃ΦT
auxΦ

T = CΦauxM̃ΦT
auxΦ

T = CMΦT,

CMCT = CΦMΦTCT = CΦΦauxM̃ΦT
auxΦ

TCT = CΦauxM̃ΦT
auxC

T = CMCT.

Similarly, using KΦΦaux = KΦaux from Claim 4.11.2, we prove Kv = Kv, KM = KMΦT

and KMKT = KMKT in the same way by replacing (C,C) into (K,K). We similarly

have CMKT = CMKT. Using AΦΦaux = ΦAΦaux from Claim 4.11.1 and AΦaux = ΦauxÃ
from Claim 4.9.1, we obtain that

Av = AΦv = AΦΦauxṽ = ΦAΦauxṽ = ΦAv,

Av = AΦauxṽ = ΦauxÃṽ, ♦

C. Relations of Observer Gains

The state variances Σx,Σx, Kalman gains LK,LK and Luenberger gains LL,LL are respec-
tively related as follows.

Claim 4.11.4. For matrices Σx, LK, LL in (4.11) and Σx,LK,LL in (4.46), it holds that

(a) Σx = ΦΣxΦT and Σx = ΦauxΣ̃
xΦT

aux for some Σ̃x ∈ Snξ

+ ;

(b) LK = ΦLK and LK = ΦauxL̃K for some L̃K ∈ Rnξ×p;

(c) LL = ΦLL and LL = ΦauxL̃L for some L̃L ∈ Rnξ×p.
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Proof. We first show Σx = ΦauxΣ̃
xΦT

aux in (a). Let C̃ := CΦorig and let Ã, B̃ be as in (4.78).

Since (Ã, Σ̃w) is stabilizable through Claim 4.9.3 and (Ã, C̃) is detectable as shown in the
proof of Claim 4.11.2, the DARE

Σ̃x = ÃΣ̃xÃ T+Σ̃w−ÃΣ̃xC̃T(C̃Σ̃xC̃T+Σv)−1C̃Σ̃xÃ T (4.92)

has a unique positive semi-definite solution Σ̃x. Left- and right-multiply (4.92) by Φaux and
by ΦT

aux respectively, and we have

ΦauxΣ̃
xΦT

aux = ΦauxÃΣ̃
xÃ TΦT

aux + ΦauxΣ̃
wΦT

aux

− ΦauxÃΣ̃
xC̃T(C̃Σ̃xC̃T+Σv)−1C̃Σ̃xÃ TΦT

aux

= AΦauxΣ̃
xΦT

auxA
T + ΦauxΣ̃

wΦT
aux −AΦauxΣ̃

xΦT
auxC

T

(CΦauxΣ̃
xΦT

auxC
T+Σv)−1CΦauxΣ̃

xΦT
auxÃ

T, (4.93)

where the second equality used ΦauxÃ = AΦaux in Claim 4.11.1 and used C̃ := CΦorig =
CΦΦaux = CΦaux applying Φorig = ΦΦaux as Claim 4.9.2 and CΦΦaux = CΦaux in Claim

4.11.1. Due to (4.93), ΦauxΣ̃
xΦT

aux is a (positive semi-definite) solution to equation (4.46a).
Since the DARE (4.46a) has a unique positive semi-definite solution Σx, we have Σx =

ΦauxΣ̃
xΦT

aux.

Then, we show Σx = ΦΣxΦT in (a). Left- and right-multiply the DARE (4.46a) by Φ
and by ΦT respectively, and we have

ΦΣxΦT = ΦAΣxATΦT + ΦΣwΦT − ΦAΣxCT

(CΣxCT + Σv)−1CΣxATΦT

= AΦΣxΦTAT + Σw − AΦΣxΦTCT

(CΦΣxΦTCT + Σv)−1CΦΣxΦTAT,

(4.94)

where the second equality used ΦΣwΦT = Σw from Claim 4.11.1 and used relations
ΦAΣxATΦT = AΦΣxΦTAT, ΦAΣxCT = AΦΣxΦTCT and CΣxCT = CΦΣxΦTCT implied
by

ΦAΣx = ΦAΦauxΣ̃
xΦT

aux = AΦΦauxΣ̃
xΦT

aux = AΦΣx,

CΣx = CΦauxΣ̃
xΦT

aux = CΦΦauxΣ̃
xΦT

aux = CΦΣx,

which applied ΦAΦaux = AΦΦaux and CΦaux = CΦΦaux from Claim 4.11.1. Due to (4.94),
ΦΣxΦT is a (positive semi-definite) solution to the DARE (4.11a). Since (4.11a) has a
unique positive definite solution Σx, we have Σx = ΦΣxΦT.
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We finally show (b) and (c). Given the definition of LK and LL, we obtain LK = ΦauxL̃K

and LL = ΦauxL̃L

LK := ΣxCT(CΣxCT + Σv)−1 = ΦauxL̃K

= ΦauxΣ̃
xΦT

auxC
T(CΣxCT + Σv)−1 = ΦauxL̃K

LL := ALK = AΦauxL̃K = ΦauxÃL̃K = ΦauxL̃L

with choice L̃K := Σ̃xΦT
auxC

T(CΣxCT+Σv)−1 and L̃L := ÃL̃K, where we used Σx =

ΦauxΣ̃
xΦT

aux and AΦaux = ΦauxÃ from Claim 4.9.1. With definitions of LK, LL,LK,LL,
we have

LK := ΣxCT(CΣxCT + Σv)−1

= ΦΣxCT(CΣxCT + Σv)−1 = ΦLK,

LL := ALK = ΦALK = ΦLL,

where we used CΣx = CΣxΦT and CΣxCT = CΣxCT through Claim 4.11.3 with selection
(M,M, M̃) ← (Σx,Σx, Σ̃x), and used ALK = ΦALK implied by Av = ΦAv from Claim

4.11.3 where v,v, ṽ are chosen as the i-th columns of LK,LK, L̃K, respectively, for i ∈
{1, . . . , p}. ♦

D. Proof of (4.57) and (4.58)

With the results in Subsection A, Subsection B and Subsection C, we are able to prove
(4.57) as Claim 4.11.6 which follows after Claim 4.11.5, and prove (4.58) as (c) in Claim
4.11.7.

Claim 4.11.5. For matrices Ξ,Λs in (4.19) and Ξ,Λs in (4.53), we have (a) Ξ = Ξ, and

(b) Λs = ΦΛsΦ
T and Λs = ΦauxΛ̃sΦ

T
aux with some Λ̃s ∈ Snξ

+ , for all s ∈ Z[0,N).

Proof. The relation (a) Ξ = Ξ follows from the definitions Ξ := CΣxCT + Σv and Ξ :=
CΣxCT+Σv and from the relation CΣxCT = CΣxCT through Claim 4.11.3 with selection
(M,M, M̃)← (Σx,Σx, Σ̃x) given (a) in Claim 4.11.4.

For an intermediate result, we show for r ∈ N≥0 that

(A−BK)r LL = Φ(A−BK)r LL, (4.95a)

(A−BK)r LL = Φaux(Ã− B̃K̃)r L̃L, (4.95b)

117



with L̃L in Claim 4.11.4 and K̃ := KΦaux. We show (4.95b) by induction: the base case of

r = 0 as LL = ΦauxL̃L is from Claim 4.11.4; given the r = ς case of (4.95b), we have

(A−BK)ς+1LL = (A−BK)(A−BK)ςLL

= (A−BK)Φaux(Ã− B̃K̃)ςL̃L

= Φaux(Ã− B̃K̃)(Ã− B̃K̃)ςL̃L = Φaux(Ã− B̃K̃)ς+1L̃L

as the r = ς + 1 case of (4.95b), where the second equality applied the r = ς case, and

the third equality used AΦaux = ΦauxÃ and B = ΦauxB̃ from Claim 4.9.1. We then show
(4.95a) by induction: the base case of r = 0 as LL = ΦLL is from Claim 4.11.4; given the
r = ς case of (4.95a), we have

(A−BK)ς+1LL = (A−BK)(A−BK)ςLL

= (A−BK)Φ(A−BK)ςLL

= (A−BK)ΦΦaux(Ã− B̃K̃)ςL̃L

= Φ(A−BK)Φaux(Ã− B̃K̃)ςL̃L

= Φ(A−BK)(A−BK)ςLL = Φ(A−BK)ς+1LL,

as the r = ς + 1 case of (4.95a), where the second equality applied the r = ς case, the
third and fifth equalities used (4.95b), and the fourth equality used AΦΦaux = ΦAΦaux and
B = ΦB in Claim 4.11.1 and used KΦΦaux = KΦaux as Claim 4.11.2.

Through the relations (4.95a), (4.95b) and Ξ = Ξ, we obtain (b) Λs = ΦΛsΦ
T and

Λs = ΦauxΛ̃sΦ
T
aux by choosing

Λ̃s :=
∑s

r=0(Ã− B̃K̃)r L̃LΞL̃L(Ã− B̃K̃)rT. ♦

Claim 4.11.6. For matrices ∆s in (4.19) and ∆s in (4.53), we have ∆s = ∆s for s ∈
Z[0,N), i.e., relation (4.57) holds.

Proof. Given definitions (4.19a), (4.53a) of ∆s,∆s and the relation Ξ = Ξ as (a) in Claim
4.11.5, it suffices to show CΛsC

T = CΛsC
T, KΛsK

T = KΛsK
T and CΛsK

T = CΛsK
T,

which relations are obtained through Claim 4.11.3 with selection (M,M, M̃)← (Λs,Λs, Λ̃s)
given (b) in Claim 4.11.5. ♦

Claim 4.11.7. With given u[k,k+N) and given θ, if µx̂
k, µ

x̄
k,µ

x̄
k,µ

x̂
k satisfy (4.56) for some

µ̃ x̂
k , µ̃

x̄
k , then we have

(a) µx
k = Φµx

k and µx
k = Φauxµ̃

x
k with some µ̃ x

k ∈ Rnξ ,
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(b) xt = Φxt and xt = Φaux x̃t with some x̃t ∈ Rnξ , for all t ∈ Z[k,k+N), and
(c) yt = yt for all t ∈ Z[k,k+N), i.e., relation (4.58) holds.

Proof. (a) We obtain µx
k = Φorigµ̃

x
k by combining (4.14) and (4.56), and obtain µx

k = Φauxµ̃
x
k

by combining (4.45) and (4.56), where we let µ̃ x
k := (1 − θ)µ̃ x̂

k + θµ̃ x̄
k . Then, µx

k = Φµx
k

follows from Φorig = ΦΦaux, and thus (a) is proved.

(b) Prove by induction. Base Case. Select x̃k := µ̃ x
k . The t = k case of (b) follows

from (a) and relations xk := µx
k as (4.12c) and xk := µx

k as (4.49c). Inductive Step.
Assume the t = τ case of (b) for some τ ∈ Z[k,k+N−2], and thus we have

xτ+1
via (4.12a)

= Axτ +Buτ = ΦAxτ + ΦBuτ
via (4.49a)

= Φxτ+1,

where the second equality used B = ΦB in Claim 4.11.1 and Axτ = ΦAxτ through Claim

4.11.3 with selection (v,v, ṽ)← (xτ ,xτ , x̃τ ) given (b) of t = τ . Moreover, we have

xτ+1
via (4.49a)

= Axτ+Buτ = ΦauxÃ x̃τ+ΦauxB̃uτ = Φauxx̃τ+1

by choosing x̃τ+1 := Ã x̃τ + B̃uτ , where the second equality used B = ΦauxB̃ in Claim 4.9.1

and Axτ = ΦauxÃ x̃τ through Claim 4.11.3 with (v,v, ṽ)← (xτ ,xτ , x̃τ ) given (b) of t = τ .
Thus, we have the t = τ + 1 case of (b). This shows (b).

(c) We have Cxt = Cxt applying Claim 4.11.3 with selection (v,v, ṽ) ← (xt,xt, x̃t)
given (b). Thus, (c) is obtained as

yt
via (4.12b)

= Cxt +Dut = Cxt +Dut
via (4.49b)

= yt. ♦

4.6.9 Proof of Claim 4.13.1

Proof. We first show an extended result Claim 4.13.2 which implies Claim 4.13.1. Recall
the matrices Φ ∈ Rn×naux , Φorig ∈ Rn×nξ and Φaux ∈ Rnaux×nξ used in Section 4.6.8.

Claim 4.13.2. At control step t = k in processes a) and b), if

i) the states xa
k = xb

k are equal in processes a) and b), and
ii) the parameters µx̂

k, µ
x̄
k in process a) and the parameters µx̂

k,µ
x̄
k in process b) satisfy

(4.56),

then, for t ∈ Z[k,k+Nc], we have

(a) the states xa
t = xb

t are equal in processes a) and b),
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(b) the variable x̂-t in process a) and the variable x̂-t in process b) satisfy x̂-t = Φx̂-t and

x̂-t = Φaux
˜̂x-t for some ˜̂x-t ∈ Rnξ ,

and, for t ∈ Z[k,k+Nc), we have

(c) the inputs ua
t = ub

t are equal in processes a) and b).

(d) the outputs yat = ybt are equal in processes a) and b),

Proof. We prove by induction. Base Case. We show (a) and (b) for t = k. Result (a) of
t = k is exactly as condition i). Through Proposition 4.11 and the fact that both problems
(SMPC) and (SDDPC) produce unique optimal θ, the values of θ are the same in processes
a) and b). Given condition ii), µx

k in process a) and µx
k in process b) satisfy µx

k = Φµx
k

and µx
k = Φauxµ̃

x
k for some µ̃ x

k according to Claim 4.11.7. Combining these relations with

x̂-k := µx
k as (4.13d) and x̂-k := µx

k as (4.48c), we obtain (b) of t = k by choosing ˜̂x-k := µ̃ x
k ,

as

x̂-k = µx
k = Φµx

k = Φx̂-k, x̂-k = µx
k = Φauxµ̃

x
k = Φaux

˜̂x-k.
Inductive Step. We assume (a) and (b) for t = τ ∈ Z[k,k+Nc), and then prove (c), (d) for
t = τ and (a), (b) for t = τ + 1. The control inputs ua

τ , u
b
τ are obtained through (4.15)

and (4.50) respectively, where the nominal inputs uτ are the same according to Proposition
4.11 and the fact that both problems (SMPC), (SDDPC) produce a unique optimal u, i.e.,

ua
τ = uτ −K(x̂τ − xτ ), ub

τ = uτ −K(x̂τ − xτ ).

Thus, we have (c) ua
τ = ub

τ of t = τ , because of Kx̂τ = Kx̂τ by applying Claim 4.11.3 with

(v,v, ṽ) ← (x̂-τ , x̂
-
τ ,

˜̂x-τ ) where x̂-τ , x̂
-
τ ,

˜̂x-τ satisfy (b) of t = τ , and because of Kxτ = Kxτ

by applying Claim 4.11.3 with (v,v, ṽ) ← (xτ ,xτ , x̃τ ) given xτ = Φxτ and xτ = Φauxx̃τ

via Claim 4.11.7. It follows that (d) yaτ = ybτ holds for t = τ and (a) xa
τ+1 = xb

τ+1 holds
for t = τ + 1, according to the system dynamics yzτ = Cxz

τ + Duz
τ + vt as (4.1b) and

xz
τ+1 = Axz

τ + Buz
τ + wt as (4.1a), for z ∈ {a, b}. Finally, we prove (b) for t = τ + 1 as

follows,

x̂-τ+1

via (4.13)
= Ax̂-τ +Bua

τ + LL(y
a
τ − Cx̂-τ )

= ΦAx̂τ + ΦBub
τ + ΦLL(y

b
τ −Cx̂-τ )

via (4.48)
= Φx̂-τ+1

x̂-τ+1

via (4.48)
= Ax̂τ +Bub

τ + LL(y
b
τ −Cx̂-τ )

= ΦauxÃ ˜̂xτ + ΦauxB̃ub
τ + ΦauxL̃L(y

b
τ −Cx̂-τ ) = Φaux

˜̂x-τ+1
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by choosing ˜̂x-τ+1 := Ã ˜̂xτ + B̃ub
τ + L̃L(y

b
τ −Cx̂-τ ), where we used B = ΦB in Claim 4.11.1,

B = ΦauxB̃ in Claim 4.9.1, LL = ΦLL and LL = ΦL̃L in Claim 4.11.4, and Ax̂-τ = ΦAx̂τ

and Ax̂-τ = ΦauxÃ ˜̂x-τ by applying Claim 4.11.3 with (v,v, ṽ)← (x-τ ,x
-
τ , x̃

-
τ ) where x

-
τ ,x

-
τ , x̃

-
τ

satisfy (b) of t = τ . Hence, we proved (c), (d) for t = τ and (a), (b) for t = τ + 1. The
result follows by induction. ♦

The result 1) in Claim 4.13.1 is covered by (a), (c), (d) of Claim 4.13.2. The rest of the
proof shows the result 2) in Claim 4.13.1. From (b) of Claim 4.13.2 with t = k + Nc, we
have

x̂-k+Nc
= ΦΦaux

˜̂x-k+Nc
, x̂-k+Nc

= Φaux
˜̂x-k+Nc

. (4.96)

From Claim 4.11.7 with t = k +Nc, we have

xk+Nc = ΦΦauxx̃k+Nc
, xk+Nc = Φauxx̃k+Nc . (4.97)

Recall that µx̂
k+Nc

, µx̄
k+Nc

in Algorithm 5 and µx̂
k+Nc

,µx̄
k+Nc

in Algorithm 6 are obtained
through (4.36) and (4.59) respectively. Combine (4.96) with (4.36) and combine (4.97)
with (4.59), where we note Φorig = ΦΦaux, and then we obtain relation (4.56) with k +Nc

in place of k, where we select µ̃ x̂
k+Nc

:= ˜̂x-k+Nc
and µ̃ x̄

k+Nc
:= x̃k+Nc ; this is the result 2) in

Claim 4.13.1.
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Chapter 5

Conclusions and Outlook

Data-driven predictive control (DDPC), as a subfield of data-driven control, has emerged
as a prominent research topic in recent years. DDPC methods such as Data-enabled
Predictive Control (DeePC) and Subspace Predictive Control (SPC) have demonstrated
practical utility through various experimental applications. On the theoretical side, it has
been established that both DeePC and SPC can yield control actions identical to those
produced by Model Predictive Control (MPC) for deterministic linear time-invariant (LTI)
systems. This theoretical equivalence between data-driven and model-based control has
captured our interest and forms the foundation of our research. Our overarching research
objective is to extend this equivalence to broader classes of systems beyond deterministic
LTI systems.

5.1 Contributions

In this thesis, we contributed to the field by developing DDPC methods for linear time-
periodic (LTP) systems, as a type of linear-time varying (LTV) systems (Chapter 3),
and proposing a novel DDPC framework for stochastic LTI systems (Chapter 4). Both
frameworks were shown to achieve equivalence with MPC or Stochastic MPC under specific
conditions, providing theoretical advancements of DDPC to more complex system types
beyond deterministic LTI systems. Our proposed DDPC methods were also validated
through simulations, demonstrating practical advantages over benchmark control methods.

In Chapter 3, we focused on LTP systems of known periods, as a specific type of
LTV systems. The classical lifting technique of LTP systems is reviewed as a preliminary.
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We reviewed some established results in the behavioral systems theory for LTV systems
and then developed a definition of order and lag for LTV systems, which extends the
notions of order and lag which were defined only for LTI systems in the previous behavioral
framework. For LTP systems in particular, we constructed the relation of the behaviors
of LTP systems and their lifted systems, and established a fundamental lemma for LTP
systems, which generalizes Willems’ fundamental lemma [31] from LTI systems to LTP
systems. We finally proposed Periodic DeePC (P-DeePC) and Periodic SPC (P-SPC)
methods for LTP systems, which DDPC methods produce equivalent control actions with
classical MPC for deterministic LTP systems, under tuning conditions. Simulation results
provide evidence that regularized versions of the approach is robust to noise-corrupted
data.

In Chapter 4, we proposed a Stochastic Data-Driven Predictive Control (SDDPC)
framework, accounting for either chance constraints or distributionally robust Conditional
Value-at-Risk (DR-CVaR) constraints. As an intermediate step, we introduced an auxil-
iary model of a stochastic LTI system, as a specific (non-minimal) realization of the system.
The auxiliary model can be accurately represented by noise-free offline data and be approx-
imated by noisy offline data from the system. Using the auxiliary model, we constructed
our SDDPC framework with components analogous to those in Stochastic MPC (SMPC),
such as data-driven feedback policies and data-driven state estimation. Theoretically, we
demonstrated that our SDDPC method can generate control inputs equivalent to those
of SMPC under tuning conditions and the assumption of noise-free offline data. While
in practice offline data is noisy, our data-driven control method achieved reliable tracking
performances in simulations. Simulation results further highlight the practical advantages
of our approach compared to benchmark control methods, showing both lower cumulative
tracking costs and lower rates and amounts of constraint violations.

5.2 Potential Future Topics

Based on our broad objective to extend the equivalence between model-based and data-
driven control beyond deterministic LTI systems, there are other relevant research topics
beyond the scope of the thesis. As mentioned in Section 1.4, the extension can be pursued
for stochastic system, non-linear systems and time-varying systems. Here, we enumerate
several relevant topics of the author’s interest.
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Behavioral Systems Theory for Stochastic Systems

The behavioral systems theory was originally developed for deterministic systems [23, 24,
25, 26, 27, 28, 29, 30], and extending it to stochastic systems remains an open and active
area, with some initial attempts [112, 113, 114]. Due to the close relationship between
the behavioral theory and DDPC methods, extension of behavioral systems theory for
stochastic systems would facilitate the further development of stochastic DDPC. Currently,
while several stochastic DDPC methods [78, 79, 73, 74, 75, 76] have been established
with theoretical performance equivalence with SMPC, those theoretical results rely on
strong and impractical assumptions on offline data, such as noise-free offline data [78, 79]
and knowledge of the offline disturbance signal [73, 74, 75, 76]. Establishing a stochastic
behavioral theory could pave the way for the development of stochastic DDPC methods
that achieve equivalence to SMPC, while relying on more practical and less restrictive
assumptions about offline data.

The author envisions that developing a stochastic behavioral theory could address two
key challenges: capturing the stochasticity in online data and accounting for the uncer-
tainties in offline data. First, the behavior of stochastic systems could be formulated in a
distributional manner, offering a more complex representation than the single behavior set
used for deterministic systems. Unlike in the deterministic case, where a trajectory either
belongs to or lies outside the behavior set, in the stochastic case, a trajectory may belong
to the behavior with a probability. This probabilistic formulation reflects the inherent
stochasticity of online data trajectories in stochastic systems.

Second, one may consider a distribution or an ambiguity set of possible behaviors, since
the behavior identified using Willems’ fundamental identified is based on offline data, which
is inherently noisy in stochastic systems. This topic can be framed as the development of
a stochastic version of Willems’ fundamental lemma, addressing the impact of uncertainty
of offline data.

Data-Driven Predictive Control for a Variety of Time-Varying Systems

Several DDPC methods have been established for specific types of time-varying systems,
as reviewed in Section 1.4. DDPC methods for linear time-periodic (LTP) systems [77]
and linear parameter-varying (LPV) systems [57, 58] have been established with theoretical
equivalence to MPC methods, supported by associated extensions of Willems’ fundamental
lemma. However, for other types of time-varying systems, existing DDPC methods (e.g.
[59, 60]) were developed without a theoretical connection to model-based control methods,
although they provided performance guarantees such as closed-loop stability. Therefore, an
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open and active research topic is to develop DDPC methods with theoretical equivalence to
model-based methods for a broader range of time-varying systems, such as slowly-varying
systems. This topic is closely related to further extensions of Willems’ fundamental lemma
and novel developments in behavioral systems theory for time-varying cases.
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[102] Johannes Köhler and Melanie N Zeilinger. Recursively feasible stochastic predic-
tive control using an interpolating initial state constraint. IEEE Control Syst. Let.,
6:2743–2748, 2022.
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