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Abstract

This thesis studies the convergence rate of the primal-dual method for convex equality-constrained

optimization problems. Three different approaches are used to determine the convergence rate, and

the rates guaranteed are compared. Further, an online feedback-based optimization controller for a

non-linear plant is developed. The control algorithm uses an extension of the primal-dual algorithm,

the extended proximal primal-dual algorithm, to drive the system toward a critical point of a cost

function. The cost function is able to consider differentiable and non-differentiable costs on the

inputs and outputs of the system. Finally, the algorithm is applied to a simulated distribution

feeder system. The controller is able to successfully optimize the power inputs while satisfying the

physical constraints of the system.
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Chapter 1

Introduction

1.1 Problem Motivation

The landscape of electricity consumption, generation, and distribution is undergoing a consequen-

tial shift. The implementation of renewable energy sources and energy storage devices are changing

the way electricity is used and produced. In order to not only manage but embrace this shift, the

electrical grid needs to work as intelligently as possible.

Traditionally, the power grid follows a centralized framework. Large plants produce electricity that

the transmission and distribution networks channel to consumers [1]. These networks were originally

designed for unidirectional power flow; however, with the rise of distributed energy resources, this

architecture is decentralizing [2]. Nodes on the distribution grid can now dual as both a consumer

and producer of electricity. A distributed generation framework provides numerous benefits for the

overall quality and reliability of the grid but poses unique challenges in optimizing and managing

the network [3],[4].

With environmental and economic consequence, optimal power flow is an important problem in

power grid operation. Optimal power flow is concerned with calculating the output power at each

generator that will satisfy power demands as well as minimize a cost function [3]. The cost function

can be designed to minimize some undesirable quality of the system, such as power loss, non-

renewable usage, or operating cost. The optimization problem incorporates the physical constraints

of the system, including maximal line voltage and generator limits. With high-dimensional inputs

and constraints, some of which are non-convex, optimal power flow is a challenging problem.

Optimal power flow lies at the intersection of control and optimization theory. Because the power

grid is a physical system, control algorithms are needed to ensure line frequencies and voltages are

safely regulated. To optimize the dispatching of generator set points, optimization theory needs to

be leveraged. The traditional approach is to use offline predictions over a given time horizon and use

a grid model to determine the optimal set points over the horizon. The trajectory generated is then

provided to the real-time controllers. Due to the offline nature of the optimization algorithm, the

system is unable to respond to unexpected disturbances. Further, the optimization method requires

1



CHAPTER 1. INTRODUCTION 2

an accurate system model. With more distributed energy resources entering the grid, these models

will become increasingly complex.

This provides the motivation for the control algorithm that will be developed in this thesis. An

online feedback-based optimization (OFBO) approach will be explored. Using OFBO in control

has become of interest in recent years due to its applicability in large-scale system control and

optimization [5]. The overarching goal of OFBO is to leverage real-time measurements from the

system of interest to determine the optimal controller set points. Because it is not attempting to

predict the future states of a system and optimize over different possibilities, OFBO algorithms are

generally efficient and do not require a model. Due to the feedback mechanism used in OFBO, this

approach boasts many of the same advantages as using a traditional feedback loop in a control sys-

tem. The algorithm is robust to disturbances to the system; therefore, it is able to effectively adapt

to unexpected system behaviour. Further, typically OFBO implementations are relatively simple to

implement. These benefits do come at a cost. OFBO approaches are unable to optimize over the

transient states of the system and only consider costs on the steady-state values. Applications of

OFBO algorithms include machine learning, telecommunications, and power grid control [5], [6].

1.2 Literature Review

In [7], a general framework for online optimization with feedback was introduced. The approach

used a projected primal-dual algorithm to drive the optimization. The system model considered

was a linear input-output mapping and did not consider the dynamics of the system. The cost

function used in [7] handled differentiable costs on both the input and output. Further, the algo-

rithm used a projection operator to ensure the inputs remained in the feasible input set. This paper

was expanded in [5] where a general non-linear input-output mapping was considered. Further, the

input-output mapping was considered unknown and an approximate Jacobian was used in the opti-

mization algorithm. Because of this, the notion of an online approximate solution was introduced.

The optimization algorithm was an online version of projected gradient descent. The cost function

considered differentiable cost functions on the inputs and outputs of the system. The projection

operator also ensured that the inputs stay within the feasible set.

In [8], the input-output mapping considered was the steady-state transfer function for an LTI system.

Therefore, the mapping was linear. The optimization approach used was a primal-dual method based

on the proximal augmented Lagrangian. This primal-dual algorithm allowed for non-differentiable

costs to be placed on the output. Non-differentiable cost functions allow users to place hard con-

straints on the output of the system or use the l1 norm to induce sparsity in the output variable.

This approach did not include a projection operator on the input, thus there is no mechanism for

ensuring the inputs stay within the constraint set.

The convergence of the primal-dual method based on the proximal augmented Lagrangian has been

researched in a number of papers. Outside of its use in control, it is an effective approach for nons-

mooth composite minimization. In [9], the approach used for convergence is adapted from [10]. The

non-linearities of the algorithm are rewritten as disturbances to the system and a pointwise IQC
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is used to bound the effect of the disturbances. A linear matrix inequality can then be solved to

determine the feasibility of the algorithm for a given rate and step size. In [11] the continuous-time

algorithm was considered and a Lyapunov approach was used to prove convergence to a fixed point.

A quadratic Lyapunov function was proposed and a convergence rate was provided as a function of

system parameters. This was the only Lyapunov approach I found for this algorithm.

1.3 Contributions

The most significant results in this thesis are as follows.

• In Chapter 3, three approaches for determining the convergence rate of the primal-dual algo-

rithm are proposed and analyzed. The rates are compared as problem parameters vary. The

analysis provides insights into the benefits of each approach.

• An alternative to the primal-dual algorithm is proposed. This algorithm introduces a tunable

time-scale separation between the primal and dual updates. We show that the rate can be

determined depending on the time-scale separation chosen. By changing the time-scale sepa-

ration, we can tune the rate between the results achieved in [12] and a rate proportional to

the optimal rate for the dual method.

• In Chapter 4, an online feedback-based optimization controller is proposed. The control algo-

rithm considers both differentiable and non-differentiable costs on the inputs and outputs of

the system. Further, a non-linear input-output mapping is considered. This improves upon

the results in [8] by allowing non-differentiable costs on the inputs and considering a non-linear

plant. A Lyapunov approach is used to determine the convergence of the algorithm to a unique

fixed point when the input-output mapping is linear and known. The Lyapunov function pro-

vides greater rates than the Lyapunov function used in [11]. Finally, when the input-output

mapping is unknown and non-linear, a linear matrix inequality is proposed. Solving the linear

matrix inequality for a given rate and step size guarantees exponential convergence to a fixed

point.

• In Chapter 5, the control algorithm is implemented to control a simulated 36-bus distribution

feeder system. The controller successfully minimizes the power curtailed while enforcing hard

constraints on the inputs and outputs of the system.

1.4 Thesis Layout

The thesis is organized in the following structure:

• In Chapter 2, a summary of the necessary mathematical background is provided. The back-

ground goes over results in optimization and introduces some algorithms of interest.

• In Chapter 3, the rate guarantees for the primal-dual algorithm for a convex equality-constrained

optimization problem are studied. Three different approaches are discussed and used to deter-

mine convergence rates. These rates are then compared to determine which approach provides

the optimal rate. Further, the time-scale separated primal-dual algorithm is motivated and

proposed.



CHAPTER 1. INTRODUCTION 4

• In Chapter 4, an online feedback-based optimization controller is proposed. The system is

introduced and the control algorithm is derived. The algorithm is then proven to converge

under two different assumptions: when the input-output mapping is linear and known and

when the mapping is non-linear and unknown.

• In Chapter 5, the algorithm is adapted to control a 36-bus distribution feeder system. The

implementation details are outlined and the results are given.

• In Chapter 6, a conclusion is provided, and the future research directions are listed.



Chapter 2

Background

2.1 Matrices and Norms

We begin by presenting some results in matrix algebra. The following will provide the mathematical

pretext for the methods and results of the thesis. This background will include a brief overview of

symmetric matrices and matrix norms. We denote the space of real n×m matrices as Rn×m and the

space of real symmetric n×n matrices as Sn ⊂ Rn×n. We will use 0n×m to denote an n×m matrix

with all zero entries. Further, In will be used to represent the n-dimensional identity matrix. If the

indices are omitted, the dimensions of both the zero matrix and identity matrix can be inferred. For

a matrix A ∈ Rn×m, the notation σmax(A) and σmin(A) will be used to denote the maximum and

minimum singular values of A, respectively. The condition number of A will be denoted as cond(A)

and defined as cond(A) = σmax(A)
σmin(A) . Properties of symmetric matrices will be leveraged throughout

the thesis; Lemma 2.1.1 will highlight some of these properties.

Lemma 2.1.1. [13] Given a matrix Q ∈ Sn, the following properties hold

(i) Q = Q⊤;

(ii) Let λi denote the ith eigenvalue of Q, then λi ∈ R for all i ∈ {1, ..., n};

(iii) Let σi denote the ith singular value of Q and λi denote the ith eigenvalue of Q, then σi = |λi|
for all i ∈ {1, ..., n};

(iv) There exists an orthogonal matrix V ∈ Rn×n such that Q = V ⊤ΛV where Λ is a diagonal n×n

matrix.

For a symmetric matrix Q ∈ Sn, we say that Q is positive (semi)definite if all of the eigenvalues

of Q are greater than (or equal to) zero. We will use Q ≻ 0 (Q ⪰ 0) to represent Q being positive

(semi)definite. We say that Q is negative (semi)definite if −Q is positive (semi)definite. We will

use Q ≺ 0 (Q ⪯ 0) to represent Q being negative (semi)definite. If a matrix is denoted as a definite

matrix, this implies that it is also symmetric, as definite asymmetric matrices are out of the scope

of the thesis. Lemma 2.1.2 lists some useful properties about definite matrices.

Lemma 2.1.2. Consider the matrices Q ∈ Sn and A ∈ Rn×m. The following properties hold

(i) Q ≻ 0 if and only if Q−1 ≻ 0;

5
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(ii) AA⊤ ≻ 0 if and only if A is full row-rank;

(iii) If A is full row-rank and Q ≻ 0, then AQA⊤ ≻ 0;

(iv) If Q ⪰ 0 then A⊤QA ⪰ 0.

Proof. (i) and (iii) are given in [14]. For property (ii) assume that AA⊤ ≻ 0 and assume that A is

not full-row rank. Then there exists a non-zero vector x ∈ Rn such that A⊤x = 0. Thus, for some

x ̸= 0 we have x⊤AA⊤x = 0. By contradiction, A must be full row-rank. To prove the reverse

direction, we know that for all non-zero x ∈ Rn, there exists non-zero v ∈ Rm such that v = A⊤x.

Thus,

x⊤AA⊤x = ||v||22 > 0.

Thus, AA⊤ ≻ 0. To prove (iv), notice that for v = A⊤x,

x⊤AQA⊤x = v⊤Qv ≥ 0,

where the final inequality follows from the positive semidefiniteness of Q

Definite matrices will be useful throughout the algorithm analysis. Throughout the process,

scalar-valued functions with convexity and continuity assumptions are considered. Definite matrices

can act as linear analogs to these functions and their behaviour can be easily bounded. To determine

these bounds, the notion of a matrix norm is required. The Euclidean norm ||x||2 =
√
x⊤x is used as

a vector norm throughout the thesis. The P -norm, ||x||P,2 =
√
x⊤Px, where P is positive definite,

will also be used. The matrix 2-norm will be the matrix norm used throughout this thesis unless

otherwise explicitly stated.

Definition 2.1.3. Consider a matrix A ∈ Rm×n. The matrix 2-norm of A, ||A||2, is defined as

||A||2 := sup
x∈Rn

||Ax||2
||x||2

= sup
||x||2=1

||Ax||2 = σmax(A) (2.1)

To transition between the P -norm and Euclidean norm or bound positive definite matrices,

Lemma 2.1.4 will be used.

Lemma 2.1.4. [13] Given a matrix Q ∈ Sn and a vector x ∈ Rn, the following inequality holds

σmin(Q)||x||22 ≤ x⊤Qx ≤ σmax(Q)||x||22

2.2 Functions

Along with linear functions, more general non-linear functions will be considered. Throughout

the thesis, we will consider the extended real space R̄ = R ∪ {∞}. For a differentiable function

f : Rn → R̄, we will say the gradient ∇f is given by

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)


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where ∂f
∂xi

are the partial derivatives of f with respect to xi. The Hessian of a twice differentiable

function, f , is given by

∇2f(x) =


∂2f
∂x2

1
(x) ∂2f

∂x1x2
(x) . . . ∂2f

∂x1xn
(x)

∂2f
∂x2x1

(x) ∂2f
∂x2

2
(x) . . . ∂2f

∂x2xn
(x)

...
...

. . .
...

∂2f
∂xnx1

(x) ∂2f
∂xnx2

(x) . . . ∂2f
∂x2

n
(x)


where ∂2f

∂xjxi
are the second partial derivatives with respect to xi and xj . Non-differentiable functions

will also be analyzed. To consider non-differentiable functions in an optimization framework, the

subdifferential is useful.

Definition 2.2.1 (Subdifferential). [15, Section 1.2] Given a function g : Rn → R̄, a subgradient

of g at x ∈ Rn is any vector d ∈ Rn such that

g(y) ≥ g(x) + d⊤(y − x), ∀y ∈ Rn.

The set of all subgradients for a point x ∈ Rn is called the subdifferential of g at x and is denoted

by

∂g(x) := {d ∈ Rn | g(y) ≥ g(x) + d⊤(y − x), ∀y ∈ Rn}.

The subdifferential of a differentiable function contains one element, which is the gradient of

the function [15, Section 1.2]. The subdifferential of a vector is always well-defined but may be the

empty set [15, Section 1.2]. To motivate this concept, consider the function g(x) = ||x||1 for x ∈ R.
We know that f is differentiable at each point in R except 0. To find the subdifferential of g at 0, we

must find all d that satisfies ||y||1 ≥ dy. Clearly, any d ∈ [−1, 1] satisfies this inequality. Therefore,

∂g(0) = {d ∈ R | − 1 ≤ d ≤ 1}.

2.3 Optimization Theory

The algorithms explored in the thesis will be designed to find values of interest for a defined objec-

tive. This section will formally introduce optimization theory and relevant results.

An optimization problem involves minimizing or maximizing a cost function within a constraint

set. The standard form of an optimization problem is given as

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i ∈ {1, ..., l},

hi(x) = 0, i ∈ {1, ...,m},

(2.2)

where x ∈ Rn is the optimization variable, f : Rn → R̄ is the cost or objective function, gi :

Rn → R for i ∈ {1, ..., l} are the inequality constraints, and hi : Rn → R for i ∈ {1, ...,m} are the

equality constraints [16, Section 4.1.1]. The intersection of the equality constraints and the inequality

constraints form the constraint set or feasibility set. Notice that problem (2.2) is formatted as a
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minimization problem rather than a maximization problem. Any maximization problem can be

equivalently formulated in the standard form by considering the negative cost function. In this

thesis, we will consider optimization problems without inequality constraints. Therefore, we assume

gi = 0 for all i ∈ {1, .., l} throughout this background. The optimization problems of interest will

be in the form of
min
x∈Rn

f(x)

s.t. hi(x) = 0, i ∈ {1, ...,m}.
(2.3)

For the general problem, the goal is to find the point in the constraint set which minimizes the cost

function. This point is called the global minimizer or optimal point.

Definition 2.3.1. [16, Section 4.1.1] Consider the optimization problem (2.3). We say that x∗ is

a global minimizer or an optimal point if

f(x∗) = inf
x∈Rn

{f(x) | hi(x) = 0 ∀i ∈ {1, ...,m}}.

The global minimizer is not necessarily unique. Searching over the feasible set, one may find

other optimal points, but they will never have a lower value than f(x∗). Consequently, once a vector

that satisfies Definition 2.3.1 is found, problem (2.3) is solved. A weaker property can also be stated

for a family of points that share some similarities to global minima.

Definition 2.3.2. [16, Section 4.1.1] Consider the optimization problem (2.3). We say that x∗ is

a local minimizer or critical point if there exists R > 0 such that

f(x∗) = inf
x∈P (x∗)

{f(x)| hi(x) = 0 ∀i ∈ {1, ...,m}},

where P (x∗) = {x ∈ Rn | ||x− x∗||2 < R}.

The presence of local minima can cause issues for traditional optimization methods because they

share similar properties to global minima. Optimization algorithms typically have a stopping cri-

terion that determines that the algorithm has identified a potential solution. If a local minimizer

satisfies this stopping criterion, the algorithm may terminate at this sub-optimal point.

Depending on the properties of the objective function and constraints, the ease of finding solutions

and determining their optimality varies. We will begin by considering the simplest case: uncon-

strained optimization. An unconstrained optimization problem takes the form of problem (2.3)

when hi(x) = 0 for all x ∈ Rn, i ∈ {1, ...,m},

min
x∈Rn

f(x). (2.4)

For the unconstrained optimization problem, the following necessary optimality condition can be

considered.

Corollary 2.3.2.1 (First Order Necessary Optimality Condition ). [15, Proposition 1.2.17] Con-

sider the optimization problem (2.4). For x∗ ∈ Rn, 0 ∈ ∂f(x∗) if x∗ is a global minimum.

Corollary 2.3.2.1 encodes the notion that the global minimum will lie at a point where the gradi-

ent is zero. In the differentiable scalar case, thinking of the gradient as the slope of the tangent line,
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the tangent at an inflection point must be a flat line. Returning to the example of the subdifferential

of the l1 norm, we see that 0 ∈ ∂g(0), as expected. The condition is necessary and not sufficient

because local minima or maxima may also satisfy this condition. Thus, it provides the mechanics to

identify critical points, but without further assumptions, global optimality cannot be guaranteed.

A similar condition can be stated for equality-constrained optimization problems, problem (2.3).

To handle the equality constraints, an equivalent unconstrained optimization problem is proposed.

To do this, we introduce the Lagrangian, L, for problem (2.3),

L(x, λ) := f(x) +

m∑
i=0

λihi(x). (2.5)

For equation (2.5), λ = [λ1, . . . , λm] ∈ Rm is the dual variable or Lagrange Multiplier and x ∈ Rn is

the primal variable. An important property of the Lagrangian is that it can provide a lower bound

on the minimum value of problem (2.3). Suppose x∗ is an optimal point of problem (2.3), then from

[16, Section 5.2], we know that

g(λ) := inf
x∈Rn

(
f(x) +

m∑
i=0

λihi(x)

)
≤ f(x∗). (2.6)

The function g(λ) is known as the dual function. Because the dual function acts as a lower bound

for the optimal value of problem (2.3), it is desirable to determine the tightest lower bound that can

be achieved. This is exactly the motivation for the dual problem,

max
λ∈Rm

g(λ). (2.7)

Suppose that λ∗ is a global maximum of problem (2.7). We know from (2.6) that g(λ∗) ≤ f(x∗).

We define the optimal duality gap as d(x∗, λ∗) = f(x∗) − g(λ∗) [16, Section 5.2.2]. The optimal

duality gap is clearly always positive and encodes the distance between the true optimal value

and the tightest lower bound provided by the Lagrangian. When the optimal duality gap is zero,

d(x∗, λ∗) = 0, we say that strong duality holds. Under certain conditions, strong duality can be

guaranteed. These conditions will be highlighted in Section 2.4. Similar to the necessary optimality

conditions defined for general unconstrained optimization problems, we introduce the necessary

conditions for equality-constrained optimization problems.

Theorem 2.3.3 (KKT Conditions For Equality-Constrained Problems). [15, Theorem 4.1.2] Con-

sider the optimization problem (2.3) and its associated dual problem, problem (2.7). Suppose x∗ ∈ Rn

and λ∗ ∈ Rm are optimal points for the primal and dual problems, respectively. If strong duality

holds for x∗ and λ∗, then the following conditions hold

hi(x
∗) = 0, i ∈ {1, ...,m}

∂f(x∗) +

m∑
i=0

λi∂hi(x
∗) ∋ 0

(2.8)

Conditions (2.8) are known as the Karush–Kuhn–Tucker (KKT) conditions. The KKT conditions

are derived using Corollary 2.3.2.1. To see this, consider that the gradient of the dual problem with
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respect to λi is ∇λig(λ) = hi(x) for i ∈ {1, ...,m}. Because λ∗ maximizes the dual problem,

the gradient must be zero, which matches the first KKT condition. Similarly, x∗ minimizes the

Lagrangian with respect to x. Thus, ∇xL(x
∗, λ∗) ∋ 0, which exactly matches the second condition.

2.4 Convex Optimization Theory

Convex functions are a class of functions that possess qualities that simplify optimization problems.

For this reason, introductory optimization often starts with considering convex problems, and convex

cost functions are often desired. Convex optimization problems have stronger optimality guarantees

than more general problems. Before formally defining a convex function, we introduce convex sets.

Definition 2.4.1. [16, Section 2.1.1] A convex set C ⊆ Rn is a set where all x, y ∈ C and θ ∈ [0, 1]

satisfy

θx+ (1− θ)y ∈ C.

From this definition, a convex set is a set in which all line segments connecting two points in the

set are also contained in the set. With the notion of a convex set defined, we can formally introduce

the definition for a convex function.

Definition 2.4.2. [16, Section 3.1.1] Consider a function f : C → R̄ where C ⊆ Rn. A function f

is a convex function if C is a convex set and for all x, y ∈ C and θ ∈ [0, 1], the following inequality

holds

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Intuitively, if f is convex, then the value of f evaluated at points along a line segment between

x and y in the domain must be less than or equal to the value of the line segment between f(x) and

f(y). There is also a dual concept of concavity. A function f is concave if −f is convex. These ideas

are illustrated in Figure 2.1. A convex optimization problem is an optimization problem in the form

Figure 2.1: Illustration of convex and concave functions [17]

of problem (2.3) where f is convex and h is affine. Thus, when the problem is convex, we represent

h(x) = Ax− b where A ∈ Rm×n and b ∈ Rm. Considering a convex optimization problem provides

the following benefits:

(i) The gradient condition in Corollary 2.3.2.1 becomes a sufficient condition for global optimality

[15, Proposition 1.2.17].

(ii) If there exists x∗ ∈ Rn such that Ax∗ = b, then strong duality holds (Slater’s Condition) [16,

Section 5.5.3].



CHAPTER 2. BACKGROUND 11

(iii) If strong duality holds, then the KKT conditions in Theorem 2.3.3 become sufficient conditions

for global optimality [16, Section 5.5.3].

Convex optimization problems allow us to ensure the optimality of a vector by guaranteeing all local

minimizers are global minimizers. Throughout this thesis, we will assume that Slater’s Condition is

satisfied, ensuring strong duality.

Along with convexity, we will regularly assume that cost functions meet stronger assumptions.

Specifically, we may require that a function be strongly convex and have a Lipschitz continuous

gradient.

Definition 2.4.3. [18] Consider a function f : Rn → R̄. The function f is m-strongly convex if

for all x ∈ Rn, the function f(x)− m
2 ||x||

2
2 is convex.

Strong convexity is closely related to the notion of strong monotonicity. Precisely, if a function, f ,

ism-strongly convex and differentiable, then∇f ism-strongly monotone. A function F ism-strongly

monotone if it satisfies the inequality

(F (x)− F (y))⊤(x− y) ≥ m||x− y||22, ∀ x, y ∈ Rn.

Further, if f is m-strongly convex and twice differentiable, then mI ⪯ ∇2f(x) for all x ∈ Rn.

Definition 2.4.4. [18] Consider a function F : Rn → Rn. The function is L-Lipschitz continuous

if for all x, y ∈ Rn

||F (x)− F (y)||2 ≤ L||x− y||2.

Suppose a function f is twice differentiable and has a Lipschitz continuous gradient.Then we have

∇2f ⪯ LI. Functions that are both strongly convex and have a Lipschitz continuous gradient will be

considered throughout the thesis. Let S(m,L) denote the set of functions that are m-strongly convex

and have an L-Lipschitz continuous gradient. A useful property of these functions is the ability to

place upper and lower bounds on the gradient’s behavior. For any f ∈ S(m,L) and x, y ∈ Rn, the

following inequality is satisfied [18]

m||x− y||22 ≤ (∇f(x)−∇f(y))⊤(x− y) ≤ L||x− y||22.

2.5 Optimization Algorithms

To find a solution to an optimization problem, an optimization algorithm can be employed. In this

thesis, we will explore discrete-time fixed point algorithms that can be written as

xk+1 = T (xk), (2.9)

where k ∈ Z≥0 is the time index, T : Rn → Rn is a function, and x0 is some arbitrary initial

point. The sequence {xi}ki=0 generated by algorithm (2.9) from the starting point x0 is known as

the trajectory of the algorithm. To understand why this method is called a fixed point algorithm,

we must define a fixed point.
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Definition 2.5.1. [18] Consider a function T : Rn → Rn. A point x∗ ∈ Rn is a fixed point of T if

x∗ = T (x∗).

Thus, any equilibrium point of algorithm (2.9) must be a fixed point of T . To solve a problem

using a fixed point iteration, one needs to determine a mapping, T , such that the iteration converges

to a fixed point and the fixed points of T are solutions to the problem in question.

2.5.1 Convergence Analysis

Throughout the thesis, we will be interested in proving the algorithms of interest converge exponen-

tially.

Definition 2.5.2 (Exponential Convergence). Consider a trajectory defined by algorithm (2.9) with

initial point x0 ∈ Rn. Suppose there is a unique fixed point of T , x∗ = T (x∗). The algorithm is

exponentially convergent if there exists β > 0 and ρ ∈ [0, 1) such that for all k ∈ Z≥0 and x0 ∈ Rn,

||xk − x∗||2 ≤ βρk||x0 − x∗||2.

Exponential convergence to an equilibrium point is a powerful notion. Given the time step, initial

condition, and convergence rate, the current iteration’s distance from the fixed point can be upper

bounded. Note that in optimization theory, exponential convergence is often called geometric con-

vergence. Looking at algorithm (2.9) through a control theorist’s lens, we see that the algorithm can

be viewed as a discrete-time dynamical system. Further, our definition of exponential convergence

is equivalent to the notion of exponential stability for a dynamical system. Thus, to show that an

algorithm converges, we will borrow a popular technique from control and dynamical systems.

Theorem 2.5.3 (Lyapunov Stability Theory). [19, Theorem 13.2] Consider the fixed point iteration

(2.9) and assume that T (0) = 0. If V : Rn → R satisfies

V (x) > 0, ∀x ∈ Rn \ {0}

V (0) = 0

V (T (x))− V (x) < 0

||x||2 → ∞ =⇒ V (x) → ∞

then V is a Lyapunov function for (2.9). Further, if there exists γ1, γ2 > 0, p ≥ 1, and ρ ∈ (0, 1)

such that
γ1||x||p2 ≤ V (x) ≤ γ2||x||p2, ∀x ∈ Rn

V (T (x))− V (x) ≤ (ρ− 1)V (x), ∀x ∈ Rn \ {0}

then the trajectories generated by Algorithm 2.9 satisfy

||xk||2 ≤
(

γ2

γ1

)1/p
ρk/p||x0||2

Often, the Lyapunov function is thought of as an energy function for the system. It is a function

that compiles all of the information about the current state into a scalar. The goal is then to

determine how this scalar changes over system trajectories. If it is consistently decreasing, we are

able to conclude the state is converging. For some of the algorithms we will analyze, we will require
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a slightly stronger property than exponential convergence. We may wish to show that an algorithm

is contractive.

Definition 2.5.4. [18] A function T : Rn → Rn is a contraction with rate c ∈ [0, 1) with respect

to a norm || · || if
||T (x)− T (y)|| ≤ c||x− y||, ∀ x, y ∈ Rn.

Thinking of the norm as a measure of distance, applying a contraction to any two points shortens

the distance between them on each iteration. Therefore, if F is a contraction, applying the compo-

sition of F with itself multiple times to two points will shrink the distance between the two points

exponentially. This notion is formalized in the following corollary.

Corollary 2.5.4.1. Consider the fixed point iteration defined by algorithm (2.9). Suppose that T is

a contraction with rate c with respect to the norm || · ||2. Then the following inequality holds for all

x0, y0 ∈ Rn

||xk − yk||2 ≤ ck||x0 − y0||2

where xk and yk are the trajectories at iteration k defined by (2.9) with initial conditions x0 and y0,

respectively.

Proof. Take any x0, y0 ∈ Rn and k ∈ Z≥0. Then

||xk − yk|| = ||T (xk−1)− T (yk−1)||

≤ c||xk−1 − yk−1||

Applying this inequality repeatedly, we arrive at

||xk − yk|| ≤ cn||xk−n − yk−n||, n ≤ k

≤ ck||x0 − y0||

Thus, a fixed point iteration where the mapping is contractive, guarantees that all trajectories

generated by the iteration converge exponentially to a fixed point. Further, using Banach Contrac-

tion Theorem, it is known that if T : Rn → R is contractive with respect to a norm || · ||, then
(2.9) converges to a unique fixed point if (Rn, || · ||) is a complete metric space [20, Theorem 1.6].

Therefore, for any initial point x0, the distance between the kth iteration and the fixed point can be

bounded,

||xk − x∗|| ≤ ck||x0 − x∗||.

Notice that the results guaranteed using a Lyapunov analysis are not as strong as proving that

an algorithm is contractive with respect to || · ||2. Lyapunov theory allows us to determine an

exponential bound on the convergence of any trajectory to an equilibrium point, while a contraction

is the exponential convergence of all trajectories towards one another.

2.5.2 Optimization Algorithms

Fixed point iterations can be used to find the critical points of optimization problems. When the cost

function and equality constraints are differentiable, gradient descent can be an effective algorithm.
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Gradient descent takes advantage of the fact that the gradient of a function points in the direction of

the steepest increase of the function’s value. Thus, moving in the direction of the negative gradient

should provide the steepest descent to a critical point. Gradient descent for a function f : Rn → R
can be written formally as

xk+1 = xk − α∇f(xk)

where k ∈ Z≥0 is the time step and α > 0 is the step size. Because the gradient is 0 at local minima,

gradient descent is a fixed point iteration with the equilibria corresponding to critical points of the

optimization problem. Placing assumptions on the cost function, we can provide convergence results

for a family of algorithms that includes gradient descent.

Corollary 2.5.4.2. [12] Consider F : Rn → Rn where F is mf -strongly monotone and Lf -Lipschitz

continuous. Then, if α ≤ 2
mf+Lf

, for all x, y ∈ Rn

||x− αF (x)− (y − αF (y))||2 ≤ (1− αmf )||x− y||2.

Corollary 2.5.4.2 provides sufficient conditions to determine an algorithm in the form of xk+1 =

xk − αF (xk) is contractive. Gradient descent belongs to this family of algorithms.

Throughout this thesis, we will analyze equality-constrained optimization problems, problem (2.4).

A number of optimization problems, from machine learning to signal processing, have this structure

[21]. Network flow optimization problems also take this form, where A encodes the network graph

structure, b represents the incoming and outgoing flow rates at each node, and x represents the

flow rate at each edge [22]. Problem (2.4) generalizes a large number of key engineering problems;

therefore, developing and analyzing algorithms that can identify the minimizers of these problems

is crucial.

There are two different gradient methods that can be used to find the critical points of problem

(2.4). The first algorithm is the primal-dual method. This method is a specific implementation

of gradient descent. The algorithm involves descending along the gradient of the Lagrangian with

respect to the primal variable while ascending along the gradient of the Lagrangian with respect to

the dual variable. The general form for the primal-dual method is given by

xk+1 = xk − α
(
∇f(xk) +∇h(xk)⊤λk

)
λk+1 = λk + βh(xk),

(2.10)

where α, β > 0, λ = [λ1, . . . , λm]⊤ ∈ Rm, and h(x) = [h1(x), . . . , hm(x)]. In Chapter 2, we will

explore a number of methods to determine the convergence rate for the primal-dual algorithm and

compare them.

The dual method can also be used to find the critical points of problem (2.4). The dual method

is simply gradient descent of the dual function. To use the dual method, the minimizer of the
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Lagrangian for a given λ needs to be determined for each time step. The dual method is given by

x̄ = argminx∈Rn L(x, λk)

λk+1 = λk + βh(x̄),

for β > 0. The dual method works well when x̄ can be calculated easily and can provide significant

speed increases compared to the primal-dual method. For problem (2.4), when f ∈ S(m,L) and A

is full row-rank, the dual method can be implemented as

x̄ = ∇f−1(−A⊤λk)

λk+1 = λk + β (Ax̄− b) .

The assumption f ∈ S(m,L) guarantees that ∇f−1 exists [12]. Further, since A is full row rank,

−A∇f−1(−A⊤x) is
σ2
min

Lf
-strongly monotone and

σ2
max(A)
mf

-Lipschitz continuous [12]. Using Corollary

2.5.4.2, we know that this algorithm converges for step-size

β ≤ 2
σ2
max(A)
mf

+
σ2
min(A)
Lf

=
2mfLf

Lfσ2
max(A) +mfσ2

min(A)
(2.11)

with rate (1− β
σ2
min(A)
Lf

).

The final method considered will be used for non-differentiable cost functions. Non-differentiable cost

functions introduce challenges when using gradient methods because their gradient is not well-defined

over Rn. Some functions that can be useful in optimization but suffer from a lack of differentiablity

are the indicator function and l1 norm. The indicator function for a set C ⊂ Rn, IC(x) : Rn → R̄,
is given by

IC(x) =

0, x ∈ C

∞, x /∈ C
.

The indicator function can be used to enforce hard constraints on the problem and ensure the

solution is within the set C. The l1 norm, ||x||1 : Rn → R is given by

||x||1 =

n∑
i=1

|xi|.

The l1 norm is used in optimization problems to encourage sparsity in the variable. The weighted

l1 norm can also be considered which allows the user to assign different weights to each element in

the vector,

||x||a,1 =

n∑
i=1

|ai||xi|, a ∈ Rn.

Before proposing the problem and algorithm, the proximal operator and Moreau envelope will be

defined. To do this, the notion of a closed proper convex function needs to be understood.

Definition 2.5.5. [23] Consider a function f : Rn → R̄. The function f is a closed proper

convex function if the set,

C = {(x, t) ∈ Rn+1 | f(x) ≤ t}



CHAPTER 2. BACKGROUND 16

is nonempty, convex, and closed.

The set C in the definition is known as the epigraph of f [16, Section 3.1.7]. Also, note that

a set C is closed if its complement is open. With the necessary background defined, the proximal

operator and Moreau envelope can be defined.

Definition 2.5.6. [23] Suppose f : Rn → Rn is a closed proper convex function. The proximal

operator of f , proxλf : Rn → Rn, at u ∈ Rn for λ > 0 is defined as

proxλf (u) := argminx∈Rn

(
f(x) + 1

2λ ||x− u||22
)
.

Further, the Moreau envelope of f , Mλf , at u ∈ Rn for λ > 0 is defined as

Mλf (u) := inf
x∈Rn

(
f(x) + 1

2λ ||x− u||22
)
. (2.12)

For non-differentiable functions, the Moreau envelope acts as a smoothed version of the function

[23]. The Moreau envelope is also convex, continuous, and differentiable on all of Rn [23]. The

connection between the proximal operator and Moreau envelope becomes apparent when looking at

the following equality

Mλf (u) = f(proxλf (u)) +
1
2λ ||u− proxλf (u)||22. (2.13)

Further, the gradient of the Moreau envelope is given by ∇Mλf (u) =
1
λ

(
u− proxλf (u)

)
[23].

Consider the problem of finding x ∈ Rn such that

min
x∈R

f(x) + g(x), (2.14)

where f : Rn → R is continuously differentiable and satisfies f ∈ S(m,L) and g : Rn → R̄ is a closed

proper convex function. Then the problem can be solved using the proximal gradient method

xk+1 = proxαg(x
k − α∇f(xk)), (2.15)

for some α > 0 [18]. The proximal gradient method allows for the minimization of cost functions

that consist of both differentiable and non-differentiable components. Proximal gradient descent

is especially effective if the proximal operator of g is easy to compute. A number of useful non-

differentiable functions such as the indicator function and l1 norm have easily computed proximal

operators. The convergence results of proximal methods will be explored further in Chapter 4.3.



Chapter 3

Primal-Dual Algorithm Rate

Comparison

In the last chapter, we provided a brief background of the necessary topics required for the thesis.

Gradient descent and the primal-dual algorithm were introduced as methods to solve unconstrained

and constrained optimization problems. Consider a convex equality-constrained optimization prob-

lem
min
x∈Rn

f(x)

s.t. Ax = b,
(3.1)

where f : Rn → R is unknown, differentiable, and f ∈ S(mf , Lf ). Further, assume A ∈ Rm×n has

full-row rank and there exists x ∈ Rn such that Ax = b. By assuming that f ∈ S(mf , Lf ) and the

feasible set is non-empty, we know that the minimizer exists and is unique [16]. By assuming A is

full row-rank, we will be able to use the fact that AA⊤ ≻ 0 in the analysis. With these assumptions,

the primal-dual algorithm for (3.1) is given by

xk+1 = xk − α
(
∇f(xk) +A⊤λk

)
λk+1 = λk + β

(
Axk − b

)
.

(3.2)

The primal-dual method introduces unique challenges in its convergence analysis due to the lack of

explicit strong convexity in the dual update. Fixing the dual variable, the primal update clearly

converges exponentially to a fixed point with α ≤ 2
mf+Lf

; however, the dual update does not con-

verge when fixing x. The dual update is solely determined by a linear function of x. Thus, it is the

primal dynamics that drive the convergence of this method.

The choice to analyze the primal-dual method for the equality-constrained optimization problem

was motivated by the controller which will be discussed in the next chapter. The feedback controller

takes the form of an equality-constrained problem, which is why inequality constraints were not

considered. Implementing inequality constraints would add a second dual variable to the analysis

that would be constrained to non-negative values. This addition would require a significant change

in the analysis approach.

17
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In this chapter, three different approaches will be used to analyze the convergence rate of algo-

rithm (3.2). The first method will determine the contraction rate of the algorithm with respect to

different norms. Three different norms of the form || · ||P,2, where P ≻ 0, will be considered. We

will then determine if algorithm (3.2) is contractive with respect to the norm and the rate at which

it contracts. The second approach will involve restructuring algorithm (3.2) as the interconnection

of two exponentially convergent systems. A Lyapunov function for each system will be constructed

and combined to determine the convergence of the connected system. This approach simplifies to

the rate analysis performed in [12]. Finally, a robust control approach adapted from [10] will be

used. In this approach, a linear matrix inequality is constructed. If the linear matrix inequality

is feasible for a given rate, ρ, and step size, we are able to conclude that the algorithm contracts

in some norm with rate ρ. A modification of the primal-dual algorithm will also be proposed and

analyzed. The modification will introduce a tunable time-scale separation between the primal and

dual updates. A rate for the system will be guaranteed.

The rates for each analysis of the original primal-dual algorithm will be compared. These rates

will be compared as mf , Lf , σmin(A), and σmax(A) are varied.

3.1 Contractive Approach

In this section, we will determine the convergence of algorithm (3.2) using a contractive approach.

Specifically, we will be analyzing (3.2) using a number of different norms of the form || · ||P,2, where

P ≻ 0. For each norm matrix, P , a contraction rate will be determined. From Chapter 1, we know

that if algorithm (3.2) is contractive with rate ρ, then it is exponentially convergent to a unique

equilibrium with rate ρ. Further, proving an algorithm is contractive with rate ρ with respect to a

norm || · ||P,2 immediately provides a Lyapunov function for the system. Taking V (z) = ||z− z∗||P,2,

where z∗ ∈ Rn+m is the fixed point of the contractive algorithm, we have

V (zk+1) = ||zk+1 − z∗||P,2 ≤ ρ||zk − z∗||P,2 = ρV (zk), (3.3)

where zk+1, zk ∈ Rn+m are generated by the algorithm of interest. Thus, showing that (3.2) is

contractive provides a Lyapunov function and rate of convergence. To determine that the algorithm

is contractive for each norm, Lemma 3.1.1 will be used.

Lemma 3.1.1. Consider the discrete-time algorithm in the form of

xk+1 = xk + αF (xk) (3.4)

where α > 0 and F : Rn → Rn. Assume that

(i) F is LF -Lipschitz continuous with respect to ∥ · ∥2, and

(ii) there exists a scalar b > 0 and a positive definite matrix P ≻ 0 such that

(F (x)− F (y))⊤P (x− y) ≤ −b||x− y||2P,2, ∀x, y ∈ Rn. (3.5)
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Then (3.4) is contractive with respect to the norm || · ||P,2 for step-size 0 < α < 2b
L2

F cond(P )
. Further,

the step-size α = b
cond(P )L2

F
provides the lowest contraction rate ρ =

√
1− b2

cond(P )L2
F
.

Proof. To prove the lemma, assume F is LF -Lipschitz continuous with respect to ||·||2 and inequality

(3.5) holds. Then for any xk, yk ∈ Rn

||xk+1 − yk+1||2P,2 = ||xk + αF (xk)− (yk + αF (yk))||2P,2

≤ ||xk − yk||2P,2 + α2cond(P )L2
F ||xk − yk||2P,2

+ 2α(F (xk)− F (yk))⊤P (xk − yk)

≤ (1 + α2cond(P )L2
F − 2αb)||xk − yk||2P,2.

(3.6)

Thus, setting α ∈
(
0, 2b

L2
F cond(P )

]
ensures that the update is contractive. To find the step size that

optimizes the contraction rate, notice that the rate is a positive quadratic function. Finding the

minimum value is equivalent to finding the zero of the derivative with respect to α

2αcond(P )L2
F − 2b = 0 =⇒ α = b

cond(P )L2
F
. (3.7)

Using the step size given in (3.7) with (3.6), we see that

||xk+1 − yk+1||P,2 ≤
√

1− b2

cond(P )L2
F
||xk − yk||P,2.

This concludes the proof.

To fit the structure of Lemma 3.1.1, algorithm (3.2) can be written as[
xk+1

λk+1

]
=

[
xk

λk

]
+ α

[
−∇f(xk)−A⊤λk

Axk − b

]
︸ ︷︷ ︸

:=F (xk,λk)

, (3.8)

where we set β = α to simplify the calculations. Lemma 3.1.2 will also be used.

Lemma 3.1.2. [11] Suppose that a function F : Rn → Rn is m-strongly monotone and L-Lipschitz

continuous. Then for any x, x̄ ∈ Rn, there exists a matrix Bx,x̄ such that Bx,x̄(x−x̄) = (F (x)−F (x̄))

and mI ⪯ Bx,x̄ ⪯ LI.

Consider x, y ∈ Rn and λ, γ ∈ Rm where z = [x−y, λ−γ]⊤. Using Lemma 3.1.2, let Qx,y(x−y) =

∇f(x)−∇f(y). Using this notation, inequality (3.5) can be simplified to

(F (x, λ)− F (y, γ))⊤P

[
x− y

λ− γ

]
≤ −b||z||2P,2

⇐⇒

[
− (∇f(x)−∇f(y))−A⊤(λ− γ)

A(x− y)

]⊤
P

[
x− y

λ− γ

]
≤ −b||z||2P,2

⇐⇒ z⊤

[
−Q −A

A 0

]⊤
Pz ≤ −b||z||2P,2

(3.9)
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where the subscript on Q is removed for notational simplicity. We see that showing inequality (3.9)

holds is equivalent to showing inequality (3.5) holds.

We will begin the analysis by using Lemma 3.1.1 with P = I. This approach does not prove the

algorithm is exponentially convergent, but it is a quick and illustrative exercise. Consider x, y ∈ Rn

and λ, γ ∈ Rm where z = [x− y, λ− γ]⊤.

z⊤

[
−Q A⊤

−A 0

]
z = −(x− y)⊤Q(x− y) + (x− y)⊤A⊤(λ− γ)− (λ− γ)⊤A(x− y)

= −x⊤Qx

We see that the quadratic term is negative for all x and y, but it is only a product of the primal vari-

able. All of the strong monotonicity is captured in the Q matrix, with none of the convergence being

expressed in the λ variable. Alternative norms can be used to highlight the transfer of convergence

to the dual variable.

Contractive Approach using P

The first norm matrix that will be considered is given by

P =

[
I ϵA⊤

ϵA I

]
, (3.10)

for ϵ > 0. For P to be positive definite, ϵ < 1
σmax(A) must hold. Using matrix (3.10) and x, y ∈ Rn,

λ, γ ∈ Rm where z = [x− y, λ− γ]⊤, inequality (3.9) is given by

z⊤

[
−Q A⊤

−A 0

][
I ϵA⊤

ϵA I

]
z

= (x− y)⊤
(
−Q+ ϵA⊤A

)
(x− y)− ϵ(x− y)⊤QA⊤(λ− γ)− ϵAA⊤||λ− γ||22

≤ −(mf − ϵσ2
max(A))||x− y||22 + ϵLfσmax(A)||λ− γ||2||x− y||2 − ϵσmin(A)||λ− γ||22

= −

[
||x− y||2
||λ− γ||2

]⊤ [
mf − ϵσ2

max(A) − ϵ
2Lfσmax(A)

− ϵ
2Lfσmax(A) ϵσ2

min(A)

]
︸ ︷︷ ︸

:=T (ϵ)

[
||x− y||2
||λ− γ||2

]
,

where the inequality follows from using the triangle inequality and the bounds from Lemma 3.1.2.

Using the Schur complement, we see that

ϵ < min

(
mf

σ2
max(A)− 1

4L
2
F cond(A)

,
1

σmax(A)

)
(3.11)

guarantees that T (ϵ) and P are positive definite [24, Theorem 1.12]. This allows us to bound

inequality (3.5),

z⊤

[
−Q A⊤

−A 0

][
I ϵA⊤

ϵA I

]
z ≤ −σmin(T (ϵ))||z||22 ≤ −σmin(T (ϵ))

σmax(P )
||z||2P,2.
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Therefore, Inequality 3.5 is satisfied and Lemma 3.1.1 guarantees the following convergence rate

ρ =

√
1− σ2

min(T (ϵ))

σ2
max(P )cond(P )L2

F

,

for α = σmin(T (ϵ))
σmax(P )cond(P )L2

F
. In the matrix T (ϵ), we can see that the dual variable’s convergence is

characterized by ϵAA⊤. Because ϵ is relatively small to keep P positive definite and T (ϵ) negative

definite, the rate at which λ is decreasing is small. It is clear that the minimum eigenvalue of T (ϵ)

is directly linked to the value of ϵ. Because the rate is a function of the eigenvalues of T (ϵ) and P ,

which both depend on ϵ, a computational approach is used to find the optimal ϵ for a given problem.

This approach is discussed further in the results section.

Contractive Approach using P̃

The same method is repeated using a slightly different matrix.

P̃ =

[
I ϵA⊤(AA⊤)−1

ϵ(AA⊤)−1A I

]
(3.12)

where ϵ > 0. We see that ϵ < σmin(A) ensures the positive definiteness of (3.12). The (AA⊤)−1

term was added to cancel with some of the terms present in the last analysis and change the feasible

ϵ values. Consider x, y ∈ Rn, λ, γ ∈ Rm, and z = [x− y, λ− γ]⊤, then (3.9) can be bounded by,

z⊤

[
−Q A⊤

−A 0

][
I ϵA⊤(AA⊤)−1

ϵ(AA⊤)−1A I

]
z

= −(x− y)⊤
(
Q− ϵA⊤(AA⊤)−1A

)
(x− y)− ϵ(x− y)⊤QA⊤(AA⊤)−1(λ− γ)− ϵ||λ− γ||22

≤ −(mf − ϵ)||x− y||22 + ϵ
Lf cond(A)
σmin(A) ||λ− γ||2||x− y||2 − ϵ||λ− γ||22

≤ −z⊤

[
mf − ϵ − ϵ

2
Lf cond(A)
σmin(A)

− ϵ
2
Lf cond(A)
σmin(A) ϵ

]
︸ ︷︷ ︸

:=T̃ (ϵ)

z

Again, using the Schur complement we can determine that ϵ must satisfy

ϵ < min
(
σmin(A),

4mfσ
2
min(A)

4σ2
min+L2

F cond(A)2

)
(3.13)

so that T̃ (ϵ) and P are positive definite [24, Theorem 1.12]. For ϵ satisfying (3.13), inequality (3.9)

can be bounded by

z⊤

[
−Q A⊤

−A 0

][
I ϵA⊤(AA⊤)−1

ϵ(AA⊤)−1A I

]
z ≤ −σmin(T̃ (ϵ))||z||22 ≤ −σmin(T̃ (ϵ))

σmax(P̃ )
||z||2

P̃ ,2
.

Using Lemma 3.1.1 the convergence rate

ρ =

√
1− σ2

min(T̃ (ϵ))

σ2
max(P̃ )cond(P̃ )L2

F
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is guaranteed for α = σmin(T̃ (ϵ))

σmax(P̃ )cond(P̃ )L2
F

. Again, the optimal ϵ value can be determined computation-

ally.

Contractive Approach using P̂

For the matrices P and P̃ , the value cond(P ) is kept relatively low. This is because ϵ is relatively

small and appears on the off diagonal of the matrix. Therefore, the eigenvalues of P remain close

to 1. The next approach will consider a matrix that allows ϵ to have more of an effect on cond(P ).

The matrix considered is given by

P̂ =

[
I ϵA⊤

ϵA (1 + ϵmf )I

]
(3.14)

To keep (3.14) positive definite, it is required that ϵ <

√
1+mf

σmax(A) is satisfied. Using matrix (3.14),

x, y ∈ Rn, λ, γ ∈ Rm, and z = [x− y, λ− γ]⊤, inequality (3.9) is given by

z⊤

[
−Q A⊤

−A 0

][
I ϵA⊤

ϵA (1 + ϵmf )I

]
z

= −(x− y)⊤
(
Q− ϵA⊤A

)
(x− y)− ϵ(x− y)⊤(Q−mf )A

⊤(λ− γ)− ϵ(λ− γ)⊤AA⊤(λ− γ)

≤ −(mf − ϵσ2
max(A))||x− y||22 + (Lf −mf )||x− y||2||λ− γ||2 − ϵσ2

min(A)||λ− γ||22

= −

[
||x− y||2
||λ− γ||2

][
mf − ϵσ2

max
ϵ
2 (Lf −mf )σmax(A)

ϵ
2 (Lf −mf )σmax(A) ϵσ2

min(A)

]
︸ ︷︷ ︸

:=T̂ (ϵ)

[
||x− y||2
||λ− γ||2

]

Using the Schur complement, we see that

ϵ < min

(√
1+mf

σmax(A) ,
4mf

4σmax(A)+(Lf−mf )2cond(A)2

)
(3.15)

guarantees T̂ (ϵ) and P̂ are positive definite. For epsilon satisfying (3.15), inequality (3.9) can be

bounded by

z⊤

[
−Q A⊤

−A 0

][
I ϵA⊤

ϵA (1 + ϵmf )I

]
z ≤ −σmin(T̂ (ϵ))||z||22 ≤ σ(T̂ (ϵ))

σmax(P̃ )
. (3.16)

Using Lemma 3.1.1 with the bound described in (3.16), algorithm (3.2) is contractive with the rate

ρ =

√
1− σ2

min(T̂ (ϵ))

σ2
max(P̂ )cond(P̂ )L2

F

,

for α = σmin(T̂ (ϵ))

σmax(P̂ )cond(P̂ )L2
F

. The optimal ϵ value can be computed computationally.
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3.2 Interconnected Systems Approach

The Lyapunov approach yields results that confirm convergence; however, suggesting and trying

different Lyapunov functions can feel like a guessing game. In this approach, we look at the dual

and primal update as the interconnection of two exponentially convergent systems. Figure 3.1 is a

block diagram representing this approach. There are different ways to derive the interconnection,

Figure 3.1: Block diagram for the suggested approach.

but we will use the dual method to motivate it. For problem (3.1), the dual method is given by

x̄ = argminx∈Rn L(x, λk)

λk+1 = λk + β(Ax̄− b).

Since f ∈ S(mf , Lf ), we know that ∇f−1 exists [12], so we can use the equivalent formulation

proposed in Section 2.5.2,

λk+1 = λk + β(A∇f−1(−A⊤λk)− b). (3.17)

Using Corollary 2.5.4.2, we know that this algorithm contracts with rate 1−β
σ2
min(A)
Lf

with an optimal

step-size of β =
2mfLf

Lfσmax(A)+mfσmin(A) . With the desire to inject strong convergence properties into

the dual update, we decide to look at the λ update in algorithm (3.2) as a perturbation of algorithm

(3.17),

λk+1 = λk + β(A∇f−1(−A⊤λk)− b) + βAyk

yk = xk −∇f−1(−A⊤λk).

Notice that this system simplifies to the dual update for algorithm (3.2), and when yk = 0, the

iteration simplifies to algorithm (3.17). The primal update can be seen as a perturbed gradient

descent algorithm for an unconstrained optimization problem.

xk+1 = xk − α∇f(xk)− αuk

uk = A⊤λk
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Again, we see that this is equivalent to the primal update for algorithm (3.2). We will call the

combination of these two systems the Interconnected System (IS) representation for (3.2).

xk+1 = xk − α
(
∇f(xk)

)
− αuk

yk = xk −∇f−1(−uk)

λk+1 = λk + β
(
A∇f−1(−A⊤λk)− b

)
+ βAyk

uk = A⊤λk

(3.18)

The block diagram of the system is represented in Figure 3.2. With the system rearranged into IS

Figure 3.2: Block diagram for the IS representation for (3.2).

representation, the main theorem of this section can be stated. The proof approach is adapted from

[12]. The IS representation provides a new intuition for the solution.

Theorem 3.2.1 (Convergence of the Primal-Dual Algorithm using IS Representation). Consider

algorithm (3.18). Suppose that f is differentiable, satisfies f ∈ S(mf , Lf ), and A ∈ Rm×n is full-row

rank. Then the following inequality is satisfied

||yk+1||2 + ω||λk+1 − λ∗||2 ≤
(
1− 1

12κ3(f)cond4(A)

) (
||yk||2 + ω||λk − λ∗||2

)
(3.19)

for

ω =
2Lfσ

3
max(A)

m2
fσmin(A)

α = 2
Lf+mf

β =
mf

(mf+Lf )

(
σ2
max(A)
mf

+ωσmax(A)

) .
(3.20)

Proof. To prove the theorem, a Lyapunov approach will be used. The two systems will be considered

separately, and then combined to determine the behaviour of the interconnected system. We begin
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by considering the primal update. The Lyapunov function Vy(y) = ||y||2 will be used.

||yk+1||2 − ||yk||2 =||xk+1 −∇f−1(−uk+1)||2 − ||yk||2
≤||xk+1 −∇f−1(−uk)||2 + ||∇f−1(−uk+1)−∇f−1(−uk)||2 − ||yk||2
≤||xk −∇f−1(−uk)− α

(
∇f(xk)−∇f(∇f−1(−uk))

)
||2

+
σmax(A)

mf
||λk+1 − λk||2 − ||yk||

≤ − αmf ||yk||+ β
σmax(A)

mf
||A∇f−1(−A⊤λ)− b+Ayk||

≤
(
β
σ2
max(A)

mf
− αmf

)
||yk||+ β

σ3
max(A)

m2
f

||λk − λ∗||2

(3.21)

for α ≤ 2
mf+Lf

due to Corollary 2.5.4.2. The first inequality is calculated by adding and subtracting

∇f(−uk) and using the triangle inequality. Clearly, for small β, the Lyapunov function is strictly

negative and the system is exponentially convergent with a rate that approaches 1− αmf . For the

dual system, we consider the Lyapunov function Vλ(λ) = ||λ− λ∗||2,

||λk+1 − λ∗||2 − ||λk − λ∗||2 = ||λk − λ∗ + β(A∇f−1(−A⊤λk)−A∇f−1(−A⊤λ∗)) + βAyk||2
− ||λk − λ∗||2
≤ ||λk − λ∗ + β(A∇f−1(−A⊤λk)−A∇f−1(−A⊤λ∗))||2
+ βσmax(A)||yk||2 − ||λk − λ∗||2

≤ −β
σ2
max

Lf
||λk − λ∗||2 + βσmax(A)||yk||2

(3.22)

for β <
2mfLf

Lfσmax(A)+mfσmin(A) due to Corollary 2.5.4.2. Adding together (3.21) and (3.22) with ω > 0,

we get

||yk+1||2 − ||yk||2 + ω(||λk+1 − λ∗||2 − ||λk − λ∗||2)

≤
(
β
σ2
max(A)

mf
− αmf

)
||yk||+ β

σ3
max(A)

m2
f

||λk − λ∗||2

+ ω

(
−β

σ2
max

Lf
||λk − λ∗||2 + βσmax(A)||yk||2

)
=

(
βσmax(A)

(
σmax(A)

mf
+ ω

)
− αmf

)
||yk||2 + β

(
σ3
max(A)

m2
f

− ω
σ2
max

Lf

)
||λk − λ∗||2.

(3.23)

For small β and properly selected ω, the Lyapunov function is negative. From [12], using the step

sizes and ω given in (3.20), inequality (3.23) simplifies to,

||yk+1||2 − ||yk||2 + ω(||λk+1 − λ∗||2 − ||λk − λ∗||2) ≤ ( 1
12κ3(f)cond4(A)

)(||yk||2 + ω||λk||2)

⇐⇒ ||yk+1||2 + ω||λk+1 − λ∗||2 ≤ (1− 1
12κ3(f)cond4(A)

)(||yk||2 + ω||λk||2).

This is exactly the rate given in (3.19).

From Theorem 3.2.1, we see that using the Lyapunov function V (x, λ) = ||x−∇f−1(−A⊤λ)||2+
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ω||λ− λ∗|| for (3.2) ensures

V (xk+1, λk+1) ≤ ρV (xk, λk) ∀ k ∈ Z≥0, (3.24)

where

ρ = 1− 1
12κ3(f)cond4(A)

.

3.3 IQC Approach

The following approach uses a method described in [10]. The method uses techniques from robust

control theory to determine the convergence of discrete-time optimization algorithms. Rather than

forming a Lyapunov function, this approach involves determining the feasibility of a linear matrix

inequality (LMI). If the LMI is feasible for a given rate ρ, then it guarantees there exists P ≻ 0

such that (3.2) is contractive with rate ρ with respect to || · ||P,2. Integral Quadratic Constraints

(IQCs) are used in the formulation to bound the input and output behaviour. Before introducing

the main theorem, a lemma will be introduced that allows for an easy transition from the continuity

and convexity assumptions we have placed on our cost function to the IQC framework.

Lemma 3.3.1. [10] Suppose f : Rn → R satisfies f ∈ S(m,L), then for all x, y ∈ Rn

[
x− y

∇f(x)−∇f(y)

]⊤ [
−2mLIn (L+m)In

(L+m)In −2In

][
x− y

∇f(x)−∇f(y)

]
≥ 0.

The matrix in Lemma 3.3.1 is known as a pointwise IQC. To use this approach, the non-linearities

of the algorithm need to be considered as a disturbance to an LTI system and bounded using

a pointwise IQC. Thus, the algorithm has to be restructured again. The Perturbed LTI (PLTI)

representation of the primal-dual algorithm is given by

zk+1 =

G︷ ︸︸ ︷[
(1− αmf )In −αA⊤

αA Im

]
zk +

B︷ ︸︸ ︷[
−1

0

]
uk

uk = ∆(zk)

∆(zk) = ∇f(zk1 )−mfz
k
1 ,

(3.25)

where zk = [xk, λk]⊤ and ∆ : Rn+m → Rn. This representation removes the non-linearity from the

system equations and stores it in the input. We subtract mfz
k
1 from ∇f(xk) in the input so that we

have ∆ ∈ S(0, Lf −mf ). This simplifies the quadratic constraint by canceling the top term. Using

Lemma 3.3.1, the pointwise IQC for the PLTI representation is given by

[
zk − yk

∆(zk)−∆(yk)

]⊤  0n×n 0n×m (Lf −mf )In

0m×n 0m×m 0m×n

(Lf −mf )In 0n×m −2In

[ zk − yk

∆(zk)−∆(yk)

]
≥ 0, ∀zk, yk ∈ Rn+m.

With this in place, we can state the main theorem of this section.

Theorem 3.3.2. Consider the algorithm (3.25). Suppose that f : Rn → R is continuously differen-
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tiable and f ∈ S(mf , Lf ). If there exists P ≻ 0 and γ ≥ 0 such that

[
G⊤PG− ρ2P G⊤PB

B⊤PG B⊤PB

]
+ γ

 0n×n 0n×m (Lf −mf )In

0m×n 0m×m 0m×n

(Lf −mf )In 0n×m −2In

 ⪯ 0 (3.26)

then for all trajectories generated by (3.25), zk, yk ∈ Rn, for k ∈ Z≥0, we have

||zk+1 − yk+1||P,2 ≤ ρ||zk − yk||P,2. (3.27)

Proof. The proof approach is an adaptation of the proof from [10]. This proof is specifically mod-

ified for the pointwise IQCs defined in Lemma 3.3.1. This allows us to guarantee the algorithm is

contractive rather than just exponentially convergent.

Let zk, yk ∈ Rn+m be any two points generated by (3.25). Multipling the left and right hand

sides of (3.26) by [zk − yk, ∆(zk)−∆(yk)], (3.26) simplifies to the following inequality

(zk+1 − yk+1)⊤P (zk+1 − yk+1)− ρ2(zk − yk)⊤P (zk − yk)

+ γ

[
zk − yk

∆(zk)−∆(yk)

]⊤  0n×n 0n×m (Lf −mf )In

0m×n 0m×m 0m×n

(Lf −mf )In 0n×m −2In

[ zk − yk

∆(zk)−∆(yk)

]
≤ 0.

(3.28)

Using Lemma 3.3.1, we know that the final quadratic term is positive for all zk, yk ∈ Rn+m. Thus,

we are able to remove it from (3.28). With the quadratic term removed, (3.28) can be written as

||zk+1 − yk+1||2P,2 ≤ ρ2||zk − yk||2P,2

=⇒ ||zk+1 − yk+1||P,2 ≤ ρ||zk − yk||P,2

The LMI approach can be powerful as it enables you to find the optimal convergence rate for a

given step size. To do this, determine if the LMI is feasible for a certain rate, and if it is, lower the

rate and repeat until it is infeasible. This method allows the user to triangulate the best convergence

rate. The downside of this approach is that it guarantees convergence for a single α value rather

than a range of potential step sizes.

3.4 Time-Scale Separated Primal-Dual Algorithm

The previous approaches are all effective in proving the convergence of the original primal-dual

algorithm. In this section, we aim to improve the results by adjusting the algorithm. The motivation

for this adjustment, again, comes from the dual method, (3.17). The calculation of x̄ in (3.17)

involves finding the optimal x to minimize f(x) + λ⊤(Ax − b) for some λ. Instead of using the

approach, x̄ = ∇f−1(−A⊤λ), gradient descent can be used to find the minimum value. Thinking of

(3.17) in this way, we can represent the algorithm as a two-step process. For x̄ = argminx∈Rn L(x, λ)
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and δ > 0:
Step 1: Iterate over n until at time nf we have ||xnf − x̄||2 ≤ δ

xn+1 = xn − α
(
∇f(xn) +A⊤λk

)
Step 2: Update the dual variable

λk+1 = λk + β (Axnf − b) .

(3.29)

The value δ is small and determines the stopping criterion for the first step. As δ → 0, we have

xnf → x̄ and nf → ∞. Thus, as δ → 0, (3.29) is equivalent to (3.17). When written as an explicit

two-step process, we see that (3.17) takes the form of (3.2), with the primal update running infinitely

faster than the dual update. An equivalent formulation can be written using IS representation.

Step 1: Iterate over n until at time nf we have ||y||2 ≤ δ

xn+1 = xn − α
(
∇f(xn) + uk

)
yn = xn −∇f−1(−uk)

Step 2: Update the dual variable

λk+1 = λk + β
(
A∇f−1(−A⊤λk)− b

)
+ βAynf

uk = A⊤λk

This sets up the motivation for the new algorithm. For the IS representation, if a tunable time-scale

separation is introduced between the two systems, we should be able to adjust it to achieve a rate

that approaches 1 − β
σ2
min(A)
Lf

where β =
2mfLf

mfσ2
min(A)+Lfσ2

max
. When the equations are operating at

the same speed, the rate should be equivalent to the rate guaranteed in Theorem 3.2.1. With this

motivation in mind, we introduce the time-scale separated primal-dual algorithm (TSSPD).

xk+1 = xk − α∇f(xk)− αuk

yk = xk −∇f−1(−uk)

λk+1 =

 λk + β
(
A∇f−1(−A⊤λk)− b

)
+ βAyk, k mod n = 0

λk, otherwise

uk = A⊤λk

(3.30)

for some n ∈ Z≥1. We see that as n increases, the primal update gets executed more often than the

dual update. When n = 1, (3.30) is equivalent to the primal-dual algorithm.

Theorem 3.4.1. Consider Algorithm (3.30). Suppose that f : Rn → R where f is differentiable and

f ∈ S(mf , Lf ). Further, assume that A is full-row rank, n ∈ Z≥1, and t ∈ Z>0, then the algorithm

satisfies the following inequality

an(t+1) + ωbn(t+1)

≤ min

(
ϵ(1− αmf ) + (1− ϵ)

(
1− β

σ2
min

Lf

)
, 1− (1− ϵ)mfσ

4
min + ϵLfσ

2
minσ

2
max

(1− ϵ)Lfmfσ2
min + 2ϵσ2

maxL
2
f

β

)(
ant + ωbnt

)
,

(3.31)
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where an(t+1) = ||yn(t+1)||2, bn(t+1) = ||λn(t+1) − λ∗||2, σmax = σmax(A), σmin = σmin(A) and

α = 2
mf+Lf

β =
mf+(1−ϵ)Lf

(mf+Lf )(ϵ
σ2
max

mf
+(1−ϵ)

σ2
min

Lf
+ωσmax)

ω =
2ϵLfσ

3
max+(1−ϵ)mfσmaxσ

2
min

σ2
minm

2
f

ϵ = (1− αmf )
n−1.

(3.32)

Further, for n = 1, the inequality (3.31) is equivalent to the inequality in Theorem 3.2.1. Also, as

n → ∞, the inequality tends towards

an(t+1) + ωbn(t+1) ≤
(
1− 2mfLf

σmaxLf+σminmf

σ2
min

2Lf

) (
ant + ωbnt

)
(3.33)

Proof. A similar proof approach as Theorem 3.2.1 will be used. Again, we consider the Lyapunov

function Vy(y) = ||y||2. Take t ∈ Z≥0. Because we have un(t+1) = . . . = unt+1, we have

||yn(t+1)||2 = ||xn(t+1) −∇f−1(−un(t+1))||2
= ||xn(t+1)−1 − α∇f(xn(t+1)−1)− αun(t+1)−1 −∇f−1(−un(t+1)−1)||2

=
∣∣∣∣∣∣xn(t+1)−1 −∇f−1(−un(t+1)−1)− α

(
∇f(xn(t+1)−1)−∇f(−∇f−1(−un(t+1)−1))

)∣∣∣∣∣∣
2

≤ (1− αmf ) ||yn(t+1)−1||2
≤ (1− αmf )

n−1 ||ynt+1||2
= ϵ||xnt − α(∇f(xnt) + unt)−∇f−1(unt+1)||2
≤ ϵ(1− αmf )||ynt||2 + ϵβ σmax

mf
||A∇f−1(−A⊤λnt)−A∇f−1(−A⊤λ∗) +Aynt||2

≤ ϵ(1− αmf + β
σ2
max

mf
)||ynt||2 + ϵβ

σ3
max

m2
f
||λnt − λ∗||2,

(3.34)

for α < 2
mf+Lf

due to Corollary 2.5.4.2. The second last inequality is a result of adding and

subtracting ∇f−1(unt) and using the triangle inequality. For the dual variable, consider Vλ(λ) =

||λ− λ∗||2. Again, because λn(t+1) = . . . = λnt+1, we have

||λn(t+1) − λ∗||2 = ||λnt+1 − λ∗||2
= ||λnt + β

(
A∇f−1(−A⊤λnt)−A∇f−1(−A⊤λ∗)

)
+ βAynt||2

≤ (1− β
σ2
min

Lf
)||λnt − λ∗||2 + βσmax||ynt||2.

(3.35)

for β ≤ 2mfLf

σ2
minmf+σ2

maxLf
. Taking a linear combination of (3.34) and (3.35), we get

an(t+1) + ωbn(t+1)

≤
(
ϵ
(
1− αmf + β

σ2
max

mf
)
)
+ ωβσmax

)
||ynt||2 +

(
1− β

(
σ2
min

Lf
− ϵ

σ3
max

ωm2
f

))
ω||λnt − λ∗||2.

To show that the inequality is satisfied for the parameters (3.32), we first must show that α ≤ 2
mf+Lf

and β ≤ 2mfLf

σ2
minmf+σ2

maxLf
. Clearly, α satisfies this bound. To prove that β meets the requirements,

note that ϵ ∈ (0, 1]. As ϵ → 0, β is maximized. Therefore, we can bound β by setting ϵ = 0. With
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this bound, we see that

β ≤ mf + Lf

(mf + Lf )(
σ2
min

Lf
+

σ2
max

mf
)

≤ 2
σ2
min

Lf
+

σ2
max

mf

=
2mfLf

σ2
minmf + σ2

maxLf
.

Thus, both β and α satisfy the necessary requirements. We can now analyze the term associated

with ant. Using the values of β and α from (3.32), we have(
ϵ(1− αmf + β

σ2
max

mf
) + ωβσmax

)
ant

=
(
ϵ(1− 2mf

mf+Lf
) + β(ϵ

σ2
max

mf
+ (1− ϵ)

σ2
min

Lf
+ ωσmax)− (1− ϵ)β

σ2
min

Lf

)
ant

=
(
ϵ(1− 2mf

mf+Lf
) +

mf+(1−ϵ)Lf

mf+Lf
− (1− ϵ)β

σ2
min

Lf

)
ant

=
(
ϵ(1− mf

mf+Lf
) +

(1−ϵ)mf+(1−ϵ)Lf

mf+Lf
− (1− ϵ)β

σ2
min

Lf

)
ant

=
(
ϵ(1− mf

mf+Lf
) + (1− ϵ)(1− β

σ2
min

Lf
)
)
ant.

The first equality is achieved by adding and subtracting (1 − ϵ)β
σ2
min

Lf
. Because α ≤ 2

mf+Lf
and

β ≤ 2mfLf

σ2
minmf+σ2

maxLf
for all ϵ, both (1 − mf

mf+Lf
) < 1 and (1 − β

σ2
min

Lf
) < 1. The rate guaranteed is

a convex combination of these two terms. Consequently, it is always bounded above by 1. For the

term in front of ωbnt, we have(
1− β

(
σ2
min

Lf
+ ϵ

σ3
max

ωm2
f

))
ωbnt

=

(
1− β

(
σ2
min

Lf
+

ϵσ3
maxσ

2
min

2ϵLfσ3
max + (1− ϵ)mfσmaxσ2

min

))
ωbnt

=

(
1− β

(
ϵLfσ

2
minσ

3
max + (1− ϵ)mfσmaxσ

4
min

2ϵL2
fσ

3
max + (1− ϵ)Lfmfσmaxσ2

min

))
ωbnt

=

(
1− β

(
ϵLfσ

2
minσ

2
max + (1− ϵ)mfσ

4
min

2ϵL2
fσ

2
max + (1− ϵ)Lfmfσ2

min

))
ωbnt.

Therefore, (3.31) is proved for general n. For n = 1, we have ϵ = 1 which simplifies to the same

inequality in Theorem 3.2.1. Thus,

an(t+1) + ωbn(t+1) ≤ min
(
1− α

mf

2 , 1− β
σ2
min

2Lf

) (
ant + ωbnt

)
=
(
1− 1

12κ3(f)cond4(A)

) (
ant + ωbnt

)
where the final inequality holds from [12]. The final step is to show that (3.33) holds as n → ∞. As

n → ∞ we have ϵ → 0. To identify the limit, consider ϵ = 0. We have,

an(t+1) + ωbn(t+1) ≤ min
(
1− β

σ2
min

Lf
, 1− β

σ2
min

Lf

) (
ant + ωbnt

)
=
(
1− mfLf

σmaxLf+σminmf

σ2
min

Lf

) (
ant + ωbnt

)
.
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Thus, (3.33) is satisfied. This completes the proof.

3.5 Results

In the final section of this chapter, we compare the different analyses and the rates that they

guarantee. The contractive approach, the IS approach, and the IQC approach will be compared.

The TSSPD algorithm will not be compared to these rates as it runs on two different time scales;

consequently, its rate is conveying different information than the others. We will begin the analysis

by plotting the three different contractive rates. The IS rate will then be compared against the

contractive rates. Finally, the IQC approach will be compared against the IS approach. The plots of

the analyses are being staggered in this way to improve the visibility of the results. Each rate from

the contractive approaches are relatively close, while the IS approach and IQC approach significantly

outperform them. Because of this, separating the graphs improves legibility. As a reminder, the

rate, ρ, that is being plotted represents the speed at which a Lyapunov function, V , approaches the

equilibrium.

V (zk+1) ≤ ρV (zk)

To test the rates guaranteed by each approach, an unknown function f : R3 → R where f ∈
S(mf , Lf ) and constraint matrix A ∈ R2×3 where

A =

[√
γ2
max − 1 0 1

0 γmin 0

]

was considered. This A matrix was used so that the singular values could be easily adjusted. We

see that

AA⊤ =

[
γ2
max 0

0 γ2
min

]
. (3.36)

Thus, σmin(A) = γmin and σmax(A) = γmax.

The first test involved fixing γmin = 1 and γmax = 2 and adjusting the mf and Lf parameters.

The parameters were adjusted such that κ(f) =
Lf

mf
ranged from 1 to 100. The second test per-

formed involved varying γmax and γmin while fixing mf = 1 and Lf = 2. The values of cond(A)

were evaluated from 1 to 100 using the same process.

3.5.1 Contractive Approach

The rates guaranteed for each norm had the same structure. It involved determining the maximum

and minimum eigenvalues of the norm matrices, P , P̃ , and P̂ , and the bounding matrices, T (ϵ),

T̃ (ϵ), and T̂ (ϵ), given some ϵ value. The P matrices require specific knowledge of A, while the T

matrices only require knowledge of the singular values of A. For each analysis, code was developed to

iterate over 500 linearly spaced ϵ values in the allowable range that was determined in the analysis.

For each κ(f) and cond(A), the code identifies the ϵ value that determines the best rate. These

rates were then plotted using a logarithmic x-axis for better visibility. The results for the first test

are illustrated in Figure 3.3. We see that the rate guaranteed by P̂ provides the best results. The

optimal rate was achieved when κ(f) = 1 with a value of ρ = 0.9998. The results for the second test
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Figure 3.3: Convergence rates guaranteed by the three different contractive approaches as κ(f) is
varied.

are graphed in Figure 3.4. We see again that the rate produced by P̂ outperforms the other two

Figure 3.4: Convergence rates guaranteed by the three different contractive approaches as cond(A)
is varied.

options. The optimal rate of ρ = 0.9997 was achieved when cond(A) = 1. Also, notice the effect of

changing cond(A) compared to κ(f). In the first test, we have a fixed cond(A) = 2 and the best

achievable rate is slightly below 0.9998. In the second test, we fix κ(f) = 2 and the best rate is

0.9997. This result suggests that the condition number has a more significant impact on the rate of

this analysis than κ(f).
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3.5.2 Interconnected Systems Approach

Calculating the rate for each κ(f) and cond(A) was straightforward for this method. The rate is

simply given by the function

ρ = 1− 1
12κ3(f)cond4(A)

Therefore, this approach is agnostic to the construction of A and is concerned solely with the singular

values of A. The results for the first test are given in Figure 3.5. We see that the IS approach achieves

Figure 3.5: Convergence rates guaranteed by contractive analyses and IS Analysis as κ(f) is varied.

a far better rate for each value of κ(f). The optimal rate achieved was ρ = 0.9947 when κ(f) = 1.

The same trend is seen for the second test as illustrated in Figure 3.6. The optimal rate is again

achieved by the IS approach. The rate was achieved when cond(A) = 1 and had a value of ρ = 0.9895.

Again, we see that cond(A) more significantly impacts the rate.

3.5.3 IQC Approach

To determine the optimal rate for the IQC approach, the LMI of interest was implemented in

MATLAB. For each value of κ(f) and cond(A), code was developed to iterate over a number of

potential rate values and step sizes to determine the smallest rate for which the LMI was feasible.

The computation time for this procedure took significantly longer than the other methods, thus the

resolution of the plot is lower than that of the other tests. The other tests considered 500 unique

κ and cond(A) values between 1 and 100. This approach considered 150 values. The results are as

expected. The rate guaranteed by the IQC approach significantly outperforms all other approaches

as seen in Figure 3.7 and Figure 3.8. As mentioned, the contractive approach rates are not plotted

in these graphs as they would look essentially flat at this scale. We see that the IQC approach

guarantees the best rates, but the approach considers specific step sizes rather than ranges. The IS

approach outperformed the Lyapunov analyses; however, it only guaranteed exponential convergence.
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Figure 3.6: Convergence rates guaranteed by contractive and IS Analyses as cond(A) is varied.

Figure 3.7: Convergence rates guaranteed by IS analysis and IQC analysis as κ(f) is varied.

The Lyapunov approaches got the worst results, but they are able to guarantee contractivity for a

range of step sizes.



Figure 3.8: Convergence rates guaranteed by IS analysis and IQC analysis as cond(A) is varied.
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Chapter 4

Extended Proximal Primal-Dual

Feedback Controller

In this chapter, an online feedback-based optimization control method will be developed. The goal

of the controller will be to drive the system’s inputs and outputs to a critical point of the cost

function. The cost function that will be considered in the optimization algorithm will be able to

handle non-differentiable and differentiable costs on both the input and output. This setup provides

users with considerable flexibility when designing the cost function. The plant considered will be a

discrete-time non-linear system. It will be assumed that the plant is exponentially stable.

We will begin by introducing the system of interest and defining the input-output mapping. We will

then define the cost function and derive the feedback algorithm. With the algorithm defined, two

convergence proofs will be provided. The first proof will consider the algorithm when the plant is

known and linear with respect to the input. This approach will provide sufficient conditions for the

algorithm to converge exponentially to a unique global minimizer. The second approach will assume

the plant is unknown and non-linear. This proof will guarantee that the algorithm converges to a

critical point of the cost function.

4.1 Control Algorithm Derivation

Consider an exponentially stable discrete-time dynamical system of the form

xk+1 = ϕ(xk, uk, ωk)

yk = θ(xk, ωk)

uk+1 = Ψ(yk),

(4.1)

where x ∈ Rp is the system’s state, u ∈ Rn is the input, y ∈ Rm is the output, and ω ∈ Rw is the dis-

turbance. The function ϕ : R·×Rn×Rw → R· determines the system’s dynamics, θ : R·×Rw → Rm

is the measurement function, and Ψ : Rm × Rw → Rn is the feedback controller.

To define an input-output mapping, we will use an approach inspired by [25]. Assume that f is con-

36
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tinuously differentiable and there exists a continuously differentiable function πx(u, ω) : Rn ×Rw →
Rp such that

πx(u, ω) = f(πx(u, ω), u, ω), ∀ (u, ω) ∈ Rn × Rw.

Further, it is assumed that πx(u, ω) is uniformly exponentially stable for all (u, ω) ∈ Rn × Rw. We

will consider the steady-state input-output mapping π : Rn × Rω → Rm as

π(u, ω) = θ(πx(u, ω), ω).

The input-output mapping is a non-linear analog to the DC gain for LTI systems. We will further

assume that the state dynamics in system (4.1) operate much faster than the disturbance, ωk, and

the feedback controller, Ψ. With this assumption, all measurements, y, used in the controller are

steady-state measurements. We will assume that Ψ is slow enough such that the interconnection of

the system and the controller is exponentially stable if the controller exponentially converges to a

fixed point. Thus, our goal is to derive Ψ and prove that it is exponentially convergent.

The goal of the feedback controller is to steer the system’s inputs and steady-state outputs toward

the critical point of some cost function. The optimization problem considered can be represented as

min
u∈Rn,y∈Rm

f(u)+g(u) + h(y) + c(y)

s.t. y = π(u, ω).
(4.2)

Both f and h are differentiable convex functions where f : Rn → R and h : Rm → R. Also, g and c

are closed proper convex functions where g : Rn → R̄ and c : Rm → R̄. Notice that this optimization

problem is only convex if π(u, ω) is linear in u. For general non-linear π, we can not guarantee the

optimality of a fixed point. Thus, the goal of the algorithm will be to find the critical points of the

problem. To do this, the Lagrangian of the optimization problem (4.2) is constructed,

L(u, y;λ) = f(u) + g(u) + h(y) + c(y) + ⟨λ, y − π(u, ω)⟩, (4.3)

where ⟨·, ·⟩ is the standard inner product. From Theorem 2.3.3, we know that the critical points of

(4.2) are characterized by

y − π(u, ω) = 0

∂f

∂u
(u) + ∂g(u)− λ⊤ ∂π

∂u
(u, ω) ∋ 0

∂h

∂y
(y) + ∂c(y) + λ⊤ ∋ 0.

(4.4)

To develop an algorithm that converges to (4.4), the augmented proximal Lagrangian will be devel-

oped. This approach is adapted from [8]. To develop the proximal augmented Lagrangian, we first

need to introduce the augmented Lagrangian. The augmented Lagrangian, Lµ can be constructed

by adding a strictly convex term with respect to the equality constraint. Note that the critical points

of the augmented Lagrangian are exactly the same as (4.4). The augmented Lagrangian for (4.2) is

Lµ(u, y;λ) = f(u) + g(u) + h(y) + c(y)− ⟨λ, y − π(u, ω)⟩+ 1

2µ
||y − π(u, ω)||2. (4.5)
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The linear term can be removed by completing the square. Further, we replace y with π(u, ω) in

the argument of h,

Lµ(u, y;λ) = f(u) + g(u) + h(π(u, ω)) + c(y) +
1

2µ
||y − (π(u, ω) + µλ)||2 − µ

2
||λ||2. (4.6)

To find the critical points of the system, we maximize equation (4.6) with respect to the dual variable,

and minimize with respect to the primal variables,

sup
λ∈Rm

inf
x∈Rn,y∈Rm

Lµ(u, y;λ)

= sup
λ∈Rm

inf
x∈Rn,y∈Rm

{f(u) + g(u) + h(π(u, ω)) + c(y) +
1

2µ
||y − (π(u, ω) + µλ)||2 − µ

2
||λ||2}

= sup
λ∈Rm

inf
u∈Rn

{f(u) + g(u) + h(π(u, ω)) + inf
y∈R

{c(y) + 1

2µ
||y − (π(u, ω) + µλ)||2} − µ

2
||λ||2}.

(4.7)

We will denote the minimizer with respect to y as y∗. Notice that y∗ is given by

y∗ = inf
y

{
c(y) +

1

2µ
||y − (π(u, ω) + µλ)||2

}
= proxµc(π(u, ω) + µλ).

Using the definition of the Moreau envelope, (4.7) simplifies to

sup
λ∈Rm

inf
x∈Rn,y∈Rm

Lµ(u, y;λ) = sup
λ∈Rm

inf
u∈Rn

Lµ(u, y
∗;λ)

= sup
λ∈Rm

inf
u∈Rn

{f(u) + g(u) + h(π(u, ω))

+Mµr(π(u, ω) + µλ)− µ

2
||λ||2}

:= sup
λ∈Rm

inf
u∈Rn

{Lµ(u;λ) + g(u)︸ ︷︷ ︸
Le

µ(u;λ)

},

(4.8)

where we call Lµ(u;λ) the proximal augmented Lagrangian, and Le
µ(u;λ) the extended proximal

augmented Lagrangian (e-PAL).

From Theorem 2.3.3, we know that (u∗, λ∗)Rn+m that solves (4.8) will satisfy (4.4). Thus, the

challenge becomes developing an algorithm that converges to the saddle point defined by (4.8).

Because the e-Pal is continuously differentiable with respect to λ, gradient ascent can be used for

the dual variable. For the primal variable, we see that (4.8) is the sum of a differentiable and non-

differentiable cost function. Thus, the proximal gradient method can be used. Writing the algorithm

explicitly, we have

uk+1 = proxαg

(
uk − α∇uLµ(u

k, λk)
)

λk+1 = λk + α∇λLµ(u
k, λk).

(4.9)

The algorithm can be written explicitly as

uk+1 = proxµg

(
uk − α∇f(uk)− α

∂π

∂u
(uk, ωk)⊤(∇h(π(uk, ωk)) +∇Mµc(π(u

k, ωk) + µλk))

)
λk+1 = λk + αµ(∇Mµc(π(u

k, ωk) + µλk)− λk)
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We note that the algorithm requires the evaluation of ∂π
∂u (u, ω). Rather than requiring an exact

formulation for ∂π
∂u (u, ω), which would imply full knowledge of π(u, ω), an approximation in the

operating range of interest is used, Πu+Πωω = π(u, ω) where Π ∈ Rm×n and Πω ∈ Rm×w. Also, we

know that π(uk, ωk) = yk by definition. We will adjust the algorithm to include the approximation,

and replace the input-output mapping with the measurement yk to arrive at the final algorithm

uk+1 = Ψ(yk) = proxαg

(
uk − α∇f(uk)− αΠ⊤(∇h(yk) +∇Mµr(y

k + µλk))
)

λk+1 = λk + αµ(∇Mµr(y
k + µλk)− λk).

(4.10)

Because an approximation is used, we cannot guarantee that the fixed point of (4.10) meets the nec-

essary conditions in (4.4). To accommodate this, we redefine what the fixed points of the algorithm

encode.

Definition 4.1.1. Consider the optimization problem (4.2). Given a matrix Π ∈ Rm×n, y ∈ Rm,

and ω ∈ Rw. A vector (u∗, λ∗) ∈ Rn+m is an online approximate solution if the following conditions

hold
y = π(u∗, ω)

u∗ = proxαg
(
u∗ − α

(
∇f(u∗) + Π⊤ (∇h(y) +∇Mµc(y + µλ∗))

))
λ∗ = λ∗ + αµ(∇Mµc(y + µλ∗)− λ∗).

(4.11)

When Π = ∂π
∂u (u), the online approximate solution is an equivalent condition to (4.4). When the

approximation is not equivalent to the true Jacobian, the online approximate solution represents

a vector that satisfies the KKT conditions for the approximated system. Also, notice that the

algorithm uses a proximal operator to handle the non-differentiable cost functions. The simplicity

of implementing this algorithm depends on the simplicity of evaluating the proximal operators of

these functions. For example, the proximal operator of the indicator function and l1 norm can easily

be evaluated.

4.2 Convergence under Convexity Assumption

In this section, we will consider the algorithm (4.10) when the input-output mapping is known and

linear. This is given by π(u, ω) = Πu+Πωω. Replacing y in the algorithm with the known mapping

gives the following algorithm representation

uk+1 = proxαg

(
uk − α∇f(uk)− αΠ⊤(∇h(Πuk +Πωω

k) +∇Mµr(Πu
k +Πωω

k + µλk))
)

λk+1 = λk + αµ
(
∇Mµr(Πu

k +Πωω
k + µλk)− λk

)
.

(4.12)

Considering the algorithm with this assumption provides a number of benefits. As mentioned in the

algorithm derivation, under this assumption, the online approximate solution is equivalent to the

necessary conditions for the true system. Further, for convex f , h, c, and g, (4.2) becomes a convex

optimization problem; therefore, the online approximate solution is a global minimizer of (4.2).

To show that the algorithm is convergent under these assumptions, the following lemma will be

used.
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Lemma 4.2.1. Consider the function F : Rn → Rn and a fixed-point algorithm of the form

zk+1 = zk + αF (zk). (4.13)

If (4.13) is contractive with respect to || · ||2 with rate ρ ∈ (0, 1), then the associated proximal update

ẑk+1 = proxµg(ẑ
k + αF (ẑk)) (4.14)

is also contractive with respect to || · ||2 with rate ρ where µ > 0 and g : Rn → Rn is a closed proper

convex function.

Proof. Consider ẑk+1, ŷk+1 ∈ Rn defined by the update law (4.14). We have

||ẑk+1 − ŷk+1||2 = ||prox
(
ẑk − αF (ẑk)

)
− prox

(
ŷk − αF (ŷk)

)
||2

≤ ||x̂k − ŷk − α
(
F (x̂k)− F (ŷk)

)
||2

≤ ρ||x̂k − ŷk||2,

where the first inequality holds due to the non-expansiveness of the proximal operator.

We will be using Lemma 4.2.1 to simplify the proof approach. The lemma allows us to analyze

the algorithm without the proximal operator and use the results to determine the algorithm with

the proximal operator converges. The algorithm without the proximal operator is given by

uk+1 = uk − α∇f(uk)− αΠ⊤(∇h(Πuk +Πωω
k) +∇Mµc(Πu

k +Πωω
k + µλk))

λk+1 = λk + αµ(∇Mµr(Πu
k +Πωω

k + µλk)− λk).
(4.15)

We will call (4.15) the stripped algorithm and (4.12) the full algorithm. Notice that showing that

(4.15) exponentially converges to a fixed point is not sufficient for proving the convergence of (4.12).

We must show that the algorithm is globally contractive with respect to || · ||2, which is a stronger

condition.

Before introducing the convergence results, we will highlight the connections between the primal-

dual algorithm and the algorithm of interest. Although they are both derived using a Lagrangian

approach, the structural similarities are not obvious. From Lemma 3.1.2, it is known there exists

Qz ∈ Sn, Bz ∈ Sm, and Dz ∈ Sm such that (4.15) can be written as

zk+1 = zk + α

[
−Qz − 1

µΠ
⊤ (Bz +Dz)Π −Π⊤Dz

DzΠ µ(Dz − I)

]
zk (4.16)

where zk = [uk, λk]⊤. As a reminder, the primal-dual algorithm for a convex equality-constrained

optimization problem has the form

zk = zk + α

[
−Tz −A⊤

A 0

]
zk (4.17)

for some Tz ≻ 0 and full row-rank A ∈ Rm×n. When written as linear functions, the connection
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between the (4.17) and (4.16) becomes much clearer. Notice that

−Qz −
1

µ
Π⊤ (Bz +Dz) ≻ 0, (4.18)

because Qz ≻ 0 and 1
µΠ

⊤ (Bz +Dz) ⪰ 0. Thus, both algorithms have strongly monotone terms

in the top left corner of the matrices. Further both algorithms have off diagonals that are related

through a negation and transpose,

−(DzΠ)⊤ = −Π⊤Dz and − (A)⊤ = −A⊤

Despite the similarities, there are key differences between (4.17) and (4.16). Notice that DΠ is not

full row-rank and the dual update in (4.16) has a positive definite λ term. With the similarities

between the two algorithms, it is only natural that a proof method used in Chapter 3 was considered.

The seemingly obvious choice may be the Interconnected Systems approach as it yielded the best

rates out of all the analytical approaches; however, DΠ not being full row-rank presents an issue.

The dual update for this algorithm in IS representation is given by

λk+1 = λk − β
(
DzΠ

(
Qz +Π⊤ (Bz +Dz)Π

)−1
Π⊤Dz + µ(I−Dz)

)
︸ ︷︷ ︸

:=K

λk + βDzΠyk

It can be shown that K is positive definite, but it is unknown how to bound this matrix. Without

a lower bound, the IS approach cannot be used. Further, we must show that the algorithm is

contractive, and the IS approach only guarantees exponential convergence. For these reasons, the

contractive approach will be used.

Theorem 4.2.2. Consider the algorithm (4.15). Assume that f : Rn → R and h : Rm → R are

strongly convex with parameters mf and mh, respectively, and have Lipschitz continuous gradients

with parameters Lf and Lh, respectively. Further, assume that g : Rn → R and c : Rm → R are

closed proper convex functions and Π ∈ Rm×n is full-row rank. Then there exists α∗ and P ≻ 0 such

that (4.15) is contractive with respect to || · ||P,2 for all α ∈ (0, α∗).

Proof. The structure of the proof approach is inspired by the proof used in [11]. To start the proof,

the algorithm is simplified using Lemma 3.1.2. For x, y ∈ Rn and λ, γ ∈ Rm, let û = u−v, λ̂ = λ−γ,

and
Qûû = (∇f(u)−∇f(v))

BûΠû = ∇h(Πu+Πωω)−∇h(Πv +Πωω)

Dû,λ̂(Πû+ µλ̂) = µ∇Mµc(Πu+Πωω + µλ)− µ∇Mµc(Πv +Πωω + µγ)

Using the matrix notation, the algorithm can be rewritten as

ẑk+1 = ẑk + α

[
−Q̂− 1

µΠ
⊤DΠ −Π⊤D

DΠ µ(D − I)

]
ẑk︸ ︷︷ ︸

:=F (ẑk)

(4.19)

Where the matrix subscripts have been dropped for notational simplicity, Q̂ = Q + Π⊤BΠ, and

ẑk = [ûk, λ̂k]. Notice that mfI ≺ Q̂ ≺
(
Lf + σ2

max(Π)Lh

)
I. To prove the algorithm is contractive,



CHAPTER 4. EXTENDED PROXIMAL PRIMAL-DUAL FEEDBACK CONTROLLER 42

Lemma 3.4 will be used. As a reminder, this involves showing that F is Lipschitz continuous and

F (ẑ)⊤P ẑ ≤ −b||ẑ||2P,2 (4.20)

holds for all ẑ ∈ Rn+m. It is trivial to show that F is Lipschitz continuous. Let LF be the Lipschitz

parameter of F . Thus, showing inequality (4.20) holds for some b proves the algorithm is contractive.

The matrix P that will be used in the analysis is inspired by the norms analyzed in Chapter 2.

P =

[
I ϵΠ⊤Π̄

ϵΠ̄Π (1 + ϵβ)I

]
(4.21)

where Π̄ = (ΠΠ⊤)−1, ϵ > 0 and β > 0. We know that (4.21) is positive definite if ϵ < σmin(Π).

Using Lemma 2.1.2, we know that Π̄ is well-defined because Π is full-row rank. With the algorithm

rewritten in the form of an LTI system, showing that (4.20) is satisfied is equivalent to

F⊤(ẑk)P ẑk ≤ −b||ẑk||2P,2

⇐⇒

([
−Q̂− 1

µΠ
⊤DΠ −Π⊤D

DΠ µ(D − I)

][
ûk

λ̂k

])⊤

P

[
ûk

λ̂k

]
≤ −b||ẑk||2P,2

⇐⇒

[
ûk

λ̂k

]⊤([
−Q̂− 1

µΠ
⊤DΠ Π⊤D

−DΠ µ(D − I)

][
I ϵΠ⊤Π̄

ϵΠ̄Π (1 + ϵβ)I

])[
ûk

λ̂k

]
≤ −b||ẑk||2P,2

⇐⇒ 1

2

[
ûk

λ̂k

]⊤([
−Q̂− 1

µΠ
⊤DΠ Π⊤D

−DΠ µ(D − I)

][
I ϵΠ⊤Π̄

ϵΠ̄Π (1 + ϵβ)I

]

+

[
I ϵΠ⊤Π̄

ϵΠ̄Π (1 + ϵβ)I

][
−Q̂− 1

µΠ
⊤DΠ −Π⊤D

DΠ µ(D − I)

])[
ûk

λ̂k

]
≤ −b||ẑk||2P,2

⇐⇒ −

[
W0

ϵ
2

(
W1Π

⊤Π̄ +W2

)
ϵ
2

(
Π̄ΠW1 +W⊤

2

)
W3

]
⪯ 0

where the matrices are defined by

W0 = Q̂− ϵ
2Π

⊤(DΠ̄ + Π̄D)Π− bI

W1 = Q+ ( 1µ − β)Π⊤DΠ− 2bI

W2 = µΠ⊤Π̄(I−D)

W3 = ϵD + µ(1 + ϵβ)(I−D)− (1 + ϵβ)bI.

(4.22)

Therefore, showing that [
W0

ϵ
2

(
W1Π

⊤Π̄ +W2

)
ϵ
2

(
Π̄ΠW1 +W⊤

2

)
W3

]
⪰ 0 (4.23)

holds ensures algorithm (4.15) is contractive. To prove that (4.23) holds, the Schur complement is

used. The Schur complement states that if W3 ≻ 0 and

W0 − ϵ2

4 (W1Π
⊤Π̄ +W2)(W3)

−1(Π̄ΠW⊤
1 +W⊤

2 ) ⪰ 0 (4.24)
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then (4.23) is satisfied [24, Theorem 1.12]. Taking b = ϵ
2(1+ϵβ) , ϵ ≤

µ
1−µβ , and β ∈ [0, 1

µ ], we know

that W3 ⪰ ϵ
2I. To show this we use the fact that D ⪯ I and

W3 − ϵ
2I = ϵD + µ(1 + ϵβ)(I−D)− ϵ

2I− (1 + ϵβ)bI

= (ϵ− µ(1 + ϵβ))D + µ(1 + ϵβ)I− ϵ
2I−

ϵ
2I

⪰ (ϵ− µ(1 + ϵβ))I+ µ(1 + ϵβ)I− ϵI

= 0.

(4.25)

Using (4.25), statement (4.24) can be reduced to

W0 − ϵ
2 (W1Π

⊤Π̄ +W2)(Π̄ΠW⊤
1 +W⊤

2 ) ⪰ 0. (4.26)

Expanding (4.26) and using the triangle inequality, we see that (4.26) is satisfied if

W0 − ϵ
2 (W1Π

⊤Π̄2ΠW1 + 2||W1Π
⊤Π̄W⊤

2 ||2 +W2W
⊤
2 ) ⪰ 0. (4.27)

We now aim to bound each element of (4.27). Starting with W0, we use the fact that ϵ
2Π

⊤(DΠ̄ +

Π̄D)Π ⪯ ϵI. This bound is proven in Appendix A. This gives us,

W0 ⪰
(
mf − ϵ− ϵ

2(1+β)

)
I. (4.28)

For the W1Π
⊤Π̄2ΠW1 term, we use the fact that ΠΠ̄2Π ⪰ 1

σ2
min(Π)

I. The proof of this can be found

in Appendix A. Using this,

W1Π
⊤Π̄2ΠW1 ⪯ 1

σ2
min(Π)

(Q̂+ ( 1µ − β)Π⊤DΠ− 2bI)2

⪯ 1
σ2
min(Π)

(
Q̂2 + 2( 1µ − β)||Q̂||2||Π⊤DΠ||2

− 4bQ̂+ ( 1µ − β)2Π⊤DΠΠ⊤DΠ− 4b( 1µ − β)Π⊤DΠ+ 4b2I
)

⪯ 1
σ2
min(Π)

(
L̂2
f + 2( 1µ − β)L̂fσ

2
max(Π) + ( 1µ − β)2σ4

max(Π) + ϵ2

(1+ϵβ)2

)
I

:= w1(ϵ, β)

(4.29)

when β ∈ [0, 1
µ ]. We can bound the 2||W1Π

⊤Π̄W⊤
2 ||2 term using the triangle inequality, the fact

that Π⊤Π̄Π ⪯ I, and I −D ⪯ I. Using these properties,

2||W1Π
⊤Π̄W⊤

2 ||2 = 2µ||(Q̂+ ( 1µ − β)Π⊤DΠ− 2b)Π⊤Π̄(I−D)Π̄Π||2

⪯ 2µ||Q̂+ ( 1µ − β)Π⊤DΠ− 2b||2||Π⊤Π̄(I−D)Π̄Π||2I

⪯ 2µ(L̂f + σ2
max(Π)( 1µ − β) + 2b)||Π⊤Π̄2Π||2I

⪯ 2 µ
σ2
min(Π)

(L̂f + σ2
max(Π)( 1µ − β) + ϵ

1+β )I

:= w2(ϵ, β).

(4.30)
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Finally, the W2W
⊤
2 term can be bounded as

W2W
⊤
2 ⪯ µ2Π⊤Π̄(I−D)Π̄Π

⪯ µ2

σ2
min(Π)

I

:= w3(ϵ, β).

(4.31)

Using the bounds described in (4.28), (4.29), (4.30), and (4.31), the following holds

W0 − ϵ
2 (W1Π

⊤Π̄ +W2)(Π̄ΠW⊤
1 +W⊤

2 ) ⪰ mfI− ϵ

(
1 + 1

2(1+β) +
1
2

3∑
i=1

wi(ϵ, β)

)
. (4.32)

Notice that
∑3

i=1 wi(ϵ, β) monotonically increases with respect to ϵ. Because ϵ < min
(
σmin(Π), µ

(1+ϵβ)

)
,

set ϵ̄ = min
(
σ2
min(Π), µ

(1+ϵβ)

)
. Then,

ϵ

(
1 + 1

2(1+β) +
1
2

3∑
i=1

wi(ϵ, β)

)
≤ ϵ

(
1 + 1

2(1+β) +
1
2

3∑
i=1

wi(ϵ̄, β)

)
=: ϵw0(ϵ̄, β).

(4.33)

Combining (4.32) and (4.33), we see that the Schur complement is positive definite and, thus, (4.20)

is satisfied for

ϵ < min

(
σ2
min(Π), µ

(1+ϵβ) ,
mf

w0(ϵ̄, β)

)
with b = ϵ

2(1+β) and β ∈ [0, 1
µ ]. Using Lemma 3.1.1, algorithm (4.15) converges for α < ϵ

(1+ϵβ)L2
F cond(P )

.

Further, algorithm (4.15) converges with rate

ρ =

√
1− ϵ2

4L2
F (1 + ϵβ)2cond(P )

.

for α = ϵ
2(1+β)L2

F cond(P )
.

Theorem 4.2.2 guarantees that (4.15) is contractive for properly selected ϵ, but this does not

guarantee that (4.12) is exponentially convergent. The algorithm (4.15) has to be contractive enough

that switching from the || · ||2P,2 norm to the || · ||22 norm keeps the contraction rate below 1. To use

Lemma 4.2.1, we need (4.15) to be contractive with parameter ρ < 1
cond(P ) with respect to || · ||P,2

for convergence.

4.3 Convergence under General Conditions

In this section, we assume that the mapping π(u, ω) is unknown and non-linear. The contractive

approach cannot be used under these assumptions. To prove convergence, the IQC method discussed

in Chapter 3 will be used. To do this, we again consider (4.10) without the proximal operator,

uk+1 = uk − α∇f(uk)− αΠ⊤(∇h(yk +∇Mµr(y
k + µλk))

λk+1 = λk + αµ(∇Mµr(y
k + µλk)− λk).

(4.34)
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To use the IQC approach, (4.34) must be reconfigured such that it is in the form of an LTI system

with the non-linearities represented as disturbances to the system. This representation is given by

zk+1 = Azk +Bγk

ζk = Czk +Dγk

γk = ∆(ζk)

(4.35)

where z, ζ, q, and ∆ are given by

zk =
[
uk λk

]⊤
ζk1 = zk1

ζk2 = Πzk1 + µzk2 + γk
4

ζk3 = Πzk1 + γk
4

γk
1 = ∆1(ζ

k
1 ) = ∇f(ζk1 )−mfζ

k
1

γk
2 = ∆2(ζ

k
2 ) = µ∇Mµc(ζ

k
2 )

γk
3 = ∆3(ζ

k
3 ) = ∇h(ζk3 )−mhζ

k
3

γk
4 = ∆4(ζ

k
1 ) = π(uk, ωk)−Πζk1

(4.36)

and A, B, C, and D are given by

A :=

[
1− α

(
mf +mhΠ

⊤Π
)

0

0 (1− αµ)I

]

B := α

[
−I − 1

µΠ
⊤ −Π⊤ −mhΠ

⊤

0 I 0 0

]

C :=

 I 0

Π µI

Π 0



D :=

0 0 0 0

0 0 0 I

0 0 0 I

 .

The block matrix for this system is illustrated in Figure 4.1. We see that for a range of α values,

the A matrix is Schur stable. Notice that ∆i(ζi) for i ∈ {1, 2, 3} has been designed such that they

are Lipschitz continuous and 0-strongly convex. For i ∈ {1, 2, 3}, let ∆i be Li-Lipschitz continuous

where L1 = Lf −mf , L2 = 1, and L3 = Lh−mh. Using these results, an IQC can be constructed for

the disturbance channels. Using Lemma 4.37, for all outputs, ζi and ζ̄i, and disturbances, γi = ∆i(ζi)

and γ̄i = ∆i(ζ̄i), the following inequality holds

[
ζi − ζ̄i

γi − γ̄i

]⊤ [
0 LiI

LiI −2

][
ζi − ζ̄i

γi − γ̄i

]
≥ 0.
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Figure 4.1: Illustration of the block diagram for (4.35)

The final disturbance channel is not in the family of strongly monotone and Lipschitz continuous

functions. The output γ4 encodes the difference between the true input-output function and the

undisturbed approximate function. Assuming that this disturbance is strongly monotone is an

unnecessarily restrictive property. Only a Lipschitz assumption will be placed on the disturbance

channel. To motivate the bound, consider the Taylor series approximation around ζ evaluated at ζ̄,

π(ζ̄1, ω) = π(ζ1, ω) +
∂π

∂ζ
(ζ1)(ζ̄1 − ζ1) + o(ζ1, ζ̄1)

⇐⇒ π(ζ̄1, ω)−Πζ̄1 − (π(ζ1, ω)−Πζ1) = (Π− ∂π

∂ζ
(ζ1))(u− ū) + o(ζ, ζ̄1)

where o(ζ1, ζ̄1) are the higher order components. Assume there exists Lπ1
and Lπ2

such that ||Π−
∂π
∂ζ (ζ1)||2 ≤ Lπ1 and ||o(ζ, ζ̄)||2 ≤ Lπ2 ||ζ − ζ̄||, then

||π(ζ̄1, ω)−Πζ̄1 − (π(ζ1, ω)−Πζ1)|| = ||(Π− ∂π

∂ζ1
(ζ1))(u− ū) + o(ζ, ζ̄1)||

≤ (Lπ1
+ Lπ2

)||ζ1 − ζ̄1||2.

This Lipschitz bound encodes the error of the approximate Jacobian and the higher-order terms

from the Taylor series expansion. Let Lπ1
+ Lπ2

= Lπ, then the inequality can be written as

||γ4(ζ1)− γ4(ζ̄1)||2 ≤ Lπ||ζk − ζ̄k||2.

This construction can be rewritten in a similar form to the other IQCs,[
ζ1 − ζ̄1

γ4 − γ̄4

][
L2
π 0

0 −1

][
ζ1 − ζ̄1

γ4 − γ̄4

]
≥ 0.
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Stacking the constraints, we define the constraint matrix as

K :=



L2
π 0 0 L1I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 L3I 0

L1I 0 0 −2 0 0 0

0 I 0 0 −2 0 0

0 0 L3I 0 0 −2 0

0 0 0 0 0 0 −1


. (4.37)

With the system matrices and constraint matrix defined, we are able to state the main result.

Theorem 4.3.1. Consider Algorithm (4.10), where f : Rn → R and h : Rm → R belong to a

family of functions that are strongly convex with parameters mf and mh, respectively, and gradient

Lipschitz continuous with parameters Lf and Lh, respectively. Further, assume that Π ∈ Rm×n

is full row-rank. Let ẑk, ŷk ∈ Rn+m be any trajectories generated by (4.10) for initial conditions

ẑ0, ŷ0 ∈ Rn+m. For step size α > 0, if there exists P ∈ Sn, P ≻ 0, τ ≥ 0, and ρ ∈ (0, 1√
cond(P )

)

such that [
A⊤PA− ρ2P A⊤PB

B⊤PA B⊤PB

]
+ τ

[
C⊤ 0

D⊤ I

]
K

[
C D

0 I

]
≺ 0

where A, B, C, and D are defined in (4.3) and K is defined in (4.37), then

||ẑk − ŷk||2 ≤
(√

cond(P )
)k

ρ||ẑ0 − ŷ0||. (4.38)

Proof. To prove the theorem, we adapt the proof of Theorem 4 in [10]. We first will prove that (4.35)

is contractive which will allow us to conclude that (4.10) is contractive. Consider any zk, yk ∈ Rn+m

and ∆ as defined in (4.36). Multiply both sides of the LMI by [zk − yk, ∆(zk)−∆(yk)],

(zk+1 − yk+1)⊤P (zk+1 − yk+1)− ρ2(zk − yk)⊤P (zk − yk)

+ τ

[
ζk − ϕk

∆(zk)−∆(yk)

]⊤
K

[
ζk − ϕk

∆(zk)−∆(yk)

]
< 0

(4.39)

where ζk and ϕk are the outputs of (4.35) generated by (zk,∆(zk)) and (yk,∆(yk)), respectively,

and zk+1, yk+1 are the updates of (4.35). Because the final quadratic term is always positive due to

Lemma 3.3.1, (4.39) can be simplified to

||zk+1 − yk+1||2P,2 ≤ ρ2||zk − yk||2P,2. (4.40)

To prove that (4.10) converges, (4.35) must be contractive with respect to the Euclidean norm.

Using the properties of matrix norms, we know that (4.40) is equivalent to

||zk+1 − yk+1||22 ≤ cond(P )ρ2||zk − yk||22
⇐⇒ ||zk+1 − yk+1||2 ≤

√
cond(P )ρ||zk − yk||2

Because
√
cond(P )ρ < 1 by assumption, we see that (4.35) is contractive with respect to the norm
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|| · ||2. Using Lemma 4.2.1, we can conclude that (4.10) is contractive with rate
√
cond(P )ρ. Thus,

take any ẑk, ŷk ∈ Rn+m generated by (4.10) with initial conditions ẑ0, ŷ0 ∈ Rn+m, from Banach’s

Contraction Theorem [20], we have

||ẑk − ŷk||2 ≤
√

cond(P )ρ||ẑ0 − ŷ0||2. (4.41)

The following theorem provides a numerical method for determining the feasibility of the algo-

rithm for a class of functions and a given step size. Algorithm users can determine the feasibility

of the LMI to ensure that the algorithm can be used with their system for a given α. This method

provides guarantees for a single step size rather than a range. Notice that if Lπ = 0 and L3 = 0,

the algorithm can be simplified to the algorithm in [9]. Thus, by continuity, for enough L3 and Lπ,

the step size guarantees in [9] will guarantee convergence for (4.10).



Chapter 5

Distribution Feeder Simulation

5.1 Simulation Introduction

The algorithm will be tested on a simulated distribution network with a large number of photo-

voltaic generators. The implemented algorithm will aim to keep the relevant system states within

their physical safety constraints while optimizing the system’s power usage. The system considered

is a variation of the IEEE 37-node test feeder system as proposed in [6]. The system is a single-

phase AC system and uses 10 hours of real solar irradiance and load data collected from Anatolia,

California. A diagram of the system of interest is given in Figure 5.1.

The input of the algorithm to the distribution feeder system is the reactive and active power injec-

tions for the controllable nodes. Let u ∈ R36 denote the input vector. Each node has an associated

input pair [pi, qi] ∈ R2 where pi is the active power injection at node i and qi is the reactive power

injection. At each controllable node, the inverter has a maximum apparent power rating and an

available amount of power that can be injected. These constraints shape the input set U as

Ui = {[pi, qi] ∈ R2| 0 ≤ pi ≤ pmax
i , q2i + p2i ≤ sratedi }

U = ×18
i=1Ui

where sratedi is the apparent power rating for inverter i and pmax
i is the maximum available power

for inverter i. Note that sratedi will remain constant throughout the process, but pmax
i is a function

of the solar irradiance data. The measurements of the system are the voltage magnitudes at each

node except the point of common coupling. Let y ∈ R35 represent the output vector. The voltage

limits are uniform across nodes and given by vl = 0.95 p.u and vu = 1.05 p.u. The output set is

represented as

Y = {y ∈ R35|vl1 ≤ y ≤ vu1}.

The approximate Jacobian is calculated in [6] and will be represented by Π ∈ R35×36. The uncon-

trollable reactive and active loads and power injections are designated as disturbances to the system.

Let ω ∈ R70 represent the disturbances. The algorithm will aim to control and optimize the system

subject to these changing loads. The controller will constrain the inputs and outputs of the system

to U and Y, respectively, while minimizing the amount of power curtailed. Formally, this can be

49
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Figure 5.1: IEEE 37-node feeder [5]. Node 1 is the point of common coupling. All other nodes
have sensors which provide load and voltage data. The circular blue nodes have controllable power
injections while the other nodes are uncontrollable.

written as

min
u∈R36,y∈R35

||u− uref ||22 + IU (u) + IY(y)

where uref
i = pmax

i if ui is an active power input and uref
i = 0 if ui is a reactive power input. IC(x)

is the indicator for the set C which is defined as

IC(x) =

0 x ∈ C

∞ x /∈ C
.

5.2 Simulation Implementation and Results

To implement the algorithm, the proximal operator of the indicator function must be determined,

proxµIC (v) = argminx∈Rn

(
IC(x) +

1

2µ
||x− v||22

)
= argminx∈C ||x− v||22.

Thus, the proximal operator of the indicator function on the set C is the projection operator on the

set C. The efficiency of implementing the projection operator into the algorithm depends on the

complexity of the set. For Y, it is extremely easy to implement. If yi < vl, then proxµIC (yi) = vl

and if yi > vu, then proxµIC (yi) = vu. Implementing the projection operator for U is slightly more

complicated and is described in [6].

The results of the simulation can be seen in Figure 5.2. Figure 5.2 tracks the voltage for each

node in the system, y ∈ R35. The top graph shows the evolution of the system when using the

control algorithm. The bottom graph reveals the natural evolution of the system. As one can see,

the algorithm effectively suppresses the output voltage below the maximum value. When the volt-

age does not need to be limited, the algorithm tracks the uncontrolled system and uses all of the

available power. This is all accomplished while constraining the active and reactive power injections.

We can compare this algorithm against other similar algorithms. We see that the algorithm pro-

posed in [8] does not offer hard constraints on the inputs of the system. This requires the user to
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Figure 5.2: Simulation results using µ = 0.1 and α = 0.004

introduce soft constraints on the input to encourage the algorithm to stay within the input set. This

can lead to potential constraint violations. Similarly, the algorithm proposed in [5] provides hard

constraints on the inputs, but not on the outputs. Thus, soft constraints must be used, introducing

potential violations of the output set. The algorithm proposed in this thesis has hard constraints on

both, ensuring the algorithm keeps the input and output within their respective sets. To illustrate

this, the same simulation was performed with the algorithm from [5] using the implementation in

the paper. The total output constraint violation for a single node throughout the simulation is

plotted in Figure 5.3. As we can see, during the period when the power is being curtailed, the soft

Figure 5.3: Cumulative constraint violations of the output set at node 35 using α = 0.004 with the
algorithm from [5]

constraints are not able to keep the output within the output set. The algorithm proposed in this

thesis has no constraint violations at node 35 throughout the simulation.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we study the convergence rates for the primal-dual algorithm for convex equality-

constrained optimization problems. Further, we develop an online feedback-based optimization

controller for a general non-linear system.

There are three key contributions in this thesis. We first provide three different methods for analyz-

ing the convergence rate of the primal-dual algorithm. These rates were compared and the benefits

of each approach were discussed. Further, the TSSPD algorithm was introduced. The motivation

behind the algorithm was discussed and a convergence rate was provided.

The second contribution was the OFBO controller that was developed. We proposed a dynamic

OFBO controller that aimed to optimize a general cost function. The cost function was able to

consider differentiable and non-differentiable costs on the inputs and outputs of the system. This

framework allows users to enforce hard constraints on the inputs and outputs. Two convergence

proofs were provided. The first considered a known, linear plant and determined sufficient conditions

to ensure the algorithm is exponentially convergent. The second approach allowed for the plant to

be unknown and non-linear. This proof involved developing a linear matrix inequality to determine

if the algorithm is exponentially convergent for a given step size.

The final contribution involved testing the OFBO controller in a simulated environment. The con-

troller was configured to control a simulated distribution feeder. The simulation was implemented

and tested in MATLAB.

6.2 Future Research

The following are potential future research directions:

• For the time-scale separated primal-dual algorithm proposed in Chapter 3, other proof ap-

proaches should be considered. The convergence rate approached half of the optimal rate of

the dual method as the time-scale separation approached infinity. Developing a proof in which

52
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the rate approaches the optimal rate of the dual method would be an area of interest. The

motivation behind the algorithm, as discussed in Chapter 3, suggests this should be possible.

• The stability analysis of the interconnected controller and system is an area of future interest.

In this thesis, we assume that if the step size of the controller is small enough, the interconnec-

tion between the exponentially stable plant and the controller remains exponentially stable.

Formalizing this idea mathematically and providing explicit bounds would be helpful for the

algorithm users and remove the need for this assumption.

• A convergence analysis for a range of step size values for the feedback controller when the

mapping is non-linear would be an interesting extension to the results in this thesis. In [9],

the KYP Lemma is used to guarantee convergence to a fixed point for a range of step sizes.

Performing a similar analysis for the algorithm in this thesis would be more difficult, due to

the increased number of parameters, but would provide interesting results.



Appendix A

Chapter 4 Inequalities

Proof of ϵ
2
Π⊤(DΠ̄ + Π̄)Π ⪯ ϵI

To show this inequality, note that the eigenvalues of D are between 0 and 1. Because D is symmetric,

there exists V such that V ⊤V = V V ⊤ = I and Σ = V ⊤DV where Σ is a diagonal matrix composed

of the eigenvalues of D. Let Γ = V ⊤Π̄V , then

Π⊤(DΠ̄ + Π̄)Π =Π⊤V (V ⊤DV V ⊤Π̄V + V ⊤Π̄V V ⊤DV )Π⊤V

=Π⊤V (ΣΓ + ΓΣ)Π⊤V

Since Σ is a convex combination of diagonal matrices with 0 and 1 entries, it is sufficient to consider

ΓR + RΣ where R is diagonal with the entries ri = 0 or ri = 1 [11]. Without loss of generality,

consider r1 = . . . = rj = 1 and rj+1 = . . . = rm = 0 and

Γ =

[
Γ1 Γ⊤

0

Γ0 Γ2

]

Where Γ1 ∈ Sj and Γ2 ∈ Sm−j . Then

RΓ + ΓR− 2Γ =

[
0 −Γ⊤

0

−Γ0 −2Γ2

]
⪯ 0

Thus ΓΣ + ΣΓ ⪯ 2Γ. So

Π⊤V (ΣΓ + ΓΣ)V ⊤Pi ⪯ 2Π⊤V (Γ)V ⊤Π

= 2Π⊤Π̄Π

⪯ 2I

Therefore, we have shown that
ϵ

2
Π⊤(DΠ̄ + Π̄)Π ⪯ ϵI

54
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Proof that ϵD + µ(D − I) ⪰ ϵ

To show this, notice that µ ≥ ϵ and 0 ⪯ D ⪯ I, then

ϵD + µ(I−D) = µI− (µ− ϵ)D

⪰ µI− (µ− ϵ)I

= −ϵI

This completes the proof.

Proof that Π⊤Π̄2Π ⪯ 1
σ2
min(Π)

I

Consider the singular value decomposition of Π = UΣV ⊤. Then

Π⊤(Π̄)2Π = V Σ⊤U⊤(U(Σ⊤Σ)−1U⊤U(Σ⊤Σ)−1U⊤)UΣV ⊤

= V Σ⊤((ΣΣ⊤)−1)2ΣV ⊤

We know that these matrices are constructed as

Σ =
[
Diag(σ1(Π), . . . , σm(Π)) 0m×n−m

]
((ΣΣ⊤)−1)2 =


1

σ4
1(Π)

. . . 0

0
. . .

...

0 . . . 1
σ4
m(Π)


Evaluating Σ⊤((ΣΣ⊤)−1)2Σ simplifies to a block matrix with (ΠΠ⊤)−1 in the top left corner and

zero everywhere else.

Σ⊤((ΣΣ⊤)−1)2Σ =

[
(ΣΣ⊤)−1 0

0 0

]
This block matrix clearly has the same eigenvalues as (ΠΠ⊤)−1 with an additional eigenvalue of 0.

Thus, we can bound the matrix of interest.

Π⊤(Π̄)2Π = V Σ⊤((ΣΣ⊤)−1)2ΣV ⊤ ⪯ 1

σ2
min(Π)

I
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