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Abstract

Power system restoration plans involve sequences of operator actions, such as line energization

and load pick-up. During the planning process, operators must be mindful of the system

dynamics that follow each restorative action and ensure that they fall within safe limits.

In this thesis, we formulate a frequency-constrained mixed-integer linear program (MILP)

for black-start restoration planning of transmission systems. First, we use a DC power

flow model to construct an optimization framework for generator and load recovery. Next,

we introduce a novel method to predict the system’s frequency nadir by analyzing the

IEEEG1 governor-turbine model for synchronous generators. The predictions are linearized

by an iterative receding-horizon algorithm and inserted into the MILP as constraints on

the power imbalance introduced by each action. We further build upon this framework by

allowing energy storage systems (ESS) to participate in the restoration process. We show how

frequency security and recovery speed can be improved by coordinating the ESS setpoints

with restoration actions. Case studies are simulated on MATLAB and PSS/E to show the

effectiveness of the proposed frequency nadir estimation and restoration planning methods.

Finally, we demonstrate the flexibility of the proposed framework by recommending some

possible extensions.
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Chapter 1

Background

1.1 Introduction

Modern power systems face unprecedented threats from severe weather and cyber attacks [1].

These high impact, low probability events may cause widespread outages with significant

potential financial and human costs. Power outages cause up to $50 billion dollars in financial

loss annually in the United States alone [2], while individual large-scale events such as the

Northeastern blackout of 2003 affected 50 million people and incurred an estimated $6 billion

in losses [3]. Damages and risks increase with the duration of the outage [2], highlighting the

need for fast grid recovery strategies. To prepare for outage scenarios, Independent System

Operators (ISOs) proactively develop restoration plans, which include guidelines or specified

actions that assist decision making during grid recovery [4].

Following a complete blackout, all network components are offline, and an initial source of

power is required for system re-energization. ISOs designate several synchronous generators

(SGs), often hydro or gas turbine units, as black-start units (BSUs) capable of self-starting

without external power [5]. Crucially, these units provide power support to non-black-start

units (NBSUs), which cannot start up by themselves [6]. Black-start restoration can be

characterized by four phases: sectionalization, generator recovery, load recovery, and syn-

chronization [7]. First, the grid is sectioned into multiple regions, each with exactly one

BSU, to be restored in parallel as individual subsystems. This strategy makes better use

of the BSUs and accelerates system recovery [6]. During the generator recovery phase, the

BSUs provide power to the NBSUs while energizing transmission lines along the way. The

loads are picked up primarily to balance the system and maintain voltage levels, with the

exception of important loads such as critical infrastructure or communication services, which

are prioritized [8]. Early generator recovery provides access to additional power capacity

and improves the resilience of the system to disturbances by increasing its inertia [8]. The

transition toward load recovery is not clearly defined—the focus progressively shifts toward

rapid load energization as more generators are synchronized. Once the individual subsystems

have been restored, the regions are synchronized to reassemble the complete grid.

1



CHAPTER 1. BACKGROUND 2

During the generator and load recovery stages, restoration plans describe a sequential

set of actions by the system operators, which may include closing breakers to energize a

transmission line or signaling for the start-up of an NBSU. Each restorative action perturbs

the system and induces transient dynamics that take time to settle; for example, a load

pick-up introduces a power imbalance that causes the frequency to decline. Planners should

be wary of the dynamic effects of each action, as excessive disturbances may destabilize

the system [9]. The smaller and weaker islands during the early stages are particularly

susceptible to instability, which can lead to a cascade of failures. Consequently, restoration

planning involves a trade-off between speed, which reduces damages associated with the

outage, and reliability, which reduces the chance of system failure during restoration.

Recent developments in inverter-based resources (IBRs) present both challenges and

opportunities to restoration planning. On the one hand, IBRs can provide black-start services

and can be dispatched at a faster rate than SGs [10], [11]. On the other hand, as IBRs replace

conventional generation, systems have lowered inertia and are more prone to frequency

deviations [12]. Excessive deviations from the nominal 50 or 60 Hz may damage both

utility and consumer devices and impede restoration by triggering load-shedding protection

systems [12]. Therefore, it is vital that operators are aware of how frequency dynamics

develop during the restoration process. The lowest point achieved by the post-disturbance

frequency, known as the frequency nadir, is a key indicator of system security [12]. To avoid

nadirs that violate the safe frequency limits, operators impose heuristic rules on load pick-

ups, such as limiting pick-ups to less than 5% of the active generator capacity [8]. While

these rules are designed to ensure stability, they can be too conservative and delay system

recovery. Heuristics also provide no insight on the dynamic impact of candidate actions and

rely on the operator’s judgment. Furthermore, in current restoration plans used by ISOs,

IBRs and energy storage systems (ESS) are either excluded from the restoration process [8]

or are not considered at all [13], [14], leaving valuable power capacity and dynamic services

unused.

In this work, we propose a tool for finding frequency-secure restoration plans for the

generator and load recovery phases, with two major improvements over heuristics. By ac-

tively considering frequency effects during planning, it ensures frequency security without

resorting to overly conservative measures and provides more transparency and insight into

how restorative actions impact system frequency.

1.2 Literature Review

In the 1980’s, the foundational concepts of power system restoration were laid out by a pair

of IEEE task force reports in an attempt to review existing practices, establish common ter-

minology, and exchange strategies [15], [16]. Prior to this work, ISOs formulated restoration

plans that are most appropriate for their individual systems. Despite each ISO adopting dif-
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ferent strategies, the reports identified common goals and considerations, such as the timing

of switching operations, black-start capability, and frequency security. In 1992, a new IEEE

Committee report recommended the use of computer-aided approaches to restoration [17].

In this work, restoration planning is identified as a multi-objective combinatorial optimiza-

tion problem, but limited computational power at the time rendered it prohibitive to solve.

Instead, the report favors the use of heuristics-driven expert systems to assist operators in

online decision making. This idea is elaborated on in a follow-up report that outlined the

relevant constraints and criteria relevant to each phase of black-start restoration that a com-

puter program must consider [18]. Many fundamental ideas are presented, such as avoiding

underfrequency violations via small load pick-ups and synchronizing SGs to improve system

inertia. During the 1990s, the committee also published multiple reports on specific aspects

of restoration, such as those on nuclear plants [19] and protection systems [20]. A complete

survey of restoration literature up to the 21st century is presented in [21], and progress

in restoration research during 2006-2016 is presented in [22]. In general, developments in

optimization approaches, graph theory, and artificial intelligence opened the door to new

restoration planning tools both in offline and online settings. Emerging technologies such as

IBRs and microgrids present both new opportunities and challenges. Despite these newer

methods, ISO documents on power system restoration continue to adhere to heuristic-based

guidelines, although the details of how these plans are created are not publicly available.

In this work, we focus on optimization-based restoration planning for transmission sys-

tems, which is well established in the literature as restoration involves making decisions based

on multiple objectives and subject to operational constraints. Furthermore, optimization

frameworks may address one or multiple phases of restoration, and include various levels of

modeling detail depending on the objective of the framework. For example, the nonlinear,

nonconvex power flow equations is often replaced by an approximate power flow model (more

details are provided in Section 1.1) to provide computationally tractable problems.

Assuming that generator recovery has been completed, [23] develops an ordering problem

for line and load recovery. The work considers the coordination of dispatching crews for

transmission line repair with operator actions such as generator dispatch, introducing con-

straints on travel time and availability of the crews. This highlights the multifaceted nature

of restoration problems and the need for appropriate models to represent real-world scenarios.

This concept is also explored in [24], where mobile energy storage systems travel around the

network and provide power support during restoration. The power system is overlaid onto

a corresponding transportation network where mobile power sources can navigate and be

dispatched subject to travel time constraints.

The ordering problem from [23] is extended in [25] to consider the rotor angle stability of

each action. The system dynamics are modeled in the optimization problem by discretizing

the ODEs that describe them and inserting them as constraints. Interestingly, other system

dynamics, such as frequency and voltage, may be similarly introduced by performing the
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same discretization on the differential equations that govern them. However, this naive

approach scales poorly as the accuracy of discretization depends on the granularity of each

discrete time step. Instead, it is preferable to bound the frequency dynamics indirectly by

restricting the set of allowable operator actions itself to avoid problems caused by high

dimensionality. Another extension of [23] introduces a computationally lighter alternative

by solving the ordering problem iteratively [26]. The work shows that by coarsely ordering

the set of all available restorative actions and recursively refining the sequence, restoration

plans can be found much faster than solving the single large ordering problem at a small

cost of optimality.

The sectionalization process is often performed individually to the other restoration

phases, but it should ensure that all divided regions can be restored in roughly the same

amount of time to prevent certain parts of the system from lagging behind. This idea is

taken in [6], where system partitioning decisions are made alongside generator and load

recovery actions. This work also presents the NBSU start-up procedure, a key aspect of

generator recovery.

The proliferation of renewable energy has also sparked interest in how these resources

can participate in power system restoration. The uncertainty of fluctuating wind power is

addressed in [27] by chance constraints, while [28] uses a receding time horizon to mitigate

the effect of wind uncertainty over a long period. Online restoration planning approaches

have also been developed to address uncertainty using real-time measurements. A feedback

control approach uses optimization-based controllers to find the next actions in [29]. These

works show how renewable resources can be leveraged to accelerate system recovery.

While most works assume that the system returns to a steady state following each ac-

tion, the load pick-up actions are bounded to prevent excessive frequency drops in [28]. The

work formulates this constraint by adopting the frequency dynamics model from [30], which

presents a relation between the frequency nadir and an electrical disturbance based on a

linear generator response assumption. However, it is unclear how the nonlinear constraint is

integrated into the mixed-integer linear framework in [28]. Furthermore, the linear generator

response in [30] is not clearly justified, and is assumed to simplify the mathematical analy-

sis. As no explicit model of the governor, the system that controls generators response, is

provided, the work recommends selecting a conservative slope for the linear response, which

compromises modeling accuracy. This thesis addresses these shortcomings by analyzing the

frequency regulating systems, and providing both physical and mathematical justification

for our simplifying assumptions. In addition, we describe in detail how frequency constraints

can be manipulated and integrated into the restoration framework we construct.

The frequency dynamics following a disturbance is stabilized by the generators in the

system and can be described as the output of a nonlinear system. Due to its complexity,

the frequency model is often simplified in two ways—by reducing the governor model, or

by making mathematical approximations. For instance, a second-order frequency model is
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derived in [31] from a simple governor model, and extended in [32] for multi-machine systems

and in [33] for a variety of generation types. A common mathematical approximation assumes

that the post-disturbance frequency can be described by a linear [34] or quadratic [35]

function. These simplified models lead to explicit representations of the post-disturbance

frequency behavior at the cost of model accuracy. Importantly, these frequency prediction

methods, when applied in the context of restoration, may be inadequate in two aspects. First,

expressions for the frequency nadir must be embedded as a constraint in an optimization

problem, which may render nonlinear or complex algebraic expressions unusable. Second,

these methods address contingency scenarios, which are unforeseen disturbances, while

disturbances from restorative actions are deliberately introduced and expected. In this

thesis, we demonstrate how this extra knowledge can be used to improve the frequency

response of the generators, making the aforementioned methods unideal for this application.

1.3 Contributions and Chapter Overview

The main contributions of this work are as follows. We develop a frequency-constrained

black-start restoration planning optimization framework for transmission systems. Given any

frequency limit, the optimization problem ensures that all actions in the restoration plan do

not violate the limit subject to a small error. First, we present a mixed-integer linear program

(MILP) for computing optimal restoration sequences. To incorporate frequency constraints,

we analyze the governor-turbine systems of SGs, which control their response to power

imbalances. The IEEEG1 governor-turbine model is chosen because it offers a mathematical

representation of generator rate limits, which constrain variations in output power, and

setpoints, which determine their steady-state output. The setpoints are assigned during

normal operation by an economic dispatch problem to minimize the cost of operation [36],

and do not normally contribute to frequency response. However, using the known timing

and magnitudes of the restorative actions, we leverage generator setpoints to improve the

system’s frequency behavior. Following this strategy, we develop a closed-form expression of

the frequency nadir and reformulate it as a constraint in the MILP, appearing as bounds on

the load pick-up and generator start-up decisions. Although the frequency nadir expression

is nonlinear in the decision variables, we present an iterative receding-horizon algorithm

to predict future system parameters and linearize the constraint. We provide numerical

results to validate the frequency nadir prediction method and the frequency-constrained

planning program. The final sections of this thesis introduce ESS devices to the frequency-

constrained restoration planning problem. We demonstrate their ability to assist in network

recovery and frequency response by coordinating setpoint updates with restorative actions.

Perhaps counterintuitively, numerical results show that charging ESS during restoration can

accelerate load recovery.

This work is divided into two major discussions. Chapter 3 develops a method for
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systems with only SGs to find frequency-secure plans. Chapter 4 extends the framework to

scenarios where ESS devices actively participate in restoration and frequency response. A

brief summary of each chapter is given below.

• Chapter 2 introduces the technical and mathematical background used in this work,

including power flow equations, power system frequency dynamics. and mixed-integer

programs.

• Chapter 3 introduces the frequency-constrained MILP for restoration planning, and

consists of four sections. Section 3.1 develops the MILP for optimal restoration plan-

ning, which acts as a foundation for subsequent sections. Section 3.2 introduces the

ramp approximation, a method that predicts the frequency nadirs by analyzing the

structure of the IEEEG1 governor-turbine and using knowledge of the disturbance

sizes. Section 3.3 discusses how frequency nadirs obtained by the ramp approximation

can be incorporated into the MILP restoration framework as linear constraints through

an iterative algorithm. Section 3.4 provides simulation results from MATLAB and

PSS/E on a modified IEEE 9-bus system to show the impact of restorative actions on

frequency.

• Chapter 4 introduces ESS to the MILP framework and the frequency nadir prediction

method and consists of two sections. Section 4.1 integrates the ESS models into our

mathematical analysis, and Section 4.2 provides MATLAB simulation results to show

the effects of ESS participation.

• Chapter 5 details extensions to the work that is currently in development as well

as avenues for future work. It also provides a brief overview of the strengths and

limitations of the work.

• Appendix A derives optimal selections of the big M constants used in mixed-integer

constraints.

• Appendix B derives the steady-state PFR outputs in a multi-machine system.

• Appendix C shows that for the ramp approximation, the maximum power imbalance

with nonzero damping converges to the expression with zero damping as Dsys → 0.

• Appendix D shows the parameters used in the IEEE modified 9-bus system.

• Appendix E shows the derivation of the maximum safe power imbalance with ESS

support and a nonzero damping coefficient.



Chapter 2

Technical Preliminaries

In this chapter, we provide some background on the properties of power systems during

steady-state and non-steady-state operation. First, we introduce the power flow equations

that relate power transfers to voltages and show, using standard assumptions, some common

approximations. Next, we show the frequency dynamics that occur following an electrical

disturbance and describe how they are stabilized by the control systems of SGs. Finally, we

introduce basic concepts related to mixed-integer programs, a class of optimization problems

which restoration problems fall under.

2.1 Power Flow Equations

The network configuration of a balanced three-phase power system in steady state can

be represented by the system admittance matrix Y ∈ CB×B = G + jB, where B is the

number of buses [36]. The admittance matrix relates the complex power transfers through

the branches to the complex nodal voltages. Written in real (active) and imaginary (reactive)

components, the net power injection of each bus can be defined by the rectangular-form AC

power flow (ACPF) equations (2.1) [36]

Pi =
B∑
j=1

ViVj(Gij cos (θi − θj) +Bij sin (θi − θj)) (2.1a)

Qi =

B∑
j=1

ViVj(Gij sin (θi − θj)−Bij cos (θi − θj)) (2.1b)

where Pi, Qi are power injections at bus i, and Vi, θi are the voltage magnitude and phase

of bus i. In transmission systems, branches usually have much greater reactances than

resistances [37]. If we assume that the entries of G are much smaller than those of B, the

7
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ACPF can be simplified to

Pi =
B∑
j=1

ViVj(Bij sin (θi − θj))

Qi =
B∑
j=1

ViVj(−Bij cos (θi − θj))

Another common assumption is that the phase differences between buses are small, which

physically means that the transmission lines are not heavily loaded [37]. This small-angle

approximation uses sin (θi − θj) ≈ θi − θj and cos (θi − θj) ≈ 1. This further simplifies the

power flow equations to

Pi =
B∑
j=1

ViVjBij(θi − θj) (2.2a)

Qi = −
B∑
j=1

ViVjBij (2.2b)

The final assumption is that, under normal operating conditions, the voltage magnitudes

are close to a value of 1 per-unit. If we assume that any product of bus voltages is ap-

proximately 1, the active power expression (2.2a) simplifies to the DC power flow (DCPF)

equation [37].

Pi =
B∑
j=1

Bij(θi − θj) (2.3)

Although not considered in DCPF models, the reactive power expression can also be

linearized in terms of voltage magnitudes. Defining bii as the ith bus shunt reactance, the

element Bii = bii −
∑B

j ̸=iBij can be isolated from the sum to re-express (2.2b) as

Qi = −biiV
2
i +

B∑
j ̸=i

BijV
2
i −

B∑
j ̸=i

ViVjBij

= −biiV
2
i +

B∑
j ̸=i

ViBij(Vi − Vj)

Now applying the unity voltage product assumption, the linearized reactive power flow is

Qi = −bii +
B∑
j ̸=i

Bij(Vi − Vj) (2.4)

The first term represents the reactive power consumed or delivered by a shunt inductor or

capacitor, respectively. The second term represents reactive line flows that depend on the
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bus voltage magnitudes.

2.2 Power System Frequency Dynamics

Power systems operate in steady state at a nominal frequency of 50 or 60 Hz [5]. When a dis-

turbance is introduced, such as a power imbalance or the outage of any network element, the

system’s frequency undergoes a transient phase determined by active synchronous machines,

whose large rotating turbines provide an inertial response driven by the conversion between

stored mechanical energy and electrical energy [12]. The regional frequency dynamics are

characterized at generator buses by the linearized swing equation [36].

∆ω̇gen =
1

2Hgen
(∆Pm −∆Pe −Dgen∆ωgen)

where Hgen, Dgen are the inertia and damping constants of the generator in the system-base

units, ∆Pm and ∆Pe, both in the system-base power, are the mechanical power supplied

by the turbine and the net electrical imbalance experienced at the bus, respectively. The

damping constants of synchronous machines Dgen are usually small and are neglected. Local

frequencies defined by the swing equation at each generator bus are coupled by the power flow

equations to form a set of differential-algebraic equations (DAE). In contrast, the average

system frequency (ASF) model [38] ignores regional frequency interactions by considering a

unified center-of-inertia frequency ∆ω defined by the system-wide swing equation

∆ω̇ =
1

2Hsys
(∆Pm −∆Pe) (2.5)

where ∆Pm and ∆Pe now represent the combined mechanical power output of all generators

and the net power imbalance of the system. Hsys is a weighted inertia term defined by

Hsys =

∑
i∈Gs

HiSg
i

Ssys
(2.6)

where Gs is the set of indices corresponding to the synchronized units in the system, Hi

and Sg
i
are the inertia constant and maximum power capacity of the ith unit, respectively,

and Ssys is the system-base power. When a power shortage, represented by ∆Pe > 0, is

introduced, the frequency begins to decline at a rate proportional to the inertia constant.

To arrest the decreasing frequency, a closed-loop feedback mechanism known as primary

frequency response (PFR) adjusts the output of active generators to increase the ∆Pm

term [36]. The specific behavior of the PFR depends on the governors and turbines that

control the generator responses. PFR is primarily responsible for frequency stabilization,

and secondary frequency response, which acts on a longer time scale (30 s-30 min), brings

the frequency back to its nominal value [36]. The phases of frequency recovery following

a step imbalance are shown in Fig. 2.1. The lowest point, or point of maximum deviation,
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termed the frequency nadir, is a significant indicator of system security. The nadir can be

used to assess whether the post-disturbance frequency will violate any safe thresholds.

Time

F
re

q
u
en

cy
[H

z]

59

59.2

59.4

59.6

59.8

60

60.2

Power imbalance

Frequency nadir

Primary Response
(10 - 30 s)

Secondary Response
(up to 30 min)

Figure 2.1: Frequency response following a disturbance

Since PFR is often provided by multiple units simultaneously, we modify the swing

equation (2.5) to explicitly show ∆Pm as the combined contribution of the set of active

PFR-providing generators, notated by Gpo.

∆ω̇ =
1

2Hsys

∑
i∈Gpo

αi∆P i
m −∆Pe

 (2.7)

with the power conversion factors αi that convert ∆P i
m, the output of each generator in

their own base units, to the system-base units.

αi =
Si
g

Ssys
(2.8)

2.3 Mixed-Integer Programs

The general nonlinear mixed-integer program is an optimization problem with both contin-

uous and integer decision variables.

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0

h(x, y) = 0

x ∈ Rn y ∈ Zm

The main approach to solving mixed-integer problems is the branch-and-bound algorithm.

By relaxing the integer variables into continuous variables and solving the simpler continuous

problem, the algorithm creates optimality bounds and adds constraints to eliminate integer
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infeasible solutions, iterating the process similarly to a tree search algorithm [39]. Impor-

tantly, this means that if the underlying integer-relaxed problem can be solved with efficient

algorithms, solving the mixed-integer variant is much easier. Many classes of mixed-integer

problems exist, such as the mixed-integer linear program (MILP), mixed-integer quadratic

program (MIQP), and mixed-integer convex programs (MICP). In this work, we construct

an MILP framework for black-start restoration, which takes on the form

min
x,y

c⊤x x+ c⊤y y

s.t. Ax+By ≤ 0

Cx+Dy = 0

x ∈ Rn y ∈ Zm

where cx ∈ Rn, cy ∈ Rm are cost vectors and A,B,C,D are matrices of appropriate sizes

depending on the number of constraints. The important property is that the objective

function and all constraints contain only linear terms of the variables. The underlying linear

program can be solved efficiently using the simplex method [40], which allows MILPs to be

solved efficiently using branching methods.



Chapter 3

Frequency-constrained MILP for

Restoration Planning

Here, we synthesize the optimization-based restoration planning tool. This chapter is divided

into several sections. Section 3.1 introduces the MILP model of the restoration planning

problem without frequency constraints, Section 3.2 examines the system’s frequency dy-

namics following restorative actions, deriving a relation between the frequency nadir and

the magnitude of power imbalances. Section 3.3 shows how the relation can be enbedded

within the MILP as a linear constraint by adopting an iterative planning algorithm. Finally,

we show using a case study the effectiveness of the frequency nadir prediction method and

frequency-constrained sequences in Section 3.4.

3.1 MILP Restoration Framework

This section presents the basic MILP formulation of the transmission-level black-start restora-

tion problem. The framework in this thesis is inspired by the formulations in [27] and [6],

with variations on the network constraints. We focus on the generator and load recovery

phases and assume that the greater grid has been partitioned into subsystems for parallel

recovery. As such, the MILP seeks an optimal sequence of actions to fully restore the subsys-

tem in a minimum amount of time. To provide a practical plan, the problem must consider

the physical characteristics and logical couplings of the network components. Subsequent

sections will build on this framework by introducing additional considerations, such as safe

frequency limits and ESS participation.

We consider a conventional system with synchronous machines as the sole supply of

power and adopt the DC power flow model. The loads at each substation are usually defined

by a single lump sum of demand. However, loads can be switched on at a finer scale, that

is, the distribution feeders at a substation can be connected individually [41]. As such, the

loads on each bus are split into their smallest discrete denominations.

12
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3.1.1 Binary Status Constraints

Binary variables are used to model the on and off statuses of network elements. We con-

sider a power system with B buses, L lines, D loads (demand) and G generators, and let

bb ∈ {0, 1}B×T , bl ∈ {0, 1}L×T , bd ∈ {0, 1}D×T , bg ∈ {0, 1}G×T denote matrices of binary

variables that indicate the on/off status of the respective components over T discrete time

steps.

bb =
[
bb(1) bb(2) · · · bb(T )

]
bl =

[
bl(1) bl(2) · · · bl(T )

]
bd =

[
bd(1) bd(2) · · · bd(T )

]
bg =

[
bg(1) bg(2) · · · bg(T )

]
We use the notation b(k) for the kth column of matrix b, and bi for the ith row of b.

Between each time step k ∈ {1, . . . , T}, some fixed length of time t, in minutes, passes. In

other words, restorative actions that alter the system state are taken every t minutes. The

time between each step allows the transient dynamics to settle prior to the next action. The

restoration time period T indicates the number of time steps in the problem and defines the

length of the output restoration sequence. Its value should be chosen so that the system is

fully restored at the end. Since the number of required actions depends on the size of the

system and is unknown in advance, we introduce an iterative algorithm in Section 3.1.7 that

ends when restoration is completed to circumvent the need to select T . The time between

steps t is chosen by the operators to allow the transient dynamics to settle after each action,

and is typically one to several minutes long. A uniform step size is used for mathematical

simplicity, but in practice the period between actions can be decided by operators based on

the state of the system.

We define, as notation, the stacked binary status matrix b = col(bb, bl, bd, bg). Changes

in binary variables between any time steps represent system-altering actions that make up

the overall restoration plan. Therefore, the optimal restoration plan can be recovered from

the status matrix b alone. The initial statuses of the network elements prior to restoration

are denoted by bb,0 ∈ {0, 1}B, bl,0 ∈ {0, 1}L, bd,0 ∈ {0, 1}D, and bg,0 ∈ {0, 1}G. With

slight abuse of notation, these vectors will also be represented by bb(0), bl(0), bd(0), bg(0)

respectively since they represent statuses at the zeroth time step. The corresponding stacked

initial status vector b0, notated interchangeably as b(0), can be formed as

b0 = col(bb,0, bl,0, bd,0, bg,0) = b(0)

Without loss of generality, we let generator 1, the lone BSU in the system reside on bus

1. In a black-start scenario, the focus of this work, only the BSU and the bus that it resides
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on are initially active. That is,

∀i ∈ {1, . . . , G}, big(0) =

1 i = 1

0 i ̸= 1

∀i ∈ {1, . . . , B}, bib(0) =

1 i = 1

0 i ̸= 1

We impose that no network elements may be disconnected once they have been restored,

as this goes against the high-level goals of restoration. This can be enforced through an

element-wise linear inequality in binary variables,

b(k)− b(k − 1) ≥ 0 ∀k ∈ {1, . . . , T} (3.1)

where 0 is the zeros vector of appropriate length. We also impose that at most one of

each element type can be turned on at any time step. For example, turning on two lines

at the same step is forbidden, but turning on a line and a bus together is allowed. This

forces the plan to be a sequence of actions with a clear order of events, rather than sets of

simultaneous actions. In mathematical terms, this means that for all k ∈ {1, . . . , T},

1⊤(b(k)− b(k − 1)) ≤ 1 (3.2)

where 1 is the ones vector of appropriate length. We will also use 1n×m to denote a n

by m matrix of all ones.

3.1.2 Power Flow Logic

The DCPF equation given in (2.3) is defined for systems with a fixed network configuration.

During restoration, buses and lines may be energized and loads and generators may be

picked up. To account for network changes, the binary status variables are integrated into

the DCPF equations. First, we introduce element-to-bus adjacency matrices Al ∈ {0, 1}B×L,

Ad ∈ {0, 1}B×D, Ag ∈ {0, 1}B×G that map lines, demand (load), and generators to their

bus, respectively.

An,ij =

1 jth element of n is connected to bus i

0 otherwise.
(3.3)

Let P d ∈ RD be the vector of magnitudes of the static active power load to be restored.

Each of its entries represents an indivisible unit of load, multiple of which can reside on the

same bus. The continuous variables P l ∈ RL×T and P g ∈ RG×T represent the active power
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line flows and generator outputs at all time steps.

P l =
[
P l(1) P l(2) . . . P l(T )

]
P g =

[
P g(1) P g(2) . . . P g(T )

]
The vectorized active power balance equation at every bus and every time step can be

compactly written as

AgP g −Ad diag(P d)bd = AP l (3.4)

where A ∈ RB×L is the network incidence matrix [42] given by

Aij =


+1, bus i is the from-bus of line j,

−1, bus i is the to-bus of line j,

0, otherwise.

where from and to buses are the sending and receiving ends of power through the line,

respectively. The behaviors of P l and P g will be defined later. Let the phase angles at each

bus be captured by θ ∈ RB×T .

θ =
[
θ(1) θ(2) . . . θ(T )

]
The phase angle at the slack bus, chosen to be the initially online BSU bus, is zero at

all times.

θ1(k) = 0 ∀k ∈ {0, . . . , T} (3.5)

Voltage phase angles are undefined on inactive buses and are set to zero in this work.

This can be modeled using the big M method, which uses a large constant to enforce logical

conditions [43].

−M1bb ≤ θ ≤M1bb (3.6)

The phase angles at offline buses are set to zero as both their upper and lower bounds

become zero in (3.6). For online buses, the large M1 constant loosens the constraint to allow

nonzero phase angles. The M constants are chosen to be larger than the expressions they

bound, but not arbitrarily large, as this will cause numerical problems in mixed-integer

solvers [43]. As notation, we use Mi to denote appropriately large constants in big M in-

equalities in the remainder of this work. The optimal selections of M constants are presented

in Appendix A.

The DCPF defines active line flows as functions of the bus phases. However, we want

the DCPF to be enforced only for energized lines and the flow through de-energized lines to
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be zero. That is, for all i ∈ {1, . . . , L} and k ∈ {1, . . . , T}

P i
l(k) =

X−1
i A(i)⊤θ(k) bil(k) = 1

0 bil(k) = 0
(3.7)

where Xi is the reactance of line i and A(i) is the ith column of A. One candidate approach

to enforcing (3.7) is P i
l(k) = bil(k)X

−1
i A(i)⊤θ(k), but the constraint becomes nonlinear due

to the cross product of binary and continuous variables. Instead, the big M method can be

used to address each line status case.

−M2(1L×T − bl) ≤ P l −X−1A⊤θ ≤M2(1L×T − bl) (3.8a)

−M3bl ≤ P l ≤M3bl (3.8b)

where X ∈ RL×L is the diagonal matrix of line reactances. Active power flows across

energized lines are defined by (3.8a), while de-energized lines have zero power flow set by

(3.8b).

3.1.3 Network Logic Constraints

The statuses of network elements must be linked by logical constraints in order to produce

a sensible restoration plan. The graph structure of a power system network enforces some

inherent conditions that must be followed when recovering the system.

In a valid system state, the from and to buses of an energized line must also be energized.

This condition can be described mathematically through a linear constraint.

Al(i)
⊤ · bil ≤ bb ∀i ∈ {1, . . . , L} (3.9)

where Al(i) ∈ {0, 1}B denotes the ith column of Al, which contains two nonzero entries

corresponding to the to and from buses of line i. The left-hand side of (3.9) indicates which

buses must be online due to the status of the ith line. Conversely, if a bus is isolated, that

is, not connected to any energized lines, then it must remain offline until an adjacent line

is energized. The exception to this rule are the buses that are initially online, such as the

BSU bus.

Albl ≥ bb − bb(0)1
⊤ (3.10)

The left hand side of (3.10) checks whether each bus has any adjacent active lines, and

sets the bus status to zero if there is none. The initial status term bb(0) makes an exception

for the BSU bus, which is online from the beginning. The final line-to-bus logical constraint

states that any line may be energized only if one of its adjacent buses has already been

restored. This condition prevents lines that are connected to offline buses to be ”restored”

but remain de-energized. In other words, at least one of the adjacent buses must already be
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active for a line to be energized. That is, for all k ∈ {1, . . . , T}.

A⊤
l bb(k − 1) ≥ bl(k) (3.11)

Since loads and generators reside on buses, it follows that they can be turned on only

after their buses have been turned on. A load can be energized on the same step as its bus.

Since generator start-up involves time-sensitive phases (more details in the next section),

we allow them to turn on at least one step after its bus has been energized.

Adbd ≤M4bb (3.12a)

Agbg(k + 1) ≤M5bb(k) ∀k ∈ {0, . . . , T − 1} (3.12b)

3.1.4 Non-Black-Start Units Start-up Process

The active power output of generator i, P i
g, is determined by its status. The NBSU start-up

process can be described by the four phases shown in Fig. 3.1 [6]. Initially offline, the NBSU

enters the cranking phase upon receiving the starting signal and consumes cranking power

P i
c over a period T i

c. Next, the NBSU enters the ramping phase, when its output increases

linearly from zero to a minimum output P i
g. The ramp time T i

r determines the length of

the period and the ramping slope. When the ramping phase is completed, the NBSU is

fully activated and produces power within an operating range [P i
g,P

i
g]. The aforementioned

start-up parameters are defined for all generators and are vectors of size RG, with superscript

i indicating the parameter of the ith unit.
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Figure 3.1: Four phases of NBSU start-up (Not to scale)

We introduce auxiliary binary variables bgc, bgr, bgo ∈ RG×T , which indicate when the

generators are cranking, ramping, or online, respectively. These variables depend solely on

the variable bg as the cranking and ramping phases have known lengths. Consider a one-
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machine example where Tc = 2 and the generator is given the start-up signal on k = 3. The

values of bg and bgc are shown in Table 3.1.

k 1 2 3 4 5 6 7

bg(k) 0 0 1 1 1 1 1

bgc(k) 0 0 1 1 0 0 0

Table 3.1: Example values of binary variable bgc

In this example, bgc can be defined by the difference equations

bgc(1) = bg(1)

bgc(2) = bg(2)

bgc(3) = bg(3)− bg(1)

bgc(k) = bg(k)− bg(k − Tc)

where a negative argument of the binary variable (bg(k), k < 0) represents the binary

status of the generator k steps before the initial network condition. Since the auxiliary

variable turns on a fixed time after the start-up signal is received, it depends on the statuses

from past time steps. In a black-start scenario, bg(k) = 0 ∀k < 0 since all NBSUs are

initially offline. Each NBSU has different cranking times, so the binary matrix bgr can be

defined element-wise as

bigc(k) = big(k)− big(k − T i
c) ∀k ∈ {1, . . . , T} ∀i ∈ {1, . . . , G} (3.13)

where k − T i
c can be negative and refer to steps prior to the start of restoration. The

same process can be applied to the ramping variable bgr to obtain the relationship

bigr(k) = big(k − T i
c)− big(k − T i

c − T i
r) ∀k ∈ {1, . . . , T} ∀i ∈ {1, . . . , G} (3.14)

with similar definitions for the negative indices of the binary variables. Finally, the online

indicator bgo can be defined simply as a complement of the other two auxiliary variables.

bgo = bg − bgc − bgr (3.15)

To demonstrate the formulation of linear constraints that describe this piecewise behavior,

we first skip the ramping phase and construct a model that only considers phases I, II, and

IV. This model is equivalent to having Tr = 0, and P g can be described by

−Mbgc + diag(P g)bg ≤ P g ≤ diag(P g)bg +Mbgc (3.16a)

−M(1G×T − bgc) ≤ P g + P c ≤M(1G×T − bgc) (3.16b)
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The big M constants are used to associate the output powers P g with the auxiliary binary

variables for each phase of NBSU start-up. When the generator is cranking, (3.16a) is

loosened and (3.16b) becomes an equality constraint. When the generator is online, (3.16b)

is loosened and (3.16a) becomes a box constraint on the output power. Table 3.2 shows the

logic between the binary variables and the generator output.

bg(k) bgc(k) Pg(k)

0 0 Pg(k) = 0

1 0 Pg(k) = −Pc

1 1 Pg ≤ Pg(k) ≤ Pg

0 1 impossible

Table 3.2: Logic table of crank-step generator start-up model

During the ramping phase, the generator power output increases linearly from 0 to P g

at a rate r. Let P r ∈ RG×T be the reference signal that P g will follow during the ramping

period with a slope defined by r. The constraints in (3.16) are adjusted to account for the

extra ramping phase.

−M6(1− bgc) ≤ P g + P c ≤M6(1− bgc) (3.17a)

−M7(1− bgr) ≤ P g − P r ≤M7(1− bgr) (3.17b)

−M8(bgr + bgc) + diag(P g)bg ≤ P g ≤ diag(P g)bg +M8(bgr + bgc) (3.17c)

This set of constraints fully describes the four-stage start-up process of the NBSU. The

adjustments from the model without ramping are the introduction of (3.17b), which is only

active during the ramping phase, and an additional loosening term in (3.17c). The reference

term P r, a function that begins to increase linearly when the ramping phase begins, is only

tracked during the ramping phase. We choose to discretize the linear increase in power by

the midpoint value of each time step as shown in Fig. 3.2 to best capture the total energy

supplied during the ramping process.

The value of P r at the beginning of the ramping phase is 1
2r; the next is 3

2r, and so on,

as described by constraints (3.18).

−M9bgr ≤ P r +
1
2r · 1

⊤ ≤M9bgr (3.18a)

−M10(1− bgr(k)) ≤ P r(k)− P r(k − 1)− r ≤M10(1− bgr(k)) ∀k ∈ {1, . . . , T} (3.18b)

P r is maintained at −1
2r outside of the ramping phase by (3.18a), but this value does

not affect the power outputs as (3.17b) is loose. During the ramping phase, (3.18b) describes

the linear increase of the reference term which is tracked by the generator output in (3.17b).

The corresponding logic table for the complete four-phase start-up is shown in Table 3.3

During the final phase, generator outputs are bound by their ramp rates, but unlike
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Time step [k]
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Figure 3.2: Discretized ramping reference function

bg(k) bgc(k) bgr(k) Pg(k)

0 0 0 Pg(k) = 0

1 1 0 Pg(k) = −Pc

1 0 1 Pg(k) = −Pr(k)

1 0 0 Pg ≤ Pg(k) ≤ Pg

All other combinations impossible

Table 3.3: Logic table of complete NBSU start-up model

during the ramping phase, they are free to decrease and increase within the upper and lower

limits. To impose this, we add that for all k ∈ {1, . . . , T},

−r −M11(1− bgo(k)) ≤ P g(k)− P g(k − 1) ≤M11(1− bgo(k)) + r (3.19)

This constraint is only active for online generators, and allows their power outputs to change

by at most ±r.

3.1.5 Objective Function

The overarching goal of restoration is the fast recovery of all network elements. It follows

that the objective should contain binary status variables, with weight vectors wg ∈ RG,

wd ∈ RD, wl ∈ RL that specify the degree of priority given to each generator, load, and line.

This also allows certain loads, such as critical infrastructure, to be prioritized. The objective

function
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z =

T∑
k=1

[
bg(k)

⊤wg + bd(k)
⊤diag(P d)wd + bl(k)

⊤wl

]
(3.20)

takes into account the statuses of all time steps to incentivize rapid recovery of the grid

components. The term ∆P d accounts for the sizes of the discrete load packets, so that wd

represents the priority of a MW of load in each packet. Let wd ∈ wd, wg ∈ wg, wl ∈ wl

represent any element in the respective weight vectors. We select the weights to prioritize

generator recovery, where in general, wg ≫ wd ≫ wl, for two main reasons. First, the NBSU

start-up process takes a substantial amount of time, and an earlier start-up gives access

to more power capacity. Second, the weights act as an implicit incentive to increase the

system inertia, which otherwise does not directly enter the MILP. These goals align with

the guidelines of ISO recovery plans, which similarly advise prioritizing generator start-up,

especially during the early stages, to increase the system’s active power capability and system

inertia [8]. An increased weight can be assigned to priority targets such as critical loads.

3.1.6 Full Optimization Problem Formulation

The complete formulation of the restoration MILP can be written as

max z =
T∑

k=1

[
bg(k)

⊤wg + bd(k)
⊤diag(P d)wd + bl(k)

⊤wl

]
(3.21)

subject to:

⇒Network elements stay on (3.1)

b(k)− b(k − 1) ≥ 0 ∀k ∈ {1, . . . , T}

⇒1 element of each type per step (3.2)

1⊤(b(k)− b(k − 1)) ≤ 1 ∀k ∈ {0, . . . , T}

⇒Active power balance (3.4)

AgP g −Ad diag(P d)bd = AP l

⇒Bus voltage phase constraints (3.5), (3.6)

θ1(k) = 0 ∀k ∈ {0, . . . , T}

−M1bb ≤ θ ≤M1bb

⇒DCPF line flows (3.8)

−M2(1 − bl) ≤ P l −X−1A⊤θ ≤M2(1 − bl)

−M3bl ≤ P l ≤M3bl

⇒Line to bus logic (3.9), (3.10), (3.11)
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Al(i)
⊤ · bil ≤ bb ∀i ∈ {1, . . . , L}

Albl ≥ bb − bb(0)1
⊤

A⊤
l bb(k − 1) ≥ bl(k) ∀k ∈ {1, . . . , T}

⇒Load and generator to bus logic (3.12), (3.12)

Adbd ≤M4bb

Agbg(k + 1) ≤M5bb(k) ∀k ∈ {1, . . . , T − 1}

⇒NBSU start-up auxiliary variables (3.13), (3.14), (3.15)

bigc(k) = big(k)− big(k − T i
c) ∀k ∈ {1, . . . , T} ∀i ∈ {1, . . . , G}

bigr(k) = big(k − T i
c)− big(k − T i

c − T i
r) ∀k ∈ {1, . . . , T} ∀i ∈ {1, . . . , G}

bgo = bg − bgc − bgr

⇒NBSU start-up phases (3.17)

−M6(1− bgc) ≤ P g + P c ≤M6(1− bgc)

−M7(1− bgr) ≤ P g − P gr ≤M7(1− bgr)

−M8(bgr + bgc) + diag(P g)bg ≤ P g ≤ diag(P g)bg +M8(bgr + bgc)

⇒NBSU ramping reference (3.18)

−M9bgr ≤ P r +
1

2
r · 1⊤ ≤M9bgr

−M10(1− bgr(k)) ≤ P r(k)− P r(k − 1)− r ≤M10(1− bgr(k)) ∀k ∈ {1, . . . , T}

⇒Ramp limit in online phase (3.19)

− r −M11(1− bgo(k)) ≤ P g(k)− P g(k − 1) ≤M11(1− bgo(k)) + r ∀k ∈ {1, . . . , T}

3.1.7 Iterative Algorithms

Here we motivate the use of suboptimal iterative algorithms to compute restoration plans,

which addresses several challenges. First, larger systems with hundreds or thousands of buses

require a longer time to fully restore, and the optimization problem may become too complex

to solve in a reasonable amount of time. Although restoration planning is performed offline,

operators may wish to run the program multiple times to account for different hypothetical

scenarios or assess different weights in the objective function, making computational time a

relevant concern. Another challenge involves selecting a suitable value for T , as the number

of time steps required to fully restore the system is not known a priori. The number of

network components to be restored cannot be used to define the restoration time because

not all time steps involve recovering exactly one component. An overly long estimate further

increases computational burden, while an overly short estimate may lead to an incomplete

restoration plan.

In the iterative rolling-horizon algorithm shown in Fig. 3.3, T is instead defined as the
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look-ahead period, which is shorter than the entire restoration period. The optimization

problem is solved for T steps, after which a subset of the solution is saved and the rest

discarded. That is, only the actions of the first tc steps are added to the plan, where tc ≤ T

is termed the control period. Selecting a longer time horizon T improves the optimality

of the solution at the cost of increased computational complexity. Algorithm 1 shows the

iterative restoration planning framework for any T and tc.

time steps [k]
0 1 2 3 4 5 6

Plan

Iteration 3

Iteration 2

Iteration 1
T

tc

Action 1

Action 2

Action 3

Action 1 Action 2 Action 3

Figure 3.3: Rolling horizon optimization, also known as receding horizon optimization. In
each iteration, actions in the control period (green) are added to the plan while the remaining
actions (gray) are discarded

Algorithm 1 Iterative Restoration Sequence Computation (IRSC)

1: Initialize b0
2: Initialize plan = [b0]
3: while b0 ̸= 1 do
4: Solve the MILP in (3.21) for T steps with initial values b0
5: Append the plan with actions in the control period: [plan]← [plan, b(1 : tc)]
6: Update initialization: b0 = b(tc)
7: end while
8: Output plan

Before the first iteration, the initial statuses of network elements are initialized. The while

loop condition checks whether all network elements have been restored. This eliminates the

need to estimate the length of the entire restoration sequence. In each iteration, the optimal

actions within the control period t, encoded in the binary variables, are appended to the plan.

This approach breaks down the full optimization problem into multiple lower-dimension

problems that can be solved more efficiently.

Importantly, note that the MILP in (3.21) is no longer solely solving black-start problems.

After each iteration, the initial variables are updated and will include more active statuses

as the algorithm progresses. Thus, in the definitions of the auxiliary binary variables for

cranking (3.13) and ramping (3.14), bg(k) can have nonzero values for k < 0. The generator



CHAPTER 3. FREQUENCY-CONSTRAINED MILP FOR RESTORATION PLANNING 24

statuses prior to the current initial state are stored in the plan variable and are used to

construct expressions of bgc and bgr.

The control period is often chosen as the immediate next time step (tc = 1) as the pre-

dictive accuracy of the solution decreases further into the future. The solutions approaching

the end of the time horizon are especially poor, as the time steps that follow are not being

considered by the optimization program. In an extreme example, the greedy algorithm takes

a time horizon of a single step and is unsuitable for restoration as it does not see future

rewards. For example, loads may be picked up instead of reserving capacity for NBSU start-

up, which may provide more long-term benefit. Longer look-ahead horizons allow future

steps to be correctly assessed. By discarding the solutions beyond the control period, the

algorithm avoids taking actions that were computed without a proper evaluation of future

steps. For the remainder of this work, we adopt a receding horizon approach with tc = 1

and T > 1.

Another crucial benefit of Algorithm 1 is its ability to update the system parameters

in between each iteration. These system parameters may depend nonlinearly on current or

future actions and cannot be incorporated in the MILP framework otherwise. One example of

such a parameter is the system’s inertia, which depends on the set of synchronized generators.

A detailed discussion of parameter updates in between iterations is presented in Section 3.3.

3.2 Frequency Nadir Estimation

In this section, we use the ASF model to predict the frequency nadir caused by step electrical

disturbances. The predictions are used to construct constraints on the maximum allowable

electrical disturbance at any time step, which can be seamlessly introduced into the MILP

to obtain frequency-secure restoration plans. Electrical imbalances are primarily caused by

load pick-ups and generator cranking during restoration, so we focus on power shortage

scenarios with a declining frequency.

First, we introduce the governor-turbine model that provides the PFR and analyze its

structure. We show that coordinating generator setpoint adjustments with restorative actions

can accelerate the system’s frequency response. Furthermore, an appropriate assignment of

setpoints leads to a closed-form approximate mathematical relation between the nadir and

the magnitude of the disturbance that caused it. We first demonstrate the approximation on

a system with a single machine providing PFR, and generalize the results to PFR contributed

by multiple machines and systems with nonzero damping coefficients.

3.2.1 IEEEG1 Governor-Turbine Model and Ramp approximation

The frequency swing equation given by the ASF model was introduced in Section 2.2 by

(2.5). A load pick-up introduces a net power shortage that causes a frequency decline. In

response, the governors of the synchronous machines that participate in PFR send a signal
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Figure 3.4: IEEEG1 turbine governor diagram

to increase the fuel infeed of the turbines and their power output [36]. Many governor-

turbine models have been constructed with various levels of detail. This work will focus

on the IEEEG1 governor-turbine model for steam turbines, although its analysis can be

applied to other models with similar rate-limiting attributes. The IEEEG1 model, shown

in Fig. 3.4, consists of a nonlinear governor that detects the frequency deviation and sends

a power signal to the turbine [44]. The deadband block filters out noise to prevent small

deviations from triggering PFR. The droop constant K determines the proportion between

the frequency deviation and the increase in power. The change in reference power ∆Pref ,

also termed the power setpoint, is determined by economic dispatch during normal operation

and governs the steady-state output [36]. Two saturation blocks limit the rate of change and

the magnitude of the PFR power. Physically, SAT1 limits the maximum speed at which the

steam valves can be adjusted, and SAT2 limits the valve position. Importantly, note that

the limits of SAT1 represent how quickly the generator can ramp up, and Uo is equivalent to

the ramp rate r when converted to the same units. Finally, the turbine model is linear and is

composed of cascading low-pass filters, with time constants T1, . . . , T7 ∈ R+. All parameters

and signals in the IEEEG1 model are in the per unit base of the generators. The model was

selected for its explicit representation of rate limits and power setpoints, which simplified

and linear governor-turbine models ignore.

To analyze the frequency response behavior of the IEEEG1 model to step power im-

balances, some simplifications are first made. The deadband block can be neglected when

studying scenarios where the frequency deviation is large enough to activate PFR. Fur-

thermore, we observe that SAT2 is activated only when a generator reaches its maximum

capacity during PFR. By adequately allocating the dynamic reserves of the generators that

give PFR, SAT2 can be neglected. The simplified model is shown in Fig. 3.5.

The closed-loop feedback system with multiple synchronous generators is shown in Fig.

3.6. It is assumed that the system dynamics from previous actions have settled prior to the

next action. Thus, the signals in 3.6 are given by their deviations from their steady-state

values—for example, ∆ω represents the frequency deviation from its nominal value and

∆Pe represents the change in power demand from the previous steady state. When multiple
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Figure 3.5: Simplified IEEEG1 turbine governor model
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Figure 3.6: Closed-loop feedback of power system frequency with PFR

generators are participating in PFR, each generator carries a share of the power imbalance.

After the dynamics settle, each generator’s steady state power contribution is determined

by their capacities P g and droop coefficients K, as defined in (3.22). See Appendix B for

the derivation.

∆P i
m =

Ki∆Pe∑
i∈Gpo

Kiαi
∀i ∈ Gpo (3.22)

For notational simplicity, we assume that all generators participating in PFR have the

same droop constant K, which simplifies (3.22) such that all generators carry the same value

in their own base units.

∆P i
m =

∆Pe∑
i∈Gpo

αi
∀i ∈ Gpo (3.23)

Given some lower bound on the frequency deviation ∆ωlim < 0 which we will also notate

as − |∆ωlim|, we wish to derive the maximum electrical disturbance magnitude that does not
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violate the frequency bound. This is equivalent to finding the maximum positive input (∆Pe)

such that one of the states (∆ω) of the nonlinear closed-loop system satisfies the bound

∆ω ≥ − |∆ωlim| for all time. This is challenging due to the nonlinear nature of the SAT1

block and high-order linear terms in the turbines. PFR is delivered by multiple generators

with different response rates, which further complicates the problem.

Another degree of freedom comes from the power setpoints Pref . An increase in the set-

points prompts an increase in output power, even when a frequency deviation is not present.

For example, a positive ∆Pref will prompt a power output increase by feeding a positive

value through SAT1 to the turbine, as shown in 3.5. During normal operating conditions, the

power setpoints Pref remain unchanged when PFR is activated during contingency events

such as generator outages or line faults. It is impossible for operators to use the setpoints

to improve frequency response because the contingencies, by nature, cannot be anticipated

in advance. However, during the restoration process, electrical imbalances are caused by

planned actions with known magnitudes and timing. Therefore, the generator setpoints can

be adjusted simultaneously to restorative actions to improve the dynamic response of the

system. A natural way to assign setpoints is to change the setpoints to their respective

post-PFR steady-state outputs from (3.23).

∆Pref =
∆Pe∑
i∈Gpo

αi
. (3.24)

With this selection, the initial signal entering SAT1 from Fig. 3.5 at the onset of a

power imbalance is ∆Pref
T3

. If this value is greater than the upper rate limit of the saturation

block, Uo, SAT1 will be active. Moreover, during a power shortage (∆Pe > 0), the declining

frequency will activate PFR and increase the signal entering SAT1 until the frequency decline

is arrested. Hence, if SAT1 is initially activated (∆Pref
T3
≥ Uo), it remains activated until the

frequency nadir is reached. Importantly, this implies that for the purposes of calculating

the nadir, we can assume that SAT1 is always in an active state. Under this approximation,

the feedback loop in Fig. 3.6 is broken and the SAT1 block is replaced by a constant source

Uo. Combined with the integrator block that follows, the simplified PFR is characterized

by a linear ramp that feeds into the turbine block. As such, we term this approach the

”Ramp Approximation”. Physically, the approximation assumes that all generators respond

to a power shortage by increasing their output at their maximum rates. The method will

produce a slightly optimistic value of the frequency nadir, as the actual PFR will be slower.

Condition ∆Pref
T3
≥ Uo is more likely to be satisfied for larger imbalances. The approximate

open-loop system is shown in Fig. 3.7.

Next, we present a simple example to illustrate the derivation of the frequency nadir

using the ramp approximation, and extend the approach to general multi-machine systems

with damping.
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Figure 3.7: Open-loop model of the ramp approximation

3.2.2 Single-Machine Zero-Damping Example

We consider a single-machine system, neglect the effects of the damping coefficient Dsys, and

approximate the turbine block with the low-pass filter 1
sT4+1 . This closed-loop system can

be expressed in the time domain by the nonlinear state-space model

∆ω̇(t) =
1

2Hsys
(α∆Pm(t)−∆Pe)

ẋ(t) =
1

T1
(−x(t) +K∆ω(t))

˙̃a(t) = sat1

(
1

T3

[(
T2

T1
− 1

)
x(t)− T2

T1
K∆ω(t)− ã(t) + Pref

])
∆Ṗm(t) =

1

T4
(−∆Pm(t) + ã(t))

where x, ã ∈ R are internal states of the governor. Under the assumption that a steady

state is reached before the disturbance, the states ∆ω,∆Pm have zero initial values as they

represent deviations from the steady state. From the state-space model, it follows that the

governor internal states also have zero initial values. Applying the ramp approximation, the

third state simplifies to a linear ramp with slope Uo for all positive time.

ã(t) = Uot

The fourth state, the output mechanical power, can now be solved by the ODE

∆Ṗm(t) =
1

T4
(−∆Pm(t) + Uot)

With the zero initial condition, the solution is

∆Pm(t) = T4Uoe
− 1

T4
t
+ Uot− T4Uo
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Substituting ∆Pm(t) into the equation for ∆ω̇(t) and integrating, an explicit expression

for the frequency deviation is obtained in (3.25).

∆ω(t) =
1

2Hsys

(
−αT 2

4Uoe
− 1

T4
t
+

1

2
αUot

2 − αT4Uot−∆Pet+ αT 2
4Uo

)
(3.25)

If the turbine time constant is small (T4 ≪ 1), the exponential term has a small coefficient

and decays quickly. By neglecting it in the nadir calculations, the remaining expression is

quadratic in time. The nadir is achieved at time tnadir = T4 + ∆Pe
αUo

, with a nadir value

computed to be

∆ω(tnadir) =
Uo

4Hsys

(
T 2
4 − 2

T4∆Pe

Uo
− ∆P 2

e

U2
o

)
For an imposed frequency limit ∆ω(tnadir) ≥ − |∆ωlim|, the corresponding maximum

load increase ∆Pe,max can be found by solving the quadratic inequality.

Uo

4Hsys

(
T 2
4 − 2

T4∆Pe

Uo
− ∆P 2

e

U2
o

)
≥ − |∆ωlim| (3.26a)

(∆Pe + UoT4)
2 − 2U2

oT
2
4 − 4HsysUo |∆ωlim| ≤ 0 (3.26b)

∆Pe ≤
√
2U2

oT
2
4 + 4HsysUo |∆ωlim| − UoT4 = ∆Pe,max (3.26c)

First, the frequency limit is substituted into the nadir expression yielding an inequality.

From (3.26a), we multiply both sides by 4HsysUo and complete the square for ∆Pe to obtain

(3.26b). Finally, the power imbalance term can be isolated to obtain ∆Pe,max. If the system

inertia and frequency limit are fixed and the generator parameters Uo, T4 are known, (3.26c)

gives a solvable bound on the electrical disturbance that can be introduced. This derivation

can also be done in the Laplace domain, where the expression for the frequency deviation is

∆ω(s) =
1

2Hsyss

(
αUo

s2

(
1

sT4 + 1

)
− ∆Pe

s

)
(3.27)

We examine the effect of neglecting the fast-decaying exponential term. By using the

Laplace operator L(·) on (3.25), we arrive at

∆ω(s) = L
[

1

2Hsys

(
1

2
αUot

2 − αT4Uot−∆Pet+ αT 2
4Uo

)]
=

1

2Hsys

(
αUo

s3
− αT4Uo

s2
− ∆Pe

s2
+

αT 2
4Uo

s

)
=

1

2Hsyss

(
αUo

s2
(
1− sT4 + s2T 2

4

)
− ∆Pe

s

)
(3.28)

where the low-pass filter block 1
sT4+1 from (3.27) is replaced by its second-order polyno-

mial expansion 1− sT4 + s2T 2
4 . In Fig. 3.8, the Bode plots of the first terms of (3.27) and

(3.28) are compared for two values of T4.
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Figure 3.8: Bode plots of first-order term and its approximation

The polynomial is an accurate approximation for the frequency range [0, 1
T4
]. The 1

s3

term that precedes the first-order term strongly attenuates high-frequency components. We

see that although 1−sT4+s2T 2
4 fails as an approximation at high frequencies, the magnitude

of errors are small compared to the dominant low frequency components. Therefore, the

polynomial is an appropriate approximation of the low-pass filter when T4 is small. This

is consistent with the time-domain interpretation, as when T4 is small, the exponential

term, which the errors in the Bode plot represent, decays faster. The difference between the

polynomial approximation and the low-pass filter is exactly the neglected exponential term

in the time domain, as shown by

α

s3

(
1

sT4 + 1
−
(
1− sT4 + s2T 2

4

))
=

αT 3
4

sT4 + 1
= L

[
αT 2

4 e
− 1

T4
t
]

(3.29)

3.2.3 Multi-machine Generalization

We now expand the analysis to the multi-machine scenario with the full GT(s) turbine model

shown in Fig. 3.6. Following the ramp approximation, each generator participating in PFR

activates its SAT1 block and sustains the power output rate limits Uo prior to the nadir,

yielding the open loop system in Fig. 3.7. The Laplace expression for the mechanical power

output of generator i,

∆P i
m(s) =

U i
o

s2
Gi

T(s),

gives a corresponding frequency response of

∆ω(s) =
1

2Hsys

 1

s3

∑
i∈Gpo

αiU i
oG

i
T(s)−

∆Pe

s2

 (3.30)

where the first term represents the combined PFR of the SGs, and the second term represents

the disturbance. Gpo is the set of generators participating in the PFR. The fourth-order
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turbine transfer function GT(s) is given by

GT(s) =
1

sT4 + 1

(
K1 +

1

sT5 + 1

(
K3 +

1

sT6 + 1

(
K5 +

K7

sT7 + 1

)))
(3.31)

The turbine has a unity DC gain, which is true when

K1 +K3 +K5 +K7 = 1

Like in the example, we replace all 1
sTi+1 terms in (3.31) with their second-order polynomial

approximations 1− sT + s2T 2 by assuming that T i
4, T

i
5, T

i
6, T

i
7 are small.

GT(s) ≈ (1− sT4 + s2T 2
4 )(K1 + (1− sT5 + s2T 2

5 )(K3

+ (1− sT6 + s2T 2
6 )(K5 + (1− sT7 + s2T 2

7 ))))

The expression can be expanded, and we neglect terms in s with an order higher than

two. The result is a quadratic expression of the form

GT(s) ≈ c1 − c2s+ c3s
2 (3.32)

with coefficients

c1 = K1 +K3 +K5 +K7 = 1 (3.33a)

c2 = T4 + T5(K3 +K5 +K7) + T6(K5 +K7) +K7T7) (3.33b)

c3 = T 2
4 + T5(K3 +K5 +K7)(T4 + T5)

+ T6(K5 +K7)(T4 + T5 + T6) +K7T7(T4 + T5 + T6 + T7) (3.33c)

The coefficients c1, c2, c3 depend only on the turbine parameters and can be found in

advance with knowledge of the turbine model alone. Substituting each Gi
T(s) with approxi-

mation in (3.32), the expression for frequency deviation becomes

∆ω(s) =
1

2Hsys

 1

s3

∑
i∈Gpo

αiU i
o(1− ci2s+ ci3s

2))− ∆Pe

s2


=

1

2Hsys

 1

s3

∑
i∈Gpo

αiU i
o

− 1

s2

∑
i∈Gpo

αiU i
oc

i
2

+
1

s

∑
i∈Gpo

αiU i
oc

i
3

− ∆Pe

s2


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For notational simplicity, we define the coefficients C1, C2, C3 ∈ R+ as

C1 =
∑
i∈Gpo

αiU i
o (3.34a)

C2 =
∑
i∈Gpo

αiU i
oc

i
2 (3.34b)

C3 =
∑
i∈Gpo

αiU i
oc

i
3 (3.34c)

Note that while c1, c2, c3 depend solely on the turbine models, C1, C2, C3 depend on the

set of online generators that provide the PFR Gpo. With this, the expression becomes

∆ω(s) =
1

2Hsys

(
C1

s3
− C2

s2
− ∆Pe

s2
+

C3

s

)
(3.35)

which is analogous to the single-machine simple turbine case. Converting back to the time

domain yields

∆ω(t) =
1

2Hsys

(
1

2
C1t

2 − C2t−∆Pet+ C3

)
The nadir occurs at tnadir =

C2+∆Pe
C1

, and the expression of the nadir is

∆ω(tnadir) =
1

2Hsys

(
−(C2 +∆Pe)

2

2C1
+ C3

)
(3.36)

Finally, the corresponding maximum power imbalance is

∆Pe ≤
√
4HsysC1 |∆ωlim|+ 2C1C3 − C2 = ∆Pe,max (3.37)

The maximum safe imbalance is a function of the frequency limit |∆ωlim| and parameters

C1, C2, C3, Hsys, which depend on the set of active generators. Section 3.3 details how the ac-

tive generator set can be predicted such that the maximum safe imbalance can be represented

in the MILP by a constant value.

3.2.4 Nonzero Damping Coefficient

Next, we show that the ramp approximation can be applied to systems with a nonzero

damping coefficient, which have the ASF swing equation

∆ω(s) =
1

2Hsyss+Dsys
(∆Pm(s)−∆Pe(s)) (3.38)

Synchronous machines have much larger inertia constants than damping coefficients, and

the effects of damping is usually neglected in the ASF model. However, there are scenarios

where damping effects are substantial—for example, the work in [45] shows how the fast
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frequency response (FFR) provided by IBRs can be captured by an effective damping

coefficient. Although FFR is out of the scope of this work, we demonstrate in this section

that the power imbalance bound can be similarly derived when damping effects cannot be

ignored. Following the same procedure as in the zero damping case, we begin from the

Laplace domain ramp-approximated frequency expression from (3.30) and substitute GT(s)

using the turbine approximation (3.32).

∆ω(s) =
1

2Hsyss+Dsys

 1

s2

∑
i∈Gpo

αiU i
oG

i
T(s)−

∆Pe

s


=

1

2Hsyss+Dsys

(
C1

s2
− C2

s
− ∆Pe

s
+ C3

)
The expression is simplified by taking the partial fractions of each term, taking the inverse

Laplace, and finding the minimum point of the time-domain frequency expression, which

gives

∆ω(tnadir) = −
C2

Dsys
− ∆Pe

Dsys

+
2HsysC1

D2
sys

ln

(
1

4H2
sysC1

(
4H2

sysC1 + 2HsysDsys(C2 +∆Pe) +D2
sysC3

))
(3.39)

This is an equation with linear and logarithmic terms of ∆Pe, and its solution can be

explicitly expressed by the Lambert W function W (·). By replacing ∆ω(tnadir) ≥ − |∆ωlim|
and performing some algebraic operations, we manipulate the inequality into the form

yey = x, where y contains the variable we wish to isolate, ∆Pe.(
−1− DΣC2 +D∆Pe

2HΣC1
−

D2
ΣC3

4H2
ΣC1

)
exp

(
−1− DΣC2 +D∆Pe

2HΣC1
−

D2
ΣC3

4H2
ΣC1

)
≤ − exp

(
−
D2

Σ |ωlim|
2HΣC1

−
D2

ΣC3

4H2
ΣC1

− 1

)
When −1

e ≤ x ≤ 0, as is in this case, two solutions exist for the equation yey = x: y = W0(x)

and y = W−1(x), where W0(·),W−1(·) are the principal and lower branches of the Lambert

W function. We can express our inequality in terms of the Lambert W function, where the

lower branch gives the maximum value for ∆Pe.(
−1− DsysC2 +D∆Pe

2HsysC1
−

D2
sysC3

4H2
sysC1

)
= W−1

(
− exp

(
−
D2

sys |ωlim|
2HsysC1

−
D2

sysC3

4H2
sysC1

− 1

))

Finally, by isolating for ∆Pe, the safe imbalance bound

∆Pe ≤ −
2HsysC1

Dsys

(
w−1 + 1 +

DsysC2

2HsysC1
+

D2
sysC3

4H2
sysC1

)
= ∆Pe,max (3.40)
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is found with

w−1 = W

(
− exp

(
−
D2

sys |ωlim|
2HsysC1

−
D2

sysC3

4H2
sysC1

− 1

))
Compared to the bound for systems without damping in (3.37), this bound allows larger

imbalances when the frequency nadir limit and system parameters (exceptDsys) are identical.

The damping constant reduces the magnitude of the nadir for any given power imbalance,

so a larger imbalance is needed to violate the frequency limit. To assess the correctness of

(3.40), we can show that as Dsys approaches zero, the expression converges to the bound

without damping in (3.37). That is,

lim
Dsys→0

− 2HsysC1

Dsys

(
w−1 + 1 +

DsysC2

2HsysC1
+

D2
sysC3

4H2
sysC1

)
=
√
4HsysC1 |∆ωlim|+ 2C1C3 − C2 (3.41)

The proof is presented in Appendix C.

3.3 Frequency-constrained MILP Synthesis

In this section, we will show how the frequency nadir constraints from the previous section

are integrated into the restoration MILP. First, we show how (3.37) can be integrated into

the MILP framework. By adopting an iterative receding-horizon algorithm, we show how

the constraint can be made linear in terms of the binary decision variables.

3.3.1 Frequency Constraint Formulation

The power imbalance bound in (3.37) is introduced as linear constraints to ensure that the

frequency nadir limit is satisfied.

During restoration, net electrical imbalances ∆P e ∈ R1×T are caused by load pick-ups

and generator cranking, expressed for all k ∈ {1, . . . , T}

∆P e(k) = P⊤
d (bd(k)− bd(k − 1)) + P⊤

c (bgc(k)− bgc(k − 1)) (3.42)

which is linear in the decision variables. The bound for these imbalances, ∆P e,max,

depends on the inertia Hsys and the parameters C1, C2, C3 defined in (3.34), which must

be defined for each time step of the MILP. These parameters depend on the status of the

generators bg and its auxiliary variables.

Generators begin to contribute to the system inertia after they have been synchronized.

During the cranking phase, the rotating mass of the turbine is brought to synchronous speed

is connected to the electrical system at the onset of the ramping phase. Denoting the vector

of inertia for all time steps as Hsys with initial value Hsys,0 = Hsys(0), the definition from



CHAPTER 3. FREQUENCY-CONSTRAINED MILP FOR RESTORATION PLANNING 35

(2.6) can be rewritten in terms of status variables as

Hsys(k) =
1

Ssys
P

⊤
g diag(H)(bgr(k) + bgo(k)) ∀k ∈ {0, . . . , T} (3.43)

where bgr and bgo are the previously introduced indicators of the ramping and online

phases and vector H ∈ RG contains the inertia constants of each generator. The set of

synchronized generators Gs, which was used in the sum in (2.6), is encoded in the binary

variables. Let α ∈ RG×T denote the power conversion factors matrix, with initial values

α0 = α(0), and rewrite the definition from (2.8) in terms of the status variables as

α(k) = 1
Ssys

diag(P g)bgo(k), k ∈ {1, . . . , T}. (3.44)

The set of online generators that provide PFR Gpo is encoded in α by the online status

bgo as they determine the parameters C1, C2, C3. The definition in (3.44) assumes that all

NBSUs contribute to the PFR once they are fully activated. However, we may only want

some of the generators to provide PFR once online. This set Gp, where Gpo ⊆ Gp can be

represented in the expression for α by constructing a constant vector p ∈ {0, 1}G where for

all i ∈ {1, . . . , G},

pi =

1, i ∈ Gp
0, i /∈ Gp

(3.45)

The ith element of p indicates whether generator i has been selected to provide PFR once

online. The first element represents the BSU and must be 1 since the PFR set would initially

be empty. Incorporating this into the definition of α yields

α(k) = 1
Ssys

diag(p)diag(P g)bgo(k), k ∈ {1, . . . , T}. (3.46)

The nonzero values of α now describe Gpo, as it is the intersection of the online set and Gp.
To vectorize (3.34), let the vector forms of the parameters C1,C2,C3 ∈ R1×T

+ be defined

for all T steps in the MILP as

C1 = U⊤
o α (3.47a)

C2 = U⊤
o diag(c2)α (3.47b)

C3 = U⊤
o diag(c3)α (3.47c)

where c2, c3 ∈ RG are constant vectors derived from the turbine approximation defined in

(3.33), with their ith entries corresponding to the turbine of the ith generator.

Replacing the zero-damping maximum power imbalance with the vectorized parameters
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and variables yields

∆P e(k) ≤
√

4Hsys(k)C1(k) |∆ωlim|+ 2C1(k)C3(k)−C2(k) (3.48)

which provides a step-wise bound on the magnitude of load pick-up and generator

cranking actions. This inequality is nonlinear in terms of the binary decision variables,

which are embedded in the step-dependent parameters, and cannot be integrated into the

MILP framework. Next, we present an approach to resolve this nonlinearity by updating

Hsys and α outside of the MILP in the iterative algorithm discussed in the next section.

The approach simplifies the right-hand side of (3.48) and resolves it to a constant value for

all time steps.

3.3.2 Updating System Parameters via the Iterative Algorithm

NBSUs are given the start-up signal a fixed number of time steps before their ramping

and online phases, determined by the cranking times T c and ramping times T r. Therefore,

if we know when the ith generator is scheduled to turn on, we can obtain the auxiliary

variables bigr and bigo for all subsequent time steps. If it is assumed that no other generators

are activated during the time horizon T , Hsys and α can be predicted.

The IRSC Algorithm from Section 3.1.7 can be extended to include this parameter

update step.

Algorithm 2 IRSC with Parameter Updates

1: Initialize b0
2: Initialize plan = [b0]
3: while b0 ̸= 1 do
4: Assuming bg = bg,0 · 11×T , predict bgr, bgo by evaluating (3.13), (3.15)
5: Evaluate Hsys and α in (3.43), (3.46), using predicted bgr, bgo
6: Evaluate C1, C2, C3 in (3.47) using predicted α
7: Evaluate ∆P e,max using (3.48)
8: Solve the MILP (3.21) with frequency constraint (3.48) for T steps with initial values

b0
9: Append the plan with actions in the control period: [plan]← [plan, b(1)]

10: Update initialization b0 = b(1)
11: end while
12: Output plan

Vectors Hsys,α are updated for the next iteration whenever the newest saved actions

in the restoration plan include a NBSU start-up. A corresponding maximum electrical

imbalance ∆P e,max(k) can be obtained for all k ∈ {0, . . . , T}, rendering constraints (3.48)

linear to be inserted into the next MILP.

As an example, consider an example system in Fig. 3.9, where NBSU1 has a known

cranking time T 1
c = 4, and we run the iterative algorithm with a horizon of T = 4.
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Figure 3.9: An example system to demonstrate the IRSC algorithm

Time Step 0 1 2 3 4 5 6

Iteration 1, obtaining parameters

Hsys ⧸ H1 H1 H1 H1 H1 ⧸
∆P e,max ⧸ ∆P1 ∆P1 ∆P1 ∆P1 ∆P1 ⧸

Iteration 1, solving MILP

bg 0 1 1 1 1 1 ⧸
bgc 0 1 1 1 1 0 ⧸

Iteration 2, obtaining parameters

bgc 0 1 1 1 1 0 0

bgr 0 0 0 0 0 1 1

Hsys ⧸ ⧸ H1 H1 H1 H2 H2

∆P e,max ⧸ ⧸ ∆P1 ∆P1 ∆P1 ∆P2 ∆P2

Iteration 2, solving MILP

bg ⧸ 1 1 1 1 1 1

Table 3.4: IRSC-based parameter updates on the 3-bus system. Bold and italicized 1 indicate
newest actions stored in plan

At the start of the first iteration, the initial values bg,0 are assumed to remain constant

throughout the horizon T . The system inertia is supplied by the BSU alone and is notated

as H1 in the table. Doing the same with other parameters, we can find a maximum power

imbalance of ∆P1 using (3.48) for all time steps in the first iteration. After solving the

frequency-constrained MILP, the next optimal action prompts NBSU1 to start and enter

its cranking phase. The algorithm updates the initial value vector b0 to reflect the NBSU

start-up. In the second iteration, the updated initial values are again assumed to be constant

during the next T steps. The auxiliary variables bgc, bgr can be found under this assumption,

and indicate that NBSU1 will enter the ramping phase at the fifth overall time step. The

newly synchronized NBSU1 increases the system inertia, notated by H2, allowing a larger

power imbalance ∆P2 during and after the fifth step without violating the frequency limit.
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The process is repeated until the entire system is restored. In general, once an NBSU is

started, Hsys and α will be updated at a later time, which increases the bound in constraint

(3.48). Physically, this describes how the system becomes more resilient as more SGs are

synchronized and join the PFR set. Thus, we are allowing larger power imbalances to be

introduced as restoration progresses without violating the static frequency nadir limit. This

draws similarities to the IESO load recovery guideline, which recommends load pick-ups of

no more than 5% of the online capacity- [8]. Instead, the constraint (3.48) uses the inertia

and PFR capability of SGs to approximate a definite value for maximum load pick-up,

providing greater transparency into the system behavior and improving reliability.

3.4 Case Study: SGs only

3.4.1 Simulation Setup

A modified IEEE 9-bus system shown in Fig. 3.10 is used to verify the effect of frequency

constraints on the optimal restoration sequence. The generator start-up parameters and

their IEEEG1 turbine-governors use values referenced from [9] and [44]. Cranking time and

ramp rates are chosen within the ranges reported in [41]. The loads in the system are located

on buses 4-9 and split into blocks sized between 3-16 MW. Generator 1 is designated as the

BSU and generators 2-3 as the NBSUs. All units have a zero damping constant, although

nonzero system damping constants can be addressed by methods from Section 3.2.4. For

more details on system parameters, please refer to Appendix D.

The system’s frequency profile during restoration is obtained by simulating the time-

domain ODEs associated with the closed-loop ASF model. The nonlinear system has 6G+1

states, although we are primarily interested in one state: the frequency deviation. The

magnitude of the electrical imbalance following each restorative action, represented by ∆P e,

and the corresponding changes in generator setpoints ∆P ref are the inputs to the system.

Each generator’s setpoint is updated according to (3.24). All SGs in the system participate

in PFR, so Gp = {1, 2, 3} and p = [1 1 1]⊤ as defined in (3.45).

The iterative MILP and dynamic simulations are computed in MATLAB. The MILP

is constructed using the YALMIP package [46] and solved using GUROBI [47]. Dynamic

simulation is conducted by MATLAB’s in-built ODE solver. In addition, we validate the

restoration plans under more realistic conditions using PSS/E, an industry-level power

systems simulator. The software is able to capture effects neglected by the ASF model, such

as the transient effects of line charging, load energization, and regional frequency swings. The

test system is replicated in PSS/E format and the same restoration sequences are followed.

The PSS/E validation components of this work are credited to Dr. Ilyas Farhat, and more

details of the PSS/E model can be found in [48].
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Figure 3.10: Modified IEEE 9-bus system. Number in brackets denote the indices of loads
on each bus

3.4.2 Frequency Nadir Prediction

The ramp approximation assumes that if the generator setpoints are allocated as in (3.24),

then the initial value entering SAT1 will activate the saturation block. To visualize the

performance of the ramp approximation, we introduce loads of various sizes to the modified

IEEE 9-bus system with all three generators participating in PFR. The system’s frequency

deviations under each imbalance, along with their predicted nadirs, are plotted in Fig. 3.11.

The steady-state frequencies return to the nominal due to the manner in which the

generator setpoints are selected. In an actual system, power loss and regional generator

behavior necessitates secondary control (see Fig. 2.1), which is typically responsible for

driving the frequency back to its nominal value. In all cases, the ramp approximation predicts

the frequency nadir values optimistically, but the errors decrease as the load magnitude

increases. To illustrate this more clearly, the signals entering SAT1 are shown alongside the

frequency deviations in Fig. 3.12.

In all cases, the saturation block is activated immediately after the power imbalance is

introduced and remains active until the nadir is reached. For even smaller imbalances, SAT1

can remain inactive briefly, leading to higher prediction errors. However, cases with small

imbalances are negligible because the small frequency nadirs that ensue will likely remain

within safe limits. The frequency nadir prediction error is plotted as a function of the load

pick-up magnitude in Fig. 3.13.

The prediction error is highest when the power imbalance is close to zero. As the imbal-

ance increases, the corresponding change in ∆Pref triggers SAT1 more consistently, resulting
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in lower prediction errors. The errors are lowest near the maximum imbalance permitted

by the nadir constraint, though estimates remain slightly optimistic due to the assumption

of maximum generator response. In the 9-bus system, the smallest load—3 MW—yields a

negligible nadir error on the order of 10−4 Hz. Even in the worst-case scenario, the prediction

error does not exceed 10−3 Hz. These results confirm that the nadir is accurately predicted

and that the constraint in (3.37) accurately enforces the frequency limit ∆ωlim.

3.4.3 Frequency-Constrained Restoration Sequences

To show the effect of frequency constraints on restoration sequences, two optimal plans

are found using the iterative method described in Algorithm 1. The first sequence is found

without using the frequency constraints (3.48), while the second enforces a 1 Hz nadir limit.

Restorative actions are performed every two minutes to allow the transient dynamics to

settle. Fig. 3.14 illustrates the MATLAB simulation of the frequency profile during both

restoration sequences. Actions are allowed to occur every two minutes (t = 2).
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Figure 3.14: Frequency behaviour during restoration sequences. Top: No frequency limit.
Bottom: 1 Hz frequency nadir limit. Label numbers indicate the indices of restored loads

In the unconstrained case, all generators and loads are energized in rapid succession

by the black-start unit. Restoration completes in 40 steps as the NBSUs complete their

ramping phases. However, the low-inertia system experiences frequency drops as low as 4 Hz

below nominal due to the early energization of large loads. The plan is clearly infeasible in

a real-world system, as such drastic frequency deviations will trigger protection systems or

damage equipment.
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In contrast, enforcing a 1 Hz nadir constraint results in a more gradual sequence. The

early stages involve only small load pick-ups due to low system inertia. Following each

NBSU’s ramping phase, the system gains inertia and can withstand greater electrical power

imbalances. Thus, the plan energizes loads that would no longer cause a frequency violation,

as seen around steps 30 and 60. Although this sequence takes longer to complete, it offers a

practical and safe solution to grid recovery.

To validate the MILP-generated plan under more realistic conditions, the frequency-

constrained sequence is re-evaluated in PSS/E. An identical 9-bus system is constructed in

the simulation software as shown in Fig. 3.15. Fig. 3.16 shows the center-of-inertia frequency

from the ASF swing equation.
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Fig. 3.16 shows that all restoration actions meet the frequency nadir limit of 1 Hz,

with minor differences from the MATLAB simulation (Fig. 3.14, bottom) that can be

attributed to regional frequency behavior. These results demonstrate that the proposed

method produces frequency-constrained restoration plans that remain valid under high-

fidelity dynamic simulations.



Chapter 4

Energy Storage System (ESS)

Participation

In this section, we investigate ways that ESS units can be used to facilitate the restoration

effort. Storage devices can support restoration in two ways—by providing extra power

capacity by discharging into the grid when necessary, and by providing frequency support

through changes in their power setpoints. To address both applications, we introduce an

ESS model into the MILP framework and integrate the changes in the ESS setpoints into

the ramp-approximated frequency nadir constraint. The MILP model of the ESS is inspired

by the one in [29]. In this work, we describe the logical coupling between variables in further

detail and show how the model can be integrated into our frequency analysis from Section

3.2. Finally, we use a numerical example to demonstrate the effects of ESS participation.

4.1 ESS Modeling

4.1.1 Steady-state MILP Model

In a system with E energy storage systems (ESS), we define the binary variables be ∈
{0, 1}E×T and b0e ∈ {0, 1}E = be(0) to represent their statuses. We also define the state

of charge or energy stored in each device as Esto ∈ RE×T and its initial value as E0
sto =

Esto(0) ∈ RE . The storage devices have maximum capacities Esto and cannot hold a negative

charge.

0 ≤ Esto(k) ≤ Esto ∀k ∈ {1. . . . , T} (4.1)

Battery storage devices are inverter-based resources (IBRs), which means they are con-

nected to the grid by a DC-AC converter [29]. Each ESS unit is configured as shown in Fig.

4.1. The power lost through the DC-AC converters and storage devices is captured by the

efficiency vectors ηcon,ηsto ∈ [0, 1]E , respectively, where ηcon is the efficiency of the power

converters in both directions and ηsto is the efficiency of the battery storage devices. We

44
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Figure 4.1: ESS grid interconnection

define P sto ∈ RE×T as the power flow to the battery device. When the battery is charged

by an inflow Psto, the actual power it receives is ηstoPsto ≤ Psto. In contrast, a power outflow

of Psto requires the battery to discharge Psto
ηsto
≥ Psto. The dependence on the direction of

flow can be modeled by superposition, where the DC side’s power flow is split into two

nonnegative terms.

P sto = P in
sto − P out

sto (4.2)

We then define binary variables attributed to each term as be,in, be,out ∈ {0, 1}E×T , which

turn on when P in
sto and P out

sto are nonzero, respectively. The binary variables act as indicators

for the direction of the power flow on the DC side. The big M logical constraints

0 ≤ P in
sto ≤M12be,in (4.3a)

0 ≤ P out
sto ≤M13be,out (4.3b)

couples the continuous and binary variables and forces the directed power flows P in
sto,P

out
sto

to be nonnegative. The battery cannot charge and discharge simultaneously, so only one of

the two terms can be nonzero at any step. Furthermore, the battery is allowed to charge

and discharge only after the ESS device has been restored. These two requirements can be

represented in a single constraint as

be,in + be,out ≤ be (4.4)

The ESS cannot be turned on unless its bus is active. A ESS-to-bus adjacency matrix

Ae ∈ {0, 1}B×E can be formed as defined in (3.3) and used in the constraint

Aebe ≤M14bb (4.5)

where Ae matches the indices of the ESS to their buses. Having defined the power flow
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of the ESS unit, the update equation for the SoC is

Esto(k + 1) = Esto(k) + 60t(diag(ηsto)P
in
sto − diag(ηsto)

−1P out
sto ) (4.6)

where t is the time interval between each step of the MILP, in minutes. Due to the binary

constraint (4.4), only one of P in
sto and P out

sto can be nonzero. Finally, the power balance

constraint in (3.4) is updated to include the ESS power contribution at the grid connection.

AgP g −Ad diag(P d)bd −AP l︸ ︷︷ ︸
P grid

+diag(ηcon)P
out
sto − diag(ηcon)

−1P in
sto = 0 (4.7)

The storage device has a rated power P sto that is enforced by the following constraint.

−1⊤P sto ≤ P sto ≤ 1⊤P sto (4.8)

The ESS also has a rate-of-change limit ∆P sto on its power output during any step.

−∆P sto ≤ P sto(k + 1)− P sto(k) ≤ ∆P sto ∀k ∈ {1, . . . , T − 1} (4.9)

As modeled in the MILP, excess available power from the grid can be stored in ESS

devices and withdrawn when it can facilitate the restoration effort. For example, ESS devices

can assist in load recovery when the system’s remaining online capacity is low, or when the

available units have slow ramp rates.

The complete formulation with ESS participation can be formed by introducing con-

straints (4.1), (4.3), (4.2) (4.4), (4.5), (4.6), (4.8), (4.9), and replacing (3.4) with (4.7).

4.1.2 Frequency response with ESS contribution

In the previous section, we described the steady-state model of the ESS with power outputs

defined at each time step. The ESS are dispatched at the same time as the restorative

actions are carried out. Since this dispatch is not instantaneous, P sto describes the desired

steady-state output of each ESS, which can be interpreted as a setpoint similar to those

given to SGs by ∆P ref .

In this section, we describe the dynamic behaviour of the ESS apparatus shown in Fig.

4.1 with a first-order transfer function with unity DC gain and time constant τ .

Gess(s) =
1

1 + sτ

The ESS receives a power setpoint P ref
ess simultaneously to an operator action that introduces

a power imbalance ∆Pe. We again assume the system to be in steady state prior to each

action. Since the swing equation (2.7) relates the frequency deviation to the net power

imbalance, the ESS setpoint updates ∆P ref
ess are integrated as
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Figure 4.2: Full closed-loop swing equation with ESS support

∆ω̇ =
1

2Hsys

∑
i∈Gpo

αi∆P i
m −

∆Pe

s
−
∑
i∈Ge

∆P ref
ess,i

 (4.10)

where Ge is the set of active ESS devices, and ∆P ref
ess,i defines the setpoint update of the

ith ESS. The full ASF model with SG and ESS support is shown in Fig. 4.2. The goal of

this simple ESS dynamic model is to describe a non-instantaneous (with time constant τ ,

dispatchable device from which power can be stored and retrieved. The model sheds some

surprising insight into how such devices can coordinate with the restoration effort to improve

recovery speed and reliability from both steady state and dynamic perspectives.

To derive the frequency nadir with ESS participation, we begin with a system with a

single ESS device and zero system damping constant (Dsys = 0). The change in the ESS

output to a step input ∆P ref
ess
s can be written in the Laplace domain as

∆Pess =
1

s(τs+ 1)
∆P ref

ess

The setpoint ∆P ref
ess can be positive (discharging) or negative (charging). We introduce

this new term to the ramp-approximated frequency expression from Eq. (3.35).

∆ω(s) =
1

2Hsyss

(
C1

s2
+

C2

s
+ C3 −

∆Pe

s
+

∆P ref
ess

s(τs+ 1)

)
(4.11)

where C1, C2, C3 are constants derived from the IEEEG1 model. The final term in (4.11)

can be expanded into first-order terms by partial fractions. Performing this expansion,

collecting like terms and applying the inverse Laplace transform, the time-domain frequency
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expression is found as

∆ω(t) =
1

2Hsys

(
C1

2
t2 + (∆P ref

ess −∆Pe − C2)t+ C3 − τ∆P ref
ess + τ∆P ref

ess e
− 1

τ
t

)
We follow the procedure in Section 3.2.3 to find the frequency nadir as a function of the

power imbalance ∆Pe and the ESS setpoint update ∆P ref
ess . However, the extra exponential

term complicates the nadir time expression, which does not have a closed form if the system

contains multiple ESS devices with different time constants. Instead, since the ESS devices

are often much faster than the overall frequency dynamics, we assume that the exponential

term becomes negligibly small when the nadir is reached. The elimination of the exponential

yields the nadir time and frequency nadir as

tnadir =
∆Pe + C2 −∆P ref

ess

C1

∆ωnadir =
1

2Hsys

(
−(∆Pe + C2 −∆P ref

ess )
2

2C1
+ C3 − τ∆P ref

ess

)
(4.12)

For a frequency limit of − |∆ωlim|, the maximum electrical imbalance can be found by

isolating ∆Pe in (4.12) as

∆Pe ≤
√

4HsysC1 |∆ωlim|+ 2C1C3 − 2C1τ∆P ref
ess − C2 +∆P ref

ess (4.13)

The MILP framework requires linear expressions of the variables ∆Pe and ∆P ref
ess to

impose (4.13) as a constraint in the MILP framework. Observe that when ∆P ref
ess = 0, we

recover the maximum load pick-up expression from Eq. (3.37).

(∆Pe,max)∆P ref
ess=0 =

√
4HsysC1 |∆ωlim|+ 2C1C3 − C2

Eq. (4.13) can be linearized around this operating point to obtain

∆Pe,max ≈ (∆Pe,max)∆P ref
ess=0 +∆P ref

ess

(
d∆Pe,max

d∆P ref
ess

)
∆P ref

ess=0

≈
√
4HsysC1 |∆ωlim|+ 2C1C3 − C2︸ ︷︷ ︸
max load without ESS participation

+∆P ref
ess

(
1− 2C1τ

2
√
4HsysC1 |∆ωlim|+ 2C1C3

)
︸ ︷︷ ︸

effect of ESS setpoint change

(4.14)

= ∆Pe,max,0 + gess∆P ref
ess

With no ESS participation, the maximum safe power imbalance ∆Pe,max,0 is identical to

that in Eq. (3.37). The second term in (4.14) accounts for the frequency support by the ESS,

where 0 < gess < 1 is a sensitivity term that describes how ∆Pe,max changes with the ESS

setpoint update ∆P ref
ess . For every 1 unit of increase in the setpoint, the bound on the power
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imbalance increases by gess. The net power shortage caused by load pick-ups (∆Pe > 0) is

offset by an increase in ESS output. Since we model load pick-ups as step changes and ESS

output as non-instantaneous changes, gess < 1, which indicates that the ESS is unable to

completely offset step imbalances. The sensitivity gess is proportional to the time constant

τ , and a faster ESS has a greater influence on the maximum power imbalance.

Equation (4.14) also captures the effect of charging the ESS on grid frequency. A negative

∆P ref
ess reduces the maximum safe imbalance because it contributes to a decrease in system

frequency. When ∆Pe,max = 0, which means that no load pick-ups of any size can occur, we

find that

∆P ref
ess = −∆Pe,max,0

gess
(4.15)

which is an implicit bound on how much the ESS setpoint can decrease. Eq. (4.14) can

be generalized to systems with multiple ESS units, as well as a nonzero damping constant.

∆Pe,max = −2HsysC1

Dsys

(
w−1 + 1 +

C3D
2
sys

4H2
sysC1

+
C2Dsys

2HsysC1

)
︸ ︷︷ ︸

max load without ESS participation

+
E∑
i

(
2Hsys

2Hsys −Dsysτi

(
1− Dsysτi

2Hsys

(
w−1

1 + w−1

))
∆P ref,i

ess

)
︸ ︷︷ ︸

combined effect of ESS setpoint changes

(4.16)

= ∆Pe,max,0 +
E∑
i

giess∆P ref,i
ess

where w−1 is a constant obtained from the Lambert W function, and τi,∆P ref,i
ess are the

time constant and setpoint update of the ith ESS device. Please see Appendix E for the full

derivation.

In the MILP, the ESS setpoints correspond to the steady-state output as seen from the

grid, which is the injection through the AC side of the converters. In the notation of the

MILP, let ∆P ref
ess ∈ RE×T contain setpoints changes of all ESS devices for T time steps,

defined for all k ∈ {1, . . . , T}

∆P ref
ess(k) = diag(ηcon)(P

out
sto (k)−P out

sto (k−1))−diag(ηcon)
−1(P in

sto(k)−P in
sto(k−1)) (4.17)

where P out
sto (0),P

in
sto(0) are steady-state ESS inflows and outflows before restoration

begins. Constraint (4.14) can be written at any time step k ∈ {1, . . . , T} as

∆P e,max(k) = ∆P e,max,0(k) + g⊤
ess∆P ref

ess(k) (4.18)
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where ∆P e,max,0 ∈ R1×T is the vector of the maximum power imbalance without ESS

participation at each time step, and gess ∈ RE×T contains gradient vectors that represent

the sensitivities of the maximum imbalance to each ESS device’s output at each time step.

Both can be obtained by Algorithm 2 and appear in the MILPs as constant vectors/matrices.

The linear constraint (4.18) replaces (3.48) in the MILP to enforce the frequency nadir limit.

4.2 Case Study: ESS Participation

First, we examine the accuracy of the linearized constraint (4.14). In Fig. 4.3, the linearized

relation between the ESS setpoint updates ∆P ref
ess and the maximum allowable power imbal-

ance ∆P e,max is compared to their exact nonlinear relation. The parameters of the IEEE

9-bus system are used with all synchronous machines online, and two cases are plotted with

different ESS time constants.
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Figure 4.3: Effect of ESS reference point updates on the maximum power imbalance

In both cases, the affine relation remains above the exact curve. This means that the

ability of the ESS outputs to expand the safe range of imbalances is overestimated. The

errors become larger as the ESS setpoint update increases. Errors also grow larger when

the time constant τ is slower, due to the derivation assuming a fast decay of the e−
1
τ
t term.

When ESS devices are slower to track their setpoints, their ability to provide frequency

support is reduced. The linear constraint is also able to capture the effect of ESS charging,

which reduces the size of the allowable imbalance.

The IEEE 9-bus test system from Section 3.4 is used to examine how ESS can participate

in restoration. An ESS device is added to bus 5 with the parameters displayed in Table 4.1.

The frequency nadir constraints (4.18), containing the ESS power setpoints, are inserted

into the MILP and solved using the IRSC algorithm. With a frequency nadir limit of 1 Hz,

the frequency profile of the optimal restoration plan with ESS participation is shown in 4.4.

In contrast to the frequency-secure plan without the ESS device in (Fig. 3.14, bottom),

the plan does not wait until the NBSUs are synchronized. Rather, the plan uses the ESS

setpoints to offset the imbalances caused by larger load pick-ups. The relation in (4.18) allows
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Figure 4.4: Frequency during the optimal restoration sequence with ESS support

Esto [MJ] P sto [MW] ∆P sto [MW] τ [s] ηsto ηcon
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Table 4.1: Parameters of the ESS on bus 3 in the modified IEEE 9-bus system

the ESS setpoints to enable larger load pick-ups without violating the nadir constraint. The

plan recommends that the ESS is charged in between load pick-ups to remain available to

assist future actions. The nadirs at some time steps slightly violate the 1 Hz constraint and

are caused by the optimistic nature of both the ramp approximation and the linearized ESS

relationship. Since the optimal strategy involves actions that cause a frequency nadir of

exactly 1 Hz, approximation errors may cause slight violations. This can be addressed by

adjusting the input ∆ωlim of the MILP to include a margin of safety.

The ESS power setpoints and SoC during the restoration process are shown in Fig. 4.5.

When frequency support from the ESS is needed, the setpoint is increased from the previous
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Figure 4.5: Power reference points and SoC of the ESS device during restoration
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time step. However, because the ESS has a limited power rating and SOC, the setpoint

needs to be lowered during subsequent steps so that 1) it can be increased again and 2)

the device has enough charge to sustain an output at the increased setpoint. If fluctuation

of the ESS output is undesirable, it can be limited by using tighter limits on (4.9) or by

introducing additional constraints, such as forcing the device to charge or discharge for a

sustained period.



Chapter 5

Future Work and Conclusion

In this chapter, we first present some extensions to the frequency-constrained MILP frame-

work, many of which are ongoing research topics in this project that are incomplete due to

time limitations. For each topic, we briefly show candidate approaches and suggest possible

next steps. Finally, we draw some general conclusions based on our findings and summarize

the strengths and limitations of our methodology.

5.1 Future Directions

5.1.1 Voltage and Reactive Power Modeling

In addition to frequency security, voltage security is another prime concern during restoration.

The energization of network elements can cause voltage fluctuations and transients, especially

in weaker systems. In particular, charging long transmission lines with little or no load on

the other end can cause large voltage rises [5]. This phenomenon is known as the Ferranti

effect and can also occur through lines with capacitive compensation that are designed for

normal operating conditions.

DCPF is adopted in this work as a linearized power flow constraint in the MILP. However,

the approximation neglects voltage magnitudes and reactive power flow. Thus, a clear

extension involves adding voltage and reactive power constraints. We will show how the

Q-V relationship derived in Section 2.1 can be integrated.

Let Ql ∈ RL×T and Qg ∈ RG×T represent the reactive line flows and the reactive

generator outputs at all time steps.

Ql =
[
Ql(1) Ql(2) . . . Ql(T )

]
Qg =

[
Qg(1) Qg(2) . . . Qg(T )

]
The reactive power balance condition on each bus is analogous to the active power

53
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balance condition (2.3).

AgQg −Ad diag(Qd)bd + βs = AQl

where βs ∈ RB is a vector of shunt reactances. In this model, the reactive power flows

between the sending and receiving ends are equal and depend on the differences of the bus

voltages V ∈ RB×T . The definition in (2.4) can be vectorized as

−M(1 − bl) ≤ Ql −X−1A⊤V ≤M(1 − bl)

−Mbl ≤ Ql ≤Mbl

where the matrix of bus voltage magnitudes V ∈ RB×T must fall within a safe range [V ,V ]

for all time steps.

diag(V ) bb ≤ V ≤ diag(V ) bb (5.1)

On inactive buses, the voltage magnitudes are set to zero. The voltage on the slack

(BSU) bus is assumed to be unity throughout restoration.

V 1(k) = 1 ∀k ∈ {0, . . . , T}

Qg can be defined for the four phases of generator start-up depending on the desired

model. Additional constraints associated with voltage and reactive power can be defined, such

as line current limits. Although this model provides a linear relation between the reactive

power flows and bus voltages, its accuracy relies on the assumption of bus voltages are close

to unity per unit values, which may not hold particularly for weaker grid connections, which

appear more commonly during the restoration process. Other linear models of reactive power

should be explored as a continuation of this work. Furthermore, dynamic voltage limits may

be introduced by analyzing the exciter systems of the SGs. These extensions outline an

avenue for future extensions to the MILP restoration framework.

5.1.2 Fast Frequency Response and Variable Renewable Energy Partici-

pation

In this work, we showed that ESS setpoint adjustments can facilitate frequency regulation

during restoration. Another way for ESS devices to provide frequency support is through

an FFR feedback loop, which automatically adjusts power output according to a detected

frequency deviation. The ESS model in this work can be extended to provide FFR services.

The FFR model in Section 3.2.4 includes proportional and derivative components of the

frequency deviation. The work from [45] showed that the effect of FFR can be aggregated

into inertia and damping constants. In the MILP, some additional constraints are required

to integrate FFR. That is, the ESS must have enough stored energy and power capacity
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to provide FFR. The ramp approximation, valid up to the nadir time, may be used to

estimate the energy and maximum output during the FFR. For instance, it can be shown

that the maximum FFR power is always achieved before the nadir, allowing the use of the

ramp-approximate expressions. Further derivation and validation are required to incorporate

ESS-supplied FFR to the MILP framework.

Finally, ESS devices are often adjacent to variable renewable energy (VRE) resources

such as utility-level solar or wind plants. This work can be extended to investigate VRE

participation in restoration. A combined ESS-VRE model is shown in Fig. 5.1, where the

renewable source is connected to the DC end of the converter.

Storage

GRID
~

--

Converter

𝑃grid𝑃sto

𝜂sto 𝜂con

W

VRE

𝑃vre

Figure 5.1: Grid interconnection of a hybrid ESS-VRE system

The VRE can be used to charge the ESS device or supply power to the grid. A superpo-

sition method can be used, similar to how the ESS power output is formulated in Section

4.1.1. The total output Pvre can be divided into two positive components that represent

flows in each direction.

Pvre = P in
vre + P out

vre P in
vre, P

out
vre ≥ 0 (5.2)

The variable Pvre can be modeled deterministically using forecast data or as random

variables, leading to many approaches such as robust constraints or chance constraints.

5.2 Conclusion

In this work, we synthesized a frequency-constrained MILP for optimal black-start restoration

planning of transmission systems. We focus on the generator and load recovery phases

and seek a sequence of frequency-secure operator actions that expedites system recovery.

The core of this work can be summarized by its three components—MILP formulation,
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dynamic frequency analysis, and the iterative parameter prediction algorithm. Furthermore,

an extension involving ESS contributions is presented that fits seamlessly into the framework.

In Section 3.1, a discrete-time MILP for restoration planning is introduced. We show

how the logical coupling between binary and continuous variables can be resolved using

the big M method. The MILP integrates both the generator and load recovery phases and

smoothly transitions between them using a weighted objective function. Another strength

of the framework is its flexibility—the objective function allows the priority of each network

component to be adjusted as required by the operator. Furthermore, many other network

and equipment conditions, such as critical start-up times of generators and dynamic reserve

constraints, can be described by mixed-integer linear constraints.

One key limitation to the current framework is its use of the DCPF equations, which

neglect bus voltage magnitudes and reactive power transfer. During restoration, the weak

recovering system may cause abnormal voltage levels that cause the DCPF assumptions to

fail. More detailed linear power flow models would improve the overall modeling accuracy

and allow for voltage constraints to be introduced. A candidate voltage model is described

in Section 5.1.1. Another limitation of the current work is its static load model. First, the

power consumption of loads in actual systems is dynamic and can vary over time due to

changes in demand and system conditions. In conjunction with a power flow model that

does not neglect voltage magnitudes, a more detailed load model, such as the ZIP model,

can be used to model the dependence of loads on voltage. Furthermore, changes in demand

during the restoration period can be captured by a deterministic model relying on forecasted

values, or an uncertain model to account for a range of demands. Developing models that

are more representative of the actual system allows the restoration tool to produce plans

with improved performance.

In Section 3.2, we analyze the IEEEG1 governor-turbine model and its PFR behavior.

Using knowledge of power imbalance magnitudes and timing during restoration, we devised

an approach to adjust generator setpoints to improve the system’s frequency response. The

setpoint changes inspired the ramp approximation, an open-loop approximation of the PFR

feedback, which can be used to estimate the frequency nadir following step disturbances. In

Section 3.3, we integrate the nadir as a constraint on the magnitude of load pick-up and

generator cranking using an iterative receding-horizon algorithm. The frequency-constrained

framework improves on the heuristic approaches of the current ISO restoration plans by

strictly outlining which actions are permissible with respect to the frequency nadir bound.

In addition, (3.36) predicts the value of the nadir for any given power imbalance, providing

more knowledge to operators about how their actions can affect the system. The parameter

updating concept of Algorithm 2 has broader applications for any receding horizon problem

with parameters that depend on decision variables from previous time steps. In the IRSC

algorithm, the predictions of the online generator set converts the frequency constraint (3.48)

into a linear inequality. The predictions are made by assuming that no other generators are
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started during the time horizon, an assumption that is more accurate for shorter horizons.

The loss of accuracy of the parameter predictions for future steps is compensated for by

saving only the next immediate action in each MILP solution.

Restoration plans from the frequency-constrained framework are illustrated numerically

in Section 3.4. We demonstrate that without considering frequency, the optimization problem

produces plans with large frequency swings that cannot be applied to real systems. The same

problem may undermine other optimization-based planning tools in the literature that do

not account for frequency dynamics. In contrast, the frequency-constrained sequence satisfies

the operator-defined safe limit and gives insight into the system frequency behavior. The

constraints are shown to effectively bound the frequency nadir with negligible magnitudes

of error.

In Chapter 4, the MILP framework is extended to include contributions from ESS devices.

ESS models are introduced to the static MILP model and the dynamic frequency nadir

prediction model. We show that ESS can be dispatched to facilitate the restoration effort

in two major ways, by acting as a power bank and by providing frequency support. First,

if a low system inertia prohibits further action until more SGs are synchronized, the ESS

devices can be charged to later provide additional power. More surprisingly, we demonstrate

that by adjusting the setpoints of the ESS, the frequency nadir can be reduced to allow

larger load pick-ups. The numerical results indicate that restoration can be accelerated by

increasing and decreasing the ESS setpoints. Perhaps unintuitively, this may involve charging

the devices prior to restoring larger loads so that their power outputs can be increased in

subsequent steps.



Appendix A

Optimal Selection of Big M

Constants

As discussed in Section 3.1.2, the M constants are best selected to give tight bounds when

they are active. Here we give the tightest values of each Mi constant that appear in this

work.

M1 appears in (3.6). Phase angles in power systems are typically defined in the range

[−π
2 ,

π
2 ], Active and reactive line flows depend on phase differences, which are in the range

[−π, π].

M1 =
π

2

M2 appears in (3.8a). M2 is active when a line is de-energized and bounds the power

that would flow through the line if it were energized. Active power flow is maximized when

the phase difference is π
2 and is greater through lines with smaller reactances.

M2 =
π

2
min
i
(Xi)

M3 appears in (3.8b). M3 bounds the active line flows and can be chosen equal to M2

M3 =
π

2
min
i
(Xi)

M4 appears in (3.12a). M4 bounds the number of loads on any bus.

M4 = max(Ad 1D)

M5 appears in (3.12a). M5 bounds the number of generators on any bus.

M5 = max(Ag 1G)

M6 appears in (3.17a). M6 is active outside the cranking phase and bounds the difference
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between the cranking power and the output power.

M6 = max(P g + P c)

M7 appears in (3.17b). M7 is active outside the ramping phase and bounds the difference

between the ramping reference signal P r, which is fixed at −1
2r, and the output power.

M7 = max(P g +
1

2
r)

M8 appears in (3.17c). M8 bounds the difference between the output power and its upper

and lower limits. This is maximized during the cranking phase, as the output power becomes

negative.

M8 = max(P g + P c)

M9 appears in (3.18a). M9 bounds the difference between the ramp reference signal and
1
2r, which is maximized just before the ramping phase ends.

M9 = max(diag(r)(Tr − 1))

M10 appears in (3.18b). M10 bounds the change in the ramp reference signal and ramp

rate. This is maximized immediately after the ramping phase, when the reference signal is

reset to −1
2r.

M10 = max(r + P g)

M11 appears in (3.19). M11 bounds the difference between the ramp rate and the change

in generator output outside the online phase. This is maximized at the onset of the cranking

phase.

M11 = max(P c −
1

2
r)

M12 appears in (4.3a). M12 bounds the maximum power inflow of the storage system.

M12 = max(P sto)

M13 appears in (4.3b). M13 bounds the maximum power outflow of the storage system.

M13 = max(P sto)

M14 appears in (4.5). M14 bounds the number of ESS units on any bus.

M5 = max(Ae 1E)



Appendix B

Steady State PFR Values of SGs

For a positive power imbalance ∆Pe > 0 (shortage), synchronous generators provide PFR to

stop the decline of system frequency. When the transients settle, the frequency will stabilize

to a steady-state value below its nominal value, denoted by ∆ωss. The PFR output of each

participating machine during steady state can be defined by the DC gain of the ith IEEEG1

turbine-governor, which is Ki.

∆P i
m,ss = Ki∆ωss

At steady state, the swing equation from (2.5) becomes

1

2Hsys

 Gp∑
i

αi∆P i
m,ss −∆Pe

 = 0

Substituting the expression for P i
m,ss, we can solve for the steady-state frequency deviation

and the PFR output of each unit.

Gp∑
i

αiKi∆ωss −∆Pe = 0

∆ωss =
∆Pe∑Gp

i=1Kiαi

∆P i
m =

Ki∆Pe∑Gp

i=1Kiαi
∀i ∈ {1, . . . , Gp}

which gives the relation from (3.22).
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Appendix C

Consistency of Maximum

Imbalance With Damping

In this section, we prove (3.41), which states that the maximum safe power imbalance of

nonzero damping converges to that of zero damping as Dsys → 0. We begin by simplifying

the limit.

∆Pe,max = lim
Dsys→0

−2HsysC1

Dsys

(
w−1 + 1 +

DsysC2

2HsysC1
+

D2
sysC3

4H2
sysC1

)

= −2HsysC1 lim
Dsys→0

(
w−1 + 1

Dsys
+

DsysC3

2Hsys

)
− C2

= −2HsysC1 lim
Dsys→0

w−1 + 1

Dsys
− C2

w−1 is the some value given by the lower branch of the Lambert W function.

w−1 = W

(
− exp

(
−
D2

sys |ωlim|
2HsysC1

−
D2

sysC3

4H2
sysC1

− 1

))
Outlined in [49], the lower branch has a series expansion of form

W−1

[
− exp

(
−x2

2
− 1

)]
= −

∑
n≥0

anx
n

for some constants a0 = a1 = 1 and recursively defined an≥2. In our case, we can express

w−1 as

w−1 = W−1

− exp

−1

2

(
DΣ

√
|ωlim|
HΣC1

+
C3

2H2
ΣC1

)2

− 1


and use the series expansion in the expression for the maximum imbalance.

61



APPENDIX C. CONSISTENCY OF MAXIMUM IMBALANCE WITH DAMPING 62

∆Pe,max = −2HsysC1 lim
Dsys→0

w−1 + 1

Dsys
− C2

= −2HsysC1 lim
Dsys→0

1

Dsys

(
1− a0 − a1Dsys

√
|ωlim|
HsysC1

+
C3

2H2
sysC1

− a2D
2
sys(· · · )

)
− C2

= 2HsysC1

√
|ωlim|
HsysC1

+
C3

2H2
sysC1

− C2

=
√
|4HsysC1ωlim|+ 2C1C3 − C2

which is the maximum power imbalance when the damping constant is zero. The proof

is complete.



Appendix D

Modified IEEE 9-Bus System

Parameters

Line # From bus To bus Reactance [p.u.]

1 1 4 0.0576

2 4 5 0.092

3 5 6 0.17

4 3 6 0.0586

5 6 7 0.1008

6 7 8 0.072

7 8 2 0.0625

8 8 9 0.161

9 9 4 0.085

Table D.1: Branch information of the modified IEEE 9-bus system

Bus # Loads [MW]

4 [5, 8, 10]

5 [7, 12, 15, 13]

6 [10, 10, 10]

7 [16, 15]

8 [3, 13, 9, 12]

9 [6, 10, 16]

Table D.2: Load information of the modified IEEE 9-bus system
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Bus # Pg [MW] Pg [MW] Pc [MW] Tc [min] r [%cap/min]

1 0 247.5 0 0 10

2 38.4 192 9.6 60 10

3 25.6 128 3.84 40 5

Table D.3: Generator start-up parameters for the modified IEEE 9-bus system

Bus # H [s] T1 T2 T3 T4 T5 T6 T7 K K1 K3 K5 K7

1 5.55 4 8 0.2 0.2 0.12 0.12 0.15 20 0.4 0.2 0.2 0.2

2 4.33 4 8 0.2 0.2 0.12 0.12 0.15 20 0.4 0.2 0.2 0.2

3 3.35 4 8 0.2 0.2 0.12 0.12 0.15 20 0.4 0.2 0.2 0.2

Table D.4: Generator dynamic parameters for the modified IEEE 9-bus system

w
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Appendix E

ESS-supported Power Imbalance

Bound With Nonzero Damping

This section derives (4.16), the maximum safe power imbalance with ESS participation. To

begin, the ramp-approximated frequency for nonzero damping in the Laplace-domain is

∆ω(s) =
1

2Hsyss+Dsys

(
C1

s2
+

C2

s
+ C3 −

∆Pe

s
+

E∑
i

∆P ref,i
ess

s(τis+ 1)

)

All terms can be expanded using partial fractions. For notational concision, let

β = 4H2
sysC1 + 2DsysHsys(∆Pe + C2) + C3D

2
sys

γ =

E∑
i

∆P ref,i
ess

2Hsys −Dsysτi

The expanded frequency expression becomes

∆ω(s) =
C1

Dsyss2
− 1

D2
syss

(
2HsysC1 +Dsys

(
∆Pe + C2 −

E∑
i

∆P ref,i
ess

))

+
1

D2
sys(2Hsyss+Dsys)

(
β − 4H2

sysDsysγ
)
+

E∑
i

τ2i
2Hsys −Dsysτi

· ∆P ref,i
ess

τis+ 1

The 1
τis+1 terms are neglected, assuming that the ESS act much faster than the SGs, so

that a closed-form solution is available. The inverse Laplace gives the time-domain frequency

expression.
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∆ω(t) =
C1

Dsys
t− 1

D2
sys

(
2HsysC1 +Dsys

(
∆Pe + C2 −

E∑
i

∆P ref,i
ess

))

+
1

2D2
sysHsys

(
β − 4DsysH

2
sysγ

)
e
− Dsys

2Hsys
t

By taking the derivative to zero, the nadir time can be found.

tnadir =
2Hsys

Dsys
ln

(
β − 4DsysH

2
sysγ

4H2
sysC1

)
The frequency nadir can be found as a function of the electrical disturbance and the

ESS setpoint changes.

∆ωnadir =
2HsysC1

D2
sys

ln

(
β − 4DsysH

2
sysγ

4H2
sysC1

)
− 1

Dsys

(
∆Pe + C2 −

E∑
i

∆P ref,i
ess

)

What follows is similar to the derivations without the ESS. We let ωnadir = − |∆ωlim|,
and manipulate the equation so that an explicit solution can be represented by the Lambert

W function. The maximum electrical disturbance is

∆Pe,max = −2HsysC1

Dsys
(wE

−1 + 1 +
C3D

2
sys

4H2
sysC1

− Dsysγ

C1
)− C2

where

wE
−1 = W−1

(
− exp

(
− Dsys

2HsysC1

E∑
i

∆P ref,i
ess −

D2
sys |∆ωlim|
2HsysC1

− 1−
C3D

2
sys

4H2
sysC1

+
Dsysγ

C1

))

The linearized equation around the point of zero ESS contribution is

∆Pe,max ≈ (∆Pe,max)∆P ref,i
ess =0

+
E∑
i

(
∂∆Pe

∂∆P ref,i
ess

)
∆P ref,i

ess =0

∆P ref,i
ess

where (∆Pe,max)∆P ref,i
ess =0

is the maximum power imbalance without ESS support.

(∆Pe,max)∆P ref,i
ess =0

= −2HsysC1

Dsys

(
w−1 + 1 +

C3D
2
sys

4H2
sysC1

+
C2Dsys

2HsysC1

)

We note that the derivative of the Lambert W function is

dW (x)

dx
=

W (x)

x(1 +W (x))
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and use this to find the partial derivatives in the linear expression.(
∂∆Pe

∂∆P ref,i
ess

)
∆P ref,i

ess =0

=
2Hsys

2Hsys −Dsysτi

(
1− Dsysτi

2Hsys

(
w−1

1 + w−1

))
Combining the expressions, the full linearized constraint is

∆Pe,max = −2HsysC1

Dsys

(
w + 1 +

C3D
2
sys

4H2
sysC1

+
C2Dsys

2HsysC1

)
︸ ︷︷ ︸

max load without ESS participation

+

E∑
i

(
2Hsys

2Hsys −Dsysτi

(
1− Dsysτi

2Hsys

(
w

1 + w

))
∆P ref,i

ess

)
︸ ︷︷ ︸

combined effect of ESS setpoint changes
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