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Abstract: This paper investigates the problem of making an underactuated marine vessel follow
an arbitrary differentiable Jordan curve. A solution is proposed which relies on a hierarchical
control methodology involving the simultaneous stabilization of two nested sets, and results in
a smooth, static, and time-invariant feedback. The methodology in question effectively reduces
the control problem to one of path following for a kinematic point-mass. It is shown that as long
as the curvature of the path is smaller than a quantity dependent on the mass and damping
parameters of the ship, path following is achieved with uniformly bounded sway speed.

1. INTRODUCTION

This paper presents a control methodology for under-
actuated marine vessels with two control inputs (thrust
and torque) and three degrees-of-freedom (position and
rotation). The control specification is path following: make
the ship approach a path and follow it with nonzero speed
without requiring any time parametrization. While in the
trajectory tracking problem one would seek to make the
ship follow a moving reference point, in path following one
wants to stabilize a suitable controlled-invariant subset
of the state space (see Nielsen et al. (2010)), and no
exogenous signal drives the control loop.

The path following and trajectory tracking problems have
been the subject of significant research in the context of
marine vessels. We mention some of the relevant references.
Straight-line/waypoint path following for underactuated
vessels is considered in Fredriksen and Pettersen (2006),
Børhaug et al. (2008), Oh and Sun (2010), and Aguiar
and Pascoal (2007). Path following for curved paths is
considered in Do and Pan (2006) where the path is
parametrized by a path-variable that propagates along
the path with a velocity dependent on the desired vessel
velocity. The papers Aguiar and Hespanha (2007) and
Skjetne et al. (2005) investigate the trajectory tracking
problem. Path following of curved paths for underactuated
vessels using a Serret-Frenet path frame is considered in Li
et al. (2009); Moe et al. (2014) and Lapierre and Soetanto
(2007).
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The papers listed above consider path following of straight-
line paths or path-following/trajectory-tracking of curved
paths that are parametrized by time or a path variable.
To the best of our knowledge, in the context of marine
vessels, the problem of finding a smooth, static, and time
invariant feedback solving the path following problem for
general unparametrized paths remains open. In this paper,
we make an initial step towards its solution. Our approach
leverages the hierarchical control methodology presented
in El-Hawwary and Maggiore (2013), a methodology which
has been used in Roza and Maggiore (2014) to derive
almost global position controllers for underactuated flying
vehicles. The idea is to first design a path following control
law for a kinematic point-mass. Then from this feedback
extract a desired heading angle, and view it as a reference
for a torque controller. Carrying out these two separate
design steps corresponds to the simultaneous stabilization
of two nested subsets of the state space, and the a
reduction theorem from El-Hawwary and Maggiore (2013)
is used to show overall stability. In particular, we show that
if the curvature of the path is not too large in relation to a
constant that depends on the ship’s parameters, then the
sideways velocity is uniformly bounded.

The challenge in solving the path following problem for
marine vessels is that, due to the presence of sideways
motion, in order to stay on a curved path the ship cannot
head tangent to it, and its angle of attack relative to the
path’s tangent depends on the sway speed.

2. PRELIMINARIES AND NOTATION

In this paper we adopt the following notation. We denote
by S

1 the set of real numbers modulo 2π, with the
differentiable manifold structure making it diffeomorphic
to the unit circle. If ψ ∈ S

1, Rψ is the rotation matrix



Rψ =

[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]

.

If f(x, y) is a differentiable function of two scalar variables,
we denote by ∂xf , ∂yf the partial derivatives with respect
to x and y, respectively. Similarly, we define ∂2xyf :=
∂x∂yf , and similarly for the other second-order partial
derivatives. If f : R

n → R
m is a differentiable vector

function and p ∈ R
n, dfp is the m× n Jacobian matrix of

f at p. If Γ is a closed subset of a metric space (M,d) and
x ∈M , then we denote by ‖x‖M the point-to-set distance
of x to M , ‖x‖M = infy∈M d(x− y).

The following stability definitions are taken from El-
Hawwary and Maggiore (2013). Let Σ : χ̇ = f(χ) be a
smooth dynamical system with state space a Riemannian
manifold X with associated metric d. Let φ(t, χ0) denote
the local phase flow generated by Σ, and let Bδ(x) denote
the ball of radius δ centred at x ∈M .

Consider a closed set Γ ⊂ X which is positively invariant
for Σ, i.e., for all χ0 ∈ Γ, φ(t, χ0) ∈ Γ for all t > 0 for which
φ(t, χ0) is defined. Then we have the following stability
definitions taken from El-Hawwary and Maggiore (2013).

Definition 1. The set Γ is stable for Σ if for any ε > 0,
there exists a neighborhood N (Γ) ⊂ X such that, for all
χ0 ∈ N (Γ), φ(t, χ0) ∈ Bε(Γ), for all t > 0 for which
φ(t, χ0) is defined. The set Γ is attractive for Σ if there
exists a neighborhood N (Γ) ⊂ X such that for all χ0 ∈
N (Γ), limt→∞ ‖φ(t, χ0)‖Γ = 0. The domain of attraction
of Γ is the set {χ0 ∈ X : limt→∞ ‖φ(t, χ0)‖Γ = 0}. The
set Γ is globally attractive for Σ if it is attractive with
domain of attraction X . The set Γ is locally asymptotically
stable (LAS) for Σ if it is stable and attractive. The set
Γ is globally asymptotically stable for Σ if it is stable and
globally attractive. If Γ1 ⊂ Γ2 are two closed positively
invariant sets, then Γ1 is asymptotically stable relative to
Γ2 if Γ1 is asymptotically stable for the restriction of Σ to
Γ2. System Σ is locally uniformly bounded (LUB) near Γ
if for each x ∈ Γ there exist positive scalars λ and m such
that φ(R+, Bλ(x)) ⊂ Bm(x). △

The following result is key in the development of this
paper.

Theorem 1. (El-Hawwary and Maggiore (2013)). Let Γ1,
Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed sets that are positively
invariant for Σ and suppose that Γ1 is not compact. If

(i) Γ1 is asymptotically stable relative to Γ2,
(ii) Γ2 is asymptotically stable, and
(iii) Σ is LUB near Γ1,

then Γ1 is asymptotically stable for Σ.

3. THE PROBLEM

Consider the 3-degrees-of-freedom vessel depicted in Fig-
ure 1, which may describe an autonomous surface vessel
(ASV) or an autonomous underwater vehicle (AUV) mov-
ing in the horizontal plane. We denote by p ∈ R

2 the
position of the vessel on the plane and ψ ∈ S

1 its heading
(or yaw) angle. The yaw rate ψ̇ is denoted by r.

We attach at the point p of the vessel a body frame aligned
with the main axes of the vessel, as depicted in the figure,
with the standard convention that the z-axis points into

u
v
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x

y
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ψ

Fig. 1. Illustration of the ship’s kinematic variables.

the plane (towards the sea bottom). We represent the
velocity vector ṗ in body frame coordinates as (u, v), where
u, the longitudinal component of the velocity vector, is
called the surge speed, while v, the lateral component, is
called the sway speed. Finally, the control inputs of the
vessel are the surge trust Tu and the rudder angle Tr.
In terms of these variables, the model derived in Fossen
(2011) is

η̇ =

[

Rψ 0
0 1

]

ν

Mν̇ +C(ν)ν +Dν = Bf

(1)

with η , [p, ψ]⊤, ν , [u, v, r]⊤, and f , [Tu, Tr]
⊤. The

matrices M , D, and B are given by

M ,

[m11 0 0
0 m22 m23

0 m23 m33

]

, D ,

[

d11 0 0
0 d22 d23
0 d32 d33

]

, B ,

[

b11 0
0 b22
0 b32

]

with M = M⊤ > 0 the symmetric positive definite
inertia matrix including added mass, D > 0 is the
hydrodynamic damping matrix, and B is the actuator
configuration matrix. The matrix C(ν) is the matrix of
Coriolis and centripetal forces and can be obtained from
M (see Fossen (2011)). We place the origin of the body
frame at a point on the center-line of the vessel with
distance ǫ from the centre of mass. Following Fredriksen
and Pettersen (2006), assuming that the vessel is starboard
symmetric, there exists ǫ such that the resulting dynamics
have mass and damping matrices satisfying this relation:
M−1Bf = [τu, 0, τr]

⊤. Thus, with this choice of origin
of the body frame, the sway dynamics become decoupled
from the rudder control input, making it easier to analyze
the stability properties of the sway dynamics. Using this
convention, the model of the marine vessel (1) can be
represented as

ṗ = Rψ

[

u
v

]

[

u̇
v̇

]

=

[

Fu(v, r) −
d11
m11

u+ τu
X(u)r + Y (u)v

]

ψ̇ = r

ṙ = Fr(u, v, r) + τr.

(2)

The functions X(u) and Y (u) are linear. Their expressions
are given in Appendix A together with those of Fu and Fr.
Denoting by χ := (p, u, v, ψ, r) the state of the vessel, the
state space is X := R

2 × R× R× S
1 × R.

Assumption 1. We assume that Y (u) < 0 ∀u ∈ [0, Vmax].

This is a realistic assumption, since Y (ū) ≥ 0 would imply
that the sway dynamics are undamped or unstable when
the yaw rate r is zero.



Assumption 2. The ocean current is zero.

This assumption is made to simplify the exposition of the
ideas. The results of this paper can be adapted to handle
unknown constant current.

Consider a planar Jordan 3 curve γ expressed in implicit
form as γ = {p : h(p) = 0}, where h is a C1 function whose
gradient never vanishes on γ. We assume that h : R2 → R

is a proper function, i.e., all its sublevel sets {p : h(p) ≤ c},
c ∈ R, are compact. Since γ is assumed to be compact,
there is no loss of generality in this assumption.

Path Following Problem (PFP). Design a smooth time-
invariant feedback such that, for suitable initial conditions,
the position vector p(t) → {p : h(p) = 0}, and the
speed ‖ṗ(t)‖ satisfies 0 < ‖ṗ(t)‖ ≤ supt ‖ṗ(t)‖ < ∞. In
other words, we want to make the position of the ship
converge to the path, travel along it without stopping,
while guaranteeing that its speed is bounded.

Geometric objects. Associated with the implicit repre-
sentation h(p) = 0 of γ there are three geometric objects:
the unit tangent and normal vectors, and the signed cur-
vature. The unit normal vector at p is

N(p) := dh⊤p /‖dhp‖.

The unit tangent vector at p is the counterclockwise
rotation of N(p) by π/2,

T (p) := Rπ/2N(p).

Finally, the signed curvature κ(p) is defined as

κ(p) = −
(∂yh)

2 ∂2xxh− 2∂2xyh ∂xh ∂yh+ ∂2yyh (∂xh)
2

(

(∂xh)2 + (∂yh)2
)(3/2)

.

(3)
The quantities N(p), T (p), κ(p) are defined not just on γ,
but at all points p such that dhp 6= [0 0]. If p0 6∈ γ, then
N(p0), T (p0), κ(p0) are the normal vector, tangent vector,
and curvature at p0 of the curve {p : h(p) = p0}.

4. HIERARCHICAL CONTROL APPROACH

The idea of the proposed solution is hierarchical in nature.

(1) We regulate the surge speed u to a desired constant
ū > 0.

(2) We consider the kinematic point-mass system

ṗ = µ,

and we solve the PFP with the constraint that ‖µ‖ =
(ū2 + v2)(1/2). The result of this design is a function
µ(p, v).

(3) Having found µ(p, v), we find the desired heading
angle ψd(p, v) such that

Rψd

[

ū
v

]

= µ.

This equation has a solution because, by construction,
‖µ‖ = (ū2 + v2)(1/2). Intuitively, when ψ = ψd and
u = ū, the marine vessel behaves like a kinematic
point-mass subject to a path following control law.

(4) Having found ψd(p, v), we define the output function
e = ψ−ψd and we show that, under certain conditions

3 A curve is said to be Jordan if it is closed and has no self-
intersections.

on ū (possibly any ū > 0), the system with input τr
and output e has relative degree 2. We define a con-
troller τr(χ) that stabilizes the set where e = ė = 0.

(5) We show that, if the curvature of the path is not
too large, then the sway speed v remains bounded.
We use Theorem 1 to prove that the hierarchical
approach described above does indeed solve the PFP

if the curvature of the path is not too large.

5. CONTROL DESIGN

In this section we carry out the design steps 1-4 outlined
above. The stability analysis of step 5 is carried out in the
next section.

Step 1: regulation of surge speed. This step is trivial,
we choose the feedback linearizing control law

τu = −Fu(v, r) +
d11
m11

u−Ku(u− ū), Ku > 0. (4)

Step 2: solution of the PFP for a kinematic point-
mass. Consider the kinematic point-mass system

ṗ = µ, (5)

where the velocity vector µ ∈ R
2 is the control input. We

are to design µ such that ‖µ‖ = (ū2 + v2)(1/2) and the set
{h(p)} is asymptotically stable. To this end, consider the
output z = h(p). The derivative is

ż = dhpµ = ‖dhp‖N(p)⊤µ. (6)

Define

µ(p, v) := −
[

ūσ(h(p))
]

N(p) + w(p, v)T (p). (7)

This control input is composed of two terms. The first
term is orthogonal to all level sets of h (in particular, to
γ) and is responsible for making z → 0, as we shall see in
a moment. The second term is tangent to the level sets of
h and it will be designed to guarantee that ‖µ‖ = (ū2 +
v2)(1/2). The function σ : R → (−a, a), a ∈ (0, 1), is a
saturation function, chosen to be smooth, monotonically
increasing, zero in zero, and such that lim|z|→∞ |σ(z)| = a.
The positive scalar a is a design parameter.

Since {T (p), N(p)} is an orthonormal frame, substitution
of (7) into (6) gives

ż = −‖dhp‖ūσ(z).

Since, by assumption, ‖dhp‖ 6= 0 on γ, by continuity of h
we have that ‖dhp‖ 6= 0 in a neighborhood of γ. Therefore,
for any ū > 0, the set {p : h(p) = 0} is asymptotically
stable.

Next we design w(p, v) such that ‖µ(p, v)‖ = (ū2+v2)(1/2).
Referring to the identity (7), since {T (p), N(p)} form an
orthonormal frame, we have

‖µ‖2 = ū2σ2(h(p)) + w2(p, v).

Setting

w(p, v) :=
(

ū2(1− σ2(h(p))) + v2
)(1/2)

, (8)

we have ‖µ(p, v)‖ = (ū2 + v2)(1/2), as required. Note that
the above expression of w(p, v) is well-defined and smooth
because, by construction, |σ| < a ≤ 1.

In conclusion, we have the following result.



Lemma 1. The feedback µ(p, v) defined in (7) and (8)
makes the set {p ∈ R

2 : h(p) = 0} asymptotically stable
for the kinematic point-mass system (5).

Step 3: definition of ψd. We need to find a smooth
function ψd(p, v) such that

Rψd

[

ū
v

]

= µ(p, v).

The vector on the left-hand side of the identity above has
norm (ū2+v2)(1/2) and, by construction, so does the vector
on the right-hand side. Thus ψd is just the phase of the
vector µ,

ψd(p, v) := atan2(µ2(p, v), µ1(p, v)), (9)

where atan2 is the four-quadrant arctangent function such
that atan2(sin(θ), cos(θ)) = θmod2π.

Step 4: regulation of ψ to ψd. We define the output
function e = ψ − ψd. Then

ė = g(p, u, v)r + f(p, u, v, ψ), (10)

where

g(p, u, v) = 1−
(

∂vψd(p, v)
)

X(u),

f(p, u, v, ψ) = −
(

∂pψd(p, v)
)

Rψ

[

u
v

]

− ∂vψdY (u)v.

Taking one more time derivative along (2) we get

ë = g(p, u, v)
(

Fr(v, r) + τr
)

+ ġ(χ)r + ḟ(χ).

Lemma 2. The following identity holds:

∂vψd = −
ū

ū2 + v2

[

1 +
σ(h(p))v

w(p, v)

]

, (11)

where w(p, v) is given in (8). Suppose that

1−
ū|X(ū)|

ū2 + v2
> 0 (12)

for all v ∈ R. Then, the parameter a ∈ (0, 1] in the
saturation σ can be chosen small enough that system (2)
with input τr and output e = ψ − ψd(p, v) has relative
degree 2 at any point χ = (p, u, v, ψ, r) such that u = ū.

The proof of the lemma is omitted due to space limitations.

Remark 1. Condition (12) is met for all ū, for the ship
parameters in Fredriksen and Pettersen (2004) that are
used in our simulations.

Assuming that (12) holds, we define the smooth feedback
linearizing control law

τr = −Fr(v, r) +
1

g(p, u, v)

(

− ḟ(χ)− ġ(χ)r

−Kp sin(ψ − ψd(p, v)) −Kd(r − ψ̇d(χ))
)

,

(13)

where dot on a function denotes the time derivative of the
function along the vector field (2) with τu as in (4). With
the feedback above, we obtain ë + Kp sin(e) + Kdė = 0.
This is the equation of a pendulum with friction. Thus the
equilibrium (e, ė) = (0, 0) is almost globally asymptotically
stable. This implies that the set {χ ∈ X : ψ = ψd(p, v), r =

ψ̇d(χ)} is stable. Moreover, this set is also asymptotically
stable if the original system (2) with the chosen feedbacks
τu and τr has no finite escape times. The absence of finite
escape times will be proved in the next section.

Summary of feedback design. We have designed the
following feedback control law

τu = −Fu(v, r) +
d11
m11

u−Ku(u − ū),

τr = −Fr(v, r) +
1

g(p, u, v)

(

− ḟ(χ)− ġ(χ)r

−Kp sin(ψ − ψd(p, v))−Kd(r − ψ̇d(χ))
)

,

(14)

where ū,Ku,Kp,Kd > 0 are design parameters and

ψd(p, v) = atan2(µ2(p, v), µ1(p, v)),

µ(p, v) = −
[

ūσ(h(p))
]

N(p)

+
(

ū2(1 − σ2(h(p))) + v2
)(1/2)

T (p).

Finally, σ(z) is any smooth, monotonically increasing
function such that σ(0) = 0 and lim|z|→∞ |σ(z)| = a,
where a ∈ (0, 1] is sufficiently small as in Lemma 2. For
instance, σ(z) = a tanh(Kz), K > 0, has the desired
properties.

As we discussed, in the absence of finite escape times the
feedback above asymptotically stabilizes the set Γ2 :=
{χ ∈ X : u = ū, ψ = ψd(p, v), r − ψ̇d(p, u, v, r) = 0}.
In Theorem 2 below we show that it solves the PFP.

6. STABILITY ANALYSIS

As we shall see in a moment, the control design procedure
developed in the previous section amounts to the simulta-
neous stabilization of the two nested closed sets Γ1 ⊂ Γ2

Γ2 = {χ ∈ X : u = ū, ψ = ψd(p, v), r = ψ̇d(χ)},

Γ1 = {χ ∈ Γ2 : h(p) = 0}.

On Γ2, the ship behaves like a kinematic point-mass
subject to a path following control law. On Γ1, the ship
is on the path with a desired surge speed ū. Showing that
the feedback (14) solves the PFP amounts to showing that
Γ1 is asymptotically stable. To prove this property, we will
use Theorem 1.

To begin, we observe that, by design, Γ2 is stable, and
asymptotically stable if solutions starting in a neighbor-
hood of Γ2 have no finite escape times. Assume for a
moment that this is the case. On Γ2, we have

ṗ = Rψd

[

ū
v

]

.

By the construction in step 2,

Rψd

[

ū
v

]

= µ(p, v),

and thus ṗ = µ(p, v). By Lemma 1, the set {h(p) = 0}
is asymptotically stable for the above dynamics. In the
absence of finite escape times, this implies that Γ1 is
asymptotically stable relative to Γ2. Therefore, in order
to prove asymptotic stability of Γ1, we will prove that the
closed-loop system has no finite escape times near Γ2 and,
in addition, property (iii) of Theorem 1 holds. This is done
in the next lemma.

Lemma 3. Consider system (2) with the feedbacks defined
in (14), and suppose Assumptions 1 and 2 hold. Suppose
further that the desired surge speed ū ∈ [0, Vmax] is such
that 1+ūX(ū)/(ū2+v2) 6= 0. Then for any initial condition
in a neighborhood of Γ2, the solution is defined for all



t ≥ 0. Moreover, if the curvature κ of γ satisfies the

bound maxp∈γ |κ(p)| <
|Y (ū)|
|X(ū)| , then the closed-loop system

is LUB near Γ1.

The proof of the lemma is omitted due to space limitations.
The idea is roughly this. Using the fact that, by design,
Γ2 is stable, one can show that the path following error
z = h(p) is uniformly bounded. Using this fact, one can
show that Γ1 is stable. In a neighborhood of Γ1, the v-
subsystem describing the sway dynamics of the ship can be
viewed as a perturbation of the “nominal” dynamics. The
assumption 1 + ūX(ū)/(ū2 + v2) 6= 0 guarantees that the
equilibrium v = 0 is exponentially stable for the nominal
dynamics, and that v remains uniformly bounded in the
presence of the perturbation, so that the system is LUB
near Γ1.

Using the result of Lemma 3 and of Theorem 1, we get the
following result.

Theorem 2. Consider system (2) with the feedbacks de-
fined in (14), suppose that Assumptions 1 and 2 hold, and
assume that the desired surge speed ū ∈ [0, Vmax] is chosen
such that condition (12) holds. If the curvature κ of γ

satisfies the bound maxp∈γ |κ(p)| <
|Y (ū)|
|X(ū)| , then Γ1 and

Γ2 are asymptotically stable, implying that feedback (14)
solves the PFP.

Remark 2. It is interesting to note that in (Moe et al.,
2014, Theorem 1), the authors present a stability result
for a path following control law with a similar, but more
restrictive, curvature bound, max |κ| < (1/3)|Y (ū)/X(ū)|
compared to that in Theorem 2.

7. SIMULATION RESULTS

In this section two case studies are presented to verify
the proposed path following strategy. For this purpose we
consider a supply vessel described by the model (2) with
the function descriptions and model parameters given in
Appendix A. In the first case study we consider the case of
following of following a straight-line path. Note that in the
proof we assume the curves are Jordan, which the straight-
line is not since it is not closed. However, the straight-line
is a common test case and serves as a good proof of concept
of the control strategy. The second case study considers
following of a Cassini oval. Both the simulations presented
in the following are based on the model parameters given
in Fredriksen and Pettersen (2004).

7.1 Case 1: Straight-Line Path

In this case study the goal is to follow a straight-line path
aligned with the inertial x-axis. Hence, h(p) , −py and
the implicit representation of the path is given by γ = {p :
−py = 0}. This assures that the unit normal vector, N(p),
points in the negative y-direction and the unit tangent
vector, T (p), points in the positive x-direction. The desired
velocity is chosen as ū = 2 [m/s] and the saturation
function is set to σ(h(p)) = 2/π tan−1(h(p)). The initial
conditions are given by χ0 := ([0, 100], 0, 0, π/2, 0) and the
controller gains from (14) are given byKu = 0.5,Kp = 0.4,
and Kd = 2. The trajectory of the ship in the x-y plane
can be seen in Figure 2, where the ship icons superimposed
on the path give the orientation of the ship at those points.
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Fig. 3. Path following error of the ship.

From Figure 2 it can be seen that the trajectory converges
to the x-axis and that the ship travels in the direction of
the unit tangent vector T (p). The positional error of the
ship w.r.t. the path, i.e. py, can be seen in Figure 3, from
which it can clearly be seen that the error converges to
zero.

7.2 Case 2: Cassini Oval

In this case study the goal is to follow a Cassini oval. This
implies that h(p) , (p2x+p

2
y)

2− 2a2(p2x−p
2
y)+a

4− b4 and
that the path is implicitly described by

γ = {p : (p2x + p2y)
2 − 2a2(p2x − p2y) + a4 − b4 = 0}.

where in this case study a = 22.5 [m] and b = 24.9 [m].
This results in a curve for which the maximum curvature
maxp∈γ |κ(p)| = 0.0785 and with a desired velocity ū =
2 [m/s] the ratio |Y (ū)|/|X(ū)| = 0.2483. Note that
this curve satisfies the curvature condition of Theorem
2 showing that this is not a very restrictive condition,
since it allows a ship with a length of approximately 83
meters to follow a curve whose diameter (the maximum
distance between any two of its points) is approximately
70 metres. The saturation function is set to σ(h(p)) =
2/π tan−1(αh(p)), where α is a parameter that can be used
to tune the slope of the saturation function. In this case
the magnitude of h(p) is large, therefore α needs to be
small to make the saturation effective close to the path
and we choose α = 10−4. The initial conditions are given
by χ0 := ([15, 45], 0, 0,−2/3π, 0) and the controller gains
from (14) are given by Ku = 1, Kp = 30, and Kd = 5. The
trajectory of the ship and the desired oval can be seen in
Figure 4. From Figure 4 we can clearly see convergence to
the desired oval and from the superimposed ships it can
be seen that the heading of the vessel is not tangent to the
oval. Its velocity vector, on the other hand, is tangent to
the path. From the plot of the sway velocity in Figure 5
it can be seen that this motion induces quite large sway
velocities relative to the desired surge velocity ū = 2 [m/s].
The value of h(p) is plotted in Figure 6 which shows that
h(p) is driven to zero as the ship converges to the path,
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showing that the ship is able to track the specified Cassini
oval in accordance with the theoretical analysis.

8. CONCLUSIONS AND FUTURE WORK

In this paper we presented a methodology to design path
following controllers for a class of underactuated marine
vessels. This methodology allows one to migrate a path
following controller designed for a point-mass to one that
is guaranteed to work for the underactuated vessel. As we
mentioned in the introduction, the proposed solution is
an initial step. For simplicity, we assumed the curve to be
Jordan and the ocean current to be absent. We will remove
these assumptions in future work.

Appendix A. FUNCTIONS USED IN THE MODEL

The functions Fu, X(u), Y (u), and Fr are given by:

Fu , 1
m11

(m22v +m23r)r,

X(u) ,
m2

23
−m11m33

m22m33−m2

23

u+ d33m23−d23m33

m22m33−m2

23

,

Y (u) , (m22−m11)m23

m22m33−m2

23

u− d22m33−d32m23

m22m33−m2

23

,

Fr(u, v, r) ,
m23d22−m22(d32+(m22−m11)u)

m22m33−m2

23

v

+ m23(d23+m11u)−m22(d33+m23u)
m22m33−m2

23

r.
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