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Abstract. This paper presents a coordinate-free formulation of virtual holo-
nomic constraints for underactuated Lagrangian control systems on Riemann-
ian manifolds. It is shown that when a virtual constraint enjoys a regularity
property, the constrained dynamics are described by an affine connection dy-
namical system. The affine connection of the constrained system has an elegant
relationship to the Riemannian connection of the original Lagrangian control
system. Necessary and sufficient conditions are given for the constrained dy-
namics to be Lagrangian. A key condition is that the affine connection of the
constrained dynamics be metrizable. Basic results on metrizability of affine
connections are first reviewed, then employed in three examples in order of
increasing complexity. The last example is a double pendulum on a cart with
two different actuator configurations. For this control system, a virtual con-
straint is employed which confines the second pendulum to within the upper
half-plane.

1. Introduction. A virtual holonomic constraint (VHC) for a Lagrangian control
system is a collection of relations among the configuration variables of the system
that can be made invariant via feedback control. The precise meaning of this termi-
nology is clarified in what follows, but the key idea is to emulate via feedback control
the presence of a holonomic constraint in the Lagrangian control system. By ap-
propriate design of the VHC, the constrained system may display useful properties.

The notion of VHC can be traced back to early twentieth century work of P.
Appell in [2] and H. Beghin in [5], but it has emerged prominently in the last
fifteen years as a tool for control of biped robots (see, e.g., [24, 27, 38, 37, 8]), and
as an approach to motion planning for general robotic systems (e.g., [31, 32, 33,
13]). In VHC-based robot control, the motion one wants to induce is represented
implicitly in terms of constraints on the robot’s configuration variables, and the
control loop is designed to asymptotically stabilize a subset of the state space, the
so-called constraint manifold. This control philosophy stands in contrast to the
standard technique of parametrizing a desired motion by time, and then stabilizing
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the resulting reference signals. The VHC control paradigm has proved particularly
effective in inducing complex behaviours in underactuated robots, and gives rise to
a feedback loop that is intrinsically robust because it is not driven by any exogenous
signal.

For biped robots, Grizzle and collaborators (see, e.g., [37]) defined VHCs in terms
of invariance of a submanifold of the state space. The paper [21] generalized Griz-
zle’s notion of VHC to mechanical control systems whose generalized coordinates
are linear displacements or angles (i.e., systems whose configuration manifold is a
generalized cylinder) and whose degree of underactuation is equal to one. For this
class of systems, the authors of [22, 23] showed that, generically, the constrained dy-
namics in the presence of a VHC do not possess a Lagrangian structure. They then
gave necessary and sufficient conditions for a Lagrangian structure to exist. The
theory of [21, 23] does not handle mechanical systems whose configuration space is
not a generalized cylinder, or whose degree of underactuation is greater than one.
To illustrate, the configuration manifold of a rigid body is SE(3), a manifold that
cannot be handled by the theory in [21, 23]. Similarly, a double pendulum on a cart
has degree of underactuation two, which again is not contemplated in the theory
of [21, 23].

Main contributions. This paper generalizes the theory in [21, 23] by present-
ing a coordinate-free formulation of VHCs for arbitrary configuration manifolds and
arbitrary degrees of underactuation. We give a new geometric definition of VHC,
and define a regularity property of VHCs in terms of transversality of two subbun-
dles. We show that a regular VHC induces on the constraint manifold an affine
connection, the so-called induced connection. In the absence of a potential func-
tion, orbits of the constrained dynamics are geodesics of this induced connection.
We give an explicit characterization of the constrained dynamics in coordinates with
formulas for the Christoffel symbols of the induced connection. We show that the
problem of determining whether or not the constrained dynamics are Lagrangian
amounts in great part to determining whether or not the induced connection is
metrizable, i.e., it is Riemannian for a suitable metric. Leveraging this insight, and
using existing results from the theory of affine connections, we give conditions for
the existence of a Lagrangian structure for the constrained dynamics arising from a
regular VHC. These conditions are applicable to Lagrangian control systems with
arbitrary degree of underactuation. In the special case when the subbundle asso-
ciated with the control accelerations is orthogonal to the constraint manifold, the
constrained dynamics are always Lagrangian, and we show that they coincide with
the dynamics one would obtain in the presence of an ideal holonomic constraint.
Thus, the classics mechanics notion of holonomic constraint is a special case of our
theory. For systems with underactuation degree one, our results provide an elegant
geometric insight for the results in [23].

The focus of this paper is on the case when all control inputs are used to enforce
the VHC, so that the constrained dynamics are unforced. In the more general case
when the constrained dynamics are forced, the question of existence of a Lagrangian
structure for the constrained dynamics turns into the more general question of
feedback equivalence of the constrained dynamics to a Lagrangian control system.
A local version of the latter question has been investigated in [29] for general control
systems on smooth manifolds near zero velocity points.
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Organization of the paper. In Section 2 we review concepts of Riemannian
geometry, and the definition from [7] of a Lagrangian (control) system on a Riemann-
ian manifold. Section 3 reviews the definition of VHC from [21] and the Lagrangian
properties of the constrained dynamics from [23], valid for the case of systems with
degree of underactuation one. Section 4 formulates a new coordinate-free theory of
VHCs, characterizing the regularity of VHCs in terms of transversality of the con-
straint manifold and the distribution induced by control forces. It is shown that a
VHC induces an affine connection on the constraint manifold, and this connection is
then used to characterize the constrained dynamics. In Section 5 we give necessary
and sufficient conditions under which the constrained dynamics are Lagrangian.
We also treat the special case when the distribution induced by control forces is
orthogonal to the constraint manifold. In Section 6 we give a tutorial overview
of holonomy groups and results on metrizability of affine connections, treating the
special cases of flat connections, of simply connected constraint manifolds, and one
and two-dimensional constraint manifolds. Here we show that the results of Sec-
tion 3 are a special case of the general theory of this paper. In Section 7, we present
three examples illustrating the theory, in order of increasing complexity. The last
example is a double pendulum on a cart with a VHC that constrains the angle of
the second pendulum to be a function of the angle of the first pendulum, in such a
way that the second pendulum is always confined to the upper half plane.

2. Preliminaries. In this section we present the notation used in this paper, re-
view notions of Riemannian geometry, and review the definition of a Lagrangian
(control) system on a Riemannian manifold. All results are found in [19, 12, 6, 7].

Smooth manifolds. If M is a smooth manifold, we denote by C∞(M) the ring
of smooth real-valued functions on M, by X(M) the set of smooth vector fields on
M, and by Ω(M) the set of smooth one-forms on M. The tangent space to M at
p ∈ M is denoted by TpM, and it dual, the cotangent space, is denoted by T ⋆

pM.
We denote by TM and T ⋆M the tangent and cotangent bundles of M, and by
π : TM → M the natural projection on TM. An element of TM will be denoted
by vq, with the understanding that vq ∈ TqM. If N is a submanifold of M, TM|N
denotes the restriction of TM to N , defined as TM|N =

⋃

p∈N TpM.

If (U, (x1, . . . , xn)) is a coordinate chart of M, for each p ∈ U the basis for
TpM induced by the chart is denoted by ∂/∂x1|p, . . . , ∂/∂xn|p. The vector fields
{∂/∂x1, . . . , ∂/∂xn} form a local frame for TM. If F : M → N is a smooth function
between smooth manifolds and p ∈ M, we let Fp := F (p), and we denote by
dFp : TpM → TF (p)N the differential of F at p. If F : U → V is a smooth function
and U ⊂ R

n, V ⊂ R
m are open sets, we denote by ∂xiF the partial derivative

F with respect to its i-th argument. The notation ∂2
xixjF indicates second-order

partial differentiation with respect to the i-th and j-th argument. More generally,
if U ⊂ R

n is an open set and F : U → F (U) ⊂ M is smooth, then we denote
∂xiF := dFx(∂/∂x

i), where ∂/∂xi denotes the i-th natural basis vector of TxR
n. In

the special case of a function of one variable in R or S
1, we let F ′(x) := ∂xF and

F ′′(x) := ∂2
xF .

A smooth function h : M → R
k is a submersion if rank dhp = k for all p ∈ M.

If rank dhp = k for all p ∈ h−1(0), then we say that 0 is a regular value of h.
If f ∈ C∞(M) and X ∈ X(M), the Lie derivative of f along X is the smooth
function X(f) ∈ C∞(M) defined as p 7→ X(f)(p) := dfp(X(p)). If X,Y ∈ X(M),
[X,Y ] ∈ X(M) denotes the Lie Bracket of X and Y .
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Riemannian manifolds and connections. A Riemannian manifold is a pair
(M, g), where M is a smooth manifold, and g : TM× TM → R, the Riemannian
metric, is a smooth function such that, for each p ∈ M, gp is a bilinear form
TpM× TpM → R which is symmetric and positive definite, i.e., for each vp, wp ∈
TpM, gp(vp, wp) = gp(wp, vp), and the function vp 7→ gp(vp, vp) is positive definite.
Thus, gp is an inner product on TpM which varies smoothly with p. In the language
of tensors, g is a type (0, 2) symmetric and positive definite tensor field on M . A
Riemannian metric induces two maps. The flat map is the function TM → T ⋆M,
X 7→ X♭, defined as X♭(Y ) = g(X,Y ) for all Y ∈ TM. The sharp map is the
function T ⋆M → TM, ω 7→ ω♯, defined uniquely through the identity ω(X) =
g(ω♯, X) for all X ∈ TM. Given a function f ∈ C∞(M), grad f : M → TM is
the smooth vector field defined as grad f := df ♯.

An affine connection on M is a smooth function ∇ : X(M) × X(M) → X(M),
(X,Y ) 7→ ∇XY satisfying the following properties:

∇fX+gY Z = f∇XZ + g∇Y Z,

∇X(Y + Z) = ∇XY +∇XZ,

∇X(fY ) = f∇XY +X(f)Y,

(1)

for any f, g ∈ C∞(M) and X,Y, Z ∈ X(M). The vector field ∇XY is called the
covariant derivative of Y in the direction of X. The covariant derivative of vector
fields induces a covariant derivative of tensor fields, also denoted ∇, enjoying the
properties listed in [19, Lemma 4.6]. Among them, we mention the following. If F
is a tensor field on M of type (0, s), and X ∈ X(M), then ∇XF is a type (0, s)
tensor field satisfying the following identity

(∇XF )(Y1, . . . , Ys) = X(F (Y1, . . . Ys))−
s
∑

j=1

F (Y1, . . . ,∇XYj , . . . , Ys), (2)

for all Y1, . . . , Ys ∈ X(M). The total covariant derivative of a type (0, s) tensor field
F is the type (0, s+ 1) tensor field ∇F given by

∇F (X,Y1, . . . , Ys) = ∇XF (Y1, . . . , Ys), for all X,Y1, . . . , Ys ∈ X(M). (3)

The connection ∇ is symmetric (or torsionless) if

(∀X,Y ∈ X(M)) ∇XY −∇Y X = [X,Y ].

The connection ∇ is compatible with g if

(∀X,Y, Z ∈ X(M)) X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ), (4)

or, in terms of the total covariant derivative,

∇g = 0. (5)

The Fundamental Lemma of Riemannian Geometry (e.g., [19]) states that there is a
unique affine connection ∇ on a Riemannian manifold (M, g) with the property of
being symmetric and compatible with g. This connection is called the Riemannian
connection or the Levi-Civita connection of g.

The covariant derivative ∇XY may be viewed as a differentiation of the vector
field Y along X. If γ(t) is a smooth curve on M and Y ∈ X(M), the restriction of
Y to γ(t), V (t) := Y (γ(t)), is a vector field along γ. The derivative DtV := ∇γ̇Y
is called the covariant derivative of V along γ. Although the definition just given
relies on expressing V as the restriction to γ of a vector field Y on M, DtV does not
depend on the values of Y outside of γ(t), in that any smooth extension of V outside
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of γ gives the same value of DtV . The geometric intuition of the notion of covariant
derivative is as follows (see, e.g., [6, Chapter VII, Section 2]). If M is an embedded
submanifold of Rn with Riemannian metric induced from an inner product on R

n,
DtV is the orthogonal projection of the time derivative of Y (γ(t)) onto the tangent
space Tγ(t)M. Thus, roughly speaking, DtV measures how much the vector field
V (t) turns as seen from the point of view of M. In essence, covariant derivatives
embody the notion of acceleration of a curve. More precisely, the acceleration of a
curve γ on M is the vector field Dtγ̇ along γ, and γ is called a geodesic of ∇ if its
acceleration is zero, i.e., ∇γ̇ γ̇(t) = Dtγ̇(t) ≡ 0. We remark that this definition of
geodesic curve does not require ∇ to be a Riemannian connection.

Coordinate representation of the covariant derivative. In coordinates,
covariant derivatives associated with a Riemannian connection take on a familiar
form, which we now review. Consider a coordinate chart (U, (x1, . . . , xn)) on M and
the associated local frame {∂/∂x1, . . . , ∂/∂xn} for TM. Let Xi := ∂/∂xi. Given an
affine connection ∇ on M, not necessarily Riemannian, the Christoffel symbols of
∇ associated with the local frame {X1, . . . , Xn} are the n3 functions Γk

ij in C∞(U)
that are coefficients of the expansion of ∇Xi

Xj in the local frame {X1, . . . , Xn},
i.e.,

∇Xi
Xj =

n
∑

k=1

Γk
ijXk.

One can show that if ∇ is symmetric, then Γk
ij = Γk

ji. Whether or not ∇ is symmet-
ric, if Y,Z ∈ X(M), expanding Y =

∑

i yiXi, Z =
∑

i ziXi, with yi, zi ∈ C∞(U),
the covariant derivative ∇XY can be computed through the formula

∇Y Z =
∑

k



Y (zk) +
∑

i,j

Γk
ijyizj



Xk, (6)

where Y (zk) is the Lie derivative of zk along Y . The acceleration of a smooth curve
γ : I → M, I ⊂ R, can be computed as follows. Letting γi(t) := xi(γ(t)) denote
the i-th component of the coordinate representation of γ, we have

∇γ̇ γ̇ =
∑

k



γ̈k +
∑

i,j

Γk
ij γ̇

iγ̇j



Xk. (7)

We see that, in local coordinates, geodesics are solutions of the system of second-
order differential equations

γ̈k = −
∑

i,j

Γk
ij γ̇

iγ̇j , k = 1, . . . , n.

If ∇ is Riemannian, the Christoffel symbols may be computed using a matrix
representation of the metric g. Using again the local frame {X1, . . . , Xn}, let
gij(p) := g(∂/∂xi|p, ∂/∂xj |p), and let gkl be (k, l)-th element of the inverse of the
matrix (gij). Then,

Γk
ij =

1

2

∑

l

gkl
(

Xi(gjl) +Xj(gil)−Xl(gij)
)

. (8)

Lagrangian control systems on manifolds. Having reviewed basic notions of
Riemannian geometry, we are ready to present the class of mechanical systems
considered in this paper. The definitions below are adapted from [7].
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Definition 2.1 (Lagrangian system). A Lagrangian system is a triple (Q, g, P ),
where (Q, g) is an n-dimensional Riemannian manifold called the configuration man-
ifold, and P : Q → R is a smooth function called the potential function. The triple
(Q, g, P ) is also called a Lagrangian structure. A smooth curve q : I → Q, where I
is an open interval in R, is a base integral curve of the Lagrangian system if

∇q̇(t)q̇(t) = − gradP (q(t)), (9)

for all t ∈ I. △
For each q0 ∈ Q and each vq0 ∈ Tq0Q, there exists a unique maximal base integral

curve q(t) such that q(0) = q0 and q̇(0) = vq0 , where maximality is defined in the
same way as for integral curves of vector fields. We will call q(t) the maximal base
integral curve of (9) with initial condition (q0, vq0).

Base integral curves have the property of being extremizers of the action func-
tional

∫

I
L(q(t), q̇(t))dt, I ⊂ R, where L : TQ → R is the Lagrangian function

defined as

L(q, q̇) :=
1

2
gq(q̇, q̇)− P (q). (10)

In Lagrangian systems, controls appear by way of forces. On Riemannian man-
ifolds, forces are modelled as one-forms because, under coordinate changes, they
transform like the components of one-forms (see [7]). Thus, a force on Q is a one-
form F ∈ Ω(Q). The corresponding vector field F ♯ ∈ X(Q) can be thought of as
the portion of the acceleration due to F . With this in mind, we proceed to the
definition of a Lagrangian control system.

Definition 2.2 (Lagrangian control system). A Lagrangian control system is a
quadruple (Q, g, P,F), where (Q, g, P ) is a Lagrangian system and F = {F 1, . . . , Fm},
F i ∈ Ω(Q), are called the control forces. A curve q : I → Q, where I is an open
interval in R, is a base integral curve of the Lagrangian control system if there exist
m smooth functions τi : I → R such that

∇q̇(t)q̇(t) = − gradP (q(t)) +

m
∑

i=1

(F i)♯q(t)τi(t), (11)

for all t ∈ I. △
Let τ⋆ = (τ⋆1 , . . . , τ

⋆
m) : TQ → R

m be a smooth map. Then, for each q0 ∈ Q
and each vq0 ∈ Tq0Q, there exists a unique maximal solution q : I → Q of (11)
with τi(t) = τ⋆i (q(t), q̇(t)), i = 1, . . . ,m. We call it the maximal base integral curve
of (11) with feedback τ = τ⋆(q, q̇) and initial condition (q0, vq0).

It is shown in [7] that the equations of motion of the Lagrangian system in (9) can
be equivalently expressed as a smooth vector field on TQ. Similarly, the equations of
motion of the Lagrangian control system in (11) have an equivalent representation
as a smooth control-affine system with state space TQ. In order to define such
control-affine system, we need the notion of vertical lift at a point vq ∈ TQ ([7]),
the linear map vlftvq

: TqQ → Tvq
TQ defined by

vlftvq
(Xq) =

d

dt

∣

∣

∣

t=0
(vq + tXq). (12)

The vertical lift of a vector field X ∈ X(Q) is the vector field vlft(X) on TQ
defined by vlft(X)(vq) = vlftvq

(X(q)). The vertical lift of a distribution D on Q is
the distribution vlft(D) on TQ defined by vlft(D)(vq) = vlftvq

(D(q)).
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The control-affine system on TQ associated with the Lagrangian control sys-
tem (11) is given by

Ẋ = S(X)− vlft(gradP )(X) +

m
∑

i=1

τi vlft
(

(F i)♯
)

(X). (13)

In the above, the vector field S ∈ X(TQ) is the geodesic spray associated with the
metric g, and it has the property that the integral curves of S project to geodesics
of the metric g on Q via the canonical projection π : TQ → Q. The control
system (13) is equivalent to (11) in the following sense. All maximal base integral
curves of (11) are projections under π : TQ → Q of maximal integral curves of (13).
Vice versa, the projection of any maximal integral curve of (13) is a maximal base
integral curve of (11).

In coordinates, equations (9) and (11) take on the familiar form of the Euler-
Lagrange equations (e.g., [3, Chapter 3]). More precisely, let q : I → Q be a base
integral curve of a Lagrangian system (Q, g, P ). Given a chart (U, φ) for Q, let x =

φ ◦ q be the coordinate representation of q, and let L̂(x, ẋ) := L(φ−1(x), (dφ−1)xẋ),
where L is the Lagrangian function defined in (10). Then, x = (x1, . . . , xn) : I → R

n

satisfies the Euler-Lagrange equations

d

dt

∂L̂

∂ẋi
− ∂L̂

∂xi
= 0, i = 1, . . . , n.

Vice versa, if x : I → R
n satisfies the above Euler-Lagrange equations, then q : I →

Q, q := φ−1 ◦ x is a base integral curve of (Q, g, P ). An analogous property holds
for Lagrangian control systems (Q, g, P,F), where now q : I → Q is a base integral
curve of (Q, g, P, {F i}i=1,...,m) if, and only if, x = φ ◦ q is a solution of the forced
Euler-Lagrange equations

d

dt

∂L̂

∂ẋj
− ∂L̂

∂xj
=
∑

i

Bij(x)τi, j = 1, . . . , n. (14)

In the above Bij(x) := F j(∂/∂xi|φ−1(x)) is the i-th coefficient of the expansion

of F j in the local frame {∂/∂x1, . . . , ∂/∂xn} induced by the chart. Let D(x) be

the matrix with components Dij(x) = gij(φ
−1(x)), and set C(x, ẋ) = D(x)C̃(x, ẋ),

where C̃kj(x, ẋ) =
∑

i Γ
k
ij(φ

−1(x))ẋi. Let P̂ := P ◦φ−1, and let B(x) be the matrix
with elements Bij(x). Then the Euler-Lagrange equations (14) take on the familiar
form

D(x)ẍ+ C(x, ẋ)ẋ+∇xP̂ (x) = B(x)τ, (15)

where τ is the vector whose components are the control inputs τi in (14).

3. Review of Virtual Holonomic Constraints. The configuration manifold Q
of a robot whose joints are revolute or prismatic is a generalized cylinder. In other
words, an element of Q may be represented as an n-tuple (q1, . . . , qn), where each qi
is either in R if the i-th joint is prismatic, or in S

1 if the i-th joint is revolute. In this
case, the Lagrangian control system (11) admits a global coordinate representation
of the form (15):

D(q)q̈ + C(q, q̇)q̇ +∇qP̂ (q) = B(q)τ. (16)

In this section, we review basic facts concerning VHCs for the class of mechanical
control systems (16). The rest of this paper will be devoted to the generalization
of these results to the coordinate-free setting. We assume, throughout, that the
matrix B has full-rank m.
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Definition 3.1 (Virtual holonomic constraint in coordinates, [21]). A virtual holo-
nomic constraint of order k for system (16) is a relation h(q) = 0, where h : Q → R

k

is a smooth function such that 0 is a regular value of h and the set

Γ = {(q, q̇) ∈ TQ : h(q) = 0, dhq q̇ = 0} (17)

is controlled invariant for (16). The set Γ is called the constraint manifold associated
with the VHC h(q) = 0. △

Requiring Γ to be controlled invariant means requiring that there exists a smooth
feedback τ = τ⋆(q, q̇) rendering Γ positively invariant for the closed-loop system
(see, e.g., [25, Definition 11.1]). If we let C := h−1(0), then the hypothesis that
rank (dhq) = k for all q ∈ h−1(0) implies that C is a closed embedded submanifold
of Q. Moreover, the constraint manifold Γ in (17) is the tangent bundle of C,
Γ = TC.

In the context of nonlinear control, the constraint manifold associated with a
VHC h(q) = 0 is the zero dynamics manifold of system (16) with output e = h(q)
(see [15]). A special case of interest is when this output function yields a well-defined
relative degree, as in the next definition.

Definition 3.2 (Regular VHC in coordinates, [21]). A relation h(q) = 0 is a regular
VHC of order k for system (16) if h : Q → R

k is smooth, and system (16) with
output e = h(q) has vector relative degree1 {2, . . . , 2} everywhere on the constraint
manifold Γ in (17), i.e., rank (dhqD

−1(q)B(q)) = k for all q ∈ h−1(0). △
Since the matrix dhqD

−1(q)B(q) has dimension k × m, for a regular VHC it
must hold that the number of constraints, k, be less than or equal to the number of
controls, m. The next result provides a geometric interpretation of the regularity
condition.

Proposition 3.3 ([16]). A relation h : Q → R
k is a regular VHC for system (16)

if, and only if, letting C = h−1(0),

(∀q ∈ C) TqC + Im(D−1(q)B(q)) = TqQ. (18)

In light of the proposition above, the VHC h(q) = 0 is regular if, for each q ∈ C,
the mechanical system can produce control accelerations D−1Bτ in any direction
transversal to TqC. In the special case k = m, when the number of constrains is
equal to the number of controls, the subspace sum in (18) becomes direct.

Regular VHCs are important in two respects. First, since the output e = h(q)
yields a well-defined vector relative degree on the constraint manifold Γ, one may
use input-output linearization to asymptotically stabilize Γ. For this, some technical
assumptions on h and its differential are required, see [21]. Second, when k = m,
there is a unique smooth feedback τ⋆ : Γ → R

m rendering Γ invariant, resulting in
constrained dynamics on Γ described by an autonomous differential equation. This
is stated in the next proposition for the case2 m = n − 1. In what follows, we let
B⊥ : Q → R

1×n\{0} be a smooth left annihilator of B of rank one everywhere on
h−1(0).

Proposition 3.4 ([21]). Let m = n − 1, and let h(q) = 0 be a regular VHC of
order n − 1 for system (16). Then there exists a unique smooth feedback τ⋆ : Γ →

1This means [15] that the control input τ appears nonsingularly in the second time derivative,

ë, of e along solutions of (16).
2The more general case k ≤ m ≤ n is addressed in [16].
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R
m rendering Γ in (17) invariant, and the resulting closed-loop dynamics on Γ

are given as follows. Let ϕ : Θ → Q be a regular parametrization of the curve
C = h−1(0), where Θ = S

1 if C is a Jordan curve and Θ = R otherwise, and let
(q, q̇) = (ϕ(s), ϕ′(s)ṡ). The closed-loop dynamics on Γ are given by

s̈ = Ψ1(s) + Ψ2(s)ṡ
2, (19)

where (s, ṡ) ∈ Θ× R and

Ψ1(s) = −B⊥∇qP̂

B⊥Dϕ′

∣

∣

∣

∣

q=ϕ(s)

,

Ψ2(s) = −B⊥Dϕ′′ +
∑n

i=1(B
⊥D)iϕ

′⊤Γiϕ′

B⊥Dϕ′

∣

∣

∣

∣

∣

q=ϕ(s)

,

(20)

where (Γi)jk = Γi
jk is the matrix containing the Christoffel symbols of the metric

gq(vq, wq) = v⊤q D(q)wq.

The dynamics in (19) are called the constrained (or reduced) dynamics associated
with the VHC h(q) = 0. The next result, taken from [23], characterizes when the
constrained dynamics (19) possess a Lagrangian structure.

Theorem 3.5 ([23]). Define a map π : R → Θ as

π(x) =

{

x if Θ = R

xmod 2π if Θ = S
1.

Define smooth functions M̂C , P̂C : R → R as,

M̂C(x) := exp

(

−2

∫ x

0

Ψ2 ◦ π(z)dz
)

,

P̂C(x) := −
∫ x

0

(

Ψ1 ◦ π(z)
)

M̂C(z)dz,

and (generally multi-valued) functions MC , PC : Θ ⇒ R as

MC := M̂C ◦ π−1, PC := P̂C ◦ π−1.

Let

L(s, ṡ) =
1

2
MC(s)ṡ

2 − PC(s). (21)

Then the following statements are true.

(a) If Θ = R, then (19) is a Lagrangian system with Lagrangian L in (21).

(b) If Θ = S
1, then (19) is Lagrangian if, and only if, M̂C and P̂C are 2π-periodic,

in which case MC , PC in (21) are single-valued and smooth, and L in (21) is
the Lagrangian function of (19).

As will become apparent in the development that follows, the results reviewed in
this section are a special case of the general theory developed in this paper.
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4. Coordinate-free formulation of virtual holonomic constraints. In this
section we reformulate and generalize the theory of Section 3 in a coordinate-free
context. We consider throughout a Lagrangian control system (Q, g, P,F) with
equations of motion

∇q̇ q̇ = − gradP (q) +

m
∑

i=1

(F i)♯qτi. (22)

We assume that the one-forms F = {F 1, . . . , Fm} are independent, and define the
acceleration distribution

DA = span{(F 1)♯, . . . , (Fm)♯}. (23)

We recall that base integral curves of (22) are projections onto Q of integral curves
of the control affine system

Ẋ = S(X)− vlft(gradP )(X) +
m
∑

i=1

τi vlft
(

(F i)♯
)

(X) (24)

via the canonical projection map π : TQ → Q. Note that

vlft(DA) = span
{

vlft((F 1)♯), . . . , vlft((Fm)♯
)

}.

4.1. VHC definitions and relationships.

Definition 4.1 (Controlled invariant submanifold). Let C be a closed embedded
submanifold of Q. The tangent bundle TC is controlled invariant for (22) if there
exists a smooth feedback τ⋆ = (τ⋆1 , . . . , τ

⋆
m) : TC → R

m such that for each q0 ∈ C
and each vq0 ∈ Tq0C, the maximal base integral curve q : I → Q of (11) with
feedback τ = τ⋆(q, q̇) and initial condition (q0, vq0) satisfies q(t) ∈ C for all t ∈ I. △

In reference to the control-affine system (24), the definition above can be rephrased
as the requirement that there exists a smooth feedback rendering TC an invariant
set for the closed-loop system, which is the standard concept of controlled invariance
of submanifolds used in control theory (see, e.g., [15]).

Definition 4.2 (Virtual holonomic constraint). A virtual holonomic constraint of
order k for the Lagrangian control system (11) is a closed embedded submanifold C
of Q of codimension k such that TC is controlled invariant for (11). The set TC is
called the constraint manifold. △
Definition 4.3 (Regular VHC of order m). A closed embedded submanifold C of
Q is a regular VHC of order m for the Lagrangian control system (11) if C has
codimension m and

(∀q ∈ C) TqC ⊕ DA(q) = TqQ, (25)

where DA is the acceleration distribution defined in (23). △
The transversality condition (25), illustrated in Figure 1, generalizes (18) in the

case when the number of constraints, k, is equal to the number of controls, m.
A regular VHC is a VHC in the sense of Definition 4.2, as the next result shows.

Proposition 4.4. If a closed embedded submanifold C of Q is a regular VHC of
order m for system (22), then C is also a VHC in the sense of Definition 4.2, and
the smooth feedback τ⋆ : TC → R

m rendering TC invariant is unique.

We need the following lemma, whose proof is in the appendix.
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TqQ
TqC

DA(q)

q

CC QQ

Figure 1. Transversality condition in the definition of regular
VHC.

Lemma 4.5. Consider the Lagrangian control system (22) and its associated control-
affine system (24). If C is a regular VHC, then for each Xq ∈ TC,

S(Xq)− vlft(gradP )(Xq) ∈ TXq
TC ⊕ vlft(DA)(Xq). (26)

Proof of Proposition 4.4. Suppose C is a regular VHC for the Lagrangian control
system (22). We need to show that the closed embedded submanifold TC ⊂ TQ
is controlled invariant for the control-affine system (24), and the smooth feedback
rendering it invariant is unique. By Lemma 4.5, for each Xq ∈ TC we have that

S(Xq)− vlft(gradP )(Xq) ∈ TXq
TC ⊕ span{vlft

(

(F i)♯
)

, i ∈ {1, . . . ,m}}, (27)

from which it follows that there is a unique vector τ⋆(Xq) = (τ⋆1 (Xq), . . . , τ
⋆
m(Xq))

such that

S(Xq)− vlft(gradP )(Xq) +

m
∑

i=1

τ⋆i (Xq) vlft
(

(F i)♯
)

∈ TXq
TC. (28)

The map TC → R
m, Xq → τ⋆(Xq) is smooth because in any set of local coordinates

X̂ on TC, the requirement (28) can be expressed as a matrix equation of the form

A(X̂)τ = b(X̂), where, by (27), rankA = m and b(X̂) ∈ ImA(X̂). The unique

solution τ(X̂) of this equation is τ(X̂) =
(

A(X̂)⊤A(X̂)
)−1

A(X̂)⊤b(X̂), which is a
smooth function. In conclusion, there exists a unique smooth feedback τ⋆ : TC →
R

m such that the closed-loop vector field given by (13) with τi = τ⋆i (X) is tangent
to TC. By [9, Theorem 2.1], TC is an invariant set for the closed-loop vector field,
and thus C is a VHC in the sense of Definition 4.2.

Definition 4.3 of regular VHCs is a coordinate-free generalization of Definition 3.2
in the following sense. When C is globally described by the zero level set of a
smooth submersion h : Q → R

m, then TC = {vq ∈ TQ : h(q) = 0, dhqvq = 0},
and system (22) with output function e = h(q) has vector relative degree {2, . . . , 2}.
Indeed, differentiating each component of the output, ei = hi(q), twice along the
base integral curves of (22) one can show that

ëi = g(∇q̇ gradhi, q̇)− g(gradhi, gradP ) +
m
∑

j=1

bij(q)τj , i = 1, . . . , k, (29)
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where bij = g(gradhi, (F
j)♯). The transversality condition (25) in Definition 4.3

implies that the m × m matrix with component bij is invertible on C, and thus
system (22) with output function e = h(q) has vector relative degree {2, . . . , 2}.

Just like in Section 3, the expression (29) suggests a way to asymptotically sta-
bilize3 the constraint manifold TC using an input-output linearizing feedback

τ⋆i =
∑

j

bij(q) [−g(∇q̇ gradhj , q̇) + g(gradhj , gradP )−Kp,jhj −Kd,j(dhj)q q̇] ,

where bij is the (i, j)-th element of the inverse of the matrix (bij), and Kp,j , Kd,j

are positive design parameters.
The restriction of τ⋆ above to TC is the unique feedback rendering TC invariant

predicted by Proposition 4.4, and it is given by

τ⋆i |TC =
∑

j

bij(q) [−g(∇q̇ gradhj , q̇) + g(gradhj , gradP )] .

For base integral curves q(t) in C it holds that q̇ ∈ TqC. Moreover, since C = h−1(0),
gradhi(q) ∈ TqC⊥. The Weingarten equation [19] then gives g(∇q̇ gradhj , q̇) =
−g(gradhj , II(q̇, q̇)), where II is the second fundamental form of C. Thus the unique
feedback rendering TC invariant is

τ⋆i |TC =
∑

j

bij(q)g(gradhj , II(q̇, q̇) + gradP ).

4.2. Constrained dynamics. Our next objective is to characterize the constrained
dynamics on TC, by which we mean the closed-loop dynamics resulting from the
application of the unique smooth feedback τ⋆ : TC → R

m rendering TC invariant.
We would like a coordinate-free generalization of Proposition 3.4 valid for any m,
not just m = n − 1. As we now show, such dynamics are described by a special
affine connection on C induced by the VHC. This so-called induced connection was
originally developed in the context of affine differential geometry (see [26, Chapter
2]). We adopt it in the context of regular VHCs.

Before giving a formal definition of the induced connection, we present the basic
idea behind it. If C is a regular VHC, the transversality condition (25) in Defini-
tion 4.3 states that, for each q ∈ C, the tangent space TqQ is the direct sum of TqC
and DA(q). We may then define the projection σq : TqQ → TqC of the vector space
TqQ onto TqC along the subspace DA(q). The map σq is uniquely determined by
the following properties:

(i) σ2
q = σq,

(ii) Imσq = TqC,
(iii) Kerσq = DA(q).

Now consider the vector bundle map σ : TQ|C → TC, wq 7→ σq(wq), illustrated in
Figure 2.

Since the acceleration distribution DA(q) is smooth, so is σ. Using σ, we define
a new connection on C as follows. Given two vector fields X,Y ∈ X(C), ∇XY
is generally not a vector field on C, but its projection σ(∇XY ) is, and the next
theorem shows that this operation identifies an affine connection on C.

Before presenting the theorem, we need to justify the notation ∇XY for vec-
tor fields X,Y ∈ X(C), since the affine connection ∇ accepts vector fields on Q.

3Provided that certain technical assumptions hold for h and dh (see [21]).
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TqQTqQTqQ
TqCTqC

DA(q)DA(q)DA(q)
qq

CC QQ
wqwqwqwq

σq(wq)σq(wq)σq(wq)σq(wq)

Figure 2. The vector bundle map σ : TQ|C → TC.

Consider arbitrary smooth extensions4 X̃, Ỹ of X,Y on a neighbourhood of C in
Q such that X̃|C = X and Ỹ |C = Y . Given any p ∈ C, by [19, Exercise 4.7, p.58],

the value of ∇X̃ Ỹ (p) depends only on X̃p (and thus Xp) and the value of Ỹ along
any smooth curve γ : (−ε, ε) → Q such that γ(0) = p and γ̇(0) = Xp. Since

Xp ∈ TpC, we may pick a curve γ contained in C, so that the value of Ỹ along γ

coincides with that of Y . Therefore, on C the function ∇X̃ Ỹ is uniquely determined
by X,Y . These considerations justify the slight abuse of notation ∇XY for vector
fields X,Y ∈ X(C).
Theorem 4.6 ([26]). Let C be a regular VHC of order m for the Lagrangian control

system (22), and define the map
C

∇ : X(C)× X(C) → X(C) as
C

∇XY := σ
(

∇XY
)

, (30)

where ∇ is the Riemannian connection of (Q, g). The map
C

∇ is a symmetric affine
connection on C.

The above result is mentioned in [26, Chapter 2, p. 28]. The straightforward
proof is omitted.

We call
C

∇ the induced connection, or the connection induced by the regular VHC

C. While
C

∇ is symmetric, it is generally not a Riemannian connection with respect
to the induced Riemannian metric on C. This fact is discussed in the next section.
Now the main result of this section. In what follows, let ι : C → Q denote the
inclusion map.

Theorem 4.7. If C is a regular VHC of order m for the Lagrangian control sys-
tem (22), then the constrained dynamics on TC are described by the equation of
motion

C

∇q̇ q̇ = −σq(gradP (q)), (31)

in the following sense. If q : I → Q is a maximal base integral curve of (22) such
that q(I) ⊂ C, then q : I → C is a maximal base integral curve of system (31). Vice
versa, if q : I → C is a maximal base integral curve of (31), then ι ◦ q is a maximal
base integral curve of (22).

4These exist by [20, Problem 8.15].
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Proof. Let q : I → Q be a base integral curve of (22) such that q(I) ⊂ C. Then

∇q̇ q̇ + gradP (q)−
m
∑

i=1

(F i)♯τ⋆i (q) = 0,

where τ⋆i (q) is the i-th component of the unique feedback τ⋆ : TC → R
m rendering

TC invariant (see Proposition 4.4). Using σq to project both sides of the above
identity onto TqC and using the fact that σq((F

i)♯) = 0, we get

σq(∇q̇ q̇ + gradP (q)) = 0.

By Theorem 4.6 we get
C

∇q̇ q̇ + σq(gradP (q)) = 0,

which proves that q : I → C is a base integral curve of (31).
Now let q : I → C be a base integral curve of (31). Then,

C

∇q̇ q̇ + σq(gradP (q)) = 0,

or

σq(∇q̇ q̇ + gradP (q)) = 0.

Since Kerσq = DA(q), we have

∇q̇ q̇ + gradP (q) ∈ DA(q),

from which it follows that, for each t ∈ I, there exists τ̄(q(t)) = (τ̄1(q(t)), . . . , τ̄m(q(t))) ∈
R

m such that

∇q̇(t)q̇(t) + gradP (q(t)) =

m
∑

i=1

(F i)♯(q(t))τi(q(t)).

By the uniqueness of the feedback τ⋆ rendering TC invariant (see Proposition 4.4),
it must hold that τ̄ = τ⋆, a smooth feedback. This proves that ι(q) is an integral
curve of (22).

We now prove maximality. Suppose, by way of contradiction, that q : I → Q a
maximal base integral curve of (22) such that q(I) ⊂ C but the corresponding base

integral curve q : I → C of (31) is not maximal. Let q̃ : Ĩ → C, Ĩ ⊃ I, be the
unique maximal base integral curve of (31) such that q̃|I = q. Then ι(q̃) is a base
integral curve of (22) with a larger interval of existence than q, which contradicts
the maximality of q. In an analogous way one shows that if q : I → C is a maximal
base integral curve of (31) then ι(q) is maximal for (22).

4.3. Constrained dynamics in coordinates. We now characterize the constrained
dynamics in coordinates. Pick a coordinate chart for Q, (U, φ), with φ : U → Û ⊂
R

n and C ∩ U 6= ∅. Letting x = φ(q) = (x1(q), . . . , xn(q)), the equations of mo-
tion (22) in x coordinates read as (cf. (15)),

D(x)ẍ+ C(x, ẋ)ẋ+∇xP̂ (x) = B(x)τ.

Tangent space of C. The chart domain U can always be chosen small enough
that the local representation of the constraint manifold, Ĉ = φ(C ∩U), is the image

of a diffeomorphism ϕ : W ⊂ R
n−m → Ĉ, s = (s1, . . . , sn−m) 7→ ϕ(s). Using this

parametrization, we have Tϕ(s)Ĉ = Im(dϕs). Thus, letting

V i(x) := dϕϕ−1(x)(∂/∂s
i) = ∂siϕ(ϕ

−1(x)), i = 1, . . . , n−m,
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we have

T Ĉ = span{V 1, . . . , V n−m}.
This construction is depicted in Figure 3.

s
∂/∂si

V i(x)
x

C Q

U

Û ⊂ R
n

Ĉ

ϕ

dϕs

W R
n−m

φ

Figure 3. Coordinate systems used in Section 4.3.

Projection map. In coordinates, we have

dφφ−1(x)

(

DA(φ
−1(x))

)

= ImD−1(x)B(x).

〈1〉 In published paper,

T Û isn’t restricted

and (32) has x = ϕ(s)

Letting B⊥ be a full-rank left-annihilator of B, the coordinate representation of
the projection map σ is the map σ̂ : T Û |C → T Ĉ defined as

σ̂x(vx) = dϕs

(

(B⊥Ddϕs)
−1B⊥D

) ∣

∣

s=ϕ−1(x)
(vx). (32)

Indeed, one can readily verify that σ̂2
x = σ̂x, 〈2〉 Hats missing in

published version

Im(σ̂x) = TxĈ, and Ker σ̂x =

Im(D−1(x)B(x)). These properties imply that σ̂x is the projection onto TxĈ along
the subspace Im(D−1(x)B(x)), as required.

Induced connection
C

∇. The coordinate chart (U, φ) induces Christoffel sym-
bols Γk

ij , i, j, k ∈ {1, . . . , n}, of the Riemannian connection ∇. We now derive the
Christoffel symbols of the induced connection, defined through the identity

σ̂(∇V iV j) =
C

∇V iV j =

n−m
∑

k=1

C

Γk
ijV

k,

where
C

Γk
ij are the symbols we are looking for. Using the definition of V i, V j , iden-

tity (6), and the expression for σ̂ in (32), one gets 〈3〉 In the published

paper, the term in blue

font is placed at an

incorrect position

within the identity. The

error does not

propagate and

identity (33) below is

correct

C

Γk
ij =

n
∑

a=1

[(B⊥Ddϕs)
−1B⊥D]ka

(

∂2
sisjϕ

a +

n
∑

b,c=1

Γa
bc(∂siϕ

b)(∂sjϕ
c)
)

,
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where ϕa denotes the a-th component of ϕ. Letting Γa(x) be the matrix with
components (Γa)bc = Γa

bc, we may rewrite the Christoffel symbols of the induced
connection in the more economical form

C

Γk
ij =

n
∑

a=1

[(B⊥Ddϕs)
−1B⊥D]ka

(

∂2
sisjϕ

a + (∂siϕ)
⊤Γa(∂sjϕ)

)

∣

∣

∣

x=ϕ(s)
, (33)

i, j, k ∈ {1, . . . , n−m}.
Constrained dynamics. The coordinate representation of gradP (q) is

[

D−1(x)∇xP̂ (x)
]

x=ϕ(s)
.

Using (32), the projection σq(gradP (q)) in s-coordinates reads as
[

(B⊥Ddϕs)
−1B⊥∇xP̂

]

x=ϕ(s)
.

Letting ek denote the k-th natural basis vector of Rn−m, the coordinate represen-
tation of the constrained dynamics (31) is

s̈k = −
∑

ij

C

Γk
ij(s)ṡ

iṡj − e⊤k (B
⊥Ddϕs)

−1B⊥∇xP̂
∣

∣

∣

x=ϕ(s)
, k = 1, . . . , n−m. (34)

In the special case when C is diffeomorphic to a generalized cylinder, one may pick
ϕ to be a global diffeomorphism (S1)k × (R)n−m−k → C, in which case the ODEs
in (34) constitute a global representation of the constrained dynamics. In particular,
for systems with degree of underactuation one, i.e., when n−m = 1, (34) is always
valid globally, and it reduces to

〈4〉 Typo in the paper s̈ =−
C

Γ1
11(s)ṡ

2 − σs(gradP (s))

= −
∑

a(B
⊥D)1a((ϕ

a)′′ + ϕ′⊤Γaϕ)

B⊥Dϕ′

∣

∣

∣

x=ϕ(s)
ṡ2 − B⊥∇xP̂

B⊥Dϕ′

∣

∣

∣

x=ϕ(s)
,

(35)

The above is precisely the form of the constrained dynamics in (19)-(20).

4.4. Examples of computation of constrained dynamics. We present two
examples illustrating the formulas in Section 4.3.

Example 1. Consider the unit point-mass particle on the plane with inertial co-
ordinates q = [q1 q2]

⊤ ∈ R
2 depicted in Figure 4.

q

s

α

Rαq

C

Figure 4. The set C in Example 1 and its parametrization.
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The particle is actuated by a force (Rα q)τ , where τ ∈ R is the control input, α
is a fixed parameter, and Rα ∈ SO(2) is the matrix operating a counterclockwise
rotation by angle α. The equations of motion are

q̈ = (Rα q)τ. (36)

This is a Lagrangian system (Q, g, 0, F ), with Q = R
2, g the Euclidean inner prod-

uct, and F (q) = (q1 cosα− q2 sinα)dq1 + (q1 sinα+ q2 cosα)dq2. Let C be the unit
circle centred at the origin. If α ∈ (−π/2, π/2), then C is a regular VHC since, for
all q ∈ C, the vector Rα q is transversal to C:

TqC + spanF ♯(q) = span

[

− q2
q1

]

+ span{Rα q} = TqR
2.

The output function e = q⊤q − 1 yields vector relative degree {2, 2} everywhere on
C, and the feedback

τ⋆(q, q̇) =
1

2q⊤Rαq
(−2q̇⊤q̇ −Kpe−Kdė), Kp,Kd > 0,

asymptotically stabilizes the constraint manifold TC and renders it invariant. The
map ϕ : S1 → R

2, ϕ(s) = [cos(s) sin(s)]⊤, is a parametrization of C. The Christof-
fel symbols Γk

ij of g are all zero. Letting B⊥(q) := q⊤Rα+π/2 and using (33),

the Christoffel symbol of the induced connection is
C

Γ1
11 = tanα, so by (35) the

constrained dynamics are given by

s̈ = −(tanα)ṡ2.

One can also derive the constrained dynamics by multiplying both sides of (36) on
the left by B⊥, and substituting q = ϕ(s), q̈ = ϕ′(s)s̈ + ϕ′′(s)ṡ2 in the resulting
expression. The ODE one gets this way is the same as above. △

Example 2. Consider now a unit point-mass in R
3 with inertial coordinates q =

[q1 q2 q3]
⊤ ∈ R

3, actuated by a control force (diag(1, 1, 2)q)τ , where τ ∈ R is the
control input:

q̈ = B(q)τ,

whereB(q) = diag(1, 1, 2)q. This is a Lagrangian system (Q, g, 0, F ), whereQ = R
3,

g is the Euclidean inner product, and F (q) = q1dq1+q2dq2+2q3dq3. In this example,
DA(q) = span{F ♯(q)} = ImB(q). Let C be the unit sphere centred at the origin,
C = {q ∈ R

3 : q⊤q = 1}. The set C is illustrated in Figure 5. For each q ∈ C, TqC
is the orthogonal complement of span{q}. Since g(q, F ♯(q)) = q⊤ diag(1, 1, 2)q > 0,
the control force is transversal everywhere to the sphere, and therefore, for any
q ∈ C,

TqC ⊕ DA(q) = TqR
3.

Thus C is a regular VHC. For a parametrization of C, we use spherical coordinates:

ϕ(s1, s2) =





sin(s1) cos(s2)
sin(s1) sin(s2)

cos(s1)



 . (37)

Letting W = (0, π) × (−π, π) and Ĉ = S
2/{N,P}, where N and P are the north

and south poles of C, the map ϕ : W → Ĉ is a diffeomorphism. To compute the
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q1

q2

q3

C
s1

s2

q

B(q)

Figure 5. The VHC C in Example 2 and its parametrization.

Christoffel symbols of the induced connection on C, we define a left-annihilator of
B(q) = diag(1, 1, 2)q:

B⊥(q) = Im

[

− q2 q1 0
− q1q3 − q2q3 (q21 + q22)/2

]

.

For all q ∈ Ĉ, rankB⊥(q) = 2 and B⊥B = 0, as required. Using B⊥ above, ϕ

in (37), D = I3, and Γk
ij = 0, we get

C

Γk
ij from (33) as

C

Γ1
11 =

− sin(2s1)
2(cos2(s1) + 1)

,
C

Γ1
22 =

− sin(2s1)
cos2(s1) + 1

,
C

Γ1
12 =

C

Γ1
21 = 0,

C

Γ2
11 = 0,

C

Γ2
22 = 0,

C

Γ2
12 =

C

Γ2
21 = cot(s1).

Therefore, the coordinate representation of the constrained dynamics on TC is given
by the ODEs

s̈1 =
sin(2s1)

2(cos2(s1) + 1)
(ṡ1)2 +

sin(2s1)

cos2(s1) + 1
(ṡ2)2

s̈2 = −2 cot(s1)ṡ1ṡ2.

(38)

In Section 7 we will investigate the Lagrangian structure of (38). △

5. Existence of a Lagrangian structure for the constrained dynamics. In
this section we investigate this question: given the Lagrangian control system (22)
and a regular VHC C of order m, determine whether there exists a Riemannian
metric gC on C and a smooth potential function PC : C → R such that the constrained
dynamics (31) are generated by the Lagrangian structure (C, gC , PC). If this is the
case, we say that the constrained dynamics are Lagrangian. The solution in the
special case m = n − 1 was reviewed in Theorem 3.5. Here we investigate the
problem from a more general perspective.

5.1. A general result.

Theorem 5.1. If C is a regular VHC of order m for the Lagrangian control sys-
tem (22), then the constrained dynamics (31) are Lagrangian if and only if the
following two conditions hold:

(i) The induced connection
C

∇ is metrizable, i.e., there exists a Riemannian metric

gC on C such that
C

∇ is the Riemannian connection associated with gC.
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(ii) There exists a smooth function PC : C → R such that

σ(gradP ) = gradC PC ,

where gradC PC ∈ X(C) is the gradient vector field of PC induced by the metric gC,
i.e., defined by the identity dPC(vq) = gC(gradC PC , vq) for all vq ∈ TC.

Moreover, if (i) and (ii) hold, the Lagrangian structure of the constrained dy-
namics is (C, gC , PC).

Proof. (⇐=) If conditions (i) and (ii) hold, then it follows directly from the defi-
nition that the constrained dynamics (31) are generated by the Lagrangian system
(C, gC , PC).
(=⇒) Suppose the constrained dynamics (31) are generated by a Lagrangian sys-
tem (C, gC , PC). Let ∇̄ be the Riemannian connection associated with gC . By
Theorem 4.7, a curve q : I → C satisfies

C

∇q̇ q̇ + σq(gradP (q)) = 0 (39)

if and only if it satisfies
∇̄q̇ q̇ + gradC PC(q) = 0. (40)

For any q0 ∈ C, let q : I → C be the maximal integral curve of the constrained
dynamics (31) with initial condition (q0, 0). If {X1, . . . , Xn−m} is any local frame
for TC defined in a neighbourhood of q0, identity (7) and the fact that q̇|t=0 = 0
imply that

C

∇q̇ q̇
∣

∣

t=0
= ∇̄q̇ q̇

∣

∣

t=0
.

Since (39) and (40) hold, we deduce that

σq0(gradP (q0)) = gradC (P (q0)),

proving that PC satisfies condition (ii).
Next, subtracting (39) from (40) we get

C

∇q̇ q̇ = ∇̄q̇ q̇.

Since symmetric connections having the same geodesics are equal (see, instance, [28,

Theorem 2.101]), the above implies that
C

∇ = ∇̄. Hence,
C

∇ is metrizable, which
proves condition (i).

5.2. Case of orthogonal control accelerations. Referring to the regularity con-
dition (25), when the acceleration distribution DA is fibrewise orthogonal to TC (see
Figure 6), the feedback rendering TC invariant produces a control force that does no
work on base integral curves contained in C. In this setting, the control force is iden-
tical to the constraint force that would arise if C were a holonomic constraint5. Just
like in classical mechanics, one expects the constrained dynamics to be Lagrangian,
with Lagrangian structure given by the restriction of the original Lagrangian struc-
ture to C. The next proposition makes this intuition precise. Recall the inclusion
map ι : C → Q. The metric g : TQ× TQ → R on Q gives rise to a metric on C via
the pullback

ι∗g(vq, wq) = g(dιq(vq), dιq(wq)) for all vq, wq ∈ TqC.
The metric ι∗g is called the induced metric on C.

5In classical mechanics, holonomic constraints such that the constraint force does no work along
constrained solutions are called ideal.
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TqQTqQTqQ
TqCTqC

DA(q)DA(q)DA(q)

qq

CC QQ

Figure 6. Illustration of the case when the control accelerations
are orthogonal to C.

Proposition 5.2. If C is a regular VHC of order m for the Lagrangian control
system (22) such that

(∀q ∈ C) TqC
⊥

⊕DA(q) = TqQ, (41)

with orthogonality holding with respect to the metric g, then the constrained dynam-
ics (31) are Lagrangian with Lagrangian structure (C, gC , PC), where gC = ι∗g and
PC = P |C = P ◦ ι.
Proof. Since ∇ is a Riemannian connection, it satisfies

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ) (42)

for all X,Y, Z ∈ X(Q), and therefore also for all X,Y, Z ∈ X(C). Let X,Y, Z ∈ X(C)
be arbitrary. In light of the regularity condition (18), we have

∇XY = σ(∇XY ) +NXY =
C

∇XY +NXY,

where NXY is a vector field in the control distribution span{(F i)♯, i = 1, . . . ,m}.
By the orthogonality hypothesis, we have g(NXY,Z) = 0 for all Z ∈ X(C), implying
that

g(∇XY,Z) = g(
C

∇XY,Z) = gC(
C

∇XY,Z). (43)

The second identity in (43) is due to the fact that
C

∇XY and Z are vector fields on
C. Analogously to (43), we have

g(Y,∇XZ) = gC(Y,
C

∇XZ). (44)

Substituting (43) and (44) into (42) and using the fact that g(Y,Z) = gC(Y,Z), we
get

X(gC(Y,Z)) = gC(
C

∇XY,Z) + gC(Y,
C

∇XZ),

implying that
C

∇ is compatible with gC . Since, by Theorem 4.6,
C

∇ is symmetric,
C

∇
is Riemannian with respect gC , proving that condition (i) of Theorem 5.1 holds.

Next, we need to show that, for each q ∈ C, σq(gradP (q)) = gradC P |C , where
gradC P |C is the gradient vector field of P |C induced by the metric gC . Since, by
assumption, the subspace DA(q) is orthogonal to TqC, the projection σq : TqQ →
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TqC along DA(q) is a map whose kernel, DA(q), is orthogonal to its image, TqC.
This fact implies that σq is a self-adjoint map. Thus, for all vq ∈ TqC,

g(σq(gradP (q)), vq) = g(gradP (q), σq(vq)) = g(gradP (q), vq). (45)

Using the definition of grad, we have

g(gradP (q), vq) = dPq(vq). (46)

Since P |C = P ◦ ι and, for all vq ∈ TqC, dιq(vq) = vq, we may write

dPq(vq) = dPq ◦ dιq(vq) = d(P ◦ ι)q(vq) = (dP |C)q(vq). (47)

Substituting (46) and (47) into (45) and using the definition of gradC , we get

g(σq(gradP (q)), vq) = (dP |C)q(vq) = gC(gradC P |C(q), vq),
for all vq ∈ TqC. Since σq(gradP (q)) and vq lie in TqC, g(σq(gradP (q)), vq) =
gC(σq(gradP (q)), vq), and so

gC(σq(gradP (q)), vq) = gC(gradC P |C(q), vq),
for all vq ∈ TqC. In conclusion, σq(gradP (q)) = gradC P |C(q), proving that P |C
satisfies condition (ii) of Theorem 5.1.

Remark 5.3. As mentioned earlier, the foregoing proposition states that the con-
strained dynamics associated with a VHC satisfying condition (41) coincide with the
constrained dynamics one would have if the Lagrangian system (Q, g, P ) (without
control) were subjected to an ideal holonomic constraint. The result in Proposi-
tion 5.2 is not new once placed in the context of geometric mechanics, and we do
not claim it to be original. For instance, [14, Theorem 2.7] states an analogous
result. The value of Proposition 5.2 lies in the that it connects the concept of
virtual holonomic constraint in control theory with the concept of ideal holonomic
constraint in mechanics in the special case when the control accelerations are fibre-
wise orthogonal to TC. To gain further understanding of the relationship between
Proposition 5.2 and established concepts in geometric mechanics, it is worth com-
paring it with Proposition 4.97 in [7]. In [7], a holonomic constraint C is a maximal
integral manifold of a distribution D representing a linear velocity constraint. This

distribution is used to define a constrained connection
D

∇ on Q. Proposition 4.97

in [7] states that the restriction of
D

∇ to X(C)×X(C) is the Riemannian connection

of ι∗g, and Proposition 4.85 in [7] implies that
D

∇XY coincides with our
C

∇XY for
all X,Y ∈ X(C). Taken together, these results recover the proof of the first part
of Proposition 5.2, illustrating the strong analogy between VHCs satisfying condi-
tion (41) and holonomic constraints in [7]. As a caveat, we remark that, unlike the
framework in [7], we do not require an integrable distribution to define the induced

connection
C

∇, for
C

∇ is only required to be defined on X(C)× X(C).

6. Conditions for metrizability of affine connections. Theorem 5.1 estab-
lishes that in the absence of a potential function, assessing whether or not the
constrained dynamics induced by a regular VHC are Lagrangian amounts to as-
sessing the metrizability of the induced connection. In this section we review the
main results on metrizability of affine connections, presenting concrete results for
the cases dim C = 1 (already covered in Theorem 3.5) and dim C = 2. To keep the
notation simple, throughout the section we will consider a symmetric affine connec-
tion ∇ : X(C) × X(C) → X(C) with the understanding that all result will apply to
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the induced connection
C

∇. We also assume throughout that the submanifold C is
connected.

6.1. The holonomy group of an affine connection. A vector field X(t) along a
smooth curve γ on C is said to be parallel if its covariant derivative along γ vanishes,
i.e., DtX ≡ 0. Given a point q ∈ C and a tangent vector vq ∈ TqC, the equation
DtX = 0 with initial conditions X(0) = vq uniquely determines a parallel vector
field X(t) along γ (see [19, Chapter II, Proposition 3.3]). This vector field is called
the parallel translation of vq along γ. In local coordinates, the equation DtX = 0
is the linear time-varying ODE

Ẋk = −
∑

i,j

γ̇i(t)Γk
ij(γ(t))X

j , k = 1, . . . , n−m, (48)

where Γk
ij are the Christoffel symbols of ∇ and (X1, . . . , Xn−m) is the coordinate

representation of X.
In what follows, if q, p ∈ C, a piecewise smooth curve in C starting at q and

ending at p will be denoted γp
q . More precisely, γp

q : [0, T ] → C will be a piecewise
smooth map such that γp

q (0) = q and γp
q (T ) = p. On the other hand, a loop at q,

i.e., a piecewise smooth closed curve through q will be denoted by γq. The set of
all loops at q will be denoted by Lq.

For a curve γp
q , the parallel transport map along γp

q , denoted Pγp
q
: TqC → TpC,

is defined as Pγp
q
(vq) := X(T ), where X is the parallel translation of vq along γp

q .
For γq ∈ Lq, Pγq

maps TqC onto itself. The parallel transport map associated with
a loop is illustrated in Figure 7.

qvq

Pγq (vq)

γq

TqC

Figure 7. The parallel transport map at the north pole of the
unit sphere in R

3, with Riemannian connection induced by the
Euclidean metric in R

3. The loop γq is a triangle on the sphere.

Denoting by (γp
q )

−1 the curve obtained by reversing the orientation of γp
q , and

by γp
q · γr

p the concatenation of γp
q with γr

p , we have the following result.

Proposition 6.1 ([17], Chapter II, Proposition 3.3). For each q ∈ C and any
piecewise smooth curves γp

q , γ
r
p, the parallel transport map Pγp

q
: TqC → TpC is an

isomorphism enjoying the following properties:
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(i) If γq ∈ Lq is the constant loop γq(t) ≡ q, then Pγq
is the identity map on TqC.

(ii) P(γp
q )−1 = (Pγp

q
)−1.

(iii) 〈5〉 Order of

composition is swapped

in published version.

Pγp
q · γr

p
= Pγr

p
◦ Pγp

q
.

In particular, the set of all isomorphisms {Pγq
: γq ∈ Lq} forms a group under

composition.

The group Holq(∇) := {Pγq
: γq ∈ Lq} of all parallel transport maps along loops

at q is called the holonomy group of ∇ with reference point q, while the subgroup
Hol0q(∇) := {Pγq

: γq ∈ Lq is contractible to q} is the restricted holonomy group.
A remarkable property of the holonomy groups is that they possess a Lie group
structure.

Theorem 6.2 ([17], Chapter II, Theorem 4.2). Let C be a connected manifold, and
let q ∈ C. Then the following are true:

(i) Hol0q(∇) is a connected Lie subgroup of GL(n).

(ii) Holq(∇) is a Lie subgroup of GL(n) whose identity component is Hol0q(∇).

6.2. Schmidt’s metrizability theorem. The significance of the holonomy group
at it pertains to the metrizability of ∇ rests upon the following consideration.
If ∇ is Riemannian with respect to a metric g, then it is a basic fact of Rie-
mannian geometry that for any two vector fields V,W that are parallel along
a curve γ, g(V,W ) is constant along γ. 〈6〉 Typo in published

version

In particular, for any Pγq
∈ Holq(∇),

gq(Pγq
(vq),Pγq

(wq)) = gq(vq, wq). Also, by definition, gq is a positive definite, sym-
metric bilinear form on TqC. In conclusion, a necessary condition for ∇ to be metriz-
able is that there exists a symmetric, positive definite bilinear form TqC ×TqC → R

that is invariant under the holonomy group Holq(∇). This condition is also suffi-
cient.

Theorem 6.3 ([30]). Let ∇ be a symmetric affine connection on a connected man-
ifold C and let q ∈ C be arbitrary. Then ∇ is metrizable if and only there exists a
symmetric positive definite bilinear form gq : TqC×TqC → R that is invariant under
Holq(∇), i.e., for all γq ∈ Holq(∇) and all vq, wq ∈ TqC,

gq(Pγq
(vq),Pγq

(wq)) = gq(vq, wq). (49)

Schmidt’s theorem only requires one to determine whether or not a bilinear form
on TqC × TqC exists which is invariant under Holq(γq). It then guarantees that the
form in question can be extended to a Riemannian metric defined on the whole of
TC ×TC. We have already outlined the necessity part of the proof. The idea of the
sufficiency proof is to extend the bilinear form gq to the entire tangent bundle TC by
parallel translation along curves connecting q to arbitrary points in C. Specifically,
for arbitrary p ∈ C, pick an arbitrary piecewise smooth γp

q connecting p and q, and
define 〈7〉 Subscript and

superscript of γq
p are

flipped in the published

paper

gp(vp, wp) := gq
(

Pγp
q (vp),Pγp

q (wp)
)

. (50)

The invariance of gq under Holq(∇) guarantees that gp is path-independent, giving
rise to a Riemannian metric on C. One can easily show that the extension so
obtained is a Riemannian metric associated with ∇.

The result in Theorem 6.3 is of difficult application because the group Holq(∇)

is generally hard to find. The Ambrose-Singer theorem [1] characterizes Hol0q(∇)
in terms of the curvature form of the connection, but it requires the knowledge of
the so-called holonomy bundle, an object which is not readily available. In special
cases, however, the computations are more manageable, as we discuss next.
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6.3. Flat connections. The curvature endomorphism induced by an affine con-
nection ∇ is the map X(C)× X(C)× X(C) → X(C) defined as

R(X,Y )Z := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

If ∇ is a flat connection, i.e., the curvature R induced by ∇ is zero, then the
Ambrose-Singer theorem implies that Hol0q(∇) is trivial, and by [4, Theorem 2]
there exists a surjective homomorphism π1(C, q) → Holq(∇), where π1(C, q) is the
first homotopy group of C with reference point q. The homomorphism in question
sends an equivalence class of loops [γq] ∈ π1(C, q) to a parallel transport map Pγq

∈
Holq(∇). In this case, to apply Theorem 6.3 it suffices to compute the transport
maps associated with the generators of π1(C, q), as stated next.

Proposition 6.4. Let ∇ be a symmetric affine connection on a connected manifold
C, and suppose that ∇ is flat. Let q ∈ C be arbitrary, and let Sq be a set of generators
of π1(C, q). Then ∇ is metrizable if and only if there exists a symmetric positive
definite bilinear form gq : TqC × TqC → R such that, for each equivalence class
Eq ∈ Sq, there exist a piecewise smooth curve γq ∈ Eq for which

gq(Pγq
(vq),Pγq

(wq)) = gq(vq, wq),

for any vq, wq ∈ TqC.

6.4. Simply connected manifolds. When C is simply connected, Holq(∇) =

Hol0q(∇) because, by definition, all loops at q in C are contractible to q. By Theo-

rem 6.2, Hol0q(∇) is a connected Lie group, implying that it is entirely characterized
by its Lie algebra, the so-called holonomy algebra of ∇. We will denote by h the
holonomy algebra. For simply connected manifolds, one may express the invariance
condition in (49) in infinitesimal form, giving rise to a Lie algebraic metrizability
criterion.

Lemma 6.5 ([35]). Let ∇ be a symmetric affine connection on a simply connected
manifold C and let q ∈ C be arbitrary. A symmetric positive definite bilinear form
gq : TqC × TqC → R is invariant under Holq(∇) if and only if for all A ∈ h and all
vq, wq ∈ TqC,

gq(Avq, wq) + gq(vq, Awq) = 0. (51)

Remark 6.6. If∇ is real analytic6, the holonomy algebra h is entirely characterized
by the curvature and its covariant derivatives (see [17, Chapter II, Proposition 10.4
and Theorem 10.8]). Therefore, h can be computed in local coordinates. Then, a
consequence of Lemma 6.5 is that if C is simply connected and ∇ is a real analytic
affine connection on C, ∇ is metrizable if and only if it is locally metrizable (i.e.,
metrizable in local coordinates).

Exploiting Lemma 6.5 and the de Rham decomposition of a Riemannian man-
ifold, Kovalski in [18] gave an effective decision algorithm for metrizability of real
analytic affine connections on simply connected manifolds. We will not review the
algorithm here, but we refer the reader to the review in [35].

6And in other cases when ∇ is smooth, see [17].
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6.5. One-dimensional manifolds. If C is one-dimensional, then it is diffeomor-
phic to either R or S

1. This situation occurs in Lagrangian control systems with
degree of underactuation one, when a regular VHC of codimension one is enforced.
In Theorem 3.5 of Section 3, we reviewed necessary and sufficient conditions for
the constrained dynamics to be Lagrangian. Now we show that the conditions of
Theorem 3.5 have an elegant interpretation in the context of induced connections.
We will recover Theorem 3.5 as a corollary of Theorem 5.1 and Proposition 6.4.

We begin with the observation that any affine connection on a one-dimensional
manifold is flat, so if dim C = 1, we may apply Proposition 6.4 to assess the metriz-
ability of the induced connection. By comparing (20) and (35), we deduce that

C

Γ1
11(s) = −Ψ2(s), σs(gradP (s)) = −Ψ1(s), s ∈ Θ (52)

where we recall that Θ, defined in Proposition 3.4, is R or S1 depending on whether
C ≃ R or C ≃ S

1.
If C ≃ R, then π1(C, q) is trivial, and Proposition 6.4 is trivially satisfied. Thus

a connection on R is always metrizable. Using x ∈ R as coordinate for C, the
Riemannian metric on R will have the form gx(v, w) = (1/2)k(x)vw, with k(x) > 0.
By Theorem 5.1, the constrained dynamics are Lagrangian if and only if there
exists a function PC : R → R such that σx(gradP (x)) = k−1(x)P ′

C(x). This identity
is satisfied by letting PC be an antiderivative of the function k(x)σx(gradP (x)).
Having established the metrizability of the induced connection and the existence of
PC , by Theorem 5.1 the constrained dynamics are always Lagrangian. This recovers
the result of Theorem 3.5 when C ≃ R.

Now consider the case C ≃ S
1, so that Θ = S

1. Since π1(S
1, 0) = (Z,+), π1(S

1, 0)
is generated by the loop γ0 : [0 2π] → S

1, t 7→ tmod 2π. By Proposition 6.4,
the induced connection is metrizable if and only if there exists a positive definite
quadratic form that is invariant under the transport map Pγ0

. Recall the coordinate
representation of the parallel transport map in (48). Using t ∈ R as local coordinates
for S

1, we have that Pγ0
(v) = X(2π), where X is the solution of the linear time-

varying ODE

Ẋ =
(

Ψ2 ◦ π(t)
)

X t ∈ [0, 2π)

X(0) = v.

To obtain the above ODE, we substituted the first identity of (52) into (48), and
used the fact that the coordinate representation of Ψ2(s) is Ψ2 ◦ π(t), where π(t) =
tmod 2π. The solution of the above scalar linear system is

Pγ0
(v) =

(

exp

∫ 2π

0

Ψ2 ◦ π(z)dz
)

v.

We pick s = 0 as reference point on S
1. Then, modulo a multiplicative positive

scalar, the only positive definite bilinear form on T0S
1 × T0S

1 is g0(v0, w0) = v0w0,
and the invariance condition in Proposition 6.4 reads as

exp

(

2

∫ 2π

0

Ψ2 ◦ π(z)dz
)

v0w0 = v0w0.

The above identity holds for arbitrary v0, w0 if and only if
∫ 2π

0

Ψ2 ◦ π(z)dz = 0, (53)
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or, equivalently, if the function M̂C(x) in Theorem 3.5 is 2π-periodic. Thus, the

periodicity requirement on M̂C in part (b) of Theorem 3.5 is equivalent to the
requirement, in part (i) of Theorem 5.1, that the induced connection be metrizable.

To find the Riemannian metric on S
1 (denoted g in what follows), we extend

the inner product g0 : T0S
1 × T0S

1 → R to the whole TS1 × TS1 through parallel
transport, as in (50). For any s ∈ S

1, set gs(vs, ws) := g0(Pγ0
s
(vs),Pγ0

s
(ws)), where

γ0
s is an arbitrary curve from s to 0 in S

1. For instance, pick any x ∈ π−1(s), and
define γ0

s : [0, x] → S
1 as γ0

s (t) = s − (tmod 2π). Then, Pγ0
s
(vs) = exp

(

−
∫ x

0
Ψ2 ◦

π(z)dz
)

vs. Using Pγ0
s
, the Riemannian metric on S

1 is

gs(vs, ws) = exp

(

−2

∫ π−1(s)

0

Ψ2 ◦ π(z)dz
)

.

The above metric on S
1 gives the kinetic energy of the constrained dynamics in

Theorem 3.5, since it can be expressed as gs(vs, ws) = MC(s)vsws.
Next, we turn our attention to condition (ii) of Theorem 5.1, namely the existence

of PC : S1 → R such that σ(gradP ) = gradC PC , or

−Ψ1(s) =
1

MC(s)
P ′
C(s)

Equivalently, we need to check when is it that the one-form on S
1 −Ψ1(s)MC(s)ds

is exact. This is the case if and only if the integral of the form along S
1 is zero,

0 =

∫

S1

Ψ1(s)MC(s)ds =

∫ 2π

0

(

Ψ1 ◦ π(τ)
)

M̂C(τ)dτ.

This is precisely the condition that the function P̂C(x) in Theorem 3.5 be 2π-

periodic. Thus, the periodicity requirement on P̂C in part (b) of Theorem 3.5
is equivalent to the requirement, in part (ii) of Theorem 5.1, that σ(gradP ) =
gradC PC . We have thus shown that Theorem 3.5 is a corollary of Theorem 5.1 and
Proposition 6.4.

6.6. Two-dimensional manifolds. When dim C = 2, the metrizability of an
affine connection has a powerful characterization in terms of the Ricci tensor [34, 36].
We remark that the situation dim C = 2 arises in Lagrangian control systems with
degree of underactuation two, when a regular VHC of codimension two is enforced.
The Ricci curvature tensor (see, e.g., [19]) is the (0, 2) tensor defined as

Ric(Yp, Zp) = trace(Xp 7→ R(Xp, Yp)Zp), p ∈ C, Xp, Yp ∈ TpC,
where trace(·) denotes the trace of a linear map. If the affine connection ∇ is
Riemannian with respect to a metric g, then the Ricci tensor is proportional to the
metric,

Ric(X,Y ) = g(X,Y )K, (54)

where K ∈ C∞(C) denotes the Gaussian curvature of C (see [19, Lemma 8.7]).
Recall from (5) that the compatibility of ∇ with g means that ∇g = 0. If ∇ has
nonvanishing curvature, then K is nonvanishing, and setting α = 1/K, we have

∇(αRic) = ∇g = 0. (55)

For each X,Y, Z ∈ X(M), we have

∇X(αRic(Y,Z)) = X(α)Ric(Y,Z) + α∇X Ric(Y,Z),
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and using (55) we deduce that

∇X Ric(Y,Z) = −dα(X)

α
Ric(Y,Z) = d(− ln |α|)(X)Ric(Y,Z).

The above may be rewritten concisely using the total covariant derivative and the
tensor product as

∇Ric = d(− ln |α|)⊗ Ric .

A tensor field F whose total covariant derivative satisfies ∇F = ω ⊗ F , where ω is
a one-form, is said to be recurrent. Thus, a necessary condition for metrizability of
∇ is that the Ricci tensor induced by ∇ be recurrent, with a one-form ω given by
the exact differential of a function in C∞(C). Further, in light of the fact that when
∇ is metrizable identity (54) holds, another necessary condition for metrizability
is that the Ricci tensor be definite (positive definite if K > 0, negative definite if
K < 0). Together, these conditions are also sufficient.

Theorem 6.7 ([34],[36]7). Let C be a two-dimensional connected manifold and ∇ a
symmetric affine connection on C such that the curvature induced by 〈8〉 The published

version has C in place of

∇

∇ is nowhere
zero. Then ∇ is metrizable if and only if the Ricci tensor induced by ∇ is definite
and recurrent, with the corresponding one-form being exact. If this is the case,
and ∇Ric = df ⊗ Ric holds for some f ∈ C∞(C), then all Riemannian metrics
compatible with ∇ are given by

g = ± exp(−f + b)Ric, b ∈ R arbitrary,

with plus sign if Ric is positive definite, and minus sign otherwise.

The idea behind the proof of sufficiency rests upon the fact that if ∇Ric =
df ⊗Ric, then ∇

(

exp(−f + b)Ric
)

= 0, and therefore both type (0, 2) tensor fields
given by ± exp(−f + b)Ric are compatible with ∇. Since ∇ is symmetric, so is
Ric. Since Ric is definite, g in the theorem statement is positive definite.

7. Examples. We now illustrate the results of Sections 5 and 6 with three ex-
amples. First, we revisit Examples 1 and 2. Then we investigate the Lagrangian
structure of a double pendulum on a cart subject to a regular VHC of order 1.

Example 1 (Continued). Consider again the dynamics of the planar point-mass
of Example 1, a Lagrangian control system with underactuation degree one. The
constrained dynamics on the unit circle C depicted in Figure 4 are

s̈ = −(tanα)ṡ2, s ∈ S
1.

We want to determine the existence of a Lagrangian structure for these constrained
dynamics. For this, we may use Theorem 3.5, with Ψ1(s) = 0 and Ψ2(s) = − tanα.
We have

M̂C(x) = exp

(

−2

∫ x

0

tan(α)dz

)

= exp(−2 tan(α)x),

P̂C(x) = 0.

The constrained dynamics are Lagrangian if and only if M̂C is 2π-periodic, or α =
±π/2mod 2π. Thus the constrained point-mass is Lagrangian if and only if the
control force is orthogonal to the circle C, in which case the Lagrangian is L(s, ṡ) =
(1/2)ṡ2. As predicted by Proposition 5.2, L(s, ṡ) is the restriction of the original
Lagrangian to C, i.e., L(s, ṡ) = (1/2)g(q̇, q̇)|q̇=ϕ′(s)ṡ. △

7In these papers, the authors investigate the existence of non-degenerate metrics, whereas we
look for positive definite metrics. The statement of the theorem has been adapted accordingly.
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Example 2 (Continued). We return now to the unit mass of Example 2, a La-
grangian control system with degree of underactuation two. We seek to deter-
mine whether or not the constrained dynamics with coordinate representation given
in (38) are Lagrangian. Since this Lagrangian control system has no potential func-
tion, by Theorem 5.1 we only need to check whether or not the induced connection
on C is metrizable. To this end, we will use Theorem 6.7. Since C is simply con-
nected and the induced connection is real analytic, it suffices to check the recurrence
condition of Theorem 6.7 in local coordinates (see Remark 6.6).

In local coordinates (s1, s2) ∈ W ⊂ R
2, we have the frame {∂1, ∂2} given by

the natural basis of R2. We first compute the coefficients Rl
ijk of the curvature

endomorphism associated with
C

∇ in (s1, s2)-coordinates via the formula8 Rl
ijk =

dsl
(

C

∇∂i

C

∇∂j
∂k −

C

∇∂j

C

∇∂i
∂k

)

, i, j, k, l ∈ {1, 2}. Using (6) for the evaluation of
C

∇
we obtain

Rl
ijk = ∂si

C

Γl
jk − ∂sj

C

Γl
ik +

∑

m

(
C

Γm
jk

C

Γl
im −

C

Γm
ik

C

Γl
jm

)

, (56)

where
C

Γk
ij are the Christoffel symbols in (33).

The coefficients Ricij of the Ricci tensor are then given by Ricij =
∑

k R
k
kij .

Performing these computations, we get

Ric11 =
1

cos2(s1) + 1
, Ric12 = Ric21 = 0, Ric22 =

2 sin2(s1)

(sin2(s1)− 2)2
.

Next, using the total covariant differentiation of tensors, (2), (3), and the Christoffel

symbols (33), we compute the coefficients (
C

∇Ric)ijk of
C

∇Ric by means of

(
C

∇Ric)ijk =
C

∇∂i
Ric(∂j , ∂k).

By so doing, we find that the only nonzero coefficients (
C

∇Ric)ijk are

(
C

∇Ric)111 =
2 sin(2s1)

(cos2(s1) + 1)2
, (

C

∇Ric)122 = −4 sin(2s1) sin2(s1)

(sin2(s1)− 2)3
. (57)

Next, we check whether or not
C

∇Ric = df ⊗ Ric for a suitable smooth function
f . Consider a generic one-form ω on W ⊂ R

2, ω = ω1ds
1 + ω2ds

2. The nonzero
coefficients (ω ⊗ Ric)ijk of the tensor product ω ⊗ Ric are

(ω ⊗ Ric)111 = ω1

cos2(s1) + 1
, (ω ⊗ Ric)122 =

2ω1 sin
2(s1)

(sin2(s1)− 2)2
,

(ω ⊗ Ric)211 = ω2

cos2(s1) + 1
, (ω ⊗ Ric)222 =

2ω2 sin
2(s1)

(sin2(s1)− 2)2
.

(58)

By comparing (57) and (58), we see that
C

∇Ric = ω ⊗ Ric if and only if ω1 =
2 sin(2s1)/(cos2(s1) + 1) and ω2 = 0, i.e.,

ω =
2 sin(2s1)

cos2(s1) + 1
ds1.

8Here we use the fact that [∂i, ∂j ] = 0.
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The one-form ω is exact, ω = df , with f(s) = −4 atanh(sin2(s1)/(sin2(s1)−4)). By
Theorem 6.7, the constrained dynamics on TC are Lagrangian, and a Lagrangian
function in local coordinates is given by

L(s, ṡ) = (1/2)ṡ⊤DC(s)ṡ,

where DC(s) is the matrix exp(−f(s))[Ric], with [·] denoting the matrix represen-
tation of the Ricci tensor. Specifically, we have

DC(s) =

[

1/2− sin2(s1)/4 0
0 sin2(s1)/2

]

.

In applying Theorem 6.7, we used the plus sign in the metric because the matrix
[Ric] is positive definite. One may check that the Euler-Lagrange equation with L as
above gives the constrained dynamics (38). We stress once again that although our
computations are done in local coordinates, by the argument in Remark 6.6 the fore-
going considerations imply that the constrained dynamics are globally Lagrangian.
△
Example 3. Consider the double pendulum on a cart depicted in Figure 8, a
Lagrangian control system with three degrees-of-freedom and one input. We inves-
tigate two cases.

• Case (a): the control input is the force imparted to the cart.
• Case (b): the control input is the torque imparted on the second revolute
joint.

We assume that the pendulum rods are massless, that the masses of the two pen-
dulums are unitary, and that the rod lengths are unitary as well. Using q =

q1

q2

q3

τ

τ

(a) (b)

Figure 8. The double pendulum on a cart of Example 3. Case
(a): control force on the cart. Case (b): control torque on the last
joint. The orthogonal frame in the figure is the inertial reference
frame.

(q1, q2, q3) ∈ R × S
1 × S

1 as generalized coordinates, the Lagrangian of the sys-
tem is L(q, q̇) = 1

2gq(q̇, q̇)− P (q), with

gq(q̇, q̇) = q̇⊤





3 − 2 cos(q2) − cos(q3)
− 2 cos(q2) 2 cos(q2 − q3)
− cos(q3) cos(q2 − q3) 1



 q̇,

and

P (q) = (2 cos(q2) + cos(q3))G,
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where G is the gravitational constant. In generalized coordinates, the control force
is the vector B(q)τ = [1 0 0]⊤τ (case (a)) or [0 0 1]⊤τ (case (b)), where τ ∈ R is
the control input. Letting Q = R × S

1 × S
1, we have a Lagrangian control system

(Q, g, P, F ), where F = dq1 or F = dq3, respectively.
Consider the embedded submanifold of Q,

C = {q ∈ Q : q3 = ρ(q2)},
where ρ : S1 → S

1 is the smooth function

ρ(q2) = q2 + 2arctan
(

(1 +
√
2) tan(−q2/2)

)

.

The configuration of the double pendulum on C is illustrated in Figure 9. The
function ρ above was already used in [10] for path following control of a PVTOL
aircraft, and in [21] for pendubot swing-up. In the context of the double pendulum
on a cart of Figure 8, the function ρ induces the interesting property that, on C,
the last link does not perform full revolutions and remains confined to the upper
half-plane.

Figure 9. Configurations of the double pendulum on the VHC C
of Example 3. The missing configurations on the right-hand side
are deduced by symmetry with respect to the vertical axis.

〈9〉 Typo in published

paper.

Letting h(q) = q3 − ρ(q2), one may check that, in both cases (a) and (b),
dhqD

−1(q)B(q) 6= 0 for all q ∈ C, so by the equivalence of Definitions 3.2 and 4.3, C
is a regular VHC. The set C is diffeomorphic to a cylinder via the diffeomorphism
R × S

1 → C, (s1, s2) 7→ (s1, s2, ρ(s2)). Using this global parametrization and the
formulas in (33), one may show that, in both cases (a) and (b), the only nonzero

Christoffel symbols of
C

∇ are
C

Γ1
22(s

2) and
C

Γ2
22(s

2), and they are functions of s2 only.
Similarly, the representation of σ(gradP ) in (s1, s2)-coordinates is a function of s2

only. Therefore, in both cases (a) and (b) the constrained dynamics (34) have the
form

s̈1 = −
C

Γ1
22(s

2)(ṡ2)2 − λ1(s
2)

s̈2 = −
C

Γ2
22(s

2)(ṡ2)2 − λ2(s
2),

(59)

where (λ1(s
2), λ2(s

2)) is the coordinates representation of σ(gradP ). The precise
expressions are easy to determine with the formulas in Section 4.3, but they are too
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long to report here. The function ρ is odd, i.e., ρ(−s2) = −ρ(s2), and as a result,

the functions
C

Γ1
22(s

2),
C

Γ2
22(s

2), λi(s
2) are odd as well.

Now we investigate the Lagrangian nature of the constrained dynamics. We will
show that in case (a) (force on the cart), the constrained dynamics are not La-
grangian, while in case (b) (torque on the second revolute joint), they are. We

begin by checking condition (i) of Theorem 5.1, i.e., the metrizability of
C

∇. The
coefficients of the curvature endomorphism in (s1, s2) coordinates may be computed

using the formula (56). Owing to the fact that only the symbols
C

Γk
22 are nonzero,

and that they are functions of s2 only, we see from (56) that the curvature endo-
morphism is identically zero, i.e., the induced connection is flat. We can then use
Proposition 6.4 to determine whether or not the induced connection is metrizable.
Recall that (s1, s2) ∈ R × S

1. In what follows, the point (0, 0) ∈ R × S
1 will be

denoted 0 in subscripts.
The generator of the first homotopy group π1(R × S

1, (0, 0)) is [γ0], where γ0 :
[0, 2π] → R× S

1 is the curve t 7→ (0, tmod 2π). In light of Proposition 6.4, we seek
a positive definite quadratic form that is invariant under the transport map Pγ0

.
With reference to (48), to find Pγ0

we solve the linear time-varying system

Ẋ =





0 −
C

Γ1
22(t)

0 −
C

Γ2
22(t)



X, X(0) = v,

and put Pγ0
(v) = X(2π). The solution is X(t) = (X1(t), X2(t)) with

X1(t) = v1 − v2

∫ t

0

C

Γ1
22(z) exp

(∫ z

0

−
C

Γ2
22(u)du

)

dz

X2(t) = v2 exp

(∫ t

0

−
C

Γ2
22(z)dz

)

.

(60)

Denote I1(t) := −
∫ t

0

C

Γ2
22(z)dz and I2(t) :=

∫ t

0

C

Γ1
22(z) exp

(

I1(z)
)

dz. Then,

Pγ0
(v) =

[

1 − I2(2π)
0 exp

(

I1(2π)
)

]

v.

Recall that the functions Γk
22 are odd and 2π-periodic. The integral over one period

of an odd periodic function is zero. Using this fact, we have I1(2π) = 0. Since the
integral of an odd function is an even function, exp(I1(t)) is even, and its product

with
C

Γ1
22(t) is odd. Thus I2(2π) = 0. In conclusion, Pγ0

is the identity map,
implying that any positive definite quadratic form on (T(0,0)R×S

1)× (T(0,0)R×S
1)

is invariant under Pγ0
. By Proposition 6.4,

C

∇ is metrizable. This result holds for
both cases (a) and (b).

Next, we find all Riemannian metrics on R× S
1 compatible with

C

∇. Just like in
Section 6.5, we will use the notation g (in place of gC) for such a metric. Modulo
scalar multiples, the generic positive definite quadratic form on (T(0,0)R × S

1) ×
(T(0,0)R× S

1) is

g0(v0, w0) = v⊤0

[

1 a
a b

]

w0,
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with a, b ∈ R such that b > a2. As in Section 6.5, the Riemannian metric on R×S
1

is found by parallel transporting g0 by means of (50). The construction is illustrated
in Figure 10.

s2
s1

γs̄
0

γs
s̄

(0, 0)

(s1, s2)s̄

v

Pγs
0
(v)

Figure 10. Parallel transport on R× S
1 from (0, 0) to (s1, s2).

Let s = (s1, s2) ∈ R × S
1 be arbitrary, denote s̄ := (0, s2). Pick any x2 ∈

π−1(s2) and define a path γs
0(t) as the concatenation of paths γs̄

0 and γs
s̄ , where

γs̄
0 : [0, x2] → R× S

1 is defined as γs̄
0(t) := (0, tmod 2π), and γs

s̄ : [0, s1] → R× S
1 is

defined as γs
s̄(t) := (t, s2). Then, γs

0 : [0, s1 + x2] → R × S
1 is a piecewise smooth

path connecting (0, 0) to (s1, s2). See Figure 10. By Proposition 6.1, we have
〈10〉 Order of

composition is swapped

in published version

Pγs
0
= Pγs

s̄
◦ Pγs̄

0
. Since γs

s̄ is a translation along the real line, Pγs
s̄
is the identity

map. On the other hand, Pγs̄
0
is given by (60) at time s2. In conclusion, the parallel

transport map from (0, 0) to (s1, s2) is

Pγs
0
=

[

1 − I2(s
2)

0 exp
(

I1(s
2))

]

.

By Proposition 6.1, the parallel transport map from (s1, s2) to (0, 0) is P
−1
γs
0

. Now

we define a Riemannian metric g on R × S
1 by transporting tangent vectors in

T(s1,s2)(R× S
1) to T(0,0)(R× S

1) (cf. (50)):

g(vs, ws) := g0
(

P
−1
γs
0

(vs),P
−1
γs
0

(ws)
)

= v⊤s

[

1 − I2(s
2)

0 exp
(

I1(s
2))

]−⊤ [

1 a
a b

] [

1 − I2(s
2)

0 exp
(

I1(s
2))

]−1

ws

= v⊤s DC(s
2)ws,

(61)

where

DC(s
2) :=

[

1 exp(−I1(s
2))(I2(s

2) + a)
exp(−I1(s

2))(I2(s
2) + a) exp(−2I1(s

2))(I2(s
2) + 2aI2(s

2) + b)

]

.

By this construction, for any (a, b) with b > a2, g is a Riemannian metric on R×S
1,

and
C

∇ is the Levi-Civita connection of g. This result holds for both cases (a) and
(b).

Next we turn to condition (ii) of Theorem 5.1, namely the existence of a smooth
function PC : C → R such that σ(gradP ) = gradC PC or, in (s1, s2)-coordinates, a
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function PC : R× S
1 → R such that

[

λ1(s
2)

λ2(s
2)

]

= D−1
C (s2)∇sPC ,

where λ1, λ2 are the functions in the constrained dynamics (59). Equivalently, we
seek a function PC such that

(dPC)s =
[

λ1(s
2) + exp(−I1(s

2))(I2(s
2) + a)λ2(s

2)
]

ds1

+
[

exp(−I1(s
2))(I2(s

2) + a)λ1(s
2)

+ exp(−2I1(s
2))(I2(s

2) + 2aI2(s
2) + b)λ2(s)

]

ds2.

(62)

Such a function PC exists if and only if the one-form on the right-hand side of the
above identity is exact. For this, we need to check whether this one-form is closed,
and whether its integral over the loop γ0 defined earlier is zero. As far as closedness
of the form is concerned, we need to check whether or not there exists a ∈ R such
that

∂s2
[

λ1(s
2) + exp(−I1(s

2))(I2(s
2) + a)λ2(s

2)
]

= 0. (63)

In case (a) when the control force is on the cart, one can show that there is no value
of a for which (63) holds, whereas in case (b), when there is a control torque on
the last joint, (63) is satisfied with a = −1/2. In the latter case, the one-form on
the right-hand side of (62) is also exact because its components are odd functions
of s2. We choose any b > a2, for instance b = 1, and obtain that the constrained
dynamics in (59) are a Lagrangian system (R× S

1, g, PC), with g given in (61) and

PC(s) =

∫

γs
0

dPC ,

with dPC given in (62), and γs
0 defined earlier.

We summarize our results for this example in the following table.

q3 = ρ(q2)
regular?

C

∇ metr’le? PC exists? Lagr. exists?

Force on cart yes yes no no
Force on last
joint

yes yes yes yes

Figure 11 depicts the (s2, ṡ2) orbits (equivalently, the (q2, q̇2) orbit) of a few solu-
tions of the constrained system in cases (a) and (b). In both cases, we observe two
types of behaviours: there are trajectories along which q2 exhibits a rocking motion
around π, and others along which q2 performs full revolutions. The behaviour of
q1, not shown in the figure, is a drifting motion with bounded, sign-definite speed.
△

8. Conclusions. We introduced a coordinate-free framework of virtual holonomic
constraints for underactuated Lagrangian control systems, exposing the role of in-
duced connections in the characterization of constrained dynamics. In this frame-
work, the classical mechanics notion of ideal holonomic constraint becomes the spe-
cial case in which the acceleration distribution is orthogonal to the VHC. We showed
that, generally, the constrained dynamics are not Lagrangian, and the metrizability
of the induced connection is key for the existence of a Lagrangian structure. When
the constrained dynamics are forced (i.e., when the order of the regular VHC is less
than the number of control inputs), the problem remains open of determining when
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Figure 11. (q2, q̇2) orbits of a few solutions of the double pendu-
lum on a cart subject to the VHC q3 = ρ(q2). On the left, case (a)
(force on cart). On the right, case (b) (torque on last joint).

the constrained dynamics are feedback equivalent to a Lagrangian control system.
One possible avenue of investigation for the solution of this latter problem is to
globalize the local theory of [29] in the context of affine connection control systems.

Appendix A. Proof of Lemma 4.5. We begin by observing that if X ∈ X(Q),
then for each Yq ∈ TQ, vlft(X)(Yq) ∈ Ker dπYq

. Indeed,

dπYq

(

vlft(X)(Yq)
)

= dπYq

(

(d/dt)|t=0(Yq + tX(q))
)

=
d

dt

∣

∣

∣

t=0
π(Yq + tX(q)) =

d

dt

∣

∣

∣

t=0
q = 0.

Using the above and the property of geodesic sprays that dπXq
(S(Xq)) = Xq,

for each Xq ∈ TC we have

dπXq

(

S(Xq)− vlft(gradP )(Xq)
)

= dπXq

(

S(Xq))− dπXq

(

vlft(gradP )(Xq)
)

= Xq ∈ TqC.
(64)

From (64) we deduce that

(∀Xq ∈ TC) S(Xq)− vlft(gradP )(Xq) ∈ (dπXq
)−1(TqC), (65)

thus the proof of the lemma will be complete if we show that

(∀Xq ∈ TC) (dπXq
)−1(TqC) = TXq

TC ⊕ vlft(DA)(Xq). (66)

Let Xq ∈ TC be arbitrary. Since dim((dπXq
)−1(TqC)) = 2n − m = (2n − 2m) +

m = dim(TXq
TC) + dim(vlft(DA)(Xq)), to prove (66) we need to show that the

subspaces TXq
TC and vlft(DA)(Xq) are independent and contained in the subspace

(dπXq
)−1(TqC).

First we show that TXq
TC ⊂ (dπXq

)−1(TqC). Let YXq
∈ TXq

TC, then there exists
a smooth curve in TC, γ : R → TC, such that γ(0) = Xq and γ̇(0) = YXq

. We have
dπXq

(YXq
) = (d/dt)|t=0π(γ(t)). Since γ is a curve on TC, π(γ(t)) is a curve on C,

and thus (d/dt)|t=0π(γ(t)) ∈ TqC, which proves that YXq
∈ (dπXq

)−1(TqC).
Next we show that vlft(DA)(Xq) ⊂ (dπXq

)−1(TqC). This follows directly from

the fact that vlft(DA)(Xq) ∈ Ker dπXq
⊂ (dπXq

)−1(TqC).
Finally, let YXq

∈ TXq
TC ∩ vlft(DA)(Xq). Then there exists Fq ∈ DA(q) such

that YXq
= (d/dt)|t=0(Xq + tFq). Moreover, (d/dt)|t=0(Xq + tFq) ∈ TXq

TC, which
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implies that Fq ∈ TqC. Since Fq ∈ DA(q), the regularity condition (25) implies
that Fq = 0, and therefore YXq

= 0. Thus the subspaces TXq
TC and vlft(DA)(Xq)

are independent, which shows that (66) holds. Together, (65) and (66) prove the
lemma.
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non-linéaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, 32 (1911), 48–50.

[3] V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics,

Vol. 60), 2nd edition, Springer, 1989.
[4] L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Annals of Math-

ematics, 62 (1955), 139–151.
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