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Abstract— The problem of making a bicycle trace a strictly ~ are, therefore, closely related, the main difference béheg
convex Jordan curve with bounded roll angle and bounded fact that in the former case the pendulum lies on a plane
speed is investigated. The problem is solved by enforcing a which is orthogonal to the plane of the curve, while in

virtual holonomic constraint which specifies the roll angleof the -
bicycle as a function of its position along the curve. It is shwn (€ latter case it lies on the same plane. In [6], the path

that virtual holonomic constraints can be generated as peddic ~ following problem for the PVTOL was solved by enforcing

solutions of a scalar periodic differential equation. Findly, it  a virtual holonomic constraint which specifies the roll angl

is shown that if the mean curvature of the path is sufficiently of the PVTOL as a function of its position on the curve.

small the virtual holonomic constraint can be asymptoticaly | this paper we follow a similar approach for the bicycle

stabilised and the speed of the bicycle is asymptotically pedic. . . . . .
model and impose a virtual holonomic constraint relatirgy th
bicycle’s roll angle to its position along the curve, buthet

[. INTRODUCTION than finding one feasible virtual constraint, we show how

This paper investigates the problem of maneuvering ® generate a class of feasible virtual constraints as gierio
bicycle along a closed Jordan cur@eén the horizontal plane solutions of a scalar periodic differential equation whicé
in such a way that the bicycle does not fall over and it§all the virtual constraint generatorWe show that if the
velocity is bounded. The simplified bicycle model we use irurvature of the path is sufficiently small compared to the
this paper, developed by Neil Getz [1], [2], views the bieycl height of the bicycle’s centre of mass, then on the condtrain
as a point mass with a side slip velocity constraint, anganifold the velocity of the bicycle converges exponefytial
models its roll dynamics as those of an inverted pendulurt9 @ periodic profile. In other words, the bicycle traverses
see Figure 1. The model neglects, among other things, tHe entire curve with bounded speed and its speed profile
wheels dynamics and the associated gyroscopic effect. Tifeasymptotically periodic. Finally, we design a controlle
dynamics of Getz's bicycle when the contact point of the reakhich exponentially stabilises the virtual constraint iifiaid
wheel is made to follow the curv@ are Euler-Lagrange.  and recovers the asymptotic properties of the bicycle on the
In [3], Hauser-Saccon-Frezza investigate the maneuveriggnstraint manifold just described.
problem for Getz's bicycle using a dynamic inversion ap- The idea of virtual holonomic constraint is a useful
proach to determine bounded roll trajectories. They cairstr paradigm for the control of oscillations and goes well begon
the bicycle on the curve and, given a desired velocity signéieé example investigated in this paper. To the best of our
v(t), they find a trajectory with the property that the velocityknowledge, this notion originated with the work of Grizzle
of the bicycle isv(t) and its roll angley is in the interval and collaborators on biped locomotion (e.g., [7] and [8heT
(—m/2,7/2),i.e, the bicycle doesn't fall over. In [4], Hauser- recent work in [9], [10], [11] investigated virtual holonam
Saccon develop an algorithm to compute the minimum-timeonstraints for Euler-Lagrange systems. There, an integra
speed profile for a point-mass motorcycle compatible witef motion for the dynamics on the virtual constraint was
the constraint that the lateral and longitudinal accelenat given explicitly, and a methodology to stabilise desireniti
do not make the tires slip, and apply their algorithm to Getz'cycles on the virtual constraint manifold was given based
bicycle model. on a time-varying linearization of the system on the limit
The problem of maneuvering Getz’s bicycle along a closegycle. In [12], this ideas were applied to the stabilisation
curve is equivalent to moving the pivot point of an invertecf oscillations in the Furuta pendulum. In [13], we gave
pendulum around the curve without making the pendulurgonditions for a virtual holonomic constraint to be feasjbl
fall over. On the other hand, the seemingly different proble and we exposed the role of the virtual constraint generator
of maneuvering Hauser's PVTOL aircraft [5] along a closedn producing feasible virtual constraints that can alwags b
curve in the vertical plane can be viewed as the problem dcally exponentially stabilised. We also presented sieffic
moving the pivot of an inverted pendulum around the curvéonditions in order that the reduced system describing the
without making the pendulum fall over. The two problemgnotion on the virtual constraint manifold be Euler-Lagrang
The bicycle model in this paper does not meet the sufficient
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In order to derive the constrained dynamics, suppose that
(2(0),4(0)) € C, i.e., (x(0),y(0)) = o(so), for somes, €
RmodT'. A point o(s(t)) moving onC has linear velocity

v(t) = [lo’(s(t))]15(2) 2
and acceleration
) = |lo’(s s ﬂa’ s To'(s
o(t) = [lo’(s(1))[[5(¢) + EZEo (s(t)) o"(s(t)). (3)

Therefore, for an arbitrary velocity signa(t), (x(t), y(t))
traverse€ with velocity v(¢) if and only if (2(0),4(0)) € C,
((0),9(0)) is tangent toC, and the steering anglé(¢)
is chosen to be(t) = arctan[px(s(t))], wheres(t) =

(fg[v(7’)/||cr’(s(7’))||]d7’) mod7T, so that

Fig. 1. Getz's bicycle model. R(t) = n(s(t)) . 4)

The motion of the bicycle on the cur¢eis thus found by

We adopt the notational conventions in [3] to describe thgubstituting (2), (3), (4) in (1):
simplified bicycle model depicted in Figure 1:

. H y SD 3 O
« (x,y) - coordinates of the point of contact of the rear g4 @)oo = F U ®)
lo” 13 + =3 1/m

wheel o
« ¢ - roll angle where M = M|;_y,) and
e 7 - yaw angle
e 0 - prOJected steering angle_on .tIQe, y) plane F=|F+B 1 K'(s)é .
« b - distance between the projection of the centre of mass 0 k=k(s),v=|lo"(s)||$

and the point of contact of the rear wheel

« p - wheel base The motion of the bicycle o@ in (5) is an Euler-Lagrange

« h - pendulum length system with configuration variableg, s) and Lagrangian

« v - forward linear velocity of the bicycle L=T-V,with
« f - reaction force of the ground on the rear wheel. 1., o s
! ! are | . =3l 1@t | F ]V = ancosy,
We will denote’ = tand/p = v/v. For a given velocity 2 |o"(s) 1|5
signal v(t) and steering angle signalt), x(t) represents gince the control forcef enters nonsingularly in the

the curvature of the patiz(t),y()) traced by the point equation, we can define a feedback transformation ffor
of contact of the rear wheel. The model of the bicycle in, (5) such thats = u, whereu is the new control input.

Figure 1 was presented in [2] and is given by With this transformation, the motion of the bicycle @¢h
@ i reads as
wlf = renfi] o o
Y hg = gs, — {(1 — hr(s)sy)k(s)|lo” (s)]| + br'(s)

where, lettings,, = sin ¢ andc,, = cos ¢, b
’ ’ )51 (5) o (5)] el (5)15% — b(s)e o (]
o] bhe [lo” ()l
T |bheok 14 (0 + hPs)R? — 2hks, | §=u.
ghs, — (1 — hksy)he,Rv? . . ©)
F= {(1 ~ his )2he, Fv S+ bhics -2] , Letting ¢ = (¢, s), the state space 8 = {(¢,4) € S* x
) ENCRRVP ¥ (RmodT) x R?}. In our simulations we will usé = 1m
B= { , 7 bheev 0 ] , andb = 1.5m.
= (0K = hso(1 = hRse))v 1/m Remark 1.1:If o(s) is a unit speed parametrization Gf

Consider aC® closed Jordan curvé in the (z,y) plane then the first differential equation in (6) reduces to

with regular parametrization(s) : RmodT — R? (T is the
period of the functiorr), not necessarily unit speed. Lefs)
denote the signed curvature ©f Throughout this paper, we

h$ = gs, — {(1 — hk(s)sy)k(s) + le(S)} cp8® — bk (s)cu.
The objective of this paper is to solve the following

assume the following. Maneuvering Problem. Find a feedbacku(q,¢) for
Assumption 1:The curveC is strictly convex, i.e.x(s) >  system (6) such that there exists a set of initial conditi@ns
0 for all s € RmodT'. with the property that, for al(¢(0),¢(0)) € €, the bicycle

In this paper we investigate the dynamics of the bicycle whedoes not overturn, i.e|o(t)| < «/2 for all ¢ > 0, and
the point(xz,y) is constrained to move along the cur@e traverses the entire cur¢ein one direction, i.e., there exists



t > 0 such thats(¢)| > 0 for all ¢ > ¢. Moreover, the speed of periodic solutions is addressed in the next proposition,

5(t) of the bicycle onC should remain bounded. whose proof is omitted due to space limitations.
Proposition 2.2:Setd(s) = eu(s), wherep : RmodT —

R is a T-periodic and locally Lipschitz function such that

u(s) >0 for all s € RmodT’, and let

Our solution of this problem relies on the notion of virtual
holonomic constraint.
Definition 1.2: A function ¢ = ®(s), ® : RmodT —

S is avirtual holonomic constrainfor system (6) if the Kt — uls)
constraint manifold sekmod? \ k(s)[o’(s)|| }
T'={(q.4) €X:p=0d(s), p=0(s)s K== min ()

{(¢;9) € ® (s), & (s)s} scRndT (H(S)|O’I(S)”

is controlled invariant, i.e., there exits a smooth feedbac—rhen’ for any®, € (0, 7/2)
u(q, ¢) rendering it invariant.

The constraint manifold is the collection of all those
phase curves of (6) such that(t) = ®(s(t)) for all ¢ e€le, e =[(rcos®y)/KT,(rcos®y)/K],
for which the solution is defined. It is a two-dimensional

submanifold of X parametrized by(s, $), and therefore
diffeomorphic to the cylindefR modT’) x R. Our approach
to solving the maneuvering problem is to look for virtua
holonomic constraintyy = ®(s) such that|®(s)| < 7/2
for all s € RmodT. The advantage of this approach, as
opposed to searching for individual bounded roll trajecto-(q)_ o) = (COS_1(K_+ cos ‘Po) COS—1(£ cos @0))
ries, is that each virtual constraidt provides afamily of ’ K- ’ ’
bounded roll trajectories corresponding to arbitrary chsei
of (s(0),$(0)) € (RmodT’) x R.

mod27 and sy € RmodT,
(i) there exists a unique

such that the solution of (8) witli(s) = eu(s) and
initial condition ®(sg) = ® is T-periodic.
| (i) If w(s) is chosen so thak+ /K~ < (cos ®¢)~1, then
the image of th&-periodic solution®(s) in part (i) is
contained in the interval

which is a subset of0, 7/2).

Remark 2.3:By choosingu(s) = x(s)||o’(s)||, we have
Kt =K =1, = ¢ = rcos®. In this case, the
. ] . . _proposition above implies that, for all, € (0, 7/2), setting

In this section we show that virtual holonomic constrainty () — rx(s)||o”(s)| cos @y, the virtual constraint generator
for (6) can be generated as solutions of a first-order differe 535 ar-periodic solution®(s) whose image is in the interval
tial equation, which we call theirtual constraint generator. (0, 7/2) mod2r. As a matter of fact, one can readily verify
This_ ideg was firs_t _presente(_j _in our previous_ work [13]. Wenat the solution in question is constad(s) = ®,, which
begin with a sufficient condition for a functiot to be a corresponds to the situation when the bicycle has a constant

Il. THE VIRTUAL CONSTRAINT GENERATOR

feasible virtual holonomic constraint for (6). ~ roll angle as it travels around. The proposition provides
Lemma 2.1:A C* functiony = @(s), RmodT" — S' is  great flexibility in finding virtual holonomic constraintsitiv
a virtual holonomic constraint for system (6) if the property that the roll angle is confined within the ingérv
®'(5) + h~br(s)||0” ()]| cos B(s) # 0 @) (0,7/2) m(_)d27r. All such constraints are compatible with the
maneuvering problem.
for all s € RmodT. Example 2.4:SupposeC is an ellipse with major semi-

Proof: Viewing the functiony — ®(s) as an output axis A, minor semiaxisB, and 2r-periodic parametrization
of system (6), condition (7) is simply the requirement that-(s) = (Acoss, Bsins), with A = 15, B = 5. The
said output has a well-defined uniform relative degree 2 oeurvature is«(s) = AB/(A?sin? s + B2 cos® 5)%/2. For the
{¢ — ®(s) = 0}. The associated zero dynamics manifold ignitial condition of the virtual constraint generator, weekp
preciselyl’, and it is controlled invariant. m ®(0) = 7/3. Following Proposition 2.2, we need to choose
The foregoing lemma inspires the following observationa 27-periodic functionu(s) > 0, setd(s) = eu(s), and find
Instead of guessing a virtual constraint and checking wereththe unique value ot > 0 guaranteeing that the solution
it is feasible, as in the lemma, one could use (7) to generatéth initial condition ®(0) = 7/3 is 2n-periodic. There is
feasible virtual holonomic constraints. More preciselgt | much freedom in the choice qf(s). For instance, picking
r = h~'b and consider the scalar differential equation u(s) = 1, we numerically find: ~ 0.927. The corresponding

4P virtual holonomic constraint is depicted in Figure 2. The

— = —rr(s)]|0’(s)]| cos ® + 4(s). (8) condition, in Proposition 2.2(ii), thak /K~ < (cos ¢) !

ds is very conservative. Indeed, with our choiceofve have
Sinces is a cyclic variable inR mod7', the above is &- K+ =3 K~ = 1/3 and thus the condition is violated. Yet,
periodic differential equation. If, for somé(s) # 0, (8) the image of the virtual constraint is contained in the iveér
has aTl'-periodic solution®(s), then in light of Lemma 2.1, (0, 7/2).
» = ®(s) is a virtual holonomic constraint. Therefore, one
can think of differential equation (8) asvartual holonomic l1l. M OTION ON THE CONSTRAINT MANIFOLD
constraint generatqgrfor which one is to pickd(s) such Having choserd(s) as in Proposition 2.2(ii) and an asso-
that a periodic solution exists. Such problem of existenceiated virtual holonomic constraigt = ®(s) satisfying (8),

3
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Fig. 2. Virtual holonomic constraint for the ellipse in Expla 2.4.

the next step is to analyse the dynamics on the constraint

manifoldT" = {(¢,¢) € X : ¢ = ®(s), ¢ = ?’(s)s}. These
are the zero dynamics of (6) with output functipn- ®(s).
The feedback making' invariant is found by imposing that
d

@[ ¥'(s
above, using identity (8), and the fact thts) # 0, we
obtain the feedback making invariant

h=lgsin® $27_,
— gl

+bra’ 0" ||o"|[2)|lo”|| cos cb} :

1
u= E((l — hisin ®)k|o’|| + br’

Substituting this feedback in the dynamics we get the
dynamics o,

§=Wy(s) + Wa(s)s?, 9)

where
h™1gsin ®(s)
15(5) 1
Uy(s) = ) [‘P"(S) + (1= hre(s) sin @ (s))r(s)[|o" (5)]

+bm(s)o’(sfa“(s)/||a'<s>||2>cos«b(s)ua'(s)ul.
(10)
System (9) describes the motion dh in the following
sense. If the bicycle is initialized on the curég with
initial roll angle (0) = ®(so) for somesy € RmodT,
and with initial angular velocityp(0) = ®'(sg)$o for some
S0 € R, then the bicycle remains dh its roll angle satisfies
o(t) = ®(s(¢)) for all ¢ > 0, and the positios and velocity
$ of the bicycle onC evolve according to (9). In order for

Ui(s) =

+bK'(s)

‘r = ¢|,.. Expanding both sides of the equation.

Moreover, for all initial conditions in{(s,s) : $ > 0}, the
functiont — v(s(t)) is periodic and s@(t) is asymptotically
periodic.

Remark 3.2:1t can be shown that the domain of attraction
of the setR in the foregoing proposition ig(s,3) : § >
—v(s)}.

Proof: The set{(s,$) : § > 0} is positively invariant
for (9) becausé|;—o = ¥1(s) > 0 by assumption. Since the
inequality is strict, we havé(t) > 0 for all t > 0. In the rest
of the proof we will restrict initial conditions of®. Letting
z = §%, we have: = 25(V;(s) + Uy(s)z). Sinces > 0 for
all ¢ > 0, we can uses as a time variable:

dz

ds

The above is a scalar linedrf-periodic system. As before,
if z(so) >0, thenz(s) > 0 for all s > sq. Letting ¢(s) =
exp 2[0 Ws(7)dT), the solution of the linear system with
initial cond|t|on z(so) is

= 2\111(8) + 2\112(8)2. (11)

2(s) = (s — s0)z(s0 +2/ B(s)6" (7)1 (r)dr.
System (11) has d&-periodic solution if and only if there
exists zo such thatzg z2(s0) = z(s0 + T), i.€, 20
o(T) z0+2fs“+T (so+T)¢~1(7)¥1(7)dr. Using the fact
that ¢(s + u) = ¢(s)p(u), the condition becomes

T
20 = (T2 +2 /0 H(T)¢~)

By assumption,0 < ¢(T) < 1, so the equation above
has a unique solution, > 0 and (11) has a uniqué’-
periodic solutionz(s) > 0. Letting Z(k) = z(so + kT') — 2o
and using identity (12), we havé(k + 1) = o(T)z(k).
Since ¢(T') < 1, the origin of this discrete-time system
is globally exponentially stable, proving that tfieperiodic
solution z(s) is globally exponentially stable for (11). Let

Uy (T)dr. (12)

v(s) = +/z(s) and return to system (9). For all initial
conditions(s(0), $(0)) € D, we haves(t) > 0 for all ¢ > 0,
and 5(t) = /z(s(t)), where z(s) is the solution of (11)

with initial conditionz(s(0)) = $(0)2. Sincez(s) is globally
exponentially stable for (11R is exponentially stable for (9)
with domain of attraction containin.

It remains to be shown that — v(s(t)) is periodic.

the virtual holonomic constraint to be compatible with theConsider the scalar differential equatién= /Z(s), whose
maneuvering problem, we need to verify whether or not theector field is 7-periodic. Denote byp(t, so) its solution
bicycle traverses the entire curgewith bounded speed, i.e., with initial condition s(0) = sy at time t. For all s,
that there exist > 0, e > 0 such thats(t) > e > 0 for all (¢, s + T) = o(t, s0) + T. Indeed,o(0,s0) + T = so + T
t > t, and limsup,_, . $(t) < co. The next result explores and
general properties of systems of the form (9).

Proposition 3.1:Consider a differential equation of the NEI = v/ Z(o(
form (9), where¥; and ¥, are T-periodic and locally
LIpSChItZ functions such thatlll( ) > 0 for all s and Next, sinces = \/% > 0, there exist unique times> 0
fo Uy (s)ds < 0. Then, there exists a real-valugéperiodic  andt, such thato(,0) = 7" and o(t,0) = s, and
funct|onz/( ), with v(s) > 0, such that the seR = {(s, 3) :
$ = v(s)} is exponentially stable for (9), with domain
of attraction containing the seb {(s,%) : § > 0}.

d
[(tSo +T tSo (t, s0) +T)

ot +1,50) = ot +1+10,0) = o(t + to,T)
=o(t+10,0)+T = o(t,s0) +T.



It then follows that for allt and sg, do(t + t,s0)/dt =
do(t, so)/dt or, what is the same, for any, t — v(s(t)) is
periodic. [ ]

We now show that if the curvature Gfsatisfies an integral
bound, the bicycle satisfies the hypotheses of Propositibn 3
and so the motion on the constraint manifold satisfies the
requirements of the maneuvering problem.

Proposition 3.3:If the curvature of’ satisfies the inequal-

ity

1/T (5)ds < - (13)
— K|S S —_
T J, b2 + 12

then the functions¥,(s), ¥a(s) in (10) satisfy the hy-
potheses of Proposition 3.1 and therefore there exisis- at
periodic functionv(s), with v(s) > 0, such that the closed
orbit of 9) R = {(s,%) : § = v(s)} is exponentially
stable, andD = {(s,$) : § > 0} lies in its domain of that the tangent vector 1 makes as a point is moved once
attraction. Moreover, for all initial conditions i, $(¢) is aroundC. For a Jordan curve, the turning numberdsl.
asymptotically periodic. Example 3.6:We return to ellipse of Example 2.4 and the
Remark 3.4:The existence of the isolated closed orRit virtual constraint displayed in Figure 2. For this example,
of (9) which is exponentially stable implies that the redilice (1/2) fo% k(s)ds ~ 0.142, and h/(b* + h?) = 0.308 and
motion on the constraint manifold is not Euler-Lagrange thus (13) is satisfied. Indeed, one can numerically chedk tha
Getz's bicycle is therefore an example of an EuIer-LagranngT Ws(s)ds ~ —27.5 < 0, and Proposition 3.1 applies. The
system for which there is a virtual holonomic constrainttsucphase portrait of the dynamics on the constraint manifold
that the reduced motion is not Euler-Lagrange. is displayed in Figure 3. The figure illustrates the %&at
Proof: By Proposition 2.2(i), the virtual constraint corresponding to the steady-state velocity profile of the
satisfies®(s) € (0,7/2), and sosin®(s) > 0. Since bicycle onI'. The domain of attraction oR, shaded in the
d(s) > 0 it follows that ¥;(s) > 0. Using equality (8), figure, is the sef{(s,s) : § > —v(s)}, as pointed out in
we have Remark 3.2.
" / " NN Example 3.7:Suppos€ is a circle of radiusk. The cur-
" =8 —rr'f|o’l| cos @ = (rrjo”[)"sin & cos vature is constank; = 1/R. For any®, € (0,7 /2), picking
+ 6|0’ ||5sin® — reo’ " /||o||. § = (r/R)cos ®g, as in Remark 2.3, we obtain the con-
stant virtual constrain®(s) = ®,. Equation (11) becomes
dz/ds = (gR)/(hr)tan®q — 1/(hr)(1 — (h/R) sin ®p)z.

Fig. 3. Phase portrait of the dynamics bnand setR for the ellipse in
Example 2.4. The shaded region is the domain of attractioR .of

Substituting in the expression fdrs in (10) we get

| o b si . The above is a linear time-invariant system with constant
Y2 = 5 bh [ sin @ — o] cos @ input which is stable ifR > hsin ®,. The periodic solution
b2 4 K2 Z(s) in this case is simply the equilibrium of the system
(Fé sin @ - 1) ] above,z = gR? tan ®y /(R — hsin ®;), and thus the asymp-
) o ) ) totic velocity of the bicycle ol is constant, ap_d reads as
P (o (nsincbb +h 1) . v = Ry/gtan®,/(R — hsin ®y). It can be verified thay
-9 oh is an increasing function oby. The conclusion is that the

] T ) bicycle can go around the circle with any constant roll angle
Since [, 0'(s)/6(s) = d(T) —6(0) = 0, using the in the interval(0, 7/2). The larger is the roll anglé,, the

bounds in Proposition 2.2(ii), we have higher is the asymptotic speed of the bicycle.
T T 712 b2 h2
/ Wa(s)ds < / el cos <nsin<1> +h” 1> s IV. SOLUTION OF THE MANEUVERING PROBLEM _
0 0 h Theorem 4.1:Suppose that the mean curvatureCogatis-

K|o’||? T b 4 h? fies inequality (13). If®(s) is a virtual holonomic constraint
< max | =< Jcos @ /0 R(s)—p— —1)ds satisfying (7) and such thab(s) € (0,7/2) for all s €
R modT, then the feedback

RIU’IIQ) _ [V +h? /T
<max| ———— | cosP _ k(s)ds —T | < 0. 1 1 1
: ( Sh ), ) u= —(ﬁgsw - (cp" n _((1 — ks, )kllo’|| + br’

Ala) h
u bro' o . i
Remark 3.5:If the parametrizations(s) of C has unit SNEAE )%HOJH)SQ +K1€+K2€)a
speed (i.e.|lo’(s)|| = 1), thenT is the length ofC, and (14)

the integral(1/7") fOT r(s)ds is equal to {urning numberf  where A(q) = ®/(s) + h1br(s)cy |0’ ()], e = ¢ — ®(s),
C) x 2w /T. The turning number is the number of revolutions: = ¢ — ®’(s)s, and K1, K> are positive design parameters,



solves the maneuvering problem and has the following
properties:

(i) The constraint manifold” is invariant and locally ex-

ponentially stable for the closed-loop system (6), (14).

(i) There exists aC' and T-periodic functionv(s)
RmodT" — R, with v(s) > 0 such that the set
R ={(¢,4) €T : s =v(s)} is asymptotically stable
for the closed-loop system and its domain of attraction
is a neighbourhood of the séfq,¢) € ' : § > 0}.
For initial conditions in the domain of attraction @€,
the bicycle traverses the entire cu@end its speed is
asymptotically periodic.
Proof: By construction®(s) satisfies (7) and, as argued
in the proof of Lemma 2.1, system (6) with outputhas
uniform relative degree 2 of’. The feedback (14) is a
feedback linearizing controller making the origin of the¢)
subsystem, and hendg exponentially stable, proving part
().

As for part (ii), we know from Proposition 3.3 that there
exists aT-periodic functionv(s) such that the seR is
exponentially stable for the restriction of the dynamicson
In order to prove thafR is asymptotically stable for initial
conditions outside of’, note thatR is a one-dimensional
submanifold ofl" diffeomorphic toS!, and hence compact.
Owing to the reduction principle for asymptotic stability
of compact sets (see [14], [15]), the asymptotic stability
of R relative toI" together with the asymptotic stability
of T implies thatR is asymptotically stable for (6). By

(i)
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Fig. 4. Simulation of the closed-loop system for the ellipgample. The
solution converges to the constraint manifald
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Fig. 5. Simulation of the closed-loop system for the elligzample. The

Proposition 3.3, its domain of attraction contains the sebjiution converges to the submanifaRi C T

{(¢,d) €T : >0}
Finally, concerning part (iii), since ofR we haves =

v(s) > 0, for all initial conditions in the domain of attraction [5] J. Hauser, S. Sastry, and G. Meyer, “Nonlinear contrcgigre for

of R there exists a timé > 0 such thati(¢) > 0 forall ¢ > ¢,

and hence the bicycle traverses the entire cdrv8inceR

is diffeomorphic toS?!, since it is asymptotically stable, and
on it solutions are periodicR is a stable limit cycle of the
closed-loop system. Therefore, solutions in the domain of
attraction of R are asymptotically periodic. ]

Example 4.2:We return to example of the ellipse, with [8]

the virtual constraint depicted in Figure 2. The simulation

results for the closed-loop system with controller (14) andjg

K, = 100, K = 10 are shown in Figures 4, 5 for
the initial condition (©(0),¢(0), s(0), $(0)) = (0,0,0,1).
Figure 4 illustrates the exponential convergences(f) to
the constraint®(s(¢)). Figure 5 displays the projection of
the phase curve on thi, $) plane and its convergence to
the submanifoldR.
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