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Abstract— The problem of making a bicycle trace a strictly
convex Jordan curve with bounded roll angle and bounded
speed is investigated. The problem is solved by enforcing a
virtual holonomic constraint which specifies the roll angleof the
bicycle as a function of its position along the curve. It is shown
that virtual holonomic constraints can be generated as periodic
solutions of a scalar periodic differential equation. Finally, it
is shown that if the mean curvature of the path is sufficiently
small the virtual holonomic constraint can be asymptotically
stabilised and the speed of the bicycle is asymptotically periodic.

I. I NTRODUCTION

This paper investigates the problem of maneuvering a
bicycle along a closed Jordan curveC in the horizontal plane
in such a way that the bicycle does not fall over and its
velocity is bounded. The simplified bicycle model we use in
this paper, developed by Neil Getz [1], [2], views the bicycle
as a point mass with a side slip velocity constraint, and
models its roll dynamics as those of an inverted pendulum,
see Figure 1. The model neglects, among other things, the
wheels dynamics and the associated gyroscopic effect. The
dynamics of Getz’s bicycle when the contact point of the rear
wheel is made to follow the curveC are Euler-Lagrange.

In [3], Hauser-Saccon-Frezza investigate the maneuvering
problem for Getz’s bicycle using a dynamic inversion ap-
proach to determine bounded roll trajectories. They constrain
the bicycle on the curve and, given a desired velocity signal
v(t), they find a trajectory with the property that the velocity
of the bicycle isv(t) and its roll angleϕ is in the interval
(−π/2, π/2), i.e, the bicycle doesn’t fall over. In [4], Hauser-
Saccon develop an algorithm to compute the minimum-time
speed profile for a point-mass motorcycle compatible with
the constraint that the lateral and longitudinal accelerations
do not make the tires slip, and apply their algorithm to Getz’s
bicycle model.

The problem of maneuvering Getz’s bicycle along a closed
curve is equivalent to moving the pivot point of an inverted
pendulum around the curve without making the pendulum
fall over. On the other hand, the seemingly different problem
of maneuvering Hauser’s PVTOL aircraft [5] along a closed
curve in the vertical plane can be viewed as the problem of
moving the pivot of an inverted pendulum around the curve
without making the pendulum fall over. The two problems
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are, therefore, closely related, the main difference beingthe
fact that in the former case the pendulum lies on a plane
which is orthogonal to the plane of the curve, while in
the latter case it lies on the same plane. In [6], the path
following problem for the PVTOL was solved by enforcing
a virtual holonomic constraint which specifies the roll angle
of the PVTOL as a function of its position on the curve.
In this paper we follow a similar approach for the bicycle
model and impose a virtual holonomic constraint relating the
bicycle’s roll angle to its position along the curve, but rather
than finding one feasible virtual constraint, we show how
to generate a class of feasible virtual constraints as periodic
solutions of a scalar periodic differential equation whichwe
call the virtual constraint generator. We show that if the
curvature of the path is sufficiently small compared to the
height of the bicycle’s centre of mass, then on the constraint
manifold the velocity of the bicycle converges exponentially
to a periodic profile. In other words, the bicycle traverses
the entire curve with bounded speed and its speed profile
is asymptotically periodic. Finally, we design a controller
which exponentially stabilises the virtual constraint manifold
and recovers the asymptotic properties of the bicycle on the
constraint manifold just described.

The idea of virtual holonomic constraint is a useful
paradigm for the control of oscillations and goes well beyond
the example investigated in this paper. To the best of our
knowledge, this notion originated with the work of Grizzle
and collaborators on biped locomotion (e.g., [7] and [8]). The
recent work in [9], [10], [11] investigated virtual holonomic
constraints for Euler-Lagrange systems. There, an integral
of motion for the dynamics on the virtual constraint was
given explicitly, and a methodology to stabilise desired limit
cycles on the virtual constraint manifold was given based
on a time-varying linearization of the system on the limit
cycle. In [12], this ideas were applied to the stabilisation
of oscillations in the Furuta pendulum. In [13], we gave
conditions for a virtual holonomic constraint to be feasible,
and we exposed the role of the virtual constraint generator
in producing feasible virtual constraints that can always be
locally exponentially stabilised. We also presented sufficient
conditions in order that the reduced system describing the
motion on the virtual constraint manifold be Euler-Lagrange.
The bicycle model in this paper does not meet the sufficient
conditions of [13]; in fact, we will show that the reduced sys-
tem is not Euler-Lagrange. Getz’s bicycle model is therefore
an example showing that the reduced motion of an Euler-
Lagrange system subjected to a virtual holonomic constraint
may not be Euler-Lagrange. See Remark 3.4 for more details.
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Fig. 1. Getz’s bicycle model.

We adopt the notational conventions in [3] to describe the
simplified bicycle model depicted in Figure 1:

• (x, y) - coordinates of the point of contact of the rear
wheel

• ϕ - roll angle
• ψ - yaw angle
• δ - projected steering angle on the(x, y) plane
• b - distance between the projection of the centre of mass

and the point of contact of the rear wheel
• p - wheel base
• h - pendulum length
• v - forward linear velocity of the bicycle
• f - reaction force of the ground on the rear wheel.

We will denoteκ̄ = tan δ/p = ψ̇/v. For a given velocity
signal v(t) and steering angle signalδ(t), κ̄(t) represents
the curvature of the path(x(t), y(t)) traced by the point
of contact of the rear wheel. The model of the bicycle in
Figure 1 was presented in [2] and is given by

M

[

ϕ̈
v̇

]

= F +B

[

˙̄κ
f

]

, (1)

where, lettingsϕ = sinϕ andcϕ = cosϕ,

M =

[

h2 bhcϕκ̄
bhcϕκ̄ 1 + (b2 + h2s2ϕ)κ̄2 − 2hκ̄sϕ

]

,

F =

[

ghsϕ − (1 − hκ̄sϕ)hcϕκ̄v
2

(1 − hκ̄sϕ)2hcϕκ̄vϕ̇+ bhκ̄sϕϕ̇
2

]

,

B =

[

− bhcϕv 0
− (b2κ̄− hsϕ(1 − hκ̄sϕ))v 1/m

]

.

Consider aC3 closed Jordan curveC in the (x, y) plane
with regular parametrizationσ(s) : R modT → R

2 (T is the
period of the functionσ), not necessarily unit speed. Letκ(s)
denote the signed curvature ofC. Throughout this paper, we
assume the following.

Assumption 1:The curveC is strictly convex, i.e.,κ(s) >
0 for all s ∈ R modT .
In this paper we investigate the dynamics of the bicycle when
the point (x, y) is constrained to move along the curveC.

In order to derive the constrained dynamics, suppose that
(x(0), y(0)) ∈ C, i.e., (x(0), y(0)) = σ(s0), for somes0 ∈
R modT . A point σ(s(t)) moving onC has linear velocity

v(t) = ‖σ′(s(t))‖ṡ(t) (2)

and acceleration

v̇(t) = ‖σ′(s(t))‖s̈(t) +
ṡ2(t)

‖σ′(s(t))‖
σ′(s(t))⊤σ′′(s(t)). (3)

Therefore, for an arbitrary velocity signalv(t), (x(t), y(t))
traversesC with velocity v(t) if and only if (x(0), y(0)) ∈ C,
(ẋ(0), ẏ(0)) is tangent toC, and the steering angleδ(t)
is chosen to beδ(t) = arctan[p κ(s(t))], where s(t) =
(

∫ t

0
[v(τ)/‖σ′(s(τ))‖]dτ

)

modT , so that

κ̄(t) = κ(s(t)) . (4)

The motion of the bicycle on the curveC is thus found by
substituting (2), (3), (4) in (1):

M̃

[

ϕ̈

‖σ′‖s̈+ (σ′)⊤σ′′

‖σ′‖ ṡ2

]

= F̃ +

[

0
1/m

]

f , (5)

whereM̃ = M |k̄=k(s) and

F̃ =

(

F +B

[

1
0

]

k′(s)ṡ

) ∣

∣

∣

∣

k̄=k(s),v=‖σ′(s)‖ṡ

.

The motion of the bicycle onC in (5) is an Euler-Lagrange
system with configuration variables(ϕ, s) and Lagrangian
L = T − V , with

T =
1

2
[ϕ̇ ‖σ′(s)‖ṡ]M̃

[

ϕ̇
‖σ′(s)‖ṡ

]

, V = gh cosϕ.

Since the control forcef enters nonsingularly in thës
equation, we can define a feedback transformation forf
in (5) such thaẗs = u, whereu is the new control input.
With this transformation, the motion of the bicycle onC
reads as

hϕ̈ = gsϕ −
[

(1 − hκ(s)sϕ)κ(s)‖σ′(s)‖ + bκ′(s)

+
bκ(s)

‖σ′(s)‖2
σ′(s)

⊤
σ′′(s)

]

cϕ‖σ
′(s)‖ṡ2 − bκ(s)cϕ‖σ

′(s)‖u

s̈ = u.
(6)

Letting q = (ϕ, s), the state space isX = {(q, q̇) ∈ S1 ×
(R modT ) × R

2}. In our simulations we will useh = 1 m
andb = 1.5 m.

Remark 1.1:If σ(s) is a unit speed parametrization ofC,
then the first differential equation in (6) reduces to

hϕ̈ = gsϕ −
[

(1−hκ(s)sϕ)κ(s)+ bκ′(s)
]

cϕṡ
2 − bκ(s)cϕu.

The objective of this paper is to solve the following

Maneuvering Problem. Find a feedbacku(q, q̇) for
system (6) such that there exists a set of initial conditionsΩ
with the property that, for all(q(0), q̇(0)) ∈ Ω, the bicycle
does not overturn, i.e.,|ϕ(t)| < π/2 for all t ≥ 0, and
traverses the entire curveC in one direction, i.e., there exists
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t̄ > 0 such that|ṡ(t)| > 0 for all t ≥ t̄. Moreover, the speed
ṡ(t) of the bicycle onC should remain bounded.

Our solution of this problem relies on the notion of virtual
holonomic constraint.

Definition 1.2: A function ϕ = Φ(s), Φ : R modT →
S1 is a virtual holonomic constraintfor system (6) if the
constraint manifold

Γ = {(q, q̇) ∈ X : ϕ = Φ(s), ϕ̇ = Φ′(s)ṡ}

is controlled invariant, i.e., there exits a smooth feedback
u(q, q̇) rendering it invariant.
The constraint manifoldΓ is the collection of all those
phase curves of (6) such thatϕ(t) = Φ(s(t)) for all t
for which the solution is defined. It is a two-dimensional
submanifold of X parametrized by(s, ṡ), and therefore
diffeomorphic to the cylinder(R modT )×R. Our approach
to solving the maneuvering problem is to look for virtual
holonomic constraintsϕ = Φ(s) such that|Φ(s)| < π/2
for all s ∈ R modT . The advantage of this approach, as
opposed to searching for individual bounded roll trajecto-
ries, is that each virtual constraintΦ provides afamily of
bounded roll trajectories corresponding to arbitrary choices
of (s(0), ṡ(0)) ∈ (R modT )× R.

II. T HE VIRTUAL CONSTRAINT GENERATOR

In this section we show that virtual holonomic constraints
for (6) can be generated as solutions of a first-order differen-
tial equation, which we call thevirtual constraint generator.
This idea was first presented in our previous work [13]. We
begin with a sufficient condition for a functionΦ to be a
feasible virtual holonomic constraint for (6).

Lemma 2.1:A C1 functionϕ = Φ(s), R modT → S1 is
a virtual holonomic constraint for system (6) if

Φ′(s) + h−1bκ(s)‖σ′(s)‖ cosΦ(s) 6= 0 (7)

for all s ∈ R modT .
Proof: Viewing the functionϕ − Φ(s) as an output

of system (6), condition (7) is simply the requirement that
said output has a well-defined uniform relative degree 2 on
{ϕ− Φ(s) = 0}. The associated zero dynamics manifold is
preciselyΓ, and it is controlled invariant.
The foregoing lemma inspires the following observation.
Instead of guessing a virtual constraint and checking whether
it is feasible, as in the lemma, one could use (7) to generate
feasible virtual holonomic constraints. More precisely, let
r = h−1b and consider the scalar differential equation

dΦ

ds
= −rκ(s)‖σ′(s)‖ cosΦ + δ(s). (8)

Sinces is a cyclic variable inR modT , the above is aT -
periodic differential equation. If, for someδ(s) 6= 0, (8)
has aT -periodic solutionΦ(s), then in light of Lemma 2.1,
ϕ = Φ(s) is a virtual holonomic constraint. Therefore, one
can think of differential equation (8) as avirtual holonomic
constraint generator, for which one is to pickδ(s) such
that a periodic solution exists. Such problem of existence

of periodic solutions is addressed in the next proposition,
whose proof is omitted due to space limitations.

Proposition 2.2:Setδ(s) = ǫµ(s), whereµ : R modT →
R is a T -periodic and locally Lipschitz function such that
µ(s) > 0 for all s ∈ R modT , and let

K+ = max
s∈R modT

(

µ(s)

κ(s)‖σ′(s)‖

)

,

K− = min
s∈R modT

(

µ(s)

κ(s)‖σ′(s)‖

)

.

Then, for anyΦ0 ∈ (0, π/2) mod2π ands0 ∈ R modT ,
(i) there exists a unique

ǫ ∈ [ǫ−, ǫ+] = [(r cosΦ0)/K
+, (r cosΦ0)/K

−],

such that the solution of (8) withδ(s) = ǫµ(s) and
initial condition Φ(s0) = Φ0 is T -periodic.

(ii) If µ(s) is chosen so thatK+/K− < (cosΦ0)
−1, then

the image of theT -periodic solutionΦ(s) in part (i) is
contained in the interval

(Φ−,Φ+) =

(

cos−1
(K+

K−
cosΦ0

)

, cos−1
(K−

K+
cosΦ0

)

)

,

which is a subset of(0, π/2).
Remark 2.3:By choosingµ(s) = κ(s)‖σ′(s)‖, we have

K+ = K− = 1, ǫ+ = ǫ− = r cosΦ0. In this case, the
proposition above implies that, for allΦ0 ∈ (0, π/2), setting
δ(s) = rκ(s)‖σ′(s)‖ cosΦ0, the virtual constraint generator
has aT -periodic solutionΦ(s) whose image is in the interval
(0, π/2) mod2π. As a matter of fact, one can readily verify
that the solution in question is constant,Φ(s) = Φ0, which
corresponds to the situation when the bicycle has a constant
roll angle as it travels aroundC. The proposition provides
great flexibility in finding virtual holonomic constraints with
the property that the roll angle is confined within the interval
(0, π/2) mod2π. All such constraints are compatible with the
maneuvering problem.

Example 2.4:SupposeC is an ellipse with major semi-
axisA, minor semiaxisB, and2π-periodic parametrization
σ(s) = (A cos s,B sin s), with A = 15, B = 5. The
curvature isκ(s) = AB/(A2 sin2 s+B2 cos2 s)3/2. For the
initial condition of the virtual constraint generator, we pick
Φ(0) = π/3. Following Proposition 2.2, we need to choose
a 2π-periodic functionµ(s) > 0, setδ(s) = ǫµ(s), and find
the unique value ofǫ > 0 guaranteeing that the solution
with initial condition Φ(0) = π/3 is 2π-periodic. There is
much freedom in the choice ofµ(s). For instance, picking
µ(s) = 1, we numerically findǫ ≈ 0.927. The corresponding
virtual holonomic constraint is depicted in Figure 2. The
condition, in Proposition 2.2(ii), thatK+/K− < (cosφ0)

−1

is very conservative. Indeed, with our choice ofµ we have
K+ = 3, K− = 1/3 and thus the condition is violated. Yet,
the image of the virtual constraint is contained in the interval
(0, π/2).

III. M OTION ON THE CONSTRAINT MANIFOLD

Having chosenδ(s) as in Proposition 2.2(ii) and an asso-
ciated virtual holonomic constraintϕ = Φ(s) satisfying (8),

3



0 pi/2 pi 3pi/2 2pi
0

pi/4

pi/2

s

Φ(s)

Fig. 2. Virtual holonomic constraint for the ellipse in Example 2.4.

the next step is to analyse the dynamics on the constraint
manifold Γ = {(q, q̇) ∈ X : ϕ = Φ(s), ϕ̇ = Φ′(s)ṡ}. These
are the zero dynamics of (6) with output functionϕ−Φ(s).
The feedback makingΓ invariant is found by imposing that
d
dt [Φ

′(s)ṡ]
∣

∣

Γ
= ϕ̈

∣

∣

Γ
. Expanding both sides of the equation

above, using identity (8), and the fact thatδ(s) 6= 0, we
obtain the feedback makingΓ invariant

u =
h−1g sinΦ

δ
−
ṡ2

δ

[

Φ′′ +
1

h
((1 − hκ sin Φ)κ‖σ′‖ + bκ′

+ bκσ′⊤σ′′/‖σ′‖2)‖σ′‖ cosΦ
]

.

Substituting this feedback in thes dynamics we get the
dynamics onΓ,

s̈ = Ψ1(s) + Ψ2(s)ṡ
2, (9)

where

Ψ1(s) =
h−1g sin Φ(s)

δ(s)

Ψ2(s) = −
1

δ(s)

[

Φ′′(s) +
1

h
((1 − hκ(s) sin Φ(s))κ(s)‖σ′(s)‖

+ bκ′(s) + bκ(s)σ′(s)⊤σ′′(s)/‖σ′(s)‖2) cosΦ(s)‖σ′(s)‖
]

.

(10)
System (9) describes the motion onΓ in the following
sense. If the bicycle is initialized on the curveC, with
initial roll angle ϕ(0) = Φ(s0) for somes0 ∈ R modT ,
and with initial angular velocityϕ̇(0) = Φ′(s0)ṡ0 for some
ṡ0 ∈ R, then the bicycle remains onC, its roll angle satisfies
ϕ(t) = Φ(s(t)) for all t ≥ 0, and the positions and velocity
ṡ of the bicycle onC evolve according to (9). In order for
the virtual holonomic constraint to be compatible with the
maneuvering problem, we need to verify whether or not the
bicycle traverses the entire curveC with bounded speed, i.e.,
that there exist̄t > 0, ǫ > 0 such thatṡ(t) > ǫ > 0 for all
t ≥ t̄, and lim supt→∞ ṡ(t) < ∞. The next result explores
general properties of systems of the form (9).

Proposition 3.1:Consider a differential equation of the
form (9), whereΨ1 and Ψ2 are T -periodic and locally
Lipschitz functions such thatΨ1(s) > 0 for all s and
∫ T

0 Ψ2(s)ds < 0. Then, there exists a real-valuedT -periodic
functionν(s), with ν(s) > 0, such that the setR = {(s, ṡ) :
ṡ = ν(s)} is exponentially stable for (9), with domain
of attraction containing the setD = {(s, ṡ) : ṡ ≥ 0}.

Moreover, for all initial conditions in{(s, ṡ) : ṡ ≥ 0}, the
functiont 7→ ν(s(t)) is periodic and sȯs(t) is asymptotically
periodic.

Remark 3.2:It can be shown that the domain of attraction
of the setR in the foregoing proposition is{(s, ṡ) : ṡ >
−ν(s)}.

Proof: The set{(s, ṡ) : ṡ ≥ 0} is positively invariant
for (9) becausës|ṡ=0 = Ψ1(s) > 0 by assumption. Since the
inequality is strict, we havės(t) > 0 for all t > 0. In the rest
of the proof we will restrict initial conditions onD. Letting
z = ṡ2, we haveż = 2ṡ(Ψ1(s) + Ψ2(s)z). Sinceṡ > 0 for
all t > 0, we can uses as a time variable:

dz

ds
= 2Ψ1(s) + 2Ψ2(s)z. (11)

The above is a scalar linearT -periodic system. As before,
if z(s0) ≥ 0, thenz(s) > 0 for all s > s0. Letting φ(s) =
exp(2

∫ s

0
Ψ2(τ)dτ), the solution of the linear system with

initial condition z(s0) is

z(s) = φ(s− s0)z(s0) + 2

∫ s

s0

φ(s)φ−1(τ)Ψ1(τ)dτ.

System (11) has aT -periodic solution if and only if there
exists z0 such thatz0 = z(s0) = z(s0 + T ), i.e, z0 =

φ(T )z0 +2
∫ s0+T

s0

φ(s0 +T )φ−1(τ)Ψ1(τ)dτ . Using the fact
that φ(s+ u) = φ(s)φ(u), the condition becomes

z0 = φ(T )z0 + 2

∫ T

0

φ(T )φ−1(τ)Ψ1(τ)dτ. (12)

By assumption,0 < φ(T ) < 1, so the equation above
has a unique solutionz0 > 0 and (11) has a uniqueT -
periodic solutionz̄(s) > 0. Letting z̃(k) = z(s0 + kT )− z0
and using identity (12), we havẽz(k + 1) = φ(T )z̃(k).
Since φ(T ) < 1, the origin of this discrete-time system
is globally exponentially stable, proving that theT -periodic
solution z̄(s) is globally exponentially stable for (11). Let
ν(s) =

√

z̄(s) and return to system (9). For all initial
conditions(s(0), ṡ(0)) ∈ D, we haveṡ(t) > 0 for all t > 0,
and ṡ(t) =

√

z(s(t)), where z(s) is the solution of (11)
with initial conditionz(s(0)) = ṡ(0)2. Sincez̄(s) is globally
exponentially stable for (11),R is exponentially stable for (9)
with domain of attraction containingD.

It remains to be shown thatt 7→ ν(s(t)) is periodic.
Consider the scalar differential equationṡ =

√

z̄(s), whose
vector field isT -periodic. Denote by̺ (t, s0) its solution
with initial condition s(0) = s0 at time t. For all s0,
̺(t, s0 + T ) = ̺(t, s0) + T . Indeed,̺ (0, s0) + T = s0 + T
and

d

dt
[̺(t, s0) + T ] =

√

z̄(̺(t, s0)) =
√

z̄(̺(t, s0) + T ).

Next, sinceṡ =
√

z̄(s) > 0, there exist unique times̄t > 0
and t0 such that̺ (t̄, 0) = T and̺(t0, 0) = s0, and

̺(t+ t̄, s0) = ̺(t+ t̄+ t0, 0) = ̺(t+ t0, T )

= ̺(t+ t0, 0) + T = ̺(t, s0) + T.
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It then follows that for all t and s0, d̺(t + t̄, s0)/dt =
d̺(t, s0)/dt or, what is the same, for anys0, t 7→ ν(s(t)) is
periodic.

We now show that if the curvature ofC satisfies an integral
bound, the bicycle satisfies the hypotheses of Proposition 3.1,
and so the motion on the constraint manifold satisfies the
requirements of the maneuvering problem.

Proposition 3.3: If the curvature ofC satisfies the inequal-
ity

1

T

∫ T

0

κ(s)ds <
h

b2 + h2
(13)

then the functionsΨ1(s), Ψ2(s) in (10) satisfy the hy-
potheses of Proposition 3.1 and therefore there exists atT -
periodic functionν(s), with ν(s) > 0, such that the closed
orbit of (9) R = {(s, ṡ) : ṡ = ν(s)} is exponentially
stable, andD = {(s, ṡ) : ṡ ≥ 0} lies in its domain of
attraction. Moreover, for all initial conditions inD, ṡ(t) is
asymptotically periodic.

Remark 3.4:The existence of the isolated closed orbitR
of (9) which is exponentially stable implies that the reduced
motion on the constraint manifoldΓ is not Euler-Lagrange.
Getz’s bicycle is therefore an example of an Euler-Lagrange
system for which there is a virtual holonomic constraint such
that the reduced motion is not Euler-Lagrange.

Proof: By Proposition 2.2(i), the virtual constraint
satisfiesΦ(s) ∈ (0, π/2), and so sin Φ(s) > 0. Since
δ(s) > 0 it follows that Ψ1(s) > 0. Using equality (8),
we have

Φ′′ = δ′ − rκ′‖σ′‖ cosΦ − (rκ‖σ′‖)2 sinΦ cosΦ

+ rκ‖σ′‖δ sin Φ − rκσ′⊤σ′′/‖σ′‖.

Substituting in the expression forΨ2 in (10) we get

Ψ2 = −
δ′

δ
−
κ‖σ′‖

δh

[

bδ sin Φ − ‖σ′‖ cosΦ

·

(

κ sin Φ
b2 + h2

h
− 1

)

]

≤ −
δ′

δ
+
κ‖σ′‖2

δh
cosΦ

(

κ sinΦ
b2 + h2

h
− 1

)

.

Since
∫ T

0
δ′(s)/δ(s) = ln δ(T ) − ln δ(0) = 0, using the

bounds in Proposition 2.2(ii), we have
∫ T

0

Ψ2(s)ds ≤

∫ T

0

κ‖σ′‖2

δh
cosΦ

(

κ sinΦ
b2 + h2

h
− 1

)

ds

≤ max
s

(

κ‖σ′‖2

δh

)

cosΦ−

∫ T

0

(

κ(s)
b2 + h2

h
− 1

)

ds

≤ max
s

(

κ‖σ′‖2

δh

)

cosΦ−

(

b2 + h2

h

∫ T

0

κ(s)ds− T

)

< 0.

Remark 3.5:If the parametrizationσ(s) of C has unit
speed (i.e.,‖σ′(s)‖ = 1), then T is the length ofC, and
the integral(1/T )

∫ T

0
κ(s)ds is equal to (turning numberof

C)×2π/T . The turning number is the number of revolutions
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Fig. 3. Phase portrait of the dynamics onΓ and setR for the ellipse in
Example 2.4. The shaded region is the domain of attraction ofR.

that the tangent vector toC makes as a point is moved once
aroundC. For a Jordan curve, the turning number is± 1.

Example 3.6:We return to ellipse of Example 2.4 and the
virtual constraint displayed in Figure 2. For this example,
(1/2π)

∫ 2π

0
κ(s)ds ≈ 0.142, andh/(b2 + h2) = 0.308 and

thus (13) is satisfied. Indeed, one can numerically check that
∫ T

0 Ψ2(s)ds ≈ −27.5 < 0, and Proposition 3.1 applies. The
phase portrait of the dynamics on the constraint manifold
is displayed in Figure 3. The figure illustrates the setR,
corresponding to the steady-state velocity profile of the
bicycle onΓ. The domain of attraction ofR, shaded in the
figure, is the set{(s, ṡ) : ṡ > −ν(s)}, as pointed out in
Remark 3.2.

Example 3.7:SupposeC is a circle of radiusR. The cur-
vature is constant,κ = 1/R. For anyΦ0 ∈ (0, π/2), picking
δ = (r/R) cos Φ0, as in Remark 2.3, we obtain the con-
stant virtual constraintΦ(s) = Φ0. Equation (11) becomes
dz/ds = (gR)/(hr) tan Φ0 − 1/(hr)(1 − (h/R) sinΦ0)z.
The above is a linear time-invariant system with constant
input which is stable ifR > h sin Φ0. The periodic solution
z̄(s) in this case is simply the equilibrium of the system
above,z̄ = gR2 tan Φ0/(R−h sinΦ0), and thus the asymp-
totic velocity of the bicycle onΓ is constant, and reads as
ν = R

√

g tanΦ0/(R− h sin Φ0). It can be verified thatν
is an increasing function ofΦ0. The conclusion is that the
bicycle can go around the circle with any constant roll angle
in the interval(0, π/2). The larger is the roll angleΦ0, the
higher is the asymptotic speed of the bicycle.

IV. SOLUTION OF THE MANEUVERING PROBLEM

Theorem 4.1:Suppose that the mean curvature ofC satis-
fies inequality (13). IfΦ(s) is a virtual holonomic constraint
satisfying (7) and such thatΦ(s) ∈ (0, π/2) for all s ∈
R modT , then the feedback

u =
1

∆(q)

( 1

h
gsϕ −

(

Φ′′ +
1

h

(

(1 − hκsϕ)κ‖σ′‖ + bκ′

+
bκσ′⊤σ′′

‖σ′‖2

)

cϕ‖σ
′‖
)

ṡ2 +K1e+K2ė
)

,

(14)
where∆(q) = Φ′(s) + h−1bκ(s)cϕ‖σ

′(s)‖, e = ϕ − Φ(s),
ė = ϕ̇−Φ′(s)ṡ, andK1, K2 are positive design parameters,

5



solves the maneuvering problem and has the following
properties:

(i) The constraint manifoldΓ is invariant and locally ex-
ponentially stable for the closed-loop system (6), (14).

(ii) There exists aC1 and T -periodic function ν(s) :
R modT → R, with ν(s) > 0 such that the set
R = {(q, q̇) ∈ Γ : ṡ = ν(s)} is asymptotically stable
for the closed-loop system and its domain of attraction
is a neighbourhood of the set{(q, q̇) ∈ Γ : ṡ > 0}.

(iii) For initial conditions in the domain of attraction ofR,
the bicycle traverses the entire curveC and its speed is
asymptotically periodic.
Proof: By construction,Φ(s) satisfies (7) and, as argued

in the proof of Lemma 2.1, system (6) with outpute has
uniform relative degree 2 onΓ. The feedback (14) is a
feedback linearizing controller making the origin of the(e, ė)
subsystem, and henceΓ, exponentially stable, proving part
(i).

As for part (ii), we know from Proposition 3.3 that there
exists aT -periodic functionν(s) such that the setR is
exponentially stable for the restriction of the dynamics onΓ.
In order to prove thatR is asymptotically stable for initial
conditions outside ofΓ, note thatR is a one-dimensional
submanifold ofΓ diffeomorphic toS1, and hence compact.
Owing to the reduction principle for asymptotic stability
of compact sets (see [14], [15]), the asymptotic stability
of R relative to Γ together with the asymptotic stability
of Γ implies thatR is asymptotically stable for (6). By
Proposition 3.3, its domain of attraction contains the set
{(q, q̇) ∈ Γ : ṡ > 0}.

Finally, concerning part (iii), since onR we haveṡ =
ν(s) > 0, for all initial conditions in the domain of attraction
of R there exists a timēt > 0 such thaṫs(t) > 0 for all t ≥ t̄,
and hence the bicycle traverses the entire curveC. SinceR
is diffeomorphic toS1, since it is asymptotically stable, and
on it solutions are periodic,R is a stable limit cycle of the
closed-loop system. Therefore, solutions in the domain of
attraction ofR are asymptotically periodic.

Example 4.2:We return to example of the ellipse, with
the virtual constraint depicted in Figure 2. The simulation
results for the closed-loop system with controller (14) and
K1 = 100, K2 = 10 are shown in Figures 4, 5 for
the initial condition (ϕ(0), ϕ̇(0), s(0), ṡ(0)) = (0, 0, 0, 1).
Figure 4 illustrates the exponential convergence ofϕ(t) to
the constraintΦ(s(t)). Figure 5 displays the projection of
the phase curve on the(s, ṡ) plane and its convergence to
the submanifoldR.
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