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Abstract: This paper investigates virtual holonomic constraints for Euler-Lagrange sys-
tems with n degrees-of-freedom and n − 1 controls. The constraints have the form q1 =
φ1(qn), . . . , qn−1 = φn−1(qn), where qn is a cyclic configuration variable, so their enforcement
corresponds to the stabilization of a desired oscillatory motion. We give conditions under which
such a set of constraints is feasible, meaning that it can be made invariant by feedback. We show
that it is possible to systematically determine feasible virtual constraints as periodic solutions
of a scalar differential equation, the virtual constraint generator. Moreover, under a symmetry
assumption we show that the motion on the constraint manifold is a Euler-Lagrange system
with one degree-of-freedom, and use this fact to complete characterize its dynamical properties.
Finally, we show that if the constraint is feasible then the virtual constraint manifold can always
be stabilized using input-output feedback linearization.

1. INTRODUCTION

Consider the underactuated Euler-Lagrange system with
n degrees-of-freedom and n − 1 actuators

D(q)q̈ + C(q, q̇)q̇ + g(q) = B(q)τ, (1)

with q ∈ Q, τ ∈ R
n−1, and such that B(q) has full rank

n − 1 and D is positive definite. Suppose that q1, . . . , qk,
k ≤ n − 1, are real variables (e.g., linear displacements)
and qk+1, . . . , qn are cyclic variables in S1 (e.g., angular
displacements), so the state space of the system is (q, q̇) ∈
Q×R

n, where Q = R
k × S1 × · · · × S1 (n− k times). The

energy of the system is

E(q, q̇) =
1

2
q̇⊤D(q)q̇ + P (q),

and g(q) in the system model (1) is the gradient of P ,
g(q) = ∇P (q).

The goal of this paper is to design a feedback stabilizing
a virtual holonomic constraint expressed as a function of
one of the cyclic configuration variables, without loss of
generality qn. The constraint has the form

q1 = φ1(qn)
...

qn−1 = φn−1(qn).

We denote
φ(qn) := col(φ1(qn), . . . , φn−1(qn)),

φ̂(qn) := col(φ(qn), qn).

The virtual holonomic constraint col(q1, . . . , qn−1) =
φ(qn) is said to be feasible if the constraint manifold
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Γ = {(q, q̇) : col(q1, . . . , qn−1) = φ(qn),

col(q̇1, . . . , q̇n−1) = φ′(qn)q̇n}
= {(q, q̇) : q = φ̂(qn), q̇ = φ̂′(qn)q̇n}

(2)

is controlled invariant, i.e., it can be made invariant by a
suitable choice of feedback τ(q, q̇).

The idea of virtual constraint is a useful paradigm for the
control of oscillations. It is one of the underlying principles
of the design in Plestan et al. [2003] and Westervelt et al.
[2003] aimed at stabilizing a limit cycle corresponding
to stable walking motion for bipedal robots. In Shiriaev
et al. [2007], virtual constraints were used to stabilize
desired oscillations of the Furuta pendulum. The recent
work in Shiriaev et al. [2005], Freidovich et al. [2008]
made considerable progress in the investigation of virtual
constraints for Euler-Lagrange systems. There, an integral
of motion for the dynamics on the virtual constraint was
given explicitly, and a methodology to stabilize desired
limit cycles on the virtual constraint manifold was given
based on a time-varying linearization of the system on the
limit cycle. We refer the reader to Fradkov and Pogromsky
[1998] for more information on control of oscillations.

In this paper we present four novel results. Our first result
is a condition for feasibility of the constraint manifold. The
condition turns out to be generically satisfied for the class
of systems considered in this paper. Virtual holonomic
constraints meeting this generic condition will be called
regular.

The second result in this paper is a proof of the fact that
regular holonomic constraints are locally exponentially
stabilizable (i.e., Γ is locally exponentially stabilizable)
with an input-output feedback linearizing feedback, since



the output functions ei = qi−φi(qn), i = 1, . . . , n−1 yields
a well-defined vector relative degree {2, . . . , 2} on Γ.

The third result is a systematic procedure for the deter-
mination of regular virtual holonomic constraints which
is based on the solutions of a scalar differential equation.
The constraint manifold Γ is a two-dimensional manifold
diffeomorphic to the cylinder S1 × R, the diffeomorphism

S1 ×R → Γ being given by 2 (qn, q̇n) 7→ (φ̂(qn), φ̂′(qn)q̇n).
On Γ, therefore, the motion is two-dimensional and is
parametrized by (qn, q̇n). The fourth result in this paper
is a proof of the fact that if the inertia D(q), the potential
P (q), and the input matrix B(q) are even functions, then
the (qn, q̇n) dynamics on Γ are Euler-Lagrange. We also
provide an explicit expression for the inertia and potential
function of this reduced system. This result complements
the theory in Shiriaev et al. [2005], where it was shown
that an integral of motion for the reduced dynamics always
exists, but the Lagrangian nature of the reduced dynamics
was not exposed. Indeed, in the general case when D,
P , and B are not even functions, the reduced system on
Γ may not be Euler-Lagrange, although it still possesses
an integral of motion. Using the potential function of the
reduced system we study the dynamical properties of the
motion on Γ, specifically the equilibria, their stability type,
and the types of oscillations that are possible.

Throughout this paper we make the following standing
assumption, although only the results in Section 4 strictly
rely on it.

Assumption 1. For some q̄ ∈ Q it holds that, for all q ∈ Q,

D(q̄ + q) = D(q̄ − q)

P (q̄ + q) = P (q̄ − q)

B(q̄ + q) = B(q̄ − q).

By shifting the origin of the coordinate system to q̄,
without loss of generality we will assume that q̄ = 0, so
that D(q) = D(−q), P (q) = P (−q), and B(q) = B(−q). It
is interesting to note that the Furuta pendulum in Shiriaev
et al. [2007] and the 5 degrees-of-freedom swing phase
model of a biped robot in Plestan et al. [2003] (when
the centre of mass of the torso is on-axis) satisfy this
assumption.

Example 1.1. Consider the double pendulum in Figure 1,
with q = col(θ1, θ2). Both configuration variables are cyclic
with period T = 2π. Assuming that the masses and lengths
of the two links are equal and unitary, we have for this
system

D(q) =

[

2 cos(θ1 − θ2)
cos(θ1 − θ2) 1

]

C(q, q̇) =

[

0 sin(θ1 − θ2)θ̇2

− sin(θ1 − θ2)θ̇1 0

]

g(q) =

[

− 2g sin θ1

− g sin θ2

]

, B =

[

1
0

]

.

The potential energy is P (q) = 2g cos(θ1) + g cos(θ2). We
see that Assumption 1 is satisfied for this system with
q̄ = (0, 0).

We will develop this example further in this paper to
illustrate various concepts.

2 The inverse of the map (qn, q̇n) 7→ (φ̂(qn), φ̂′(qn)q̇n) is (u, v) ∈

Γ 7→ (qn, q̇n) = (un, φ̂′(un)⊤v/[φ̂′(un)⊤φ̂′(un)]).

θ1

θ2

τ

Fig. 1. The double pendulum.

2. FEASIBLE VIRTUAL CONSTRAINTS AND
STABILIZATION OF Γ

In this section we derive a condition for a C1 vector
function φ(qn) = col(φ1(qn), . . . , φn−1(qn)) to be a fea-
sible virtual constraint so that the set Γ = {(q, q̇) :

q = φ̂(qn), q̇ = φ̂′(qn)q̇n} is controlled invariant. Define
error variables ei = qi − φi(qn), i = 1, . . . , n − 1, and
let e = col(e1, . . . , en−1). The controlled invariance of
Γ amounts to the existence of a feedback τ(q, q̇) such
that ë|{e=0,ė=0} = 0, where derivatives are taken along
solutions of the closed-loop system.

Lemma 2.1. If, for all qn ∈ S1,

Im[D(φ̂(qn))φ̂′(qn)] ∩ B(φ̂(qn)) = {0}, (3)

then the virtual holonomic constraint q = φ̂(qn) is feasible.

Proof. We have

ë|{e=0,ė=0} = [In−1 − φ′(qn)]D−1(φ̂(qn))B(φ̂(qn))τ + (⋆)

where the term (⋆) is a suitable smooth function of (qn, q̇n)
which is independent of τ . If the matrix-valued function

[In−1 − φ′(qn)]D−1(φ̂(qn))B(φ̂(qn)), S1 → R
n−1×n−1, is

nonsingular, then there exists a smooth feedback τ making
Γ invariant. For each qn ∈ S1, the matrix [In−1 −
φ′(qn)]D−1(φ̂(qn))B(φ̂(qn)) is nonsingular if and only if

ker[In−1 − φ′(qn)] ∩ Im[D−1(φ̂(qn))B(φ̂(qn))] = {0}.
Since ker[In−1 − φ′(qn)] = Im φ̂′(qn), the condition

is equivalent to Im[D(φ̂(qn))φ̂′(qn)] ∩ B(φ̂(qn)) = {0},
proving the lemma. 2

Remark 2.2. For each qn ∈ S1, the condition (3) involves
the intersection of a one-dimensional subspace and an
n − 1 dimensional subspace of R

n. Such intersection is
generically zero and so, for each qn, the assumption of
the lemma is generic. For this reason, we will say that a

constraint q = φ̂(qn) satisfying condition (3) is regular.
Lemma 2.1 can therefore be rephrased as follows: “every
regular holonomic constraint is feasible.” Letting B⊥(q) :
Q → R

1×n be a left annihilator of B(q), i.e., a nonzero
matrix-valued function such that B⊥(q)B(q) = 0 for all
q ∈ Q, condition (3) can be rewritten in the following
equivalent form

(∀qn ∈ S1) B⊥(φ̂(qn))D(φ̂(qn))φ̂′(qn) 6= 0. (4)

Example 2.3. We return to the double pendulum exam-
ple. In this case we have B⊥ = [0 1]. Consider the
virtual constraint θ1 = φ(θ2) = sin(2θ2)/4. The func-

tion in Lemma 2.1 is B⊥D(φ̂(θ2))φ̂
′(θ2) = 1

2 cos(θ1 −
θ2) cos(2θ2) + 1 and is clearly nonzero. Therefore, the

set Γ = {(q, q̇) : θ1 = sin(2θ2)/4, θ̇1 = cos(2θ2)/2} is
controlled invariant. The constraint θ1 = sin(2θ2)/4 is
depicted in Figure 2.
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Fig. 2. Configurations of the double pendulum with the
virtual constraint θ1 = sin(2θ2)/4.

It was proved in Lemma 2.1 that the regularity condi-
tion (3) implies that system (1) with input τ and output
e has a vector relative degree {2, . . . , 2} everywhere on Γ.
We therefore have the following result.

Lemma 2.4. Regular virtual holonomic constraints (i.e.,

constraints q = φ̂(qn) satisfying (3) or (4)) are locally
exponentially stabilizable, i.e., Γ is locally exponentially
stabilizable.

We locally exponentially stabilize Γ by setting

τ(q) =
{

[In−1 − φ′(qn)]D−1(q)B(q)
}−1

[−k1e − k2ė

+ φ′′(qn)q̇2
n + [In−1 − φ′(qn)]D−1(q)(C(q, q̇)q̇ + g(q))

]

,

where k1, k2 > 0 are design parameters and

e = col(q1, . . . , qn−1) − φ(qn),

ė = col(q̇1, . . . , q̇n−1) − φ′(qn)q̇n.

3. GENERATION OF REGULAR HOLONOMIC
CONSTRAINTS

In this section we present a constructive procedure to de-
termining regular virtual constraints φi(qn), i = 1, . . . , n−
1, i.e., constraints satisfying (4), i.e., such that

B⊥(φ̂(qn))D(φ̂(qn))φ̂′(qn) = δ(qn), (5)

for some continuous function δ(qn) bounded away from
zero. Since D(q) is nonsingular, the vector function B⊥D
is never zero. Suppose that one of its components, say the
first one, is bounded away from zero. This assumption is
not essential. We will show in the next example how to
overcome it. Pick any C1 constraints φ2(qn), . . . , φn−1(qn)
that are odd functions, i.e., φj(qn) = −φj(−qn), j =
2, . . . , n − 1 and T -periodic, where T is the period of
the cyclic variable qn. We now show that, under mild
assumptions, it is possible to choose the remaining virtual
constraint φ1(qn) so that (6) holds for some nonzero δ(qn)
and so, by Lemma 2.1, φ1(qn), . . . , φn(qn) are feasible.
Denote

[b1(φ1, qn) · · · bn(φ1, qn)] :=
[

B⊥(q)D(q)
]

q = (φ1,

φ2(qn), . . . , φn−1(qn), qn)

.

The arguments of bi highlight the independent variables,
namely the function φ1 and the configuration variable qn.
Since b1 6= 0 we may rewrite (5) as

dφ1

dqn
=

1

b1(φ1, qn)

[

−
n−1
∑

i=2

bi(φ1, qn)φ′
i(qn) + δ(qn)

]

. (6)

The above is a scalar differential equation with state φ1

whose right-hand side is T -periodic because qn is a cyclic
variable of period T . In order for a solution φ1 to be a
well-defined function of the cyclic variable qn, it must be T -
periodic. The problem then is to find δ(qn), bounded away
from zero and T -periodic, so that (6) has a T -periodic
solution φ1(qn). Once that is done, φ1(qn), . . . , φn−1(qn)
will be a set of feasible virtual constraints. For this reason,
we call (6) the virtual constraint generator. The next
lemma gives conditions for the existence of the desired
δ(qn) and φ1(qn).

Lemma 3.1. Suppose that b1 6= 0 and the solution of the
initial value problem

dφ1

dqn
=

1

b1(φ1, qn)

[

−
n−1
∑

i=2

bi(φ1, qn)φ′
i(qn)

]

φ1(q
0
n) = φ0

1

is not T -periodic and that for all q2, . . . , qn the function
q1 7→ D(q1, q2, . . . , qn) is bounded. Let µ(qn) be an arbi-
trary locally Lipschitz and T -periodic function which is
positive and even, and set δ(qn) = ǫµ(qn). Then, there
exists a unique real number ǫ 6= 0 such that the solution
of (6) with initial condition, φ1(q

0
n) = φ0

1, is T -periodic.

Remark 3.2. The lemma above states that under a mild
assumption on the inertia matrix 3 and on the solution
of (6) with δ = 0, there exists a T -periodic function φ1(qn)
guaranteeing controlled invariance of Γ, and thus feasi-
bility of the virtual constraint col(q1, . . . , qn−1) = φ(qn).
The function φ1 can be found systematically by choosing
an even function µ(qn) > 0 and looking for the unique
value of ǫ giving T -periodicity. This latter operation can
be performed quite easily using numerical integration and
a one-dimensional search. Of course, different selections of
µ(qn) will yield different solutions φ1(qn), so there is some
freedom in the choice of φ1.

Proof. Consider (6) with δ = ǫµ(qn). Since for each
(q2, . . . , qn), q1 7→ D(q1, q2, . . . , qn) is bounded, we have
that for each qn ∈ S1 φ1 7→ D(φ1, φ2(qn), . . . , φn−1(qn), qn)
is bounded as well. This property, the fact that ‖B⊥(q)‖ =
1, and the compactness of S1 together imply that the
functions bi(φ1, qn) are bounded. The functions φ′(qn) and
µ(qn), being continuous and defined on the compact set
S1, are also bounded. Since the right-hand side of (6) is
bounded, all solutions are globally defined. For a given
value of the parameter ǫ, let Φ(qn, q0

n, φ0
1, ǫ) denote the so-

lution of (6) at “time” qn with initial condition φ(q0
n) = φ0

1.
Since the differential equation is T -periodic, in order to
show that the solution with initial condition φ1(q

0
n) = φ0

1 is
T -periodic it suffices to show that Φ(q0

n+T, q0
n, φ0

1, ǫ) = φ0
1.

Consider the continuous map f(ǫ) = Φ(q0
n + T, q0

n, φ0
1, ǫ).

The function (φ1, qn) 7→
∣

∣

∣

µ(qn)
b1(φ1,qn)

∣

∣

∣
is bounded from below

because both b1 and µ are bounded and b1 6= 0. This
property implies that the right-hand side of (6) tends to
infinity as ǫ → ∞ and so f(ǫ) → ∞ as ǫ → ∞ as well.
This fact and the continuity of f imply that f : R → R is
surjective, and there exists ǫ ∈ R such that f(ǫ) = φ0

1. By
assumption, when ǫ = 0 the solution with initial condition
3 The class of robot manipulators with bounded inertia matrix
is very large as it includes all manipulators with revolute joints.
Necessary and sufficient conditions for the uniform boundedness of
D are found in Ghorbel et al. [1998].



φ1(q
0
1) = φ0

1 is not T -periodic, or f(0) 6= φ0
1, so it must

be that ǫ 6= 0, implying that δ(qn) = ǫµ(qn) is bounded
away from zero. Finally, the right-hand side of (6) is
strictly monotonic with respect to δ and therefore, by the
Comparison lemma, the function f(ǫ) is strictly monotonic
as well, and hence injective. In conclusion, there is a unique
ǫ 6= 0 such that f(ǫ) = φ0

1. 2

The next lemma shows that if in Lemma 3.1 the initial
condition is φ1(0) = 0, then the resulting solution φ1(qn)
is odd. This fact will be useful in the next section.

Lemma 3.3. If in Lemma 3.1 we set q0
n = 0 and φ0

1 = 0,
then the corresponding T -periodic solution φ1(qn) of (6)
is odd, i.e., such that φ1(qn) = −φ1(−qn).

Proof. Let φ1(qn) be the solution of (6) with initial
condition φ1(0) = 0, and define e(qn) := φ1(qn)+φ1(−qn).
We want to show that e(qn) ≡ 0.

Write (6) as dφ1/dqn = h(φ1, qn). We claim that
h(−φ1,−qn) = h(φ1, qn). In Lemma 3.1 δ(qn) is an even
function, δ(−qn) = δ(qn). Moreover, φ2, . . . , φn−1 were
chosen to be odd functions, so their derivatives φ′

i(qn),
i = 2, . . . , n − 1 are even. If we show that bi(φ1, qn) =
bi(−φ1,−qn) then the claim follows. To this end, recall
that B⊥(q) and D(q) are even functions, so B⊥(q)D(q) =
B⊥(−q)D(−q) and

[b1(φ1, qn) · · · bn(φ1, qn)] =
[

B⊥(q)D(q)
]

q = (φ1, φ2(qn),

. . . , φn−1(qn), qn)

=
[

B⊥(q)D(q)
]

q = (−φ1,−φ2(qn),

. . . ,−φn−1(qn),−qn)

.

Since φ2, . . . , φn−1 are odd functions, the latter expression
is equal to

[

B⊥(q)D(q)
]

q = (−φ1, φ2(−qn),

. . . , φn−1(−qn),−qn)

=
[b1(−φ1,−qn) · · ·

bn(−φ1,−qn)],

which proves the claim that h(−φ1,−qn) = h(φ1, qn).

Now consider the derivative of e(qn)

de

dqn
=

dφ1

dqn
(qn) − dφ1

dqn
(−qn)

= h(e(qn) − φ1(−qn), qn) − h(−φ1(−qn), qn).

The function (φ1, e, qn) 7→ h(e − φ1, qn) − h(−φ1, qn) is
continuous and identically zero when e = 0, so there
exists a continuous function h̃(φ1, e, qn) such that h(e −
φ1, qn) − h(−φ1, qn) = h̃(φ1, e, qn)e. Using this identity in

the derivative of e we get de
dqn

= h̃(φ1(qn), e(qn), qn)e(qn).

Since qn belongs to the compact set S1 and qn 7→
h̃(φ1(qn), e(qn), qn) is continuous, there exists M > 0

such that |h̃(φ1(qn), e(qn), qn)| ≤ M , and thus |de/dqn| ≤
M |e(qn)|. By Gronwall’s lemma, |e(qn)| ≤ |e(0)| exp(Mqn).
However, e(0) = 0 because by assumption φ1(0) = 0, and
therefore e(qn) = 0. 2

Procedure: determination of regular holonomic constraints

We want to find virtual constraints φi, i = 1, . . . , n− 1, in
terms of one of the cyclic configuration variables, say qn.

(i) Assume that one of the first n− 1 coefficients of the
row vector B⊥(q)D(q) is never zero. Suppose, with-
out loss of generality, that it is the first one. If this

assumption does not hold, then it may be possible to
modify the procedure. This issue is explored in the
second part of the next example.

(ii) Choose arbitrary functions φ2(qn), . . . , φn−1(qn) that
are T -periodic and odd, i.e., φi(qn) = −φi(−qn).

(iii) Write the scalar T -periodic differential equation (6).
Check whether the solution of the differential equa-
tion with initial condition φ1(0) = 0 and with δ = 0
is not T -periodic.

(iv) Set δ(qn) = ǫµ(qn), where µ(qn) is any locally
Lipschitz and T -periodic function which is positive
and even. Find ǫ ∈ R such that the solution φ1(qn)
of (6) with initial condition φ1(0) = 0 is such that
φ1(T ) = 0. Such value of ǫ is unique, and guaranteed
to exist by Lemma 3.1. The corresponding solution
φ1(qn) will be odd and T -periodic.

(v) The virtual constraints q1 = φ1(qn), . . . , qn−1 =
φn−1(qn) so obtained are feasible.

The check in step (iii) can be done by a simple numerical
integration, and the value of ǫ in step (iv) can be efficiently
computed with a one dimensional search and numerical
integration of (6).

Example 3.4. We will present two different classes of vir-
tual constraints for the double pendulum. Since n = 2, we
have to find one virtual constraint. We begin by looking for
a constraint of the form θ2 = φ(θ1). We have B⊥(q)D(q) =
[cos(θ1 − θ2) 1]. The second coefficient is never zero.

We have φ̂(θ1) = col(θ1, φ(θ1)) and the virtual constraint

generator (6) reads as dφ
dθ1

= − cos(θ1 − φ(θ1)) + δ(θ1).

When δ = 0, the solution with initial condition φ(0) = 0
is φ(θ1) = θ1 − 2 arctan θ2, which is not 2π-periodic. Pick,
for instance, µ(θ1) = 1 (obviously positive, even, and T -
periodic) so set δ(θ1) = ǫ. The virtual constraint generator

becomes dφ
dθ1

= − cos(θ1 − φ(θ1)) + ǫ. The solution with

zero initial condition is periodic when ǫ = 1 −
√

2, and
is given 4 by φ(θ1) = θ1 + 2 arctan[tan(−θ1/2)(1 +

√
2)].

This constraint is, by construction, feasible and odd. It
is depicted in Figure 3. The interesting feature of this
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Fig. 3. Configurations of the double pendulum with the
virtual constraint θ2 = θ1 + 2 arctan[tan(−θ1/2)(1 +√

2)].

constraint is that, on it, the second pendulum does not
perform complete revolutions and its angle has average
value 0. Here we have taken the simplest choice for µ(θ1).
Different choices of µ lead to different constraints.

4 This function has 2π jumps θ1 = kπ, but its value modulo 2π is
in fact smooth and 2π-periodic.



Next, we explore a second type of constraint, θ1 = φ(θ2).
Since the first component of cos(θ1 − θ2) is zero when
θ2−θ2 = ±π/2 modulo 2π, the assumption in step (i) of the
procedure fails. Nonetheless, a simple modification over-
comes this obstacle. Relation (6) is given by cos(φ(θ2) −
θ2)φ

′(θ2)+1 = δ(θ2). Set δ(θ2) = 1+cos(φ(θ2)−θ2)µ(θ2),
where µ(θ2) is any 2π-periodic C1 function that is even,
has zero average, and satisfies |µ(θ2)| < 1. This choice
guarantees that δ(θ2) is bounded away from zero and the

above equation holds if dφ
dθ2

= µ(θ2). The solution with

φ(0) = 0 is φ(θ2) =
∫ θ2

0
µ(τ)dτ . Since µ is 2π-periodic

and even with zero average, its antiderivative φ(θ2) is
2π-periodic and odd, as required. We have thus found
a second class of feasible virtual constraints θ1 = φ(θ2).
Choosing, for instance, µ(θ2) = cos(2θ2)/2, we get φ(θ2) =
sin(2θ2)/4, which is precisely the constraint examined in
Example 2.3 and depicted in Figure 2.

4. MOTION ON THE CONSTRAINT MANIFOLD

Suppose that through the procedure in the previous sec-
tion we have determined a set of regular virtual holonomic
constraints. In order to determine the dynamics on the
constraint manifold Γ = {(q, q̇) : q1 = φ1(qn), . . . , qn−1 =
φn−1(qn)}, we multiply both sides of (1) by B⊥(q) to the
left, obtaining
{

B⊥D φ̂′q̈n + B⊥
[

D φ̂′′q̇2
n + C φ̂′q̇n + g

]}

q = φ̂(qn),

q̇ = φ̂′(qn)q̇n

= 0.

Using (5), rewrite the above as

q̈n = −B⊥(φ̂(qn))

δ(qn)

[

D φ̂′′(qn)q̇2
n + C φ̂′(qn)q̇n + g

]

q = φ̂(qn),

q̇ = φ̂′(qn)q̇n

.

The product B⊥(q)C(q, q̇) is given by B⊥(q)C(q, q̇) =
∑n

i=1 B⊥
i (q)q̇⊤Qi(q)q̇, where Qi(q) is a symmetric matrix

whose (j, k) entry is the Christoffel coefficient

(Qi)jk =
1

2

{

∂Dij

∂qk
+

∂Dik

∂qj
− ∂Dkj

∂qi

}

.

By Assumption 1, all entries of D(q) are even, and thus
the partial derivatives in the above definition of (Qi)jk are
odd functions of q. We have

q̇⊤Qi(q)q̇
∣

∣

∣

q=φ̂(qn), q̇=φ̂′(qn)q̇n

= φ̂′(qn)⊤Qi(φ̂(qn))φ̂′(qn)q̇2
n

and so letting

Ψ1(qn) = −B⊥(φ̂(qn))

δ(qn)
g(φ̂(qn))

Ψ2(qn) = − 1

δ(qn)

[

B⊥(φ̂(qn))D(φ̂(qn))φ̂′′(qn)

+

n
∑

i=1

B⊥
i (φ̂(qn))φ̂′(qn)⊤Qi(φ̂(qn))φ̂′(qn)

]

(7)

we have

q̈n = Ψ1(qn) + Ψ2(qn)q̇2
n. (8)

System (8) represents the dynamics on the constraint
manifold. Remarkably, this is a one degree-of-freedom
Euler-Lagrange system with Lagrangian L(qn, q̇n) =
1
2M(qn)q̇2

n − V (qn), where

M(qn) = exp

{

−2

∫ qn

0

Ψ2(τ)dτ

}

V (qn) = −
∫ qn

0

Ψ1(µ)M(µ)dµ.

(9)

In order for the mass M(qn) and potential V (qn) in (9)
to be well-defined functions of the cyclic variable qn ∈ S1,
they must be T -periodic. The fact that they are, shown
below, is a consequence of Assumption 1.

Lemma 4.1. Consider the second-order differential equa-
tion (8). The functions Ψ1(qn) and Ψ2(qn) in (7) are
C1, T -periodic, and odd. Therefore, M(qn) and V (qn)
in (9) are T -periodic and even, i.e., M(qn) = M(−qn)
and V (qn) = V (−qn).

Proof. The functions Ψ1(qn) and Ψ2(qn) in (7) are obvi-
ously C1 and T -periodic. It is easy to see that they are also
odd. The lemma follows from the elementary fact that the
antiderivative of a T -periodic odd function is a T -periodic
even function. Indeed, from this fact we get that M(qn)
is even and T -periodic, and thus Ψ1(qn)M(qn) is odd and
T -periodic. Using the fact again we get that V is even and
T -periodic. 2

The fact that (9) is a one degree-of-freedom Euler-
Lagrange system with known Lagrangian makes it possible
to completely characterize the properties of the motion on
Γ in terms of the potential function V (qn). The next result
presents the main properties of the motion. Its proof is
omitted.

Proposition 4.2. Consider the dynamics (8) on the con-
straint manifold Γ. The equilibrium configurations are the

points qn such that ∇P (φ̂(qn)) ∈ Im(B(φ̂(qn))), where
P (q) is the potential of the original system (1). There are
at least two equilibria at qn = 0 and qn = T/2. Their
stability type is determined by the sign of the expression

δ(qn)
d

dqn

[

B⊥(φ̂(qn))g(φ̂(qn))
]
∣

∣

∣

qn=0,T/2

(positive =⇒ stable, negative =⇒ unstable, 0 =⇒
no conclusion). Let V = minqn∈S1 V (qn) and V̄ =
maxqn∈S1 V (qn). Then, all phase curves of (8) in the set
{(qn, q̇n) ∈ S1 ×R : 1/2M(qn)q̇2

n + V (qn) > V̄ } are home-
omorphic to circles {(qn, q̇n) ∈ S1 × R : q̇n = constant },
while almost all (in the Lebesgue sense) phase curves in the
set {(qn, q̇n) ∈ S1×R : V < 1/2M(qn)q̇2

n+V (qn) < V̄ } are
homeomorphic to circles {(qn, q̇n) : q2

n + q̇2
n = constant }.

The second part of the above proposition can be rephrased
as follows. For initial conditions in Γ with energy greater
than V̄ , the resulting phase curve of the system traverses

the entire curve q = φ̂(qn) in either direction, depending on
the sign of q̇n(0). On the other hand, almost all solutions
on Γ with energy in the interval (V, V̄ ) correspond to

rocking motions whereby the curve q = φ̂(qn) is not
traversed in its entirety.

Example 4.3. We will now use the result of Proposition 4.2
to investigate the motion of the double pendulum on
the constraint manifolds for the two virtual constraints
presented in Example 3.4. For the constraint θ2 = φ(θ1) =

θ1+2 arctan[tan(−θ1/2)(1+
√

2)], depicted in Figure 3, the
equilibrium configurations θ1 are given by the condition

∇P (φ̂(θ1))) ∈ Im B ⇐⇒ φ(θ1) = 0, π ⇐⇒ θ1 = 0, π.



These are precisely the equilibria predicted by Proposi-
tion 4.2. Their stability type is determined by the sign of

d/dqn(B⊥g(φ̂(θ1)) = cosφφ′|θ1=0,π = φ′|θ1=0,π. We have
φ′(0) < 0 and φ′(π) > 0, so the configuration θ1 = π
is stable, while θ1 = 0 is unstable. The level sets of
the energy (and hence the phase portrait) of the reduced
Euler-Lagrange system on the constraint manifold Γ are
depicted in Figure 4. The shaded area in the figure is the
region where θ1 oscillates without performing complete
revolutions. The remaining region corresponds to full rev-
olutions of θ1 in either direction.
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Fig. 4. Energy level sets for double pendulum on the
virtual constraint θ1 = sin(2θ2)/4.

Now consider the constraint θ1 = φ(θ2) = sin(2θ2)/4

depicted in Figure 2. The condition ∇P (φ̂(θ2))) ∈ Im B
gives equilibrium configurations θ2 = 0, π and it is easily
seen that θ2 = 0 is unstable, while θ2 = π is stable. The
level sets of the energy for the motion on Γ are depicted
in Figure 5 where, once again, the shaded region indicates
a rocking motion of θ1 around its stable equilibrium while
the unshaded area corresponds to full revolutions.
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Fig. 5. Energy level sets for double pendulum on the
virtual constraint θ2 = θ1 + 2 arctan[tan(−θ1/2)(1 +√

2)].

Simulation results for the stabilization of the two vir-
tual constraints θ1 = sin(2θ2)/4 and θ2 = θ1 +

2 arctan[tan(−θ1/2)(1 +
√

2)] are depicted in Figures 6
and 7. It is particularly interesting to observe, in parts 1
and 4 of Figure 7, the “throwing” motion that the first link
performs in order to make the second link approach the set
of configurations corresponding to the virtual constraint.
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