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Abstract— This article proposes a solution to the path fol-
lowing problem for the planar vertical take-off and landing
aircraft (PVTOL) applicable to a class of smooth Jordan curves.
Our solution relies on the stabilization of two nested embedded
submanifolds of the state space that are defined based on the
path one wishes to follow. The stabilization of these sets is
performed using the ideas of transverse feedback linearization
and finite-time stabilization. Our path following controller
enjoys the two crucial properties of output invariance of the
path (i.e., if the PVTOL’s centre of mass is initialized on the path
and its initial velocity is tangent to the path, then the PVTOL
remains on the path at all future time) and boundedness of the
roll dynamics. Further, our controller guarantees that, after
a finite time, the time average of the roll angle is zero, and
the PVTOL does not perform multiple revolutions about its
longitudinal axis.

I. INTRODUCTION

In this paper we investigate the model of a V/STOL

aircraft in planar vertical take-off and landing (PVTOL)

mode, introduced by Hauser and co-workers in [1]

ẋ1 = x2

ẋ2 = −u1 sin x5 + ǫu2 cosx5

ẋ3 = x4

ẋ4 = −g + u1 cosx5 + ǫu2 sinx5

ẋ5 = x6

ẋ6 = µu2

y = h(x) = col (x1, x3),

(1)

where (x1, x3) are the coordinates of the centre of mass of

the aircraft in the vertical plane, x5 is the roll angle, and

(x2, x4, x6) are the corresponding velocities. The constants

ǫ and µ are positive, and g denotes the acceleration due

to gravity. The state space of the PVTOL is M = R
4 ×

(R mod 2π)×R. The output of the system is the position of

the aircraft’s centre of mass. In various computations we will
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denote by f , g1, and g2 the drift and control vector fields

in (1), so that ẋ = f(x) + g1(x)u1 + g2(x)u2.

This paper continues the line of research initiated in [2],

aimed at designing explicit path following controllers (as

opposed to path following control algorithms relying on

numerical computations) for the PVTOL aircraft. We re-

fer the reader to the introduction of [2] for a literature

overview on the subject. In [2], we designed a path following

controller to make the PVTOL follow a unit circle. Two

main problems remained open. First, it wasn’t clear whether

the approach in [2] could be extended to general curves.

Second, the analysis of the dynamics on the so-called roll

dynamics manifold in Section V.C of [2] relies on non

rigorous considerations based on numerical plots. The roll

dynamics manifold is a two-dimensional manifold on which

the PVTOL is constrained to lie on the path and its roll

angle is constrained to have a value that depends only on

the displacement of the PVTOL on the path.

In this paper, we overcome both problems above by devel-

oping an explicit path following controller for the PVTOL,

applicable to a large class of closed curves. The analysis of

the dynamics on the roll dynamics manifold is now entirely

justified thanks to the realization that the dynamics on this

manifold are Hamiltonian.

Throughout the paper, we use the following notation. If

N is a positive real number, [·]N : R → R mod N is the

function mapping real numbers to their value modulo N .

Given vectors x, y ∈ R
n, we will denote by 〈x, y〉 the

Euclidean inner product and by ‖x‖ the associated Euclidean

norm. Given a set A ⊂ R
n, and a point x ∈ R

n, we

let ‖x‖A := infa∈A ‖x − a‖. We let col(x1, . . . , xk) =
[x1 · · · xk]⊤. Given a function σ : A → B, we let

Im(σ) denote its image. If f(x1, . . . , xn) is a differentiable

function, we denote by ∂xi
f its partial derivative with respect

to xi.

If M and N are two smooth manifolds and F : M → N
is a map, we denote by dFp the differential of F at p ∈ M .

If M and N are open subsets of Euclidean spaces R
m and

R
n, respectively, then dFp is the familiar derivative of F at

p, whose matrix representation is the n× m Jacobian of F .

In this case, we will not distinguish, notationally, between

the map dFp and its matrix representation. In particular, if

λ : R
n → R is a real-valued function then, depending on the

context, dλx may represent the differential map R
n → R

or the row vector [∂x1
λ · · · ∂xn

λ]. On the other hand, we

will denote by ∇xλ the column vector dλ⊤
x . Given a vector

field f , the directional derivative of λ along f , denoted by

Lfλ, is given by Lfλ(x) = 〈dλx, f(x)〉. If φ : D → M
is a smooth map between manifolds, with either D = R or



D = S1, and d/dθ is the tangent vector to D at θ, we will

denote by φ′(θ) := dφθ(d/dθ) the tangent vector at φ(θ).

II. PATH FOLLOWING PROBLEM

Consider a regular Jordan curve C of length L in the

y plane with smooth parameterization σ̃(·) : R → R
2,

Im(σ̃) = C. Assume, without loss of generality, that σ̃ is

a unit speed parameterization, i.e., ‖σ̃′(·)‖ ≡ 1. With this

assumption, the map σ̃ is L-periodic. We will also assume

that C can be expressed in implicit form as

C = {y ∈ U : γ(y) = 0},

where γ : W ⊂ R
2 → R is a smooth function such that

dγy 6= 0 on W , and W is an open set containing C. Without

loss of generality, we will assume that ‖dγy‖ = 1 for all

y ∈ C (for, if that isn’t the case, we may replace γ(y) by

γ(y)/‖dγy‖, whose differential has unit norm on C).

Being Jordan and smooth, the curve C is diffeomorphic to

the set R mod L, and the diffeomorphism between the two

sets is produced as follows. Since σ̃ is L-periodic, any two

points t and t + L in the domain of σ̃ can be identified.

Henceforth, we denote by S1 the set R mod L. We define a

map σ : S1 → R
2 through the identity σ([t]L) = σ̃(t) for

all t ∈ R. Now σ maps S1 diffeomorphically onto C, and

it has the same properties of σ̃: Im(σ) = C, ‖σ′(·)‖ ≡ 1.

Let ϕ(θ) : S1 → R mod 2π be the map associating to each θ
the angle of the tangent vector σ′(θ) to C at σ(θ). Then, the

derivative ϕ′ is the signed curvature of C. Throughout this

paper, we restrict the geometry of C by means of the next

assumption.

Assumption 1 (Curve geometry): (i) There exists θ0 ∈
S1 such that ϕ(θ0) = 0 and

ϕ′(θ0 + θ) = ϕ′(θ0 − θ), for all θ ∈ S1. (2)

(ii) The curvature satisfies the inequality

|ϕ′(θ)| <

√

(

2π

L

)2

+
(µ

ǫ

)2

for all θ ∈ S1. (3)

Remark 2.1: Part (i) of the assumption implies that

ϕ(θ0 + θ) = −ϕ(θ0 − θ), (4)

(note that the identity holds modulo 2π) and, using this fact,

it easy to show that

σ1(θ0 + θ) − σ1(θ0) = − (σ1(θ0 − θ) − σ1(θ0))

σ2(θ0 + θ) − σ2(θ0) = σ1(θ0 − θ) − σ1(θ0),

where σ1 and σ2 are the components of the map σ. Therefore,

part (i) requires C to have a vertical symmetry axis passing

through the point σ(θ0). In particular, then, ϕ(θ0 + L/2) =
[π]2π . In the special case when C is a circle of length L,

radius L/(2π), and unit speed parameterization

σ(θ) =
L

2π
col

(

cos

(

2π

L
θ

)

, sin

(

2π

L
θ

))

,

the assumption is satisfied with θ0 = [−L/4]L.

The curvature of a circle of length L is 2π/L. Thus, part

(ii) of the assumption requires that the maximum curvature

of C be not too much higher than that of a circle of the same

length. In intuitive terms, the assumption limits the amount

of deformation that one has to apply to a circle in order to

obtain C. The higher the ratio µ/ε is, the more the maximum

curvature of C can deviate from that of a circle of the same

length, and hence the more one may deform the circle to

obtain C.

Path Following Problem (PFP): Given a Jordan curve

σ : S1 → R
2, with Im(σ) = C, satisfying Assumption 1, find

a continuous feedback u(x) = col(u1(x), u2(x)) : M → R
2

and an open set of initial conditions U ⊂ M such that C ⊂
h(U), and the closed-loop system meets the following goals:

G1 For each initial condition in U , at least one solution x(t)
to (1) exists for all t ≥ 0 and all solutions are such that

y(t) := h(x(t)) → C in finite time.

G2 The set C is output invariant for the closed-loop sys-

tem. In other words, if the centre of mass (x1, x3) is

initialized on C, and if the velocity vector (x2, x4) is

initialized tangent to C, then all solutions of the closed-

loop system give output signals y(t) ∈ C for all t ≥ 0.

G3 For each initial condition in U , there exists a time T1 >
0 such that after time T1, all output signals y(t) trace the

entire curve C, i.e., Im(y([T1, +∞))) = C, in a desired

direction.

G4 For each initial condition in U , there exists a time T2 >
T1 after which the roll angle oscillates around its zero

value, and its time average is zero. In other words, the

aircraft does not undergo multiple revolutions about its

longitudinal axis.

The reason for allowing continuous feedback, and therefore

non-unique solutions, is that, in solving PFP, we will utilize

the finite-time stabilization theory of [3], [4]. As mentioned

in the introduction, goal G2 is a crucial feature that dis-

tinguishes our control strategy from other path following

control approaches in the literature and has considerable

practical value. To illustrate its importance, suppose that a

sudden disturbance slows down the PVTOL or even stops

its motion without making its centre of mass abandon C. If

goal G2 is met, then as soon as the disturbance vanishes, the

PVTOL resumes its normal operation without leaving C. On

the other hand, a controller not meeting goal G2 may have

the undesirable property of making the PVTOL leave C.

Our approach to solving PFP is summarized in the fol-

lowing steps.

1) We find the four-dimensional path following submani-

fold Γ⋆
1 associated with C (see [5]), i.e., the maximal

controlled invariant subset of h−1(C).
2) We use transverse feedback linearization (see [6]) to

decompose system (1) into subsystems tangential and

transversal to Γ⋆
1, with the property that the transversal

subsystem is linear time invariant (LTI). The tangential

and transversal subsystems are driven by tangential and

transversal control inputs, v‖ and v⋔, respectively.

3) Using the theory of [4], we design the transversal

controller v⋔ to finite-time stabilize the origin of the

transversal subsystem. This controller meets goals G1



and G2.

4) We find a two-dimensional controlled invariant subman-

ifold Γ⋆
2 ⊂ Γ⋆

1, henceforth called the roll dynamics

submanifold, on which the roll dynamics (subsystem

with state (x5, x6)) meet goal G4. More precisely, for

all initial conditions on Γ⋆
2, the resulting roll angle,

x5(t), is a periodic function with zero mean.

5) We design the tangential controller v⋔ to finite-time

stabilize the roll dynamics submanifold Γ⋆
2.

6) We show that the two-dimensional dynamics on Γ⋆
2

are Hamiltonian with energy H = T + V given by

kinetic plus potential energy. Using this fact, we are

able to completely characterize the motion on Γ⋆
2. In

particular, we show that there exist two open subsets

of Γ⋆
2 corresponding to clockwise and counterclockwise

motion of the PVTOL on the curve C, thus satisfying

goal G3.

III. SOLUTION OF PFP

In this section we carry out in detail each point of the

program outline above.

A. Finding the path following manifold

In general, the path following manifold Γ⋆
1 associated

with the curve C (see [5]) is defined to be the maximal

controlled invariant submanifold (if it exists) contained in

h−1(C) = {x ∈ M : γ(col(x1, x3)) = 0}. As such, Γ⋆
1

is the collection of all possible motions generated by the

control system with the property that their associated outputs

lie in C at all times. Equivalently, Γ⋆
1 is the zero dynamics

manifold of (1) with output function γ̃(x) := γ(col(x1, x3)).
In order to characterize Γ⋆

1 for the problem at hand, is

suffices to notice that γ̃ yields a well-defined relative degree

2 everywhere on h−1(C), since Lgi
γ̃(x) = 0, for i = 1, 2

and for all x ∈ M , and

[Lg1
Lf γ̃ Lg2

Lf γ̃] = dγ(x1,x3)

[

− sin x5 ǫ cosx5

cosx5 ǫ sinx5

]

has full rank 1 for all x in h−1(W ). Therefore, the path

following submanifold of (1) associated with C is the four-

dimensional submanifold

Γ⋆
1 = {x ∈ M : γ̃(x) = 0, Lf γ̃ = 0}

= {x ∈ M : γ(col(x1, x3)) = 0,

(∂x1
γ)x2 + (∂x3

γ)x4 = 0}. (5)

B. Transverse feedback linearization

We now seek to transverse feedback linearize system (1)

with respect to the set Γ⋆
1 (see [7], [8], [6]). Since Γ⋆

1 is

the zero dynamics manifold associated with an output (the

function γ̃) yielding a well-defined relative degree, transverse

feedback linearization with respect to Γ⋆
1 amounts to standard

input-output linearization (see Theorem 3.1 in [6]) from the

output γ̃.

By the tubular neighborhood theorem (see [9]), there exists

a sufficiently small constant ε > 0 such that, letting Cε :=

{y ∈ R
2 : ‖y‖C < ε}, the relation π : Cǫ → S1 defined by

π(y) = arg min
θ∈S1

‖y − σ(θ)‖

is a well-defined smooth map and, for all y ∈ Cε, dπy 6= 0.

For instance, if C were a circle centred at the origin, then

we would have π(y) = L
2π

arg(y1 + i y2). This function is

smooth everywhere except at the origin.

Lemma 3.1: For each y ∈ C, the matrix

D(y) :=

[

dπy

dγy

]

=

[

∂y1
π ∂y2

π
∂y1

γ ∂y2
γ

]

(6)

is orthogonal.

Unfortunately, due to space constraints, the proof of

Lemma 3.1 and all subsequent proofs have been omitted.

We invite the interested reader to contact the authors for an

extended version of this article containing these proofs.

Lemma 3.2: The coordinate transformation

T : x 7→ (η1, η2, η3, η4, ξ1, ξ2) ∈ (R mod 2π)×R×S1 ×R
3

defined as
















η1

η2

η3

η4

ξ1

ξ2

















=

















x5

x6

π(col(x1, x3))
dπcol(x1,x3)(col(x2, x4))

γ(col(x1, x3))
dγcol(x1,x3)(col(x2, x4))

















, (7)

is a diffeomorphism of a neighborhood V of Γ⋆
1 onto its

image.

The system in new coordinates reads as

η̇1 = η2

η̇2 = µ u2

η̇3 = η4

η̇4 = ḋπ col(x2, x4) − g ∂x3
π

+ dπcol(x1,x3)

[

− sinx5 ǫ cosx5

cosx5 ǫ sinx5

] [

u1

u2

]

ξ̇1 = ξ2

ξ̇2 = ḋγ col(x2, x4) − g ∂x3
γ

+ dγcol(x1,x3)

[

− sinx5 ǫ cosx5

cosx5 ǫ sinx5

] [

u1

u2

]

,

where ḋπ and ḋγ are the time derivatives of the row vectors

dπcol(x1,x3) and dγcol(x1,x3) along the vector field f .

Since dπcol(x1,x3) and dγcol(x1,x3) are linearly independent

on Γ⋆
1, they remain so in a neighborhood of Γ⋆

1, without

loss of generality on V . Consider the regular feedback

transformation on V ,

[

u1

u2

]

=

[

− sin x5 ǫ cosx5

cosx5 ǫ sinx5

]−1

D(col(x1, x3))
−1·

·

(

−

[

ḋπ

ḋγ

]

col(x2, x4) + g

[

∂x3
π

∂x3
γ

]

+

[

v‖

v⋔

])

, (8)



where v‖ and v⋔ are new control inputs. The PVTOL after

coordinate and feedback transformation reads as

η̇1 = η2

η̇2 = µ u2(η1, η3, ξ1, v
‖, v⋔)

η̇3 = η4

η̇4 = v‖

ξ̇1 = ξ2

ξ̇2 = v⋔.

(9)

In (η, ξ) coordinates, we have T (Γ⋆
1) = {ξ = 0}. Therefore,

the ξ subsystem describes the dynamics of the PVTOL

transversal to Γ⋆
1, and for this reason it is called the transver-

sal subsystem, driven by the transversal input v⋔. On the

other hand, the restriction of the η subsystem to T (Γ⋆
1) when

v⋔ = 0 represents the dynamics of the PVTOL on Γ⋆
1, and

is therefore referred to as the tangential subsystem, driven

by the tangential input v‖. We will explore the structure of

the tangential subsystem in more detail in Lemma 3.3.

C. Transversal control design

This part is identical to that of our previous work in [2]

and so the presentation is succinct. Since the transversal

subsystem in (9) is a double integrator, following the work

in [4], one defines a controller v⋔(ξ) guaranteeing that

trajectories of the ξ subsystem are stable and converge to

zero in a finite time which is uniform over compact sets of

initial conditions.

D. Finding the roll dynamics submanifold

In this section we consider the motion of the PVTOL on

the path following manifold Γ⋆
1.

Lemma 3.3: The tangential subsystem on Γ⋆
1, obtained

from (9) by setting ξ = 0 and v⋔ = 0, is given by

η̇1 = η2

η̇2 =
µ

ǫ

(

g sin η1 + sin(η1 − ϕ(η3))ϕ
′(η3)η

2
4

+ cos(η1 − ϕ(η3))v
‖
)

η̇3 = η4

η̇4 = v‖.

(10)

Next, in order meet goal G4, we will impose a “virtual

constraint” for the roll angle η1, η1 = f(η3), where f is

a smooth function to be determined so that

(i) f is a well-defined function on S1. In other words,

there exists an L-periodic smooth function f̃(x) on R

such that f([x]L) = f̃(x) for all x ∈ R, and

(ii) f has zero mean:
∫ L

0 f(η3)dη3 = 0.

The constraint in question will identify a submanifold Γ⋆
2 ⊂

Γ⋆
1. In Corollary 3.6 we will show that property (ii) of f

implies that, on Γ⋆
2, the signal η1(t) = f(η3(t)) has time

average zero, and thus goal G4 is met. In order for η1 =
f(η3) to be a feasible constraint for (10), we need

η̇1 = η2 = f ′(η3)η4

η̈1 = η̇2 = f ′′(η3)η
2
4 + f ′(η3)v

‖.

Thus, if

µ

ǫ

(

g sin η1 + sin(η1 − ϕ)ϕ′η2
4 + cos(η1 − ϕ)v‖

) ∣

∣

∣

η1=f(η3)

= f ′′(η3)η
2
4 + f ′(η3)v

‖,

then the two dimensional submanifold

T (Γ⋆
2) := {(η, ξ) : η1 = f(η3), η2 = f ′(η3)η4, ξ = 0} (11)

is controlled invariant. Solving the above equation for v‖ we

obtain

v‖ =
µ

ǫ

g sin f(η3) + [sin(f(η3) − ϕ(η3))ϕ
′(η3) −

ǫ
µ
f ′′(η3)]η

2
4

f ′(η3) −
µ
ǫ

cos(f(η3) − ϕ(η3))
.

(12)

The feedback v‖ is smooth if its denominator is bounded

away from zero. If there exists a function f satisfying

properties (i) and (ii) above, and such that, for all η3 ∈ S1,

f ′(η3)−
µ
ǫ

cos(f(η3)−ϕ(η3)) 6= 0, then on the corresponding

controlled invariant set Γ⋆
2 defined by (11), the system meets

goal G4. Note that there may be many choices of f yielding

the desired result. We find one such function by imposing

that

f ′(η3) =
µ

ǫ
cos(f(η3) − ϕ(η3)) + ϕ′(η3) − δ0, (13)

where δ0 is a positive constant yet to be specified such that

|ϕ′(η3) − δ0| > 0 for all η3 ∈ S1. Letting λ := f − ϕ, the

above equation becomes

λ′ =
µ

ǫ
cosλ − δ0,

where the prime indicates differentiation with respect to η3.

The above first-order ODE can be explicitly integrated on R,

λ(x) =

[

−
π

2
+ 2 arctan

(

1

δ 0

(

α tan
(α

2
(K − x)

)

+
µ

ǫ

)

)]

2π

where α =

√

δ2
0 −

(

µ
ǫ

)2
and K is the integration constant.

The function arctan(·) has 2π jumps whenever the argument

of tan(·) is ±π/2, but λ is smooth because its codomain is

R mod 2π. Next, we impose that α/2 = π/L, or

δ0 =

√

(

2π

L

)2

+
(µ

ǫ

)2

, (14)

so that the function f̃(x) := [λ(x) + ϕ([x]L)]2π is smooth

and L-periodic. This latter property allows us to define f(η3)
by replacing x with η3 in f̃ :

f(η3) =

[

ϕ(η3) −
π

2

+ 2 arctan

(

1

δ 0

(

2π

L
tan

(π

L
(K − η3)

)

+
µ

ǫ

))

]

2π

.

(15)

The function f(η3) is smooth, well-defined on S1, and

satisfies (13). Moreover, by inequality (3) in Assumption 1,

the choice of δ0 above yields |ϕ′(η3) − δ0| > 0 for all

η3 ∈ S1, and so the feedback v‖ in (12) is smooth. Next, we

choose the integration constant K in λ(x) to ensure that f
has zero mean. We’ll do that by imposing that f is odd with



respect to θ0, which occurs when f ′ is even with respect to

θ0 and f(θ0) = 0. Letting

η̄3(K) := K −
L

π
arctan

(

Lδ0

2π
−

µL

2πǫ

)

,

we have λ(η̄3(K)) = 0 and it is not hard to see that cosλ(η3)
is an even function with respect to η̄3, i.e., cos[λ(η̄3(K) +
η3)] = cos[λ(η̄3(K) − η3)].

By (2) in Assumption 1, ϕ′ is an even function with respect

to θ0. We choose K so that η̄3(K) = θ0, i.e.,

K =
L

π
arctan

(

Lδ0

2π
−

µL

2πǫ

)

+ θ0, (16)

so that cosλ(η3) is now even with respect to θ0. With this

choice, from (13) we conclude that f ′(η3) is even with

respect to θ0. Since

f(θ0) = [λ(θ0) + ϕ(θ0)]2π = [λ(η̄3(K)) + ϕ(θ0)]2π = [0]2π

and f ′ is even, we have that f(η3) is odd with respect to θ0,

i.e.,

f(θ0 + η3) = −f(θ0 − η3). (17)

This fact ensures that f has zero mean, as required.

To summarize, picking K as in (16), the function f :
S1 → R mod 2π given by (15) is smooth, L-periodic, and has

zero mean. Moreover, the feedback v‖ in (12) is smooth and

renders the submanifold Γ⋆
2 ⊂ Γ⋆

1 defined in (11) invariant.

We call this submanifold the roll dynamics manifold. From

a physical point of view, when the state of the PVTOL is on

Γ⋆
2, the roll angle x5 (equal to η1) is completely determined

by the position π(y) (equal to η3) of the aircraft on C by

means of the virtual constraint η1 = f(η3). Hence, no matter

what are the dynamics of the aircraft’s centre of mass on C,

the roll angle does not perform multiple revolutions about

its longitudinal axis.

E. Tangential control design

Having identified a submanifold Γ⋆
2 ⊂ Γ⋆

1 on which the roll

angle of the PVTOL exhibits desired properties, we use the

tangential input v‖ in (10) to stabilize Γ⋆
2. The development

in this section is similar to that in our previous work [2] and

so the presentation is concise. Define error variables e1 =
η1 − f(η3), e2 = η2 − f ′(η3)η4. On Γ⋆

1, stabilizing Γ⋆
2 is

equivalent to stabilizing the origin of the error dynamics

ė1 = e2

ė2 = β(η1, η3, η4) −
(

f ′(η3) −
µ

ǫ
cos(η1 − ϕ(η3))

)

v‖,

where β = µ
ǫ

(

g sin η1 + [sin(η1 − ϕ(η3))ϕ
′(η3) −

ǫ
µ
f ′′(η3)]η

2
4

)

. We pick the tangential controller on Γ⋆
1 to

be

v‖(η) =
β(η1, η3, η4) − w(e)

f ′(η3) −
µ
ǫ

cos(η1 − ϕ(η3))
, (18)

where w(e) is a continuous function chosen to finite-time

stabilize the rotational (since e1 is a variable in R mod 2π)

double integrator ė1 = e2, ė2 = w(e). The expression

for w(e) is found in equation (15) of [2] and is a slight

modification of the control law originally introduced in [4].

We omit it for brevity.

The tangential feedback v‖ in (18) is well-defined in the

region of Γ⋆
1 where the denominator is bounded away from

zero. On Γ⋆
2 ⊂ Γ⋆

1, the denominator in question takes the

form

f ′(η3) −
µ

ǫ
cos(f(η3) − ϕ(η3))

which, by our choice of f , is equal to ϕ′(η3) − δ0 and is

bounded away from zero for all η3. Therefore, the denomi-

nator of (18) is bounded away from zero in a neighborhood

of Γ⋆
2 in Γ⋆

1. An estimate of this neighborhood is found by

noting that

f ′(η3) −
µ

ǫ
cos(η1 − ϕ(η3)) = ϕ′(η3) − δ0

+
µ

ǫ
[cos(η1 − ϕ)(cos e1 − 1) + sin(η1 − ϕ) sin e1] ,

and thus the left-hand side is bounded away from zero for all

those values of e1 such that (µ/ǫ)(|1− cos e1|+ | sin e1|) <
minη3∈S1(ϕ′(η3) − δ0). By (3), the right-hand side of this

inequality is > 0.

F. Motion on the roll dynamics manifold

So far we picked the transversal controller v⋔(ξ) to locally

finite-time stabilize the path following manifold Γ⋆
1 defined

in (5), and the tangential controller v‖(η) to locally finite-

time stabilize Γ⋆
2 from within Γ⋆

1. What is left is to do is

to investigate the dynamics of the closed-loop system on the

two dimensional submanifold Γ⋆
2. On Γ⋆

2, v‖ is given by (12).

Substituting that expression in (10) and setting η1 = f(η3),
η2 = f ′(η3)η4 we obtain the reduced second-order system

describing the motion on the roll dynamics manifold Γ⋆
2,

η̇3 = η4

η̇4 = φ1(η3) + φ2(η3)η
2
4

(19)

where,

φ1(η3) =
(µ/ǫ)g sin f(η3)

ϕ′(η3) − δ0

φ2(η3) =
(µ/ǫ) sin(f(η3) − ϕ(η3))ϕ

′(η3) − f ′′(η3)

ϕ′(η3) − δ0
.

Physically, the dynamics in (19) describe the evolution of the

position and velocity of the PVTOL’s centre of mass along

the curve C. In order to meet goal G3, it is desirable for η3

to traverse the entire S1 (which corresponds to the PVTOL

traversing the entire curve C) in a desired direction while

η4 remains bounded. We will show that almost all phase

curves of C can be of three types: equilibria, closed curves

corresponding to oscillations (i.e., the PVTOL oscillates back

and forth on a segment of C without traversing the entire

C), and closed curves corresponding to complete rotations

around S1. The latter is the type we are interested in, and

we’ll precisely characterize the domain of initial conditions

of interest. The crucial realization to understanding the

dynamics in (19) is that the system is Hamiltonian with

energy function

H(η3, η4) =
1

2
M(η3)η

2
4 + V (η3),



γ1

γ2

η3

η4

Fig. 1. Two phase curves illustrating Lemma 3.5. Curve γ1 is homeomor-
phic to a circle {η4 = constant}, while curve γ2 is homeomorphic to a
circle {(η3 − η̄3)2 + η

2
4

= constant}.

and canonical coordinates (q, p) = (η3, M(η3)η4). The

functions M and V are given by

M(η3) = exp

(

−2

∫ η3

0

φ2(τ)dτ

)

V (η3) = −

∫ η3

0

φ1(µ)M(µ)dµ.

Note that M ′(η3) = −2M(η3)φ2(η3) and V ′(η3) =
−M(η3)φ1(η3). Using these identities, it immediately fol-

lows that H is a first integral of (19). Moreover, it is easy

to see that in (q, p) coordinates (19) takes on the canonical

form of Hamilton’s equations.

Lemma 3.4: Consider the dynamics in (19) of the PVTOL

on the roll manifold. The equilibria are pairs (η⋆
3 , 0) given

by values of η⋆
3 such that either f(η⋆

3) = [0]2π or f(η⋆
3) =

[π]2π . There are at least two equilibria corresponding to η⋆
3 =

θ0, θ0 + L/2. The equilibrium at (θ0 + L/2, 0) is always

unstable. If there are only two equilibria, then the equilibrium

at (θ0, 0) is stable.

In the case that C is a circle of length L, there are two

equilibria at (θ0, 0) = ([−L/4]L, 0) and (θ0 + L/2, 0) =
([L/4]L, 0). They correspond to the south and north poles of

the circle. The south pole is stable, while the north pole is

unstable, so if the PVTOL is initialized on the roll manifold

near the south pole of the circle, the aircraft oscillates back

and forth around this point while maintaining a bounded roll

angle.

Lemma 3.5: Let H := minη3∈S1 V (η3) and H̄ :=
maxη3∈S1 V (η3). Then, all phase curves of (19) in the set

{(η3, η4) ∈ S1 × R : H(η3, η4) > H̄} are homeomorphic

to circles {(η3, η4) ∈ S1 × R : η4 = constant}. On the

other hand, almost all phase curves in the set {(η3, η4) ∈
S1 ×R : H < H(η3, η4) < H̄} are homeomorphic to circles

{(η3, η4) : (η3 − η̄3)
2 + η2

4 = constant}.

In words, almost all phase curves are closed; high-energy

phase curves correspond to complete rotations of η3 around

S1 in either direction, while low-energy ones correspond to

oscillations around a point in S1, see Figure 1.

To better illustrate Lemma 3.5, consider the periodic cubic

spline represented in Figure 2. We set µ = ǫ = 1, g = 9.8,

the length of γ is numerically computed as L = 85.63. For

this curve, Assumption 1 is satisfied because the curve has a

vertical symmetry axis and it can be verified that |ϕ′(θ)| ≤
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Fig. 2. A cubic spline satisfying Assumption 1 and the associated level
sets of the energy H.

0.49, ∀θ ∈ R and

√

(

2π
L

)2
+

(

µ
ǫ

)2
= 1.0027. The level sets

of H(η3, η4) and regions R+ and R− are shown in Figure 2.

Corollary 3.6: Let R+ = {(η3, η4) ∈ S1 × R :
H(η3, η4) > H̄, η4 > 0} and R− = {(η3, η4) ∈ S1 × R :
H(η3, η4) > H̄, η4 < 0}. Then, for any initial condition

in R+ (resp., R−), the PVTOL traverses C in the positive

(resp., negative) direction with bounded speed. Moreover, its

roll angle η1(t) = f(η3(t)) is a periodic function with zero

mean.

IV. CONCLUSION

Theorem 4.1: The smooth feedback given by the coordi-

nate transformation x 7→ (η, ξ) in (7), feedback transfor-

mation (8), transversal feedback v⋔(ξ), tangential feedback

v‖(η) in (18) (with f(η3) as in (15), δ0 as in (14), and K
as in (16)), solves PFP.
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