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Abstract— We investigate the stabilization of closed sets for
passive nonlinear systems which are contained in the zero level
set of the storage function.

I. INTRODUCTION

Equilibrium stabilization is one of the basic control spec-

ifications. It is one of the important research problems in

nonlinear control theory which continues to receive much

attention. The more general problem of stabilizing sets

has received comparatively less attention. This problem has

intrinsic interest because many control specifications can

be naturally formulated as set stabilization requirements.

The synchronization or state agreement problem, which

entails making the states of two or more dynamical systems

converge to each other, can be formulated as the problem

of stabilizing the diagonal subspace in the state space of

the coupled system. The observer design problem can be

viewed in the same manner. The control of oscillations in a

dynamical system can be thought of as the stabilization of a

set homeomorphic to the unit circle or, more generally, to the

k-torus. The maneuver regulation or path following problem,

which entails making the output of a dynamical system

approach and follow a specified path in the output space

of a control system, can be thought of as the stabilization of

a certain invariant subset of the state space compatible with

the motion on the path.

Recently, significant progress has been made toward a

Lyapunov characterization of set stabilizability. Albertini and

Sontag showed in [1] that uniform asymptotic controllability

to a closed, possibly non-compact set is equivalent to the

existence of a continuous control-Lyapunov function. Kellet

and Teel in [2], [3], and [4], proved that for a locally Lips-

chitz control system, uniform global asymptotic controllabil-

ity to a closed, possibly non-compact set is equivalent to the

existence of a locally Lipschitz control Lyapunov function.

Moreover, they were able to use this result to construct a

semiglobal practical asymptotic stabilizing feedback.

A geometric approach to a specific set stabilization prob-

lem for single-input systems was taken by Banaszuk and

Hauser in [5]. There, the authors characterized conditions

for dynamics transversal to an open-loop invariant periodic

orbit to be feedback linearizable. In [6], Nielsen and one

of the authors generalized Banaszuk and Hauser’s results
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to more general controlled-invariant sets. In [7], the same

authors extended the theory to multi-input systems.

In a series of papers, [8], [9], [10], Shiriaev and co-workers

addressed the problem of stabilizing compact invariant sets

for passive nonlinear systems. Their work can be seen as

a direct extension of the equilibrium stabilization results for

passive systems by Byrnes, Isidori, and Willems in [11]. One

of the key ingredients is the notion of V -detectability which

generalizes zero-state detectability introduced in [11].

This paper follows Shiriaev’s line of work by investigating

the passivity-based stabilization of closed, possibly non-

compact sets. Our setting is more general than Shiriaev’s

in that, rather than requiring the goal set to be the zero level

set of the storage function, we only require it to be a subset

thereof. Moreover, the goal set may be unbounded.

Our main contributions are as follows.

• We introduce a more general notion of detectability with

respect to sets, called Γ-detectability (Definition III.1),

which is closer in spirit to the original notion of

zero-state detectability. We provide geometric sufficient

conditions to characterize Γ-detectability.

• We show (Theorem III.1) that Γ-detectability, among

other conditions, guarantees that a passivity-based feed-

back renders the goal set attractive in the special case

when all trajectories are bounded.

• In the case of unbounded trajectories, we provide

sufficient conditions for a passivity-based feedback to

render the goal set attractive or asymptotically stable

(Theorems V.1 and V.2).

• We present necessary and sufficient conditions for the

equivalence between output convergence and set attrac-

tivity (Theorem IV.1).

II. PRELIMINARIES AND PROBLEM STATEMENT

In the sequel, we denote by φ(t, x0, u(t)) the unique solu-

tion to a smooth differential equation ẋ = f(x) + g(x)u(t),
with initial condition x0 and piecewise continuous control

input signal u(t). Given a control input signal u(t), we let

L+(x0, u(t)) and L−(x0, u(t)) denote the positive and neg-

ative limit sets (ω and α limit sets) of φ(t, x0, u(t)). Given

a closed nonempty set Γ ⊂ X , where X is a vector space, a

point ξ ∈ X , and a vector norm ‖ · ‖ : X → R, the point-to-

set distance ‖ξ‖Γ is defined as ‖ξ‖Γ := infη∈Γ ‖ξ − η‖. We

use the standard notation LfV to denote the Lie derivative

of a C1 function V along a vector field f , and dV (x) to

denote the differential map of V . We denote by adfg the

Lie bracket of two vector fields f and g, and by adk
fg its

k-th iteration.



In this paper, we consider the control-affine system,

ẋ = f(x) + g(x)u

y = h(x)
(1)

with state space X = Rn, set of input values U = Rm and

set of output values Y = Rm. Throughout this paper, it is

assumed that f and the m columns of g are smooth vector

fields, and that h is a smooth mapping. It is further assumed

that (1) is passive with smooth storage function V : X → R,

i.e., V is a Cr (r ≥ 1) nonnegative function such that, for

all piecewise-continuous functions u : [0,∞) → U , for all

x0 ∈ X , and for all t in the maximal interval of existence

of φ(·, x0, u),

V (x(t)) − V (x0) ≤

∫ t

0

u(τ)⊤y(τ)dτ, (2)

where x(t) = φ(t, x0, u(t)) and y(t) = h(x(t)). It is well-

known that the passivity property is equivalent to the two

conditions
(∀x ∈ X ) LfV (x) ≤ 0

(∀x ∈ X ) LgV (x) = h(x)⊤.

We next present stability definitions used in this paper. Let

Γ ⊂ X be a closed invariant set for a system Σ : ẋ = f(x),
x ∈ X .

Definition II.1 (Set Stability, [12]) (i) Γ is stable with

respect to Σ if for all ε > 0 there exists a neighbour-

hood N (Γ) of Γ, such that x0 ∈ N (Γ) ⇒ ‖x(t)‖Γ < ε
for all t ≥ 0.

(ii) Γ is uniformly stable with respect to Σ if (∀ε >
0)(∃δ > 0)(∀x0 ∈ X ) (‖x0‖Γ < δ ⇒ (∀t ≥
0)‖x(t)‖Γ < ε).

(iii) Γ is a semi-attractor of Σ if there exists a

neighbourhood N (Γ) such that x0 ∈ N (Γ) ⇒
limt→∞ ‖x(t)‖Γ = 0.

(iv) Γ is an attractor of Σ if (∃δ > 0) (∀x0 ∈ X ) ‖x0‖Γ < δ
⇒ limt→∞ ‖x(t)‖Γ = 0.

(v) Γ is a global attractor of Σ if it is an attractor with

δ = ∞ or a semi-attractor with N (Γ) = X .

(vi) Γ is a stable semi-attractor of Σ if it is stable and semi-

attractive with respect to Σ.

(vii) Γ is asymptotically stable with respect to Σ if it is a

uniformly stable attractor of Σ.

(viii) Γ is globally asymptotically stable with respect to Σ if

it is a uniformly stable global attractor of Σ.

Remark II.1 If Γ is compact, then Γ is stable if, and only

if, it is uniformly stable. Moreover, Γ is a semi-attractor if,

and only if, it is an attractor.

Definition II.2 (Relative Set Stability) Let Ξ ⊂ X be such

that Ξ ∩ Γ 6= ∅. Γ is stable with respect to Σ relative to Ξ
if, for any ε > 0, there exists a neighbourhood N (Γ) such

that x0 ∈ N (Γ)∩Ξ ⇒ ‖x(t)‖Γ < ε for all t ≥ 0. Similarly,

one modifies all other notions in Definition II.1 by restricting

initial conditions to lie in Ξ.

Problem Statement Given a closed set Γ ⊆ V −1(0) =
{x ∈ X : V (x) = 0} which is open-loop invariant for (1),

we seek to find conditions under which a passivity-based

feedback u = −ϕ(y) makes Γ either a stable semi-attractor,

a (global) attractor, or a (globally) asymptotically stable set

for the closed-loop system. We refer to Γ as the goal set.

This problem was investigated by Shiriaev and co-workers in

[8], [9], [10] in the case when Γ is compact and Γ = V −1(0).
Their work extended the landmark results by Byrnes, Isidori,

and Willems in [11] developed for the case when Γ =
V −1(0) = {0}. We next review Shiriaev’s main results.

Definition II.3 (V -detectability [8]-[9]) System (1) is lo-

cally V -detectable if there exists a constant c > 0 such

that for all x0 ∈ Vc = {x ∈ X : V (x) ≤ c}, the

solution x(t) = φ(t, x0, 0) of the open-loop system satisfies

y(t) = 0 ∀t ≥ 0 ⇒ limt→∞ V (x(t)) = 0. If c = ∞, then

the system is V -detectable.

Theorem II.1 ((Global) Asymptotic Stability [9]) Let ϕ :
Y → U be any smooth function such that ϕ(0) = 0 and

y⊤ϕ(y) > 0 for y 6= 0. Consider the feedback u = −ϕ(y).

(i) If the set V −1(0) is compact and the system is locally

V -detectable, then V −1(0) is asymptotically stable for

(1).

(ii) If the function V is proper and system (1) is V -

detectable, then V −1(0) is globally asymptotically sta-

ble for (1).

Shiriaev gave a sufficient condition for V -detectability which

extends that of Proposition 3.4 in [11] for zero-state de-

tectability.

Proposition II.1 (Condition for V -detectability [8]-[9])

Let S = {x ∈ X : Lm
f LτV (x) = 0, ∀τ ∈ D, 0 ≤ m < r},

where D is the distribution D = span{adk
fgi : 0 ≤ k ≤

n − 1, 1 ≤ i ≤ m}. Further, define Ω =
⋃

x0∈X L
+(x0, 0).

If S ∩ Ω ⊂ V −1(0) then system (1) is V -detectable.

III. SET STABILIZATION - CASE OF BOUNDED

TRAJECTORIES

The notion of V -detectability in Definition II.3 is only

applicable to the situation when Γ = V −1(0). If Γ (

V −1(0), then the property x(t) → V −1(0) does not imply

that x(t) → Γ. For this reason, we introduce a different

generalization of the zero-state detectability notion which is

independent of the storage function and, as such, is closer

in spirit to the original definition of zero-state detectability

in [11].

Definition III.1 (Γ-Detectability) System (1) is locally Γ-

detectable if there exists a neighborhood N (Γ) of Γ such

that, for all x0 ∈ N (Γ), the solution x(t) = φ(t, x0, 0)
satisfies y(t) = 0 ∀t ≥ 0 ⇒ limt→∞ ‖x(t)‖Γ = 0.

The system is Γ-detectable if it is locally Γ-detectable with

N (Γ) = X .



Remark III.1 If Γ = V −1(0) and V is proper (and there-

fore Γ is compact), then system (1) is (locally) Γ-detectable

if, and only if, it is (locally) V -detectable.

The sufficient condition for zero-state detectability of Propo-

sition 3.4 in [11] is easily extended to get a condition for

Γ-detectability as follows.

Proposition III.1 (Condition for Γ-detectability) Let S
and D be defined as in Proposition II.1. Suppose that all

trajectories on the maximal open-loop invariant subset of

h−1(0) are bounded. If S ∩ Ω ⊂ Γ then system (1) is

Γ-detectable.

The proof of this proposition is a straightforward extention

of that of Proposition 3.4 in [11], and is therefore omitted.

Remark III.2 The assumption, in [11] and [8]-[9], that V
is proper implies that all trajectories of the open-loop system

are bounded.

The next, equivalent, condition for Γ-detectability does not

require the knowledge of the storage function V .

Proposition III.2 Let S and Ω be defined as in Proposi-

tion II.1 and define S′ = {x ∈ X : Lm
f h(x) = 0, 0 ≤ m ≤

r + n− 2}. Then, S ∩ Ω = S′ ∩ Ω and therefore under the

assumption of Proposition III.1 system (1) is Γ-detectable if

S′ ∩ Ω ⊂ Γ.

The proof of the this proposition is omitted for brevity.

Shiriaev’s result in Theorem II.1 states that V -

detectability, and hence Γ-detectability, is a sufficient con-

dition to asymptotically stabilize Γ in the case when Γ =
V −1(0) and Γ is compact. In the more general setting under

investigation, that is, when Γ ⊂ V −1(0) and Γ is not

necessarily compact, Γ-detectability is no longer a sufficient

condition for asymptotic stability of Γ. We show this by

means of the following counterexample.

Example III.1 Consider the following system: ẋ1 = (x2
2 +

x2
3)(−x2), ẋ2 = (x2

2 + x2
3)(x1), ẋ3 = −x3

3 + u, with output

function h(x1, x2, x3) = x3
3. This system is passive with

storage V = 1
4x

4
3. On the set h−1(0) = {(x1, x2, x3) : x3 =

0}, the system dynamics take the form: ẋ1 = (x2
2)(−x2),

ẋ2 = (x2
2)(x1). If the goal set is given as Γ = {(x1, x2, x3) :

x2 = x3 = 0}, then it can be seen from Figure 1 that all

trajectories originating in h−1(0) approach Γ and hence the

system is Γ-detectable. Using the control u = −y, all system

trajectories are bounded for all x0 ∈ R3. Thus, for all x0 ∈
R3, the positive limit set L+(x0, u) is nonempty, compact,

and formed by trajectories on h−1(0) = {x3 = 0}. For

x0 /∈ (h−1(0) ∪ {(x1, x2, x3) : x1 = x2 = 0)}), it can be

shown that the positive limit set L+(x0, u) is a circle which

intersects Γ at equilibrium points. Thus, x(t) 6→ Γ because

L+(x0, 0) 6⊂ Γ. This is illustrated in Figure 1.

In this example the feedback u = −y guarantees that all

system trajectories are bounded for all initial conditions, and
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Fig. 1. Counterexample

x(t) → h−1(0) = V −1(0). The Γ-detectability property

guarantees that on V −1(0), which is open-loop invariant,

all trajectories approach Γ. However, these two facts do not

imply that x(t) → Γ. The problem lies in the fact that, while

Γ is a global attractor relative to V −1(0), Γ is not stable

relative to V −1(0).

We next introduce sufficient conditions to insure that Γ
is a global attractor of the closed-loop system in the special

case when all trajectories of the system are bounded. The

condition, in the result below, dealing with relative stability

of Γ is similar to a condition presented in [13] for equilibrium

stabilization of positive systems with first integrals. Part of

the proof of our result is inspired by the stability results using

positive semi-definite Lyapunov functions presented in [14].

Theorem III.1 Consider system (1) and a feedback u =
−ϕ(y), where ϕ : Y → U is a smooth function such that

ϕ(0) = 0 and y⊤ϕ(y) > 0 for y 6= 0. Suppose that, for all

x0 ∈ X [resp., for all x0 in a neighborhood of Γ], x(t) =
φ(t, x0, u) is bounded. If the system is Γ-detectable [resp.,

locally Γ-detectable] and Γ is stable with respect to the open-

loop system relative to V −1(0), then Γ is a global attractor

[resp., a semi-attractor] of the closed-loop system.

Remark III.3 When Γ = V −1(0), then the relative stability

assumption of Theorem III.1 is trivially fulfilled.



Proof: We prove the global result of the theorem. The

proof of the local result is very similar mutatis mutandis.

Since the trajectory x(t) = φ(t, x0, u) is bounded, its posi-

tive limit set, L+(x0, u), is nonempty, compact, and invariant

for the closed-loop system. Along the trajectory x(t) we have

V (x(t)) − V (x0) ≤
∫ t

0
−y(τ)⊤ϕ(y(τ))dτ ≤ 0. Since V is

continuous and nonincreasing, limt→∞ V (x(t)) = c ≥ 0.

This implies that V (x) = c on L+(x0, u). Let x̄ be a point of

L+(x0, u) and set x̄(t) = φ(t, x̄, u). Since x̄(t) ∈ L+(x0, u),
then V (x̄(t)) = c for all t ≥ 0 and 0 = V (x̄(t)) − V (x̄) ≤
∫ t

0
−y(τ)⊤ϕ(y(τ))dτ ≤ 0, so that y(t) = h(x̄(t)) = 0, ∀t ≥

0. By Γ-detectability, x̄(t) → Γ ⊂ V −1(0), and hence c = 0.

We have thus shown that L+(x0, u) ⊂ V −1(0). In order to

show that x(t) → Γ we will show that, by the assumption

of stability of Γ relative to V −1(0), L+(x0, u) ⊂ Γ.

Assume, by way of contradiction, that L+(x0, u) 6⊂ Γ,

so that we can find a point p ∈ L+(x0, u) and p /∈ Γ.

Since V is positive semi-definite, it follows that for all x ∈
V −1(0), dV (x) = 0, and hence LgV (x) = 0, proving that

V −1(0) ⊂ h−1(0). This fact, the invariance of L+(x0, u),
and the fact that L+(x0, u) ⊂ V −1(0) together imply that

φ(t, p, u) = φ(t, p, 0) for all t ∈ R, and therefore φ(t, p, 0) ∈
L+(x0, u) for all t ∈ R. The invariance and closedness of

L+(x0, u) also imply that L−(p, 0) ⊂ L+(x0, u) ⊂ V −1(0).
Since L−(p, 0) ⊂ V −1(0) is open-loop invariant, by the

Γ-detectability property we have that open-loop trajectories

originating in L−(p, 0) are contained in L−(p, 0) and ap-

proach Γ in positive time; this fact and the closedness of

L−(p, 0) imply that L−(p, 0) ∩ Γ 6= ∅. Let x̄ be a point in

L−(p, 0) ∩ Γ. Since Γ is stable with respect to the open-

loop system relative to V −1(0), for any ǫ > 0 there exists a

neighborhood N (Γ) such that for all z ∈ N (Γ) ∩ V −1(0),
‖φ(t, z, 0)‖Γ < ǫ for all t ≥ 0. Pick ǫ > 0 such that

‖p‖Γ > ǫ. Since x̄ ∈ Γ is a negative limit point of φ(t, p, 0),
there exist a point z ∈ N (Γ) and a time T > 0 such

that p = φ(T, z, 0), contradicting the relative stability of Γ.

Hence, L+(x0, u) ⊂ Γ. Since φ(t, x0, u) → L+(x0, u), we

conclude that φ(t, x0, u) → Γ.

Example III.2 Consider the following system: ẋ1 = x2x3,

ẋ2 = x1x3 −x3
2, ẋ3 = −x3x

4
2 +u, with output y = x3. This

system is passive with positive semi-definite storage V (x) =
1
2x

2
3. Indeed, LgV (x) = x3 and LfV (x) = −x3x

2
2 ≤ 0.

Consider the goal set Γ = {x : x3 = x2 = 0}. The set

V −1(0) = h−1(0) = {x : x3 = 0} is open-loop invariant

and the dynamics of the system on the set are given by

ẋ1 = 0, ẋ2 = −x3
2. Clearly, the system is Γ detectable and

Γ is stable with respect to the open-loop system relative to

V −1(0). The feedback u = −y globally stabilizes Γ.

IV. OUTPUT CONVERGENCE VS. SET ATTRACTIVITY

When the goal set Γ can be expressed as Γ = γ−1(0) =
{x ∈ X : γ(x) = 0}, where γ is a continuous function

X → Rp, one approach to stabilizing Γ is to view γ(x) as

the output of the system and pose the problem of stabilizing

Γ as that of stabilizing the output. In general, however, the

convergence of the output to zero is not equivalent to the
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Fig. 2. Counterexamples showing that output convergence is not equivalent
to set attractivity.

attractivity of the goal set. This is illustrated in the next two

counterexamples.

Example IV.1 (γ(x(t)) → 0 6⇒ x(t) → γ−1(0)) Consider

the system ẋ1 = 1, ẋ2 = −x2

1+x2
1

with output function

γ(x1, x2) = x2

1+x2
1

. The zero level set of this function

is given by γ−1(0) = {x : x2 = 0}. The solution

with initial condition (x10, x20) is x1(t) = x10 + t,
x2(t) = x20 exp(− arctan(x10 + t)+arctanx10). It is clear

that if x20 6= 0, then x(t) 6→ γ−1(0). The output signal is

γ(x(t)) = [x20 exp(− arctan(x10 + t) + arctanx10)]/[1 +
(x10 + t)2]. Clearly, γ(x(t)) → 0. The problem here is that

for all c 6= 0, the distance between points in γ−1(c) and the

set γ−1(0) is not uniformly bounded; see Figure 2(a).

Example IV.2 (x(t) → γ−1(0) 6⇒ γ(x(t)) → 0) Consider

the system ẋ1 = 1, ẋ2 = −x1x2

1+x2
1

with output function

γ(x1(t), x2(t)) = x2
2(1 + x2

1). The zero level set of this

function is the set γ−1(0) = {x : x2 = 0}. The solution

with initial condition (x10, x20) is x1(t) = x10 + t,



x2(t) = x20

√

(1 + x2
10)/(t

2 + 2x10t+ 1 + x2
10), so for

all initial conditions, x(t) → γ−1(0). On the other hand,

γ(x1(t), x2(t)) = x2
20[(1 + x2

10)[(x10 + t)2 + 1]]/[t2 +
2x10t + 1 + x2

10], so if x20 6= 0, γ(x1(t), x2(t)) 6→ 0. The

problem here is that for all c 6= 0, the distance between the

sets γ−1(c) and γ−1(0) is not bounded away from zero; see

Figure 2(b).

We next present necessary and sufficient conditions to

establish the equivalence between output convergence and

the attractivity of γ−1(0). The proof is omitted due to space

limitations.

Theorem IV.1 Let γ : X → Rp be a continuous function,

and let Γ = {x ∈ X : γ(x) = 0}.

(i) (Class K-lower bound) A necessary and sufficient con-

dition such that

(∀{xn}n∈N ⊂ X ) (γ(xn) → 0 =⇒ xn → Γ),

is that there exists r > 0 and a class-K function α :
[0, r) → R+ such that

(∀‖x‖Γ < r) α(‖x‖Γ) ≤ ‖γ(x)‖.

(ii) (Class K-upper bound) A necessary and sufficient con-

dition such that

(∀{xn}n∈N ⊂ X ) (xn → Γ =⇒ γ(xn) → 0),

is that there exists r > 0 and a class-K function β :
[0, r) → R+ such that

(∀‖x‖Γ < r) ‖γ(x)‖ ≤ β(‖x‖Γ).

(iii) (Bounded Sequences) For all bounded sequences

{xn}n∈N ⊂ X , γ(xn) → 0 ⇐⇒ xn → Γ.

V. SET STABILIZATION - CASE OF UNBOUNDED

TRAJECTORIES

We now turn our attention to situation when trajectories

are unbounded and present two results concerning the (semi)

attractivity and asymptotic stability of Γ. A key ingredient

here is the result in Theorem IV.1.

Theorem V.1 Consider system (1) and a feedback u =
−ϕ(x), where ϕ : X → U is a smooth function such that

h(x)⊤ϕ(x) ≥ ψ(‖h(x)‖), and ψ is a class-K function.

Define λ(x) = h(x)⊤ϕ(x). Suppose that the closed-loop

system has no finite escape times and that:

(i) There exists r > 0 and a class-K function α : [0, r) →
R+ such that α(‖x‖Γ) ≤ ‖h(x)‖ for all ‖x‖Γ < r.

(ii) There exists s ∈ (0, r] such that inf‖x‖Γ=s V (x) > 0.

(iii) For all c > 0 there exists k ∈ R such that whenever

V (x) ≤ c, either Lfλ(x) − Lgλ(x)ϕ(x) ≤ k or

Lfλ(x) − Lgλ(x)ϕ(x) ≥ k.

Then, Γ is a semi-attractor. If (i)-(iii) hold and

(iv) there exists a class-K function β : [0, r) → R+ such

that V (x) ≤ β(‖x‖Γ) for all ‖x‖Γ < r,

then Γ is an attractor. Finally, if (i), (iii) hold and

(v) Γ = V −1(0) = h−1(0),

then Γ is a global attractor.

Remark V.1 Assumption (i) implies that Γ = V −1(0)∩{x ∈
X : ‖x‖Γ < r} = h−1(0) ∩ {x ∈ X : ‖x‖Γ < r}. In

other words, the assumption imposes that each connected

component of Γ coincides with a connected component of

V −1(0) and h−1(0).

Proof: Let x0 ∈ X be arbitrary and denote

x(t) = φ(t, x0, u). Since V (·) is nonnegative and

V (x(t)) − V (x(0)) ≤ −
∫ t

0
λ(x(τ)) dτ ≤ 0, this im-

plies that V (x(t)) ≤ V (x(0)) for all t ≥ 0 and

thus limt→∞

∫ t

0 λ(x(τ)) dτ exists and is finite. By (iii),

there exists k ∈ R such that λ̇(x(t)) = Lfλ(x(t)) +
Lgλ(x(t))ϕ(x(t)) is either ≤ k or ≥ k. Take the case where

λ̇(x(t)) ≥ k; we will show that λ(x(t)) → 0. Suppose, by

way of contradition, that λ(x(t)) 6→ 0. This implies that

there exists ǫ > 0 and a sequence {tn} such that tn → ∞
and λ(x(tn)) ≥ ǫ for all n. By the mean value theorem, for

all n and for all t ≥ tn, there exists sn ∈ [tn, t] such that

λ(x(t)) = λ(x(tn)) + λ̇(x(sn))(t − tn) ≥ ǫ + k(t − tn) ≥
ǫ − |k| |t − tn|. Pick ǫ0 ∈ (0, ǫ) and let δ = (ǫ − ǫ0)/|k|.
Then, for all n and for all t ∈ [tn, tn + δ], λ(t) ≥ ǫ0 > 0.

Take a subsequence {tnk
} such that tnk+1

− tnk
≥ δ. Since,

by assumption, λ(x(t)) ≥ 0, we have

lim
t→∞

∫ t

0

λ(x(τ))dτ ≥
∑

k

∫ tn
k
+δ

tn
k

λ(x(τ))dτ ≥
∑

k

δǫ0,

contradicting the fact that limt→∞

∫ t

0
λ(x(τ)) dτ exists and

is finite. Thus, λ(x(t)) → 0 and since ψ(‖h(x)‖) ≤ λ(x(t)),
h(x(t)) → 0. The proof for the case λ̇(x(t)) ≤ k is almost

identical and therefore omitted. Recall (see the proof of

Theorem III.1) that Γ ⊂ V −1(0) ⊂ h−1(0). By assumption

(i), Γ = V −1(0) ∩ {‖x‖Γ < r} = h−1(0) ∩ {‖x‖Γ <
r}. Moreover, for all ‖x‖Γ < r, ‖h(x)‖ ≥ α(‖x‖Γ) ≥
α(‖x‖h−1(0)). By (ii), c = inf‖x‖Γ=s V (x) is positive. Let

N (Γ) = {x ∈ X : ‖x‖ < s, V (x) < c}. It follows that

N (Γ) is positively invariant and thus for all x0 ∈ N (Γ),
h(x(t)) → 0 and ‖x(t)‖Γ < r. This, together with the

fact that ‖h(x(t))‖ ≥ α(‖x(t)‖h−1(0)) implies that x(t) →
h−1(0)∩{‖x‖Γ < r} = Γ, proving that Γ is a semi-attractor.

If, in addition to assumptions (i)-(iii), assumption (iv)

holds then there exists δ > 0 such that {x ∈ X : ‖x‖Γ <
δ} ⊂ N (Γ)}, and thus Γ is an attractor.

If assumptions (i), (iii) and (v) hold, then we have shown

that (∀x0 ∈ X ) h(φ(t, x0, u)) → 0 and by Theorem IV.1,

φ(t, x0, u) → h−1(0) = Γ. Thus, Γ is a global attractor.

By strengthening conditions (i), (ii) and removing condi-

tion (iii) in Theorem V.1, we gain stability.

Theorem V.2 Consider system (1) and a feedback u =
−ϕ(x), where ϕ : X → U is a smooth function such that

ϕ(x)⊤h(x) ≥ ψ(‖h(x)‖), and ψ is a class-K function.

Suppose that the closed-loop system has no finite escape

times and that:



(i) There exists r > 0 and a class-K function α : [0, r) →
R+ such that α(‖x‖Γ) ≤ V (x) for all ‖x‖Γ < r.

(ii) There exists a class-K function µ : [0,+∞) → R+

such that µ(V (x)) ≤ ‖h(x)‖ for all x ∈ X .

Then, Γ is a stable semi-attractor of the closed-loop system.

If (i), (ii) hold and

(iii) there exists a class-K function β : [0, r) → R+ such

that V (x) ≤ β(‖x‖Γ) for all ‖x‖Γ < r,

then Γ is asymptotically stable. If (i), (ii) hold and

(iv) Γ = V −1(0) = h−1(0),

then Γ is globally attractive. Finally, if (i)-(iv) hold, then Γ
is globally asymptotically stable.

Remark V.2 Assuptions (i), (ii) in Theorem V.2 imply as-

sumptions (i), (ii) of Theorem V.1. Indeed, for all ‖x‖Γ < r,
‖h(x)‖ ≥ µ(V (x)) ≥ µ ◦α(‖x‖Γ). Moreover, the inequality

V (x) ≥ α(‖x‖Γ) implies inf‖x‖Γ=s V (x) ≥ α(s) > 0 for

all s ∈ (0, r].

Proof: By assumption (ii), for all x0 ∈ X ,

dV (φ(t, x0, u))

dt
≤ −h(φ(t, x0, u))

⊤ϕ(φ(t, x0, u))

≤ −ψ ◦ µ(V (φ(t, x0, u))).

By the comparison lemma, it follows that V (φ(t, x0, u)) →
0. Let ǫ ∈ (0, r), choose c > 0 such that α−1(c) < ǫ,
and define N (Γ) = {x ∈ X : V (x) < c, ‖x‖Γ < r}.

Clearly, N (Γ) is a neigbourhood of Γ. By our choice of

c and assumption (i), N (Γ) ⊂ {x ∈ X : ‖x‖Γ < ǫ) and

the boundary of N (Γ) is ∂N (Γ) = {x ∈ X : V (x) =
c, ‖x‖Γ < r}. Since V is nonincreasing, it follows that

N (Γ) is positively invariant and hence Γ is stable. Since

V (φ(t, x0, u)) → 0 for all x0 ∈ N (Γ), assumption (i)

implies that x(t) → Γ. Hence, Γ is a semi-attractor. If,

in addition, assumption (iii) holds, then there exists δ > 0
such that {x ∈ X : ‖x‖Γ < δ} ⊂ N (Γ), and thus Γ is

asymptotically stable.

If assumptions (i), (ii), and (iv) hold, then we have

shown that (∀x0 ∈ X ) V (φ(t, x0, u)) → 0. Hence, by

Theorem IV.1, φ(t, x0, u) → V −1(0) = Γ. Thus, Γ is

globally attractive.

If assumptions (i)-(iv) hold, then Γ is a uniformly stable

global attractor, that is, Γ is globally asymptotically stable.

Example V.1 Consider the system ẋ1 = tan−1(x1), ẋ2 =
x2(1+x2

1)u, with output y = x2
2. This system is passive with

a storage function V (x) = 1
2

x2
2

1+x2
1

. Let the goal set be Γ =

V −1(0) = h−1(0) = {x : x2 = 0}. It is seen that V does

not have a class-K lower bound with respect to Γ and thus

Theorem V.2 cannot be applied to this example. On the other

hand, h(x) does have a class-K lower bound with respect

to Γ, as ‖h(x)‖ = ‖x‖2
Γ. Moreover, ‖h(x)‖ = ‖x‖2

h−1(0).

Using the control u = −ϕ(x), with ϕ(x) = h(x), we have

Lfλ(x) − Lgλ(x)ϕ(x) = −4x6
2(1 + x2

1), which is bounded

from above. Thus we have that conditions (i), (iii) and (v)

of Theorem V.1 are satisfied and Γ is globally attractive.

Example V.2 Consider the system ẋ1 = 1, ẋ2 = (1 +
0.5 cos(x2

1))u, with output y = x2(1+0.5 cos(x2
1)), which is

passive with storage function V (x) = 1
2x

2
2. Let the goal set

be Γ = {x : x2 = 0} so that V −1(0) = h−1(0) = Γ.

Moreover, V (x) = 1/2‖x‖2
Γ and ‖h(x)‖ ≥ 0.5|x2| =

0.5‖x‖Γ, so by Theorem V.2 the feedback u = −ϕ(x), with

ϕ(x) = h(x), renders Γ globally asymptotically stable. It

is easily seen that Theorem V.1 cannot be applied to this

example because assumption (iii) does not hold.

VI. CONCLUSIONS

This paper leaves several open questions that we will

investigate in future work. In Theorem III.1, we assume

that the trajectories of the closed-loop system are bounded.

Boundedness is a property that one should seek to achieve by

means of a suitable feedback. The same comment holds for

Theorems V.1 and V.2, where we assume that the closed-loop

system does not possess finite escape times.
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