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Abstract— In this paper we explore the stabilization of closed
invariant sets for passive systems, and present conditions under
which a passivity-based feedback makes the set stable, semi-
attractive, or semi-asymptotically stable for the closed-loop
system. Our results rely on novel reduction principles, presented
in Part I of this work. As an application of the theory, we
present a coordination problem for two unicycles.

I. INTRODUCTION

In this paper we continue the line of research, initiated

in [1] and [2], devoted to the investigation of the set

stabilization problem for passive nonlinear systems.

The notion of passivity for state space representations

of nonlinear systems, pioneered by Willems in the early

1970’s, [3], [4], was instrumental for much research on

nonlinear equilibrium stabilization. Key contributions in this

area were made in the early 1980’s by Hill and Moylan

in [5], [6], [7], [8], and later by Byrnes, Isidori, and Willems,

in their landmark paper [9]. More recently, in a number

of papers [10], [11], [12], Shiriaev and Fradkov addressed

the problem of stabilizing compact invariant sets for passive

nonlinear systems. Their work is a direct extension of

the equilibrium stabilization results by Byrnes, Isidori, and

Willems in [9].

The theory presented in this paper generalizes the equi-

librium theory of [9], as well as the results in [10], [11],

[12]. We investigate the stabilization of a closed set Γ,

not necessarily compact, which is open-loop invariant and

contained in the zero level set of the storage function. Our

results answer this question: when is it that a passivity-

based controller makes Γ stable, attractive, or asymptotically

stable for the closed-loop system? Even in the special case

when Γ is an equilibrium, our theory yields novel results,

among them necessary and sufficient conditions for the

passivity-based asymptotic stabilization of the equilibrium

in question without imposing that the storage function be

positive definite. The theory in [9], and [10], [11], [12] does

not handle this situation.

We show that at the heart of the set stabilization problem

under investigation lies the following reduction problem for

a dynamical system Σ : ẋ = f(x): Consider two closed sets

Γ and O, with Γ ⊂ O, which are invariant for Σ; suppose

that Γ is stable, attractive, or asymptotically stable for the

restriction of Σ to O. When is it that Γ is stable, attractive, or
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asymptotically stable with respect to the whole state space?

This problem is investigated in depth in Part I of this work,

and our main stabilization theorems are a direct consequence

of the theory therein.

As an application of our passivity-based stabilization re-

sults, we present a coordination problem for two kinematic

unicycles: design a control law that makes the unicycles

converge at a distance ∆ > 0 from each other. Moreover,

it is desired that the unicycles asymptotically face each

other. This problem can be formulated in the set stabilization

framework, whereby the underlying set is not compact.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this paper we consider the following control-affine

system

ẋ = f(x) +

m
∑

i=1

gi(x)ui

y = h(x)

(1)

with state space X ⊂ Rn, set of input values U ⊂ Rm and

set of output values Y ⊂ Rm. We assume that X is either

an open subset of Rn or a smooth submanifold therein. In

both cases, the restriction of a metric ‖ · ‖ : Rn → [0, +∞)
to X gives a metric on X . We further assume that f and gi,

i = 1, . . . , m, are smooth vector fields on X , and that h is

a smooth mapping.

A. Notation

In addition to the notations introduced in Part I, we use

the following. Given either a smooth feedback u(x) or a

piecewise-continuous open-loop control u(t) : R+ → U , we

denote by φu(t, x0) the unique solution of (1) with initial

condition x0. This notation stands in contrast to φ(t, x0)
denoting the solution of the open-loop system ẋ = f(x).
For an interval I of the real line and a set S ∈ X , φu(I, S)
is defined analogously to φ(I, S). We use the standard

notation LfV to denote the Lie derivative of a C1 function

V along a vector field f on X , and dV (x) to denote the

differential map of V . Finally, L1 denotes the space of

absolutely integrable scalar functions.

B. Passivity

Throughout this paper it is assumed that (1) is passive with

smooth nonnegative storage function V : X → R, i.e., V is a

Cr (r ≥ 1) nonnegative function such that, for all piecewise-

continuous functions u : [0,∞) → U , for all x0 ∈ X , and



for all t in the maximal interval of existence of φu(·, x0),

V (φu(t, x0)) − V (x0) ≤
∫ t

0

u(τ)⊤y(τ)dτ,

where y(t) = h(φu(t, x0)). It is well-known (see [5]) that the

passivity property above is equivalent to the two conditions

(∀x ∈ X ) LfV (x) ≤ 0 and LgV (x) = h(x)⊤, (2)

where LgV = [Lg1
V · · · Lgm

V ]. Our main objective is

to investigate the stabilization of closed sets by means of

passivity-based feedbacks of the form

u = −ϕ(x), with ϕ(·)
∣

∣

∣

h(x)=0
= 0, h(x)⊤ϕ(x)

∣

∣

∣

h(x) 6=0
> 0,

(3)

where ϕ : X → U is a smooth function. The class of

passivity-based feedbacks in (3) includes that of output

feedback controllers u = −ϕ(h(x)) commonly used in the

literature on passive systems.

C. Problem Statement

The main objective of this paper is the stabilization of a

closed set Γ using passivity-based feedback for system (1).

Set Stabilization Problem. Given a closed set Γ ⊂
V −1(0) = {x ∈ X : V (x) = 0} which is positively

invariant for the open-loop system in (1), we seek to find

conditions under which a passivity-based feedback of the

form (3) makes Γ: (a) stable; (b) semi-attractive (or attractive

when Γ is compact); and, (c) semi-asymptotically stable (or

asymptotically stable when Γ is compact) for the closed-loop

system. We also seek to solve the global version of each of

the problems above.

The rationale behind passivity-based feedback is the fol-

lowing. Using (2) and the properties of the passivity-based

feedback (3), the time derivative of the storage function V
along trajectories of the closed-loop system formed by (1)

with feedback (3) is given by

dV (φu(t, x0))

dt
= LfV (φu(t, x0))

− LgV (φu(t, x0))ϕ(φu(t, x0))

≤ −h(φu(t, x0))
⊤ϕ(φu(t, x0)) ≤ 0.

(4)

Thus, a passivity-based feedback renders the storage function

V nonincreasing for the closed-loop system. One expects

that if the system enjoys suitable properties, then the storage

function should decrease asymptotically to zero and the

solutions should approach a subset of V −1(0), hopefully

the set Γ. The argument, by now standard, found in the p

, shows that the positive limit set of any bounded closed-

loop solution, L+
u (x0), is contained in h−1(0). Moreover,

since a passivity-based feedback vanishes on h−1(0), and

since L+
u (x0) is an invariant set for the closed-loop system,

it follows that L+
u (x0) is also an invariant set for the open-

loop system. Letting O denote the maximal set contained in

h−1(0) which is open-loop invariant, then the positive limit

set of any bounded closed-loop solution must be contained

in O (i.e., any bounded closed-loop solution must converge

to O). Since LfV ≤ 0, V −1(0) is an invariant set for the

open-loop system. Moreover, since V is nonnegative, any

point x ∈ V −1(0) is a local minimum of V and hence

dV (x) = 0. Therefore, LgV (x) = h(x)⊤ = 0 on V −1(0),
and so Γ ⊂ V −1(0) ⊂ h−1(0). From this we have that O is

not empty and that

Γ ⊂ V −1(0) ⊂ O ⊂ h−1(0). (5)

It is then clear that if the trajectories of the closed-

loop system in a neighbourhood of Γ are bounded, the

least a passivity-based feedback can guarantee is the semi-

attractivity of O; but this is not sufficient for our purposes.

Notice that, on O, ϕ(·) = 0 and so the closed-loop dynamics

on O coincide with the open-loop dynamics. In particular,

then, O is an invariant set for the closed-loop system. In order

to ensure the properties of stability, (semi-) attractivity, or

(semi-) asymptotic stability of Γ, the open-loop system must

enjoy similar properties relative to O. The key question, then,

is whether the fulfillment of these properties relative to O is

also sufficient. The answer to this key question is investigated

in depth in Part I of this paper.

III. PASSIVITY-BASED SET STABILIZATION

When the storage function V is positive definite, and thus

Γ = {0} is an equilibrium, the most general stabilization

result is that by Byrnes, Isidori, and Willems in [9]. This

result relied on the notion of zero-state detectability.

When Γ is compact and Γ = V −1(0), Shiriaev and co-

workers, in a series of papers [10], [11], [13], extended the

result in [9] to this case. They used the following notion of

V -detectability.

Definition III.1 (V -detectability). System (1) is locally V -

detectable if there exists a constant c > 0 such that for all

x0 ∈ V −1([0, c]),

h(φ(t, x0) = 0 for all t ∈ R =⇒ V (φ(t, x0)) → 0

as t → ∞. If c = ∞, the system is V -detectable.

A. Γ-detectability

In this paper we are interested in the general stabilization

problem for a closed set Γ, not necessarily compact, nor

equal to V −1(0), but just contained in V −1(0). As discussed

in Section II-C, as long as the trajectories of the closed-loop

system in a neighbourhood of Γ are bounded, a passivity-

based feedback renders the set O semi-attractive. In order

to guarantee stability, semi-attractivity, or semi-asymptotic

stability of Γ ⊂ O, the reduction principles in Part I suggest

that Γ should be semi-asymptotically stable relative to O for

the open-loop system. This observation motivates the next

definition.

Definition III.2 (Γ-detectability). System (1) is locally Γ-

detectable if Γ is semi-asymptotically stable relative to O
for the open-loop system. The system is Γ-detectable if Γ
is globally semi-asymptotically stable relative to O for the

open-loop system.



Remark. In our previous work [1] and [2], we used a

different notion of Γ-detectability which required only semi-

attractivity of Γ relative to O. The main theoretical results

in both works (Theorem III.1 in [1] and Theorem II.4 in [2])

rely on the assumption that Γ be stable relative to V −1(0).
It turns out (see Proposition III.7 in this paper) that the

notion of Γ-detectability in Definition III.2 can be replaced

by our previous definition plus the assumption of stability of

Γ relative to V −1(0).

It can be shown that the notion of Γ-detectability gen-

eralizes that of zero-state detectability, [9]. As a matter of

fact, when V is positive definite, and thus Γ = {0}, the two

notions coincide. Γ-detectability also encompasses the notion

of V -detectability. When Γ = V −1(0) is a compact set,

local Γ-detectability is equivalent to local V -detectability;

if V is proper, the global versions coincide. The proof of

these relationships are omitted due to space limitations, and

will be reported elsewhere. Despite their equivalence when

Γ = V −1(0) is compact, the two notions of Γ- and V -

detectability have a different flavor, in that the latter notion

utilizes the storage function V (x) to define a property of

the open-loop system, detectability, which is independent

of V . On the other hand, the definition of Γ-detectability,

being independent of V , is closer in spirit to the original

definition of zero-state detectability. Finally, the notion of

V -detectability cannot be generalized to the case when Γ
is unbounded, even if Γ = V −1(0), because in this case

V (φ(t, x0)) → 0 no longer implies φ(t, x0) → V −1(0).

B. Solution to Set Stabilization Problem

Here, we solve the set stabilization problem in Section II-C

by presenting conditions guaranteeing that a passivity-based

controller of the form (3) makes Γ stable, attractive, or semi-

asymptotically stable for the closed-loop system. All results

are straightforward consequences of the reduction principles

presented in Part I, and they rely on the next fundamental

observation, whose proof is omitted due to space limitations.

Proposition III.3. Consider the passive system (1) with a

passivity-based feedback of the form (3). Then, the set O is

locally stable near Γ for the closed-loop system.

Next, we present conditions under which a passivity-based

feedback makes Γ stable for the closed-loop system.

Theorem III.4 (Stability of Γ). Consider system (1) with a

passivity-based feedback for the form (3). Then, Γ is stable

for the closed-loop system if the following conditions hold:

(i) System (1) is locally Γ-detectable,

(ii) if Γ is unbounded, then the closed-loop system is locally

uniformly bounded near Γ.

The statement follows directly from Theorem III.4 and

Proposition III.3 in Part I. Next, we present conditions under

which a passivity-based feedback makes Γ a semi-attractor

for the closed-loop system.

Theorem III.5 (Semi-attractivity of Γ). Consider system (1)

with a passivity-based feedback of the form (3). Then, Γ is a

global attractor [semi-attractor] for the closed-loop system

if the following conditions hold:

(i) System (1) is Γ-detectable,

(ii) All closed-loop solutions in X [in some neighbourhood

of Γ] are bounded.

The local statement of this theorem can be weakened as

follows. Instead of condition (i), it is enough to assume local

Γ-detectability, and assumption (ii) should then be replaced

by assumption (iii) in Theorem III.3 of Part I.

Proof: Recall from Section II-C, that every bounded tra-

jectory of the closed-loop system asymptotically approaches

the set O. This follows directly from the proof of The-

orem 3.2 in [9]. The global attractivity of Γ, then, is a

direct consequence of Theorem III.3 in Part I. As for semi-

attractivity, assumption (ii) implies that all solutions in a

neighbourhood of Γ are bounded and, therefore, they asymp-

totically approach O, proving that O is locally semi-attractive

near Γ. Moreover, since by assumption (i) Γ is a global

attractor relative to O, assumption (ii) implies assumption

(iii) in Theorem III.3 of Part I, once again yielding the

desired result.

Now the main result of this paper concerning the passivity-

based stabilization of Γ.

Theorem III.6 (Semi-asymptotic stability of Γ). Consider

system (1) with a passivity-based feedback of the form (3). If

Γ is compact, then Γ is asymptotically stable for the closed-

loop system if, and only if, system (1) is locally Γ-detectable;

if, in addition, all trajectories of the closed-loop system are

bounded, then Γ is globally asymptotically stable for the

closed-loop system if, and only if, system (1) is Γ-detectable.

If Γ is unbounded and the closed-loop system is locally

uniformly bounded near Γ, then Γ is semi-asymptotically

stable for the closed-loop system if, and only if, system (1)

is locally Γ-detectable; if, in addition, all trajectories of the

closed-loop system are bounded, then Γ is globally semi-

asymptotically stable for the closed-loop system if, and only

if, system (1) is Γ-detectable.

Proof: The sufficiency part of the theorem follows

from the following considerations. By Proposition III.3, O is

locally stable near Γ. If Γ is compact, local Γ-detectability,

by Theorem III.4, implies that Γ is stable. The stability of

Γ and its compactness in turn imply that all closed-loop

trajectories in some neighbourhood of Γ are bounded. Since

all bounded trajectories asymptotically approach O, O is

locally semi-attractive near Γ. If all trajectories of the closed-

loop system are bounded, then O is globally attractive.

Theorem III.2 in Part I yields the required result.

Now suppose that Γ is unbounded. By local uniform

boundedness near Γ we have that all closed-loop solutions

in some neighbourhood of Γ are bounded and hence O is

locally semi-attractive near Γ. Once again, if all closed-loop

trajectories are bounded, then O is globally attractive. The

required result now follows from Theorem III.7 in Part I.

The various necessity statements follow from the fol-

lowing basic observation. Any passivity-based feedback of



the form (3) makes O an invariant set for the closed-loop

system (see Section II-C). Therefore, if Γ is [globally] semi-

asymptotically stable for the closed-loop system, necessarily

Γ is [globally] semi-asymptotically stable relative to O for

the closed-loop system. In other words, (1) is necessarily

locally Γ-detectable [Γ-detectable].

We conclude this section with the following result, which

gives conditions that are alternatives to the Γ-detectability

assumption.

Proposition III.7. Theorems III.4, III.5, and III.6 still hold

if the local Γ-detectability [Γ-detectability] assumption is

replaced by the following condition:

(i’) Γ is stable relative to V −1(0) and Γ is [globally] semi-

attractive relative to O.

The proof of this proposition relies on essentially identical

arguments as those used to prove the reduction principles in

Theorems III.3 and III.4 of Part I, and therefore it is omitted.

One may find condition (i’) in this proposition easier to

check than Γ-detectability. This is because verifying whether

Γ is stable relative to V −1(0) does not require finding the

maximal open-loop invariant subset O of h−1(0); moreover,

checking that Γ is semi-attractive relative to O amounts to

checking the familiar condition

h(φ(t, x0)) ≡ 0 =⇒ φ(t, x0) → Γ as t → +∞.

Note that, in the framework of [9] and [11], the requirement

that Γ be stable relative to V −1(0) is trivially satisfied

because in these references it is assumed that Γ = V −1(0).
We end this section by the following remarks.

Remark. The results in [9] and [11] dealing with the special

case of compact Γ where Γ = V −1(0) (= {0}), become

corollaries of our main result, Theorem III.6.

Remark. The theory in [9] and [11] does not handle the

special case when Γ is compact and Γ ( V −1(0), while

our theory does. This case includes the important situation

when one wants to stabilize an equilibrium (Γ = {0}) but

the storage is only positive semi-definite. As a matter of fact,

by Theorem III.6, in order for a passivity-based feedback to

asymptotically stabilize the equilibrium, it is necessary and

sufficient that the control system be Γ-detectable, in the sense

of Definition III.2.

IV. APPLICATION

In this section we present an application of the results in

Section III for stabilizing a non-compact goal set. The ex-

ample is a coordination problem for two kinematic unicycles

with states x = (x1, x2, x3) and z = (z1, z2, z3), state space

X = R2 × S2 × R2 × S1, and dynamics

ẋ1 = u1 cosx3

ẋ2 = u1 sinx3

ẋ3 = u2

ż1 = v1 cos z3

ż2 = v1 sin z3

ż3 = v2

(6)

where (x1, x2), (z1, z2) ∈ R2 are the Cartesian coordinates

of the unicycles, x3, z3 ∈ S1 are the headings, and u =

(u1, u2, v1, v2) is the control input, with u1, v1 the linear

velocities and u2, v2 the angular ones. We denote χ =
col(x, z), and let d1(χ) = x1 − z1, d2(χ) = x2 − z2, and

θ(χ) = arg(d1(χ) + i d2(χ)), with θ ∈ S1. We study the

following coordination problem for (6): make the unicycles

meet at a distance ∆ > 0 facing each other. This problem

can be addressed as the stabilization of the unbounded set

Γ =
{

χ ∈ X :
√

d1(χ)2 + d2(χ)2 = ∆,

z3 = θ(χ), x3 = θ(χ) + π
}

.
(7)

Since system (6) is driftless, given any positive semi-definite

C1 function V (χ), the system is passive with storage V and

output LgV
⊤. Consider the storage function

V =
1

4

[

(x1 − z1)
2 + (x2 − z2)

2 − ∆2
]2

, (8)

and notice that Γ ( V −1(0). It can be shown that other

choices of storage V such that Γ = V −1(0), or Γ equal

to a connected component of V −1(0), give obstructions to

Γ-detectability.

For any choice of control inputs (u2, v2), system (6),

viewed as a system with input (u1, v1) and output

y = (d2
1 + d2

2 − ∆2)

[

d1 cosx3 + d2 sinx3

−(d1 cos z3 + d2 sin z3)

]

, (9)

is passive. Our design strategy is this: pick control laws

(u2, v2) to ensure Γ-detectability and then pick a passivity-

based feedback for (u1, v1). Consider the following control

law, with k > 0 a design parameter,

u1 = −ky1

v1 = −ky2

u2 = d1 sinx3 − d2 cosx3

v2 = −d1 sin z3 + d2 cos z3.

(10)

This control law renders the goal set Γ, given in (7),

semi-asymptotically stable. Figure 1 shows simulation re-

sults for k = 1 and the following initial condi-

tions: (x1, z1) = (−3.5, 1.5, 0,−3.5, 1, 0), (x2, z2) =
(−4,−2, −3π

4 , 2,−2, π
4 ) and (x3, z3) = (−2, 1, π

3 , 3, 2, π
3 ).

The corresponding evolution of the storage function is de-

picted in Figure 2, while the heading errors are in Figure 3.

In order to prove that Γ is semi-asymptotically stabilized,

in light of Theorem III.6, we need to show that the system

ẋ1 = u1 cosx3

ẋ2 = u1 sin x3

ẋ3 = d1 sinx3 − d2 cosx3

ż1 = v1 cos z3

ż2 = v1 sin z3

ż3 = −d1 sin z3 + d2 cos z3

(11)

is locally Γ-detectable and that the closed-loop system

formed by (6) and (10) is locally uniformly bounded near

Γ.

1) Detectability: In order to check local Γ-detectability,

we take system (11) with (u1, v1) = (0, 0) and find the

largest invariant subset contained in h−1(0), with h given

in (9). Note that in this setting the unicycles do not translate

and so d1 and d2 are constant. Suppose that the initial
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condition χ0 ∈ h−1(0). In order for φ(t, χ0) ∈ h−1(0) for

all t ∈ R, it must be that the time derivatives of the outputs

along solutions are identically zero; this occurs if and only

if either d2
1(χ0) + d2

2(χ0) = ∆2 (i.e., if V (χ0) = 0), or

(d1 sinx30 − d2 cosx30) = 0, (d1 sin z30 − d2 cos z30) = 0.

On h−1(0), when d2
1 + d2

2 6= ∆2, the identities above can

only be satisfied if d1(χ0) = d2(χ0) = 0. It then follows

that

O = V −1(0) ∪ {χ ∈ X : d1(χ) = d2(χ) = 0}.

Let N (Γ) = X\{χ : d1(χ) = d2(χ) = 0}. Clearly,

N (Γ) is a neighborhood of V −1(0) and therefore also

a neighborhood of Γ. Moreover, N (Γ) ∩ O = V −1(0).
Consider the restriction to the set V −1(0) of the open-loop

dynamics in (11):

ẋ1 = 0

ẋ2 = 0

ẋ3 = −∆sin(x3 − θ(χ) − π)

ż1 = 0

ż2 = 0

ż3 = −∆sin(z3 − θ(χ)).
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Fig. 3. Heading errors.

The time derivative of θ(χ) along the above dynamics is zero,

and so θ(χ) is a first integral. Recall that Γ = {χ ∈ V −1(0) :
x3 = θ(χ) + π, z3 = θ(χ)}. Given any χ0 ∈ V −1(0),
the equilibria x3 = θ(χ0) + π, z3 = θ(χ0) of the ẋ3

and ż3 equations are almost globally asymptotically stable

with domains of attraction, respectively, {x3 ∈ S1 : x3 6=
θ(χ0)} and {z3 ∈ S1 : z3 6= θ(χ0) + π}. This readily

implies that Γ is almost globally semi-asymptotically stable

relative to V −1(0) = N (Γ) ∩ O, with domain of attrac-

tion V −1(0)\ ({χ : x3 = θ(χ)} ∪ {χ : z3 = θ(χ) + π}), and

therefore also that Γ is almost globally semi-asymptotically

stable relative to O, with domain of attraction

O\
(

{χ : d1(χ) = d2(χ) = 0} ∪ {χ : x3 = θ(χ)}
∪ {χ : z3 = θ(χ) + π}

)

.

Therefore, system (11) is locally Γ-detectable, and actually

almost globally so.

2) Local uniform boundedness: Since x3 and z3 are vari-

ables in S1, we only need to prove the uniform boundedness

property for (x1, x2) and (z1, z2). Notice, first of all, that

the closed-loop system is a complete vector field, that is, all

solutions are defined over the entire real line. This follows

from the fact that V is nonincreasing along closed-loop

solutions, that u1 and v1 are bounded as,

|u1|, |v1| ≤ 2
√

V
√

d2
1 + d2

2 ≤ 2
√

V
(

2
√

V + ∆2
)

1

2 , (12)

and from the fact that x3 and z3 are variables in S1, a

compact set. The derivative of the storage function along

closed-loop solutions reads as

V̇ = − 4V
[

(d1 cosx3 + d2 sin x3)
2

+ (d1 cos z3 + d2 sin z3)
2
]

.
(13)

We will show that for all initial conditions in some neigh-

borhood of Γ, the term in square brackets in (13) is bounded

away from zero. It is easy to see that

(d1 cosx3 + d2 sin x3)
2 = (d2

1 + d2
2) cos2(x3 − θ).



Since V is nonincreasing, if d1(χ0)
2 + d2(χ0)

2 6= 0 and

V (χ0) < (1/4)∆4 then

d2
1(φu(t, χ0)) + d2

2(φu(t, χ0)) ≥ ∆2 − 2
√

V (χ0) > 0

for all t ≥ 0. Therefore, for the purpose of showing that

the term in square brackets in (13) is bounded away from

zero, it is enough to show that there exists a neighborhood

N (Γ) ⊂ {V < (1/4)∆4} such that all closed-loop solutions

originating in N (Γ) yield, for all t ≥ 0, cos2(x3(t)−θ(t)) ≥
1/2. Let

W (χ) =
1

2
[x3 − θ(χ) − π]

2
.

Taking the derivative of W along the closed-loop vector

field (6), (10), and using simple trigonometric identities lead

to

Ẇ = (x3 − θ − π)(ẋ3 − θ̇)

= −(x3 − θ − π) sin(x3 − θ − π)
√

d2
1 + d2

2

(

1+

− u1

d2
1 + d2

2

)

+ (x3 − θ − π) sin(z3 − θ)
v1

√

d2
1 + d2

2

.

Since, for all a ∈ [−π, π], a sina = |a| sin |a|, we have

Ẇ ≤ −
√

2W sin(
√

2W )
√

d2
1 + d2

2

(

1 − |u1|
d2
1 + d2

2

)

+
√

2W
|v1|

√

d2
1 + d2

2

.

Note that, when u1 = v1 = 0, if W (χ0) < π2/2, then the

solution asymptotically converges to {W = 0}. Moreover,

given any c, with 0 < c < π2/2, there exists U > 0 such

that, for |u1|, |v1| < U the set {χ ∈ X : W (χ) ≤ c} is

positively invariant. Pick c = 1/2(π/4)2, and let U be as

above.

Given any V0 > 0, by the inequalities in (12) and the fact

that V is nonincreasing along solutions of the closed-loop

system, for any initial condition χ0 ∈ {χ ∈ X : V (χ) ≤ V0},

we have

|u1(t)|, |v1(t)| ≤ 2
√

V0

(

2
√

V0 + ∆2
)

1

2 .

Let V0 be small enough that 2
√

V0

(

2
√

V0 + ∆2
)

1

2 < U and

V0 < (1/4)∆4. Consider the set

N (Γ) = {χ : V < V0} ∩ {χ : W < 1/2(π/4)2}.
On Γ, V = 0 and W = 0, so N (Γ) is a neighborhood of

Γ. By construction, the set N (Γ) is positively invariant. In

particular, for all χ0 ∈ N (Γ) and all t ≥ 0, |x3(t) − θ(t) −
π| < π/4, and hence

cos2(x3(t) − θ(t) − π) > 1/2,

as required. Going back to the derivative of the storage

function in (13), we have obtained that for all χ0 ∈ N (Γ),
and for all t ≥ 0, V̇ ≤ −2(∆2 − 2

√
V0)V, so that, for all

t ≥ 0, V (φu(t, χ0)) ≤ V0e
−ct, where c = 2(∆2 − 2

√
V0) >

0. Now notice that

|ẋ1| ≤ |u1| ≤ 2
√

V (∆2 + 2
√

V ).

The same inequality holds for |ẋ2|, |ż1|, and |ż2|. Since

t 7→ V (φu(t, χ0)) is exponentially decreasing, ẋ1(·) belongs

to L1, and hence x1, (and similarly x2, z1, and z2) is

bounded. Moreover, the bound is independent of the initial

condition in N (Γ), showing that the closed-loop system is

locally uniformly bounded near Γ. This concludes the proof

that Γ is semi-asymptotically stabilized by the feedback (10).

Remark. It can be shown that all trajectories of the closed-

loop system are bounded, and we have seen earlier that

system (11) is almost globally Γ-detectable. We conjecture

that the controller (10) yields almost global semi-asymptotic

stabilization of Γ.

V. CONCLUSIONS

New results for the stabilization of closed invariant sets for

passive systems have been presented. Using novel reduction

principles, presented in Part I, these results provide condi-

tions for set stability, semi-attractivity, and semi-asymptotic

stability using passivity-based feedback. The results are

applied in a coordination problem for two unicycles.
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