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Abstract— We address the maneuver regulation of the kine-
matic unicycle to a circle. Our control approach is passivity-
based, and we frame the control design objective as a set
stabilization problem. We present two main results. First, we
provide a smooth, time-invariant, static feedback that globally
asymptotically stabilizes the motion on the circle in a desired
direction and constant velocity. Second, we provide a smooth
time-varying feedback that almost globally asymptotically sta-
bilizes the set of configurations corresponding to the unicycle
centre of mass on the circle with desired heading on the circle.

I. INTRODUCTION

Equilibrium stabilization for nonholonomic systems has

been studied extensively over the past years. Brockett’s

necessary condition for smooth stabilization, in [1], shows

that no time-invariant static-state feedback stabilizer exists

for these systems. The main approaches for equilibrium

stabilization include discontinuous control [2], [3], [4], [5],

time-varying control [6], [7], [8] and hybrid feedback tech-

niques [9]. There are also many results for tracking control

[10], [11].

Path following for nonholonomic systems has also ac-

quired considerable attention. Results include techniques

previously used in equilibrium stabilization [4], [10], and

more recent results using techniques such as virtual target

tracking [12], transverse feedback linearization [13], and

backstepping [14]. Path following results can also be found

in conjunction with those on formation control of multi-

agent systems. For example, in [15] linearization techniques

and gain scheduling are used for path following control and

applied to approximate stabilization of the circular motion.

In [16] the authors present a Lie group setting for control of

formations and curvature control design. The specialization

of the results to a single vehicle and a beacon is the circular

path following problem where the Lyapunov-based control

provides almost-global stabilization. Most notably, in [17]

Ceccarelli et al. present a switching control that globally

asymptotically stabilizes the circular motion of the unicycle

with desired orientation.

In this paper, we consider the kinematic unicycle and

investigate the stabilization of sets in the state space that

correspond to specific maneuvers. Specifically, we present a

smooth, time-invariant, static feedback that globally asymp-

totically stabilizes the circular motion of the unicycle with

desired orientation. Remarkably, our controller is extremely
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simple and, to the best of our knowledge, there is no other

result reported in the literature showing that the circular path

following problem can be solved globally by a smooth time-

invariant static feedback. The closest result is that in [17]

where the controller is discontinuous. We also consider the

problem of maneuvering the unicycle to the unit circle

centred at the origin, with desired heading on the circle. We

present a time-varying, static feedback that almost globally

solves this problem, in the sense that the unicycle will

accomplish the desired maneuver for any initial condition

except when its centre of mass is initialized at the origin.

Our two controllers are based on a new result which builds

upon our previous work in [18]. See also relevant work by

Shiriaev and co-workers in [19]. The advantage of posing

the two control problems in the set stabilization framework,

rather than that of tracking, is that the resulting feedback

guarantees invariance of the set in question. So, for instance,

our circular path following controller guarantees that when

the unicycle is initialized on the circle with heading tangent

to the circle and appropriate orientation, the unicycle will

follow the circle without leaving it. This essential invariance

property, distinguishing path following from tracking, is

often neglected in the literature.

II. PASSIVITY-BASED SET STABILIZATION

In [18] we provided results for the use of passivity-based

control in stabilizing non-compact sets. In this section we

present a new result, extending part of our work in [18],

which is used in Sections III and IV to design controllers

for the unicycle.

Given a closed nonempty set Γ ⊂ X , where X is a vector

space, a point ξ ∈ X , and a vector norm ‖ · ‖ : X →
R, the point-to-set distance ‖ξ‖Γ is defined as ‖ξ‖Γ :=
infη∈Γ ‖ξ− η‖. Denote by φ(t, x0, u(t)) the unique solution

to a smooth differential equation ẋ = f(x) + g(x)u(t), with

initial condition x0 and piecewise continuous control input

signal u(t). We use the standard notation LfV to denote the

Lie derivative of a C1 function V along a vector field f .

Consider the control-affine system,

ẋ = f(x) +
m

∑

i=1

gi(x)ui

y = h(x)

(1)

with state space X ⊂ Rn, set of input values U ⊂ Rm and

set of output values Y ⊂ Rm. The set X is assumed to be

either an open subset or a smooth submanifold of Rn, in

which case X inherits a metric from Rn. We assume that

f and gi, i = 1, . . .m, are smooth vector fields, and that



h is a smooth mapping. The system (1) is passive if there

exists a Cr (r ≥ 1) nonnegative function V : X → R, called

the storage function, such that for all piecewise-continuous

functions u : [0,∞) → U , for all x0 ∈ X , and for all t in

the maximal interval of existence of φ(·, x0, u),

V (x(t)) − V (x0) ≤

∫ t

0

u(τ)⊤y(τ)dτ,

where x(t) = φ(t, x0, u(t)) and y(t) = h(x(t)). The passiv-

ity property is equivalent to the two conditions LfV (x) ≤ 0,

Lgi
V (x) = hi(x)⊤, i = 1, . . . , m. Let Γ ⊂ X be a closed

invariant set for a system Σ : ẋ = f(x), x ∈ X .

Definition II.1 (Set Stability, [20]) (i) Γ is uniformly

stable for Σ if (∀ε > 0)(∃δ > 0)(∀x0 ∈ X ) (‖x0‖Γ <
δ ⇒ (∀t ≥ 0)‖x(t)‖Γ < ε).

(ii) Γ is an attractor for Σ if (∃δ > 0) (∀x0 ∈ X ) ‖x0‖Γ <
δ ⇒ limt→∞ ‖x(t)‖Γ = 0. It is a global attractor if

δ = ∞.

(iii) Γ is asymptotically stable with respect to Σ if it

is a uniformly stable attractor for Σ. It is globally

asymptotically stable if it is a uniformly stable global

attractor.

Definition II.2 (Relative Set Stability) Let Ξ ⊂ X be such

that Ξ ∩ Γ 6= ∅. Γ is uniformly stable relative to Ξ for Σ if,

for any ε > 0, there exists δ > 0 such that for all ‖x0‖Γ < δ
and x0 ∈ Ξ, one has that ‖x(t)‖Γ < ε for all t ≥ 0.

In [18] we pose the following set stabilization problem: as-

sume that system (1) is passive with a positive semi-definite

storage function V . Given a closed set Γ ⊆ V −1(0) = {x ∈
X : V (x) = 0}, find conditions under which a passivity-

based feedback makes Γ an attractor or an asymptotically

stable set for the closed-loop system. We refer to Γ as the

goal set.

This problem was investigated by Shiriaev in [19] in the

special case when Γ is compact and Γ = V −1(0). His main

condition for the existence of a stabilizing passivity-based

feedback is the notion of V -detectability, a generalization of

the well-known notion of zero-state detectability by Byrnes,

Isidori, and Willems in [21]. In [18], we extended and gen-

eralized these results by considering non-compact Γ which

is not necessarily equal to V −1(0). There, we addressed the

cases of bounded and unbounded trajectories. For the case

of bounded trajectories, pertinent to the unicycle problems

presented here, we replaced the notion of V -detectability

by that of Γ-detectability and using this notion we gave

sufficient conditions (see [18, Theorem III.1]) for which a

passivity based controller makes Γ attractive1 for the closed-

loop system. We repeat our definition of Γ-detectability

below.

Definition II.3 (Γ-Detectability [18]) System (1) is locally

Γ-detectable if there exists a neighborhood N (Γ) of Γ such

1Actually, semi-attractive when Γ is unbounded. See [18] for the defini-
tion of a semi-attractor.

that, for all x0 ∈ N (Γ), the open-loop solution x(t) =
φ(t, x0, 0) satisfies

y(t) = 0 ∀t ≥ 0 =⇒ lim
t→∞

‖x(t)‖Γ = 0.

The system is Γ-detectable if it is locally Γ-detectable with

N (Γ) = X .

We now present a new result concerning the (global) asymp-

totic stabilization of a compact Γ by means of a passivity-

based feedback. The proof of this result is omitted and will

be reported elsewhere.

Theorem II.4 Consider system (1) with a passivity-based

feedback u = −ϕ(h(x)), where ϕ(·) : Y → U is a locally

Lipschitz function such that ϕ(0) = 0 and y⊤ϕ(y) > 0 for all

y 6= 0. Let Γ ⊂ V −1(0) be a compact set which is open-loop

invariant. Then, Γ is asymptotically stable for the closed-loop

system if, and only if, system (1) is locally Γ-detectable and

Γ is uniformly stable relative to V −1(0). If, in addition, all

trajectories of the closed-loop system are bounded, then Γ
is globally asymptotically stable for the closed-loop system

if, and only if, system (1) is Γ-detectable and Γ is uniformly

stable relative to V −1(0).

In the next two sections we will use this result to design

global and almost-global stabilizers for path following and

maneuvering of the unicycle.

III. CIRCULAR PATH FOLLOWING

Consider the following model of the kinematic unicycle

ẋ1 = u1 cos(x3)

ẋ2 = u1 sin(x3)

ẋ3 = u2,

(2)

with state space X = R2 × S1, where (x1, x2) ∈ R2 are

the Cartesian coordinates of the unicycle, x3 ∈ S1 is the

heading, and u = (u1, u2) is the control input, with u1 the

linear velocity and u2 the angular velocity.

The Circular Path Following problem is as follows: find

a feedback for (2) such that the unicycle approaches and

follows a circle of radius r centred at the origin of the

(x1, x2) plane. Moreover, it is required that the unicycle

traverses the circle in a prescribed direction of rotation with

a desired velocity.

The motivation for the passivity-based controller that we

present for this problem comes from the following observa-

tion. Consider the open-loop control u1 = v and u2 = v/r
(or −v/r), where v > 0 is the desired velocity of the

unicycle on the circle. With these controls and for any initial

condition, the unicycle rotates in a circle of radius r and

linear velocity v in the counter-clockwise (when u2 = v/r)

or clockwise (when u2 = −v/r) direction, see Figure 1.

What is noticed here is that for any initial state there is a

preserved quantity which is the vector z(t) (when u2 = v/r)

or z′(t) (when u2 = −v/r) representing the coordinates

of the centre of the circle of rotation as shown in the
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Fig. 1. Unicycle Circular Motion

figure. These vectors can be expressed in term of the states

(x1, x2, x3) as follows

z = (x1 − r sin x3, x2 + r cosx3)

z′ = (x1 + r sin x3, x2 − r cosx3).

Consider the sets Γ = {x ∈ R2 × S1 : x1 = r sinx3, x2 =
−r cosx3} and Γ′ = {x ∈ R2 × S1 : x1 = −r sin x3, x2 =
r cosx3}, and notice that, when x ∈ Γ (x ∈ Γ′) the unicycle

is on the circle of radius r centred at the origin with heading

tangent to the circle in the counter-clockwise (clockwise)

direction. Hence, solving the circular path following problem

is equivalent to stabilizing Γ for counter-clockwise motion,

or Γ′ for clockwise motion. Notice also that Γ and Γ′ can be

expressed as Γ = {x : z1 = z2 = 0}, Γ′ = {x : z′1 = z′2 =
0} so, referring to Figure 1, the physical incentive behind the

stabilization of Γ or Γ′ is to force the vectors z or z′ to zero

so that, in steady-state, the unicycle travels around a circle

of radius r in the counter-clockwise (clockwise) direction,

centred at z = 0 (z′ = 0). For the rest of this section we

will consider the case of counter-clockwise rotation, focusing

on the stabilization of the set Γ. The development for the

clockwise case is identical. We will use the vector z to obtain

a storage function for the system and to design a passivity-

based controller. Let v > 0 denote the desired velocity of

the unicycle on the circle, and consider the following choice

of control inputs

u1 = v

u2 =
v

r
+ uc,

where uc is a feedback to be designed later. By substituting

the control above into (2) we get





ẋ1

ẋ2

ẋ3



 =





v cosx3

v sin x3

v/r



 +





0
0
1



uc. (3)

Proposition III.1 System (3) with output function

y = −r (x1 cosx3 + x2 sin x3) (4)

is passive with storage function

Vc =
1

2

(

(x1 − r sin x3)
2 + (x2 + r cosx3)

2
)

.

Let ϕ(·) : R → R be any function such that ϕ(0) = 0 and

yϕ(y) > 0 for y 6= 0. The control

u1 = v

u2 =
v

r
+ ϕ(rx1 cosx3 + rx2 sin x3)

(5)

globally asymptotically stabilizes the set Γ = {x ∈ X :
x1 = r sin x3, x2 = −r cosx3} and thus globally solves the

circular path following problem.

Proof: Rewriting system (3) in the form ẋ = f(x) +
g(x)uc, y = h(x), with f = [v cos(x3) v sin(x3) v/r]⊤,

g = [0 0 1]⊤, and h(x) = −r(x1 cosx3 + x2 sinx3), by

straightforward calculations we get LfVc = 0 and LgVc = h,

and so the system is passive. The storage function Vc is

positive semi-definite and its zero level set is the goal set Γ
and so, trivially, Γ is uniformly stable relative to V −1(0).
Since x3 ∈ S1 and S1 is a compact set, all level sets of V
are compact, and therefore all trajectories of the closed-loop

system are bounded. The system (3)-(4) is Γ-detectable. This

can be shown as follows. The zero level set of the output y
is given by h−1(0) = {x : x1 cos(x3) = −x2 sin(x3))}, so

x ∈ h−1(0) if either x1 = x2 = 0, or x3 = arg(x2 − ix1),
or x3 = arg(−x2 + ix1). Thus, on h−1(0), the unicycle is

either at the origin with any heading, or at any other position

with heading perpendicular to the position vector (x1, x2).
Now suppose that, for the closed-loop system, y(t) ≡ 0 and

uc(t) ≡ 0. Then, the unicycle must travel along a circle

of radius r centred at (z1(t), z2(t)) ≡ (z1(0), z2(0)), with

heading perpendicular to the vector (x1(t), x2(t)). This can

only occur if the centre of the circle is at the origin or,

equivalently, z1(t) ≡ z2(t) ≡ 0, hence Γ-detectability. Using

the feedback (5) corresponds to setting uc = ϕ(−y) =
ϕ(rx1 cosx3 + rx2 sin x3). The feedback above can equiva-

lently be expressed as uc = −ϕ̄(y), where ϕ̄(y) = −ϕ(−y),
and yϕ̄(y) = −yϕ(−y) > 0 for all y 6= 0. The result follows

directly from Theorem II.4.

Remark 1 An important advantage of the passivity-based

controller (5) is that it can be made to be compatible with any

input saturation constraint. For, if the controller is subject to

saturation constraints |u1| ≤ U1, |u2| ≤ U2, one can choose

v small enough that v < U1 and v/r < U2 and choose ϕ so

that v/r + sup
R
|ϕ(·)| ≤ U2.

Now we present simulation results for controlling the

circular motion of the unicycle (2) using control (5) with

ϕ(y) = ky, v = 1, and r = 1. Figure 2 presents results for

a number of initial states with control gain k = 1. Figure

3 shows results for initial state (5, 5, 0) and different values

of the control gain k. The first part of Figure 3 shows the

control effort u2(t) during transient and steady-state, while

the second part shows the distance of the unicycle from the

unit circle as a function of time. Notice how lower gains lead



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x
2

(a) Initial States: (2, 1, 0), (−2, 0, 0), (0,−2, π), (1,−1,−
2π

3
)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

(b) Initial States: (0, 0, 0), (−.2, .2,
2π

3
), (.2, .3,

π

6
), (−.2,−.5,

π

2
)

Fig. 2. Controlling the Circular Motion

to faster convergence but increasing oscillations. Obviously,

convergence can be sped up by increasing v and excessive

control effort can be avoided by means of saturation.

IV. STABILIZING THE UNIT CIRCLE WITH DESIRED

HEADING

In this section we address the following maneuvering

problem: stabilize the unicycle to a circle of radius r centred

at the origin, and make it assume a desired heading on the

circle. In other words, it is required to stabilize the set

Γ = {(x1, x2, x3) : x2
1 + x2

2 = r2, x3 = a}, (6)

where a is the desired reference heading. The orientation

requirement adds challenge to the problem. Due to the

nonholonomic constraint in the unicycle, the only way that

the unicycle can remain on the circle with constant heading

is that the unicycle stands still on the circle. Hence, this

problem is of an intrinsically different nature than the circular

path following problem solved in Section III. For the rest

of the section we take the radius r = 1. Note that for

system (2), f = [0 0 0]⊤, and so the system is passive with

any storage function V (x1, x2, x3), and output y = LgV .

Consider the storage function V1 = (x2
1 + x2

2 − 1)2/2 +
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Fig. 3. Effects of different control gains

(x3 − a)2/2. Note that V −1(0) is the goal set (6), and

LgV1 = col(2(x2
1 + x2

2 − 1)(x1 cosx3 + x2 sin x3), x3 −
a). Using as control u = −LgV1 fails to stabilize Γ in

this case because system (2) with output LgV1 is not Γ-

detectable. For, suppose that u(t) ≡ 0 and LgV1(t) ≡ 0.

Then, (x1(t), x2(t)) ≡ (x̄1, x̄2) and x3(t) ≡ a, and so

the unicycle dynamics are stationary. Moreover, it must be

that (x̄2
1 + x̄2

2 − 1)(x̄1 cos(a) + x̄2 sin(a)) ≡ 0. Figure 4

illustrates this set of positions with heading x̄3 = a. It is

clear that this set strictly contains the goal set Γ in (6), and

so the system is not Γ-detectable. In general, if we choose

for the system a storage function V (e1, e2), where e1 and

e2 are the position and heading errors e1 = x2
1 + x2

2 − 1,

e2 = x3 − a, and (e1, e2) 7→ V (e1, e2) is positive definite,

then the first component of LgV , (LgV )1, is given by

(LgV )1 = (∂V /∂e1)(x1 cos(x3) + x2 sin(x3)), which gives

an obstruction to Γ-detectability. The above suggest that

if one wants to solve the maneuvering problem using a

passivity-based approach, one should not attempt to find a

storage V with the property that V −1(0) = Γ. Guided by

this principle, we choose the simplest storage V such that

V −1(0) ) Γ, namely V (x) = 1/4(x2
1 + x2

2 − 1)2. Our

design approach is this: design u2 to insure Γ-detectability

and stability of Γ relative to V −1(0) for the system with input

u1 and output Lg1
V . Then, let u1 be a standard passivity-
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based feedback.

Proposition IV.1 Let e = x2
1 + x2

2 − 1 and let f(e) be a

Lipschitz continuous positive definite function. The control

u1 = − ϕ1

(

e(x1 cosx3 + x2 sin x3)
)

u2 = − ϕ2(x3 − a) + f(e) sin t
(7)

where ϕ1,2(·) are smooth functions such that ϕ1,2(0) = 0
and yϕ1,2(y) > 0 for all y 6= 0, renders both sets

G = {(x1, x2, x3) : x2
1 + x2

2 = 1}

Γ = {(x1, x2, x3) : x2
1 + x2

2 = 1, x3 = a},

asymptotically stable for the unicycle with domain of attrac-

tion X\{(x1, x2, x3) : x1 = x2 = 0}. Hence, G and Γ
are almost globally asymptotically stable for the closed-loop

system.

Proof: Replacing the expression for u2 in (2) and

augmenting (2) with the equation θ̇ = 1, θ ∈ S1, we

obtain an autonomous control system with input u1, state

(x1, x2, x3, θ), and state space Xe = R2 × S1 × S1,

ẋ1 = u1 cosx3

ẋ2 = u1 sin x3

ẋ3 = −ϕ2(x3 − a) + f(e) sin θ

θ̇ = 1.

(8)

Consider the lift of the sets Γ and G to the state space Xe,

Γe = Γ× S1, Ge = G× S1. Notice that ‖(x, θ)‖Γe
= ‖x‖Γ

and ‖(x, θ)‖Ge
= ‖x‖G, and so showing that Γe and Ge are

asymptotically stable for (8) with u1 as in (7), is equivalent

to showing that Γ and G are asymptotically stable for the

original non-autonomous closed-loop system. Consider the

storage function V = 1
4e2, with e = x2

1 + x2
2 − 1. Since

LfV = 0, the system is passive with output

y = LgV = e(x1 cosx3 + x2 sin x3). (9)

Notice that V is proper in Xe, and thus all trajectories of the

closed-loop system are bounded. System (8)-(9) is locally

Γe-detectable. This is shown as follows. If u1 ≡ 0, the

system dynamics are given by

ẋ1 = 0, ẋ2 = 0

ẋ3 = −ϕ2(x3 − a) + f(e) sin θ

θ̇ = 1,

and so we have

x1(t) = x̄1, x2(t) = x̄2

ẋ3 = −ϕ2(x3 − a) + f(e) sin(θ0 + t).

If in addition we have y(t) ≡ 0, we get either (1) x̄1 =
x̄2 = 0, or (2) e(t) ≡ 0, or x̄1 cos(x3) + x̄2 sin(x3) = 0,

which implies (3) x3(t) ≡ x̄3. In case (3), ẋ3(t) ≡ 0 and

this can only be satisfied if f(e(t)) ≡ 0 (i.e., e(t) ≡ 0),

and x3(t) ≡ a. In case (2) we have e(t) ≡ 0, and so ẋ3 =
−ϕ2(x3−a), thus x3(t) → a. The only problematic situation

is case (1). Since any point (x1, x2, x3, θ) = (0, 0, ⋆, ⋆) is a

local maximum of V , and V is nonincreasing along closed-

loop solutions, any solution originating in X2\0×0×S1×S1

never enters the set 0×0×S1×S1. In conclusion, system (8)

is locally Γe-detectable with N (Γe) = (R2×S1×S1)\(0×
0×S1×S1) as in Definition II.3. As for the other conditions

of Theorem II.4, we have Γe ⊂ Ge = V −1(0). On the set

V −1(0), the open-loop system dynamics take the form

ẋ1 = 0, ẋ2 = 0, ẋ3 = −ϕ2(x3 − a), θ̇ = 1

and so the set Γe is asymptotically stable relative to V −1(0)
for the open-loop system. Since u1 = −ϕ1(y), by The-

orem II.4 we get asymptotic stability of Γe, and in fact

almost-global asymptotic stability of Γe since every point in

(0×0×S1×S1) is a local maximum for the storage function

V . We now turn our attention to the stability of Ge. Since

Γe ⊂ Ge and since (8)-(9) is almost globally Γe-detectable,

this also implies that it is almost globally Ge-detectable.

Since Ge = V −1(0) and all trajectories of the closed-loop

system are bounded, Theorem II.4 once again implies that

the control u1 = −ϕ1(y) asymptotically stabilizes Ge, and

in fact almost globally stabilizes Ge by the same reason

explained above.

Once again the feedback (7) can be made to satisfy any

saturation limits on the inputs u1 and u2 by appropriate

choices of ϕ1, ϕ2, and f . From a practical viewpoint, the

property that both Γ and G are asymptotically stable is

particularly useful: if the unicycle is initialized on the circle

with any heading, then the unicycle adjusts its heading

without leaving the circle. Similarly, if the unicycle is close

to the circle, it adjusts its heading while remaining close

to it. We present simulation results for the controller (7)

used to stabilize the position of the unicycle to a unit circle

with a reference heading a = π/6. We choose ϕ1(y) =
ϕ2(y) = y, and f(e) = |e|. Figure 5 presents results for a

number of different initial states, while Figure 6 presents the

corresponding error signals e1 = x2
1 + x2

2 − 1, e2 = x3 − a.

V. CONCLUSIONS

In this paper we have investigated two set stabilization

problems for the kinematic unicycle. First, we provided
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a smooth and time-invariant state feedback that globally

asymptotically stabilizes the circular motion in a desired di-

rection. Second, we solved a maneuvering problem whereby

it is required to stabilize the unicycle to a circle and to have

a desired constant heading on it. For this latter problem we

provided an almost globally stabilizing passivity-based time-

varying feedback. Both designs are based on an extension to

recent results on passivity-based set stabilization.
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