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Abstract

In this paper we explore the stabilization of closed invariant sets for passive systems, and present

conditions under which a passivity-based feedback asymptotically stabilizes the goal set. Our results

rely on novel reduction principles allowing one to extrapolate the properties of stability, attractivity, and

asymptotic stability of a dynamical system from analogous properties of the system on an invariant subset

of the state space.

I. INTRODUCTION

The notion of passivity for state space representations of nonlinear systems, pioneered by Willems in

the early 1970’s, [1], [2], was instrumental for much research on nonlinear equilibrium stabilization. Key

contributions in this area were made in the early 1980’s by Hill and Moylan in [3], [4], [5], [6], and later

by Byrnes, Isidori, and Willems, in their landmark paper [7]. More recently, in a number of papers [8],

[9], [10], Shiriaev and Fradkov addressed the problem of stabilizing compact invariant sets for passive

nonlinear systems. Their work is a direct extension of the equilibrium stabilization results by Byrnes,

Isidori, and Willems in [7].

In this paper we develop a theory of set stabilization for passive systems which generalizes the

equilibrium theory of [7], as well as the results in [8], [9],[10]. We investigate the stabilization of

a closed setΓ, not necessarily compact, which is open-loop invariant andcontained in the zero level set

of the storage function. Our results answer this question:when is it that a passivity-based controller makes

Γ asymptotically stable for the closed-loop system? Even in the special case whenΓ is an equilibrium,
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our theory yields novel results, among them necessary and sufficient conditions for the passivity-based

asymptotic stabilization of the equilibrium in question without imposing that the storage function be

positive definite. The theory in [7], and [8], [9], [10] does not handle this situation.

The key insight behind the development of the results presented in this paper is the realization that

at the heart of the stabilization problem by passivity-based feedback there lies a so-called reduction

problem for a dynamical systemΣ : ẋ = f(x): Consider two closed sets Γ and O, with Γ ⊂ O, which

are invariant for Σ; suppose that Γ is stable, attractive, or asymptotically stable for the restriction of

Σ to O. When is it that Γ is stable, attractive, or asymptotically stable with respect to the whole state

space? We answer this question by presenting three novel reductionprinciples for attractivity, stability,

and asymptotic stability that have independent interest and are applicable to other problems in control

theory. The proofs of these and other results are omitted in this shortened paper. The interested reader is

referred to the full version [11] and [12].

Outline: Section II presents stability definitions and reviews the notion of limit set and that of

prolongational limit set. In Section III we state the passivity-based set stabilization problem and illustrate

its relationship to the reduction problem. We then present the reduction principles. Section IV presents

a novel notion of detectability using which, in Section V, wesolve the passivity-based set stabilization

problem. The main result, Theorem V.2, generalizes previous results on passivity-based stabilization. This

fact is discussed in Section VI.

II. PRELIMINARIES

In this paper we consider control-affine systems described by

ẋ = f(x) +
m

∑

i=1

gi(x)ui

y = h(x)

(1)

with state spaceX ⊂ Rn, set of input valuesU ⊂ Rm and set of output valuesY ⊂ Rm. The set

X is assumed to be either an open subset or a smooth submanifoldof Rn. We assume thatf and gi,

i = 1, . . . m, are smooth vector fields onX , and thath : X → Y is a smooth mapping.

Notation: Let R+ = [0,+∞). Given either a smooth feedbacku(x) or a piecewise-continuous open-

loop controlu(t) : R+ → U , we denote byφu(t, x0) the unique solution of (1) with initial condition

x0. By φ(t, x0) we denote the solution of the open-loop systemẋ = f(x) with initial condition x0.

Given an intervalI of the real line and a setS ∈ X , we denote byφu(I, S) the setφu(I, S) :=

{φu(t, x0) : t ∈ I, x0 ∈ S}. The setφ(I, S) is defined analogously. Given a closed nonempty set

September 5, 2010 DRAFT



3

S ⊂ Rn, a pointx ∈ Rn, and a vector norm‖ · ‖ : Rn → R, the point-to-set distance‖x‖S is defined

as‖x‖S := inf{‖x − y‖ : y ∈ S}. The state spaceX , being a subset ofRn, inherits a norm fromRn,

which we will denote‖ · ‖ : X → R. For a constantα > 0, a pointx ∈ X , and a setS ⊂ X , define the

open setsBα(x) = {y ∈ X : ‖y − x‖ < α} andBα(S) = {y ∈ X : ‖y‖S < α}. We denote bycl(S) the

closure of the setS, and byN (S) an open neighbourhood ofS, that is, an open subset ofX containing

S. We use the standard notationLfV to denote the Lie derivative of aC1 function V along a vector

field f .

Passivity: Throughout this paper it is assumed that (1) is passive with smooth nonnegative storage

functionV : X → R, i.e.,V is aCr (r ≥ 1) nonnegative function such that, for all piecewise-continuous

functionsu : [0,∞) → U , for all x0 ∈ X , and for allt in the maximal interval of existence ofφu(·, x0),

V (φu(t, x0)) − V (x0) ≤
∫ t

0
u(τ)⊤y(τ)dτ,

wherey(t) = h(φu(t, x0)). It is well-known (see [3]) that the passivity property above is equivalent to

the two conditions

(∀x ∈ X ) LfV (x) ≤ 0 and LgV (x) = h(x)⊤, (2)

whereLgV denotes the row vector[Lg1
V · · · Lgm

V ].

Set stability and attractivity: All definitions below are standard and can be found in [13]. Let Γ ⊂ X

be a closed positively invariant for a dynamical system

Σ : ẋ = f(x), x ∈ X . (3)

Definition II.1 (Set stability and attractivity). (i) Γ is stable for Σ if for all ε > 0 there exists a

neighbourhoodN (Γ) such thatφ(R+,N (Γ)) ⊂ Bε(Γ).

(ii) Γ is an attractor for Σ if there exists a neighbourhoodN (Γ) such that, for allx0 ∈ N (Γ),

limt→∞ ‖φ(t, x0)‖Γ = 0.

(iii) Γ is a global attractor for Σ if it is an attractor withN (Γ) = X .

(iv) Γ is [globally] asymptotically stable for Σ if it is stable and attractive [globally attractive] forΣ.

If Γ is a compact positively invariant set, then the concepts of stability, attractivity, and asymptotic

stability, as defined above, are equivalent to the familiarǫ-δ notions of uniform stability, attractivity, and

asymptotic stability found, e.g., in [14, Definition 8.1]. In the unbounded case, however, our definitions of

attractivity and asymptotic stability, referred to as semi-attractivity and semi-asymptotic stability in [13],

are weaker than the correspondingǫ-δ notions. For instance, theǫ − δ notion of attractivity requires
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that the domain of attraction ofΓ contains a tube of radiusδ, whereas the notion of attractivity in the

definition above does not, and in fact ifΓ is unbounded the width of its domain of attraction may shrink

to zero at infinity.

Definition II.2 (Relative set stability and attractivity). Let O ⊂ X be such thatO ∩ Γ 6= ∅. We say

that Γ is stable relative to O for Σ if, for any ε > 0, there exists a neighbourhoodN (Γ) such that

φ(R+,N (Γ) ∩ O) ⊂ Bε(Γ). Similarly, one modifies all other notions in Definition II.1by restricting

initial conditions to lie inO.

Definition II.3 (Local stability and attractivity near a set). Let Γ andO, Γ ⊂ O ⊂ X , be positively

invariant sets. The setO is locally stable near Γ if for all x ∈ Γ, for all c > 0, and all ε > 0, there

existsδ > 0 such that for allx0 ∈ Bδ(Γ) and all t > 0, wheneverφ([0, t], x0) ⊂ Bc(x) one has that

φ([0, t], x0) ⊂ Bε(O). The setO is locally attractive near Γ if there exists a neighbourhoodN (Γ) such

that, for all x0 ∈ N (Γ), φ(t, x0) → O at t → +∞.

Bδ(Γ)
Bε(O)

x ∈ Γ
O

Bc(x)

Fig. 1. An illustration of the notion of local stability nearΓ

The property of local stability can be rephrased as follows.Given an arbitrary ballBc(x) centred at

a point x in Γ, trajectories originating inBc(x) sufficiently close toΓ cannot travel far away fromO

before first exitingBc(x); see Figure 1. It is immediate to see that ifΓ is stable, thenO is locally stable

nearΓ.

Definition II.4 (Local uniform boundedness). The systemΣ is locally uniformly bounded near Γ if for

eachx ∈ Γ there exist positive scalarsλ andm such thatφ(R+, Bλ(x)) ⊂ Bm(x).

Limit Sets: In order to characterize the asymptotic properties of bounded solutions, we will use the

well-known notion of limit set, due to G. D. Birkhoff (see [15]), and that of prolongational limit set, due

to T. Ura (see [16]). Given a smooth feedbacku(x) and a pointx0 ∈ X , thepositive limit set (or ω-limit
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set) of the closed-loop solutionφu(t, x0) is defined as

L+
u (x0) := {p ∈ X : (∃{tn} ⊂ R+) tn → +∞,

φu(x0, tn) → p}.

The positive limit set of the open-loop solutionφ(t, x0), defined in an analogous way, is denotedL+(x0).

We let L+
u (S) :=

⋃

x0∈S L+
u (x0) andL+(S) :=

⋃

x0∈S L+(x0).

If U ⊂ X andx0 ∈ cl(U), the prolongational limit set relative to U of an open-loop solutionφ(t, x0)

is defined as
J+(x0, U) := {p ∈ X : (∃{(xn,tn)} ⊂ U × R+), xn → x0,

tn → +∞, φ(xn, tn) → p}.

We denoteJ+(S,U) :=
⋃

x0∈S J+
u (x0, U). One can show that ifx0 ∈ cl(U), thenL+(x0) ⊂ J+(x0, U).

III. STABILIZATION PROBLEM AND REDUCTION PRINCIPLES

The main objective of this paper is the stabilization of a closed setΓ usingpassivity-based feedbacks

of the form

u = −ϕ(x), with ϕ(·)
∣

∣

∣

h(x)=0
= 0, h(x)⊤ϕ(x)

∣

∣

∣

h(x)6=0
> 0, (4)

whereϕ : X → U is a smooth function. The class of passivity-based feedbacks in (4) includes that of

output feedback controllersu = −ϕ(h(x)) commonly used in the literature on passive systems.

Set Stabilization Problem. Given a closed setΓ ⊂ V −1(0) = {x ∈ X : V (x) = 0} which is positively

invariant for the open-loop system in (1), and given a passivity-based feedback of the form (4), find

conditions guaranteeing thatΓ is [globally] asymptotically stable for the closed-loop system.

The rationale behind passivity-based feedback is the following. Using (2) and the properties of the

passivity-based feedback (4), the time derivative of the storage functionV along trajectories of the

closed-loop system formed by (1) with feedback (4) is given by

dV (φu(t, x0))

dt
=LfV (φu(t, x0))

− LgV (φu(t, x0))ϕ(φu(t, x0))

≤− h(φu(t, x0))
⊤ϕ(φu(t, x0)) ≤ 0.

(5)

Thus, a passivity-based feedback renders the storage function V nonincreasing along solutions of the

closed-loop system. One expects that if the system enjoys suitable properties, then the storage function
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should decrease asymptotically to zero and the solutions should approach a subset ofV −1(0), hopefully

the setΓ.

Our point of departure in understanding what system properties yield the required result is the well-

known property, found in the proof of Theorem 3.2 in [7], that, for all x0 ∈ X , the positive limit set

L+
u (x0) of the closed-loop system is invariant for the open-loop system and such thatL+

u (x0) ⊂ h−1(0).

Let O denote themaximal set contained inh−1(0) which is invariant for the open-loop system. In light

of the property above, ifL+
u (x0) is non-empty, then it must be contained inO. Therefore, all bounded

trajectories of the closed-loop system asymptotically approachO. SinceLfV ≤ 0, V is nonincreasing

along solutions of the open-loop system, and soV −1(0) is an invariant set for the open-loop system.

Moreover, sinceV is nonnegative, any pointx ∈ V −1(0) is a local minimum ofV and hencedV (x) = 0.

Therefore,LgV (x) = h(x)⊤ = 0 on V −1(0), and soΓ ⊂ V −1(0) ⊂ h−1(0). SinceV −1(0) is invariant

and contained inh−1(0), it is necessarily a subset ofO (this implies thatO is not empty). Putting

everything together, we conclude that

Γ ⊂ V −1(0) ⊂ O ⊂ h−1(0). (6)

It is then clear that if the trajectories of the closed-loop system in a neighbourhood ofΓ are bounded, the

least a passivity-based feedback can guarantee is the attractivity of O; but this is not sufficient for our

purposes. Notice that, onO, ϕ(·) = 0 and so the closed-loop dynamics onO coincide with the open-loop

dynamics. In particular, then,O is an invariant set for the closed-loop system. In order to ensure the

property of asymptotic stability ofΓ, the open-loop systemmust enjoy the same propertyrelative to O.

Therefore, a necessary condition forΓ to be asymptotically stable for the closed-loop system is that Γ be

asymptotically stable relative toO for the open-loop system. Is this condition also sufficient or are extra-

properties needed? This question leads to the reduction problem stated in the introduction:If Γ ⊂ O is

stable, attractive, or asymptotically stable relative to O, what extra conditions guarantee that Γ is stable,

attractive, or asymptotically stable with respect to the whole state space? This problem was originally

formulated by P. Seibert and J.S. Florio in 1969-1970. Seibert and Florio developed reduction principles

for stability (see Theorem 3.4 in [17]) and asymptotic stability (see Theorem 4.13 and Corollary 4.11

in [17]) for dynamical systems on metric spaces assuming that Γ is compact. Their conditions first

appeared in [18] and [19], while the proofs are found in [17] (see also the work in [20] for related

results).

The reduction problem arises in many areas of nonlinear control theory, including the stability of

cascade-connected systems, the separation principle of output feedback control, and the adaptive control
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problem. It also plays a role in singular perturbations and center manifold theory. The theorems below,

which extend Seibert and Florio’s results in the finite dimensional setting, are relevant to all these

problems. We omit all proofs in this shortened paper, but refer the interested reader to the full version [11]

and [12]. Consider the dynamical system

Σ : ẋ = f(x), x ∈ X , (7)

with f locally Lipschitz onX , and letΓ andO, Γ ⊂ O ⊂ X , be closed sets which are positively invariant

for systemΣ. We have the following

Theorem III.1 (Reduction principle for attractivity). Let Γ andO, Γ ⊂ O ⊂ X , be two closed positively

invariant sets. Then,Γ is attractive if the following conditions hold:

(i) Γ is asymptotically stable relative toO

(ii) O is locally attractive nearΓ,

(iii) there exists a neighbourhoodN (Γ) such that, for all initial conditions inN (Γ), the associated

solutions are bounded and such that the setcl(φ(R+,N (Γ))) ∩ O is contained in the domain of

attraction ofΓ relative toO.

The setΓ is globally attractive if:

(i)’ Γ is globally asymptotically stable relative toO,

(ii)’ O is a global attractor,

(iii)’ all trajectories inX are bounded.

Conditions (ii) and (ii’) above are also necessary. TheoremIII.1 is novel in that Seibert and Florio did

not investigate a reduction principle for attractivity.

Theorem III.2 (Reduction principle for asymptotic stability). Let Γ andO, Γ ⊂ O ⊂ X , be two closed

positively invariant sets. Then,Γ is [globally] asymptotically stable if the following conditions hold:

(i) Γ is [globally] asymptotically stable relative toO,

(ii) O is locally stable nearΓ,

(iii) O is locally attractive nearΓ [O is globally attractive],

(iv) if Γ is unbounded, thenΣ is locally uniformly bounded nearΓ,

(v) [all trajectories ofΣ are bounded.]

Conditions (i), (ii), and (iii) above are necessary.
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Theorem III.3 (Reduction principle for stability). Let Γ andO, Γ ⊂ O ⊂ X , be two closed positively

invariant sets. If assumptions (i), (ii), and (iv) of Theorem III.2 hold, thenΓ is stable.

If Γ is a compact set, then Theorems III.2 and III.3 are equivalent to the results presented in Theorems

3.4, 4.13, and Corollary 4.11 in [17].

IV. D ETECTABILITY

For convenience, we repeat the definition of the setO given in Section III

Definition IV.1 (SetO). Given the control system (1), we denote byO the maximal set contained in

h−1(0) which is invariant for the open-loop systeṁx = f(x).

When system (1) is linear time-invariant (LTI), the setO is the unobservable subspace. As discussed in

Section III, as long as the trajectories of the closed-loop system in a neighbourhood ofΓ are bounded, a

passivity-based feedback renders the setO attractive. In order to guarantee asymptotic stability ofΓ ⊂ O,

the reduction principle in Theorem III.2 suggests thatΓ should be asymptotically stable relative toO for

the open-loop system. We call this propertyΓ-detectability.

Definition IV.2 (Γ-detectability). System (1) islocally Γ-detectable if Γ is asymptotically stable relative

to O for the open-loop system. The system isΓ-detectable if Γ is globally asymptotically stable relative

to O for the open-loop system.

Our notion of detectability is parameterized byΓ, and not byO, although the setO figures in its

definition. This is due to the fact thatO is entirely determined by the open-loop vector fieldf and the

output functionh. In the case of LTI systems, whenΓ = {0}, the above definition requires that all

trajectories on the unobservable subspaceO converge to0. Therefore, in the LTI setting,Γ-detectability

coincides with the classical notion of detectability. Further, the notion ofΓ-detectability generalizes that

of zero-state detectability in [7]. As a matter of fact, whenV is positive definite, and thusΓ = {0}, the

two detectability notions coincide.

Lemma IV.3. If V is positive definite andΓ = V −1(0) = {0}, then the following three conditions are

equivalent:

(a) System (1) is locally zero-state detectable [zero-state detectable],

(b) the equilibriumx = 0 is [globally] attractive relative toO for the open-loop system,

(c) system (1) is locallyΓ-detectable [Γ-detectable].
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Proof: The set of pointsx0 ∈ X such that the open-loop solution satisfiesh(φ(t, x0)) ≡ 0 is

precisely the maximal open-loop invariant subset ofh−1(0), i.e., the setO. Thus, conditions (a) and (b)

are equivalent. Since (1) is passive, by (2) we haveLfV ≤ 0. By the assumption thatV is positive

definite, it follows thatx = 0 is a stable equilibrium of the open-loop system. Thus,x = 0 is [globally]

asymptotically stable relative toO for the open-loop system if and only ifx = 0 is [globally] attractive

relative toO for the open-loop system, proving that conditions (b) and (c) are equivalent.

The next lemma shows thatΓ-detectability also encompasses the notion ofV -detectability in [10].

Lemma IV.4. If Γ = V −1(0) is a compact set, then the following three conditions are equivalent:

(a) System (1) is locallyV -detectable,

(b) the setΓ is attractive relative toO for the open-loop system,

(c) system (1) is locallyΓ-detectable.

Moreover, if V is proper, then the global versions of conditions (a)-(c) are equivalent.

Proof: Suppose that (1) is locallyV -detectable. Then, for allx0 ∈ V −1([0, c]) ∩ O, we have

V (x(t)) → 0. SinceV −1(0) is compact, in a sufficiently small neighbourhood ofΓ, V −1(φ(t, x0)) → 0

implies φ(t, x0) → V −1(0), and thusΓ = V −1(0) is attractive relative toO for the open-loop system,

showing that condition (a) implies (b). SinceLfV ≤ 0, Γ is also stable for the open-loop system. Thus,

condition (b) implies (c). Now suppose that (1) is locallyΓ-detectable. Then, there exists a neighbourhood

S of Γ such that, for allx0 ∈ S ∩O, φ(t, x0) → Γ. SinceΓ = V −1(0) is compact andV is continuous,

there existsc > 0 such thatV −1([0, c]) ⊂ S. Hence, for allx0 ∈ V −1([0, c]) ∩ O or, equivalently for

all x0 ∈ V −1([0, c]) such thath(φ(t, x0)) ≡ 0, we haveφ(t, x0) → V −1(0). By the continuity ofV and

the compactness ofV −1(0) the latter fact implies thatV (φ(t, x0)) → 0. This proves that condition (c)

implies (a). The proof of equivalence of the global notions of detectability follows directly from the fact

that if V is proper, thenV (φ(t, x0)) → 0 if and only if φ(t, x0) → V −1(0).

We now give sufficient conditions for (1) to beΓ-detectable. The proof is in [11]. Let

S = {x ∈ X : Lm
f h(x) = 0, 0 ≤ m ≤ r + n − 2}.

Notice that the definition ofS does not directly involve the storage function (but recall that h⊤ = LgV ,

so it does indirectly depend onV ).

Proposition IV.5. Suppose that all open-loop trajectories that originate andremain onS are bounded
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and that the open-loop system in (1) is locally uniformly bounded nearΓ. If

S ∩ J+(S,S) ⊂ Γ, (8)

then system (1) isΓ-detectable. Moreover, ifΓ = V −1(0), then condition (8) may be replaced by the

following one:

S ∩ L+(S) ⊂ V −1(0). (9)

Remark. Proposition IV.5 relaxes the sufficient conditions for detectability found in [7, Proposition 3.4]

and [9, Theorem 10]. We refer the reader to [11] for a discussion. The natural way to checkΓ-detectability

is to compute the setO in Definition IV.1, and then assess the asymptotic stabilityof Γ relative toO.

Should the computation of the setO be too difficult, Proposition IV.5 above provides an alternative,

but conservative, criterion forΓ-detectability that may prove useful in some cases. It is important to

notice that condition (8) may be hard to check in practice because it involves the computation of the

prolongational limit setJ+(S,S). The conditions found in [7, Proposition 3.4] and [9, Theorem 10]

suffer from the same limitation because they too involve thecomputation of limit sets.

V. SOLUTION OF THE SET STABILIZATION PROBLEM

We are now ready to solve the stabilization problem, by presenting conditions that guarantee that a

passivity-based controller of the form (4) makesΓ stable, attractive, or asymptotically stable for the

closed-loop system. All results are straightforward consequences of the reduction principles presented in

Section III, and they rely on the next fundamental observation, whose proof is found in [11].

Proposition V.1. Consider the passive system (1) with a passivity-based feedback of the form (4), and

the setO in Definition IV.1. Then, the setO is locally stable nearΓ for the closed-loop system.

Theorem V.2 (Asymptotic stability ofΓ). Consider system (1) with a passivity-based feedback of the

form (4). If Γ is compact, then

• Γ is asymptotically stable for the closed-loop system if, andonly if, system (1) is locallyΓ-detectable,

• if all trajectories of the closed-loop system are bounded, thenΓ is globally asymptotically stable for

the closed-loop system if, and only if, system (1) isΓ-detectable.

If Γ is unbounded and the closed-loop system is locally uniformly bounded nearΓ, then

• Γ is asymptotically stable for the closed-loop system if, andonly if, system (1) is locallyΓ-detectable.

• if all trajectories of the closed-loop system are bounded,Γ is globally asymptotically stable for the

closed-loop system if, and only if, system (1) isΓ-detectable.
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Proof: The sufficiency part of the theorem follows from the following considerations. By Propo-

sition V.1, O is locally stable nearΓ. If Γ is compact, by Theorem III.3 localΓ-detectability implies

stability of Γ. The stability ofΓ and its compactness in turn imply that all closed-loop trajectories in

some neighbourhood ofΓ are bounded. Since all bounded trajectories asymptotically approachO, O is

locally attractive nearΓ. If all trajectories of the closed-loop system are bounded,thenO is globally

attractive. Theorem III.2 yields the required result.

Now suppose thatΓ is unbounded. By local uniform boundedness nearΓ we have that all closed-loop

solutions in some neighbourhood ofΓ are bounded and henceO is locally attractive nearΓ. Once again,

if all closed-loop trajectories are bounded, thenO is globally attractive. The required result now follows

from Theorem III.2.

The various necessity statements follow from the followingbasic observation. Any passivity-based

feedback of the form (4) makesO an invariant set for the closed-loop system (see Section III). Therefore, if

Γ is [globally] asymptotically stable for the closed-loop system, necessarilyΓ is [globally] asymptotically

stable relative toO for the closed-loop system. In other words, (1) is necessarily locally Γ-detectable

[Γ-detectable].

We conclude this section with the following result, which gives conditions that are alternatives to the

Γ-detectability assumption.

Proposition V.3. Theorem V.2 still holds if the localΓ-detectability [Γ-detectability] assumption is

replaced by the following condition:

(i’) Γ is stable relative toV −1(0) andΓ is [globally] attractive relative toO.

We omit the proof of this proposition. If the sufficient conditions forΓ-detectability in Proposition IV.5

fail, rather than checking forΓ-detectability one may find it easier to check condition (i’)in Proposi-

tion V.3, because verifying whetherΓ is stable relative toV −1(0) does not require finding the maximal

open-loop invariant subsetO of h−1(0); moreover, checking thatΓ is attractive relative toO amounts

to checking the familiar condition in [7]

h(φ(t, x0)) ≡ 0 =⇒ φ(t, x0) → Γ as t → +∞.

Note that, in the framework of [7] and [10], the requirement thatΓ be stable relative toV −1(0) is trivially

satisfied because in these references it is assumed thatΓ = V −1(0).
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VI. D ISCUSSION

Theorem 3.2 in [7] and Theorem 2.3 in [10], dealing with the special case whenΓ = V −1(0) (= {0})

and Γ is compact, become corollaries of our main result, Theorem V.2. We have already shown (see

Lemmas IV.3 and IV.4) that in this special case the properties of zero-state detectability (whenΓ = {0}),

and V -detectability coincide with our notion ofΓ-detectability. In this context, then, the results in [7]

and [10] state that localΓ-detectability is a sufficient condition for the asymptoticstabilization of the

origin using a passivity-based feedback. We have shown thatactually this condition is alsonecessary.

An analogous remark can be made for the global solution of theset stabilization problem.

The theory in [7] and [10] does not handle the special case when Γ is compact andΓ ( V −1(0), while

our theory does. This case includes the important situationwhen one wants to stabilize an equilibrium

(Γ = {0}) but the storage is only positive semi-definite. Based on theresults in [7] and [10], it may be

tempting to conjecture that Theorem 3.2 in [7] and Theorem 2.3 in [10] still hold if one employs the

following notion of detectability:

(∀x0 ∈ N (Γ)) h(φ(t, x0)) = 0 for all t ∈ R

=⇒ φ(t, x0) → Γ,

(10)

which corresponds to requiring thatO in Definition IV.1 is an attractor for the open-loop system. This

conjecture is false: we have shown that (local)Γ-detectability (i.e., the asymptotic stability ofΓ relative

to O for the open-loop system) is a necessary condition for the stabilization of Γ. Even if one relaxes

the asymptotic stability requirement and just asks for attractivity of Γ relative toO, the above conjecture

is still false. As a matter of fact, Theorem III.1 suggests that even in this case (local)Γ-detectability

is a key property. A counter-example illustrating this lossof attractivity is the pendulum. The upright

equilibrium is globally attractive, but unstable, relative to the homoclinic orbit of the pendulum. Despite

the fact that a passivity-based feedback can be used to asymptotically stabilize the homoclinic orbit

(see, e.g., [21], [22]), the upright equilibrium is unstable for the closed-loop system. This well-known

phenomenon finds explanation in the theory developed in thispaper: the cause of the problem is the

instability of the upright equilibrium relative to the homoclinic orbit. We next present another explicit

counter-example illustrating our point.
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Fig. 2. On the left-hand side, phase portrait onO for the open-loop system (12).Γ is globally attractive relative toO. On the

right-hand side, closed-loop system (11) with feedbacku = −y. Γ is not attractive relative to the whole state space.

Example. Consider the control system with state(x1, x2, x3),

ṙ = −r(r − 1)

θ̇ = sin2(θ/2) + x3

ẋ3 = u

y = x3
3,

(11)

where(r, θ) ∈ (0,+∞)×S1 represent polar coordinates for(x1, x2). The control system is passive with

storageV (x) = x4
3/4. Let Γ be the equilibrium point{(x1, x2, x3) : x1 = 1, x2 = x3 = 0} and note that

O = {(x1, x2, x3) : x3 = 0}. On O, the open-loop dynamics read as

ṙ = −r(r − 1)

θ̇ = sin2(θ/2),

(12)

and it is easily seen that the equilibriumΓ attracts every point inO except the origin. Hence,Γ is

attractive relative toO, but unstable (indeed, the unit circle is a homoclinic orbitof the equilibrium);

see Figure 2. Therefore, condition (10) holds but the systemis not locally Γ-detectable. Consider the

passivity-based feedbacku = −y, which rendersO globally asymptotically stable. Now for any initial

condition off ofO such that(x1(0), x2(0)) 6= (0, 0), x3(0) > 0, the corresponding trajectory is bounded,

but its positive limit set is the unit circle onO, and therefore it is not a subset ofΓ; see Figure 2. In

conclusion,Γ is not attractive for the closed-loop system (and neither isit stable). This example illustrates

the fact that, whenΓ ( V −1(0) is compact, simply requiring condition (10) in place ofΓ-detectability

may not be enough for attractivity ofΓ.
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In the light of Theorem V.2 and the example above, it is clear that the addition of the stability

requirement onΓ, relative toO, is a crucial enhancement to the notions of detectability in[7] and [10].
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