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Abstract

In this paper we explore the stabilization of closed invatrisets for passive systems, and present
conditions under which a passivity-based feedback asytioptly stabilizes the goal set. Our results
rely on novel reduction principles allowing one to extragielthe properties of stability, attractivity, and
asymptotic stability of a dynamical system from analogawpprties of the system on an invariant subset

of the state space.

. INTRODUCTION

The notion of passivity for state space representationofimear systems, pioneered by Willems in
the early 1970’s, [1], [2], was instrumental for much resbawn nonlinear equilibrium stabilization. Key
contributions in this area were made in the early 1980'’s Hiyatid Moylan in [3], [4], [5], [6], and later
by Byrnes, Isidori, and Willems, in their landmark paper. [Wlore recently, in a number of papers [8],
[9], [10], Shiriaev and Fradkov addressed the problem dfiiting compact invariant sets for passive
nonlinear systems. Their work is a direct extension of theildgium stabilization results by Byrnes,
Isidori, and Willems in [7].

In this paper we develop a theory of set stabilization forspas systems which generalizes the
equilibrium theory of [7], as well as the results in [8], [L0]. We investigate the stabilization of
a closed sef’, not necessarily compact, which is open-loop invariant emtained in the zero level set
of the storage function. Our results answer this questidwen is it that a passivity-based controller makes

T" asymptotically stable for the closed-loop system? Even in the special case whéhis an equilibrium,
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our theory yields novel results, among them necessary dffidisat conditions for the passivity-based
asymptotic stabilization of the equilibrium in questionthdut imposing that the storage function be
positive definite. The theory in [7], and [8], [9], [10] doestrhandle this situation.

The key insight behind the development of the results pteseim this paper is the realization that
at the heart of the stabilization problem by passivity-blasedback there lies a so-called reduction
problem for a dynamical systed : & = f(x): Consider two closed sets I and O, with T' C O, which
are invariant for X; suppose that T" is stable, attractive, or asymptotically stable for the restriction of
Y to O. When is it that T' is stable, attractive, or asymptotically stable with respect to the whole state
space? We answer this question by presenting three novel redugtiotiples for attractivity, stability,
and asymptotic stability that have independent interedt ae applicable to other problems in control
theory. The proofs of these and other results are omitteignshortened paper. The interested reader is
referred to the full version [11] and [12].

Outline: Section |l presents stability definitions and reviews thdiam of limit set and that of
prolongational limit set. In Section Il we state the pa#gibased set stabilization problem and illustrate
its relationship to the reduction problem. We then presketreduction principles. Section IV presents
a novel notion of detectability using which, in Section V, s@ve the passivity-based set stabilization
problem. The main result, Theorem V.2, generalizes previesults on passivity-based stabilization. This

fact is discussed in Section VI.

[I. PRELIMINARIES

In this paper we consider control-affine systems descrilyed b
i=f(z)+ ) gi(z)u
i=1 1)
y = h(z)
with state spacet C R", set of input values/ C R and set of output value¥ C R™. The set
X is assumed to be either an open subset or a smooth submawmiifltl. We assume that and g;,
i=1,...m, are smooth vector fields oft, and thath : X — ) is a smooth mapping.

Notation: Let R* = [0,+00). Given either a smooth feedbaakz) or a piecewise-continuous open-
loop controlu(t) : Rt — U, we denote by, (t,7¢) the unique solution of (1) with initial condition
xo. By ¢(t,z9) we denote the solution of the open-loop systeén= f(x) with initial condition z.
Given an intervall of the real line and a sef € X, we denote by, (I, S) the sety,(I,S) :=

{pu(t,xo) : t € I,zy € S}. The setp(I,S) is defined analogously. Given a closed nonempty set
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S C R", a pointz € R", and a vector nornf - || : R” — R, the point-to-set distancgz||s is defined
as ||z||s = inf{||lx — y|| : y € S}. The state spac&’, being a subset dR", inherits a norm froniR",
which we will denote|| - || : X — R. For a constan&x > 0, a pointz € X, and a setS C X, define the
open setB,(z) ={y € X : |ly—z|| < a} andB,(S) = {y € X : |ly||s < a}. We denote bycl(S) the
closure of the sef, and by /(S) an open neighbourhood &, that is, an open subset &f containing
S. We use the standard notatidryV' to denote the Lie derivative of &' function V' along a vector
field f.
Passivity: Throughout this paper it is assumed that (1) is passive witbath nonnegative storage

functionV : X — R, i.e.,,Vis aC" (r > 1) nonnegative function such that, for all piecewise-camnins

functionsw : [0,00) — U, for all 2y € X, and for allt in the maximal interval of existence @f, (-, o),

V(6ults0) ~ Vo) < [ ur)Ty(r)a,

wherey(t) = h(¢u(t, zo)). It is well-known (see [3]) that the passivity property abds equivalent to
the two conditions

(Vo € X) LiV(z) <0 and L,V (z) = h(z)", 2)

where L,V denotes the row vectdi,, V --- L, V].
Set stability and attractivity: All definitions below are standard and can be found in [13f Le- X

be a closed positively invariant for a dynamical system
Y:i=f(z), x€X. 3)

Definition 1.1 (Set stability and attractivity) (i) I" is stable for X if for all € > 0 there exists a
neighbourhoodV(T") such thatp(R*, V(")) C B:(T).
(i) T is an attractor for X if there exists a neighbourhoad'(T") such that, for allzy € N(T),
limy—o0 || @(t, z0)||r = 0.
(i) T is aglobal attractor for X if it is an attractor with\V/(T") = X.
(iv) T is [globally] asymptotically stable for X if it is stable and attractive [globally attractive] fat.

If T is a compact positively invariant set, then the conceptstaibikty, attractivity, and asymptotic
stability, as defined above, are equivalent to the faméidmotions of uniform stability, attractivity, and
asymptotic stability found, e.g., in [14, Definition 8.1h the unbounded case, however, our definitions of
attractivity and asymptotic stability, referred to as settiactivity and semi-asymptotic stability in [13],

are weaker than the corresponding notions. For instance, the — § notion of attractivity requires
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that the domain of attraction df contains a tube of radiu§ whereas the notion of attractivity in the
definition above does not, and in factlifis unbounded the width of its domain of attraction may shrink

to zero at infinity.

Definition I.2 (Relative set stability and attractivityl.et O c X be such thatO N T" # (. We say
that I' is stable relative to O for X if, for any ¢ > 0, there exists a neighbourhood(I") such that
H(RT,N(T) N O) C B:(T). Similarly, one modifies all other notions in Definition Iy restricting

initial conditions to lie inO.

Definition 11.3 (Local stability and attractivity near a sef)et I' and O, I' ¢ O C X, be positively
invariant sets. The sab is locally stable near I' if for all x € T, for all ¢ > 0, and alle > 0, there
existsd > 0 such that for allzg € Bs(I') and all¢ > 0, whenevery([0,t],z9) C B.(x) one has that
#([0,t],z0) C B:(O). The setO is locally attractive near I if there exists a neighbourhoot(I") such
that, for allzp € N (T'), ¢(t,z9) — O att — +oc.

Fig. 1. Anillustration of the notion of local stability ne&r

The property of local stability can be rephrased as follo@wsen an arbitrary balB.(z) centred at
a pointz in I', trajectories originating inB.(z) sufficiently close tol’ cannot travel far away fron®
before first exitingB,.(x); see Figure 1. It is immediate to see tharl'ifs stable, ther© is locally stable

nearl.

Definition 1.4 (Local uniform boundednessThe systen®: is locally uniformly bounded near T" if for

eachz € T there exist positive scalavs andm such thaty(R™, By(z)) C By, (z).

Limit Sets: In order to characterize the asymptotic properties of bednsblutions, we will use the
well-known notion of limit set, due to G. D. Birkhoff (see [A5and that of prolongational limit set, due

to T. Ura (see [16]). Given a smooth feedbadk) and a pointzy € X, the positive limit set (or w-limit
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set) of the closed-loop solutiop, (¢, zp) is defined as
Li(zg) :={pe X :(3{t,} CRM)t, — +o0,

bu(T0,tn) — D}
The positive limit set of the open-loop solutiet, (), defined in an analogous way, is denofet(z).
We let L (S) = Uy, es L (20) and LH(S) = Uy es L™ (x0).
If U C X andz € cl(U), the prolongational limit set relative to U of an open-loop solutio (¢, z¢)
is defined as
J (20, U) :={p € X : (H(zntn)} CU xRT), z,, — mp,
tn, — 400, ¢(Tn,tn) — D}
We denote/ " (S,U) := U, es Ja (zo, U). One can show that ity € cl(U), thenL* (zo) C J* (x0,U).

[1l. STABILIZATION PROBLEM AND REDUCTION PRINCIPLES

The main objective of this paper is the stabilization of aselb se” using passivity-based feedbacks

of the form

u= @), with o()| =0, h(@) e, >0 @)

wherep : X — U is a smooth function. The class of passivity-based feedback4) includes that of

output feedback controllers = —p(h(x)) commonly used in the literature on passive systems.

Set Stabilization Problem. Given a closed sef ¢ V~1(0) = {z € X : V(x) = 0} which is positively
invariant for the open-loop system in (1), and given a paysbased feedback of the form (4), find
conditions guaranteeing thiitis [globally] asymptotically stable for the closed-loopstsym.

The rationale behind passivity-based feedback is theviitig. Using (2) and the properties of the
passivity-based feedback (4), the time derivative of therasfe functionl” along trajectories of the

closed-loop system formed by (1) with feedback (4) is givgn b

dv(¢u(tv xO))

dt :Lfv(¢u(t>x0))

- LQV(¢u(t7x0))¢(¢u(tawO)) (5)

< — h(éu(t, 20)) " (u(t, z0)) < 0.
Thus, a passivity-based feedback renders the storageidariét nonincreasing along solutions of the

closed-loop system. One expects that if the system enjayesbsel properties, then the storage function

September 5, 2010 DRAFT



should decrease asymptotically to zero and the solutioosldrapproach a subset &f1(0), hopefully
the setl".

Our point of departure in understanding what system pragsestield the required result is the well-
known property, found in the proof of Theorem 3.2 in [7], thiatr all o € X, the positive limit set
L7 (zg) of the closed-loop system is invariant for the open-loogesysand such thak; (zo) ¢ h=1(0).
Let O denote themaximal set contained ik —!(0) which is invariant for the open-loop system. In light
of the property above, if.; (z¢) is non-empty, then it must be containeddh Therefore, all bounded
trajectories of the closed-loop system asymptoticallyrapphO. Since LV < 0, V' is nonincreasing
along solutions of the open-loop system, andi5o'(0) is an invariant set for the open-loop system.
Moreover, sincé/ is nonnegative, any point € V—1(0) is a local minimum ofi” and hencelV (z) = 0.
Therefore,L,V (z) = h(z)" =0 on V~1(0), and sol' C V~1(0)  h~1(0). SinceV~1(0) is invariant
and contained irh=1(0), it is necessarily a subset @ (this implies that© is not empty). Putting

everything together, we conclude that
rcv=0) coch ). (6)

It is then clear that if the trajectories of the closed-logptem in a neighbourhood &f are bounded, the
least a passivity-based feedback can guarantee is thet@ityaof O; but this is not sufficient for our
purposes. Notice that, a1, ¢(-) = 0 and so the closed-loop dynamics &ncoincide with the open-loop
dynamics. In particular, ther®) is an invariant set for the closed-loop system. In order tsuem the
property of asymptotic stability of, the open-loop systemmust enjoy the same propertelative to O.
Therefore, a necessary condition foto be asymptotically stable for the closed-loop systemas thbe
asymptotically stable relative 0 for the open-loop system. Is this condition also sufficienae extra-
properties needed? This question leads to the reductidsigmmostated in the introductionf I' C O is
stable, attractive, or asymptotically stable relative to O, what extra conditions guarantee that T is stable,
attractive, or asymptotically stable with respect to the whole state space? This problem was originally
formulated by P. Seibert and J.S. Florio in 1969-1970. Sedned Florio developed reduction principles
for stability (see Theorem 3.4 in [17]) and asymptotic digb{see Theorem 4.13 and Corollary 4.11
in [17]) for dynamical systems on metric spaces assuming th&s compact. Their conditions first
appeared in [18] and [19], while the proofs are found in [13¢4 also the work in [20] for related
results).

The reduction problem arises in many areas of nonlinearrabifteory, including the stability of

cascade-connected systems, the separation principletpdtdieedback control, and the adaptive control
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problem. It also plays a role in singular perturbations aedter manifold theory. The theorems below,
which extend Seibert and Florio’s results in the finite digienal setting, are relevant to all these
problems. We omit all proofs in this shortened paper, budrréfe interested reader to the full version [11]

and [12]. Consider the dynamical system
Y: &= f(x), x € X, @)

with f locally Lipschitz onX’, and letl’ andO, I' C O C X, be closed sets which are positively invariant

for systemX. We have the following

Theorem Ill.1 (Reduction principle for attractivity)LetT" andO, I’ ¢ O C X, be two closed positively
invariant sets. Ther, is attractive if the following conditions hold:
(i) ' is asymptotically stable relative t©

(i) O is locally attractive near,

(i) there exists a neighbourhoad/'(I") such that, for all initial conditions inV(T"), the associated
solutions are bounded and such that the dép(R*, N(I'))) N O is contained in the domain of
attraction ofl" relative to O.

The setl’ is globally attractive if:

(i) T is globally asymptotically stable relative t9,

(i) O is a global attractor,

(iii)" all trajectories in X are bounded.

Conditions (ii) and (ii") above are also necessary. Theoliér is novel in that Seibert and Florio did

not investigate a reduction principle for attractivity.

Theorem 111.2 (Reduction principle for asymptotic stabilitybet I" andO, ' C O C X, be two closed
positively invariant sets. Then, is [globally] asymptotically stable if the following cortdins hold:
() I is [globally] asymptotically stable relative 10,
(i) O is locally stable neal,
(i) O is locally attractive neaf’ [O is globally attractive],
(iv) if T'is unbounded, thel is locally uniformly bounded nedr,

(v) [all trajectories of% are bounded.]

Conditions (i), (ii), and (iii) above are necessary.
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Theorem 111.3 (Reduction principle for stability)Let " andO, I' ¢ O C X, be two closed positively

invariant sets. If assumptions (i), (ii), and (iv) of Thewrdll.2 hold, thenI" is stable.

If T is a compact set, then Theorems IIl.2 and 111.3 are equivdtethe results presented in Theorems
3.4, 4.13, and Corollary 4.11 in [17].

IV. DETECTABILITY

For convenience, we repeat the definition of the@agiven in Section Il

Definition V.1 (Set®). Given the control system (1), we denote Bythe maximal set contained in

h=1(0) which is invariant for the open-loop system= f(x).

When system (1) is linear time-invariant (LTI), the g21s the unobservable subspace. As discussed in
Section 1ll, as long as the trajectories of the closed-loggiesn in a neighbourhood a@f are bounded, a
passivity-based feedback renders the(3etttractive. In order to guarantee asymptotic stability'af O,
the reduction principle in Theorem 111.2 suggests thahould be asymptotically stable relative@for

the open-loop system. We call this propefiydetectability.

Definition 1V.2 (I'-detectability) System (1) idocally I'-detectable if T is asymptotically stable relative
to O for the open-loop system. The systenTigletectable if T" is globally asymptotically stable relative

to O for the open-loop system.

Our notion of detectability is parameterized by and not by, although the se© figures in its
definition. This is due to the fact th& is entirely determined by the open-loop vector figldaind the
output functionh. In the case of LTI systems, whdn = {0}, the above definition requires that all
trajectories on the unobservable subsp&@ceonverge td). Therefore, in the LTI settind;-detectability
coincides with the classical notion of detectability. fhert the notion of"-detectability generalizes that
of zero-state detectability in [7]. As a matter of fact, wHéris positive definite, and thus = {0}, the

two detectability notions coincide.

Lemma IV.3. If V is positive definite and’ = V~1(0) = {0}, then the following three conditions are
equivalent:

(a) System (1) is locally zero-state detectable [zercestatectable],

(b) the equilibriumz = 0 is [globally] attractive relative t@ for the open-loop system,

(c) system (1) is locallyi’-detectable I[-detectable].
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Proof: The set of pointszy € X such that the open-loop solution satisfieg(t,z¢)) = 0 is
precisely the maximal open-loop invariant subsebof (0), i.e., the setD. Thus, conditions (a) and (b)
are equivalent. Since (1) is passive, by (2) we héyé” < 0. By the assumption thal’ is positive
definite, it follows thatz = 0 is a stable equilibrium of the open-loop system. Thus; 0 is [globally]
asymptotically stable relative © for the open-loop system if and only if = 0 is [globally] attractive
relative toO for the open-loop system, proving that conditions (b) andae equivalent. [ |

The next lemma shows th@itdetectability also encompasses the notiori/efletectability in [10].

Lemma IV.4. If T'= V~1(0) is a compact set, then the following three conditions arevetgnt:
(a) System (1) is locally’-detectable,

(b) the sefl" is attractive relative t@ for the open-loop system,

(c) system (1) is locallyi’-detectable.

Moreover, if V' is proper, then the global versions of conditions (a)-(& equivalent.

Proof: Suppose that (1) is locally’-detectable. Then, for alky, € V=1([0,c]) N O, we have
V(z(t)) — 0. SinceV~1(0) is compact, in a sufficiently small neighbourhoodlgfV —1(¢(t, z0)) — 0
implies ¢(t,9) — V~1(0), and thusl' = V~1(0) is attractive relative ta for the open-loop system,
showing that condition (a) implies (b). SindgV < 0, I is also stable for the open-loop system. Thus,
condition (b) implies (c). Now suppose that (1) is locdlidetectable. Then, there exists a neighbourhood
S of T such that, for alleg € SN O, ¢(t, z9) — I'. Sincel’ = V—1(0) is compact and/ is continuous,
there existse > 0 such thatV=1([0,¢]) c S. Hence, for allzg € V=1(]0,c]) N O or, equivalently for
all zp € V=1([0, c]) such thath(¢(t, z0)) = 0, we havep(t, zg) — V~1(0). By the continuity ofV and
the compactness df ~1(0) the latter fact implies that'(¢(¢,z()) — 0. This proves that condition (c)
implies (a). The proof of equivalence of the global notiofisletectability follows directly from the fact
that if V' is proper, therV/ (¢(t, z¢)) — 0 if and only if ¢(t,z9) — V ~1(0). [ |

We now give sufficient conditions for (1) to Hédetectable. The proof is in [11]. Let
S={zeX :Lhz)=0,0<m<r+n-2}

Notice that the definition of does not directly involve the storage function (but redaditt:” = L,V

so it does indirectly depend oW).

Proposition IV.5. Suppose that all open-loop trajectories that originate r@maain onS are bounded
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10

and that the open-loop system in (1) is locally uniformly bded neaf". If
SNnJT(S,S) cT, (8)

then system (1) i§'-detectable. Moreover, if = V~1(0), then condition (8) may be replaced by the
following one:
SNLT(S) c vYo). (9)

Remark. Proposition IV.5 relaxes the sufficient conditions for deability found in [7, Proposition 3.4]
and [9, Theorem 10]. We refer the reader to [11] for a disaussihe natural way to chedkdetectability
is to compute the sab in Definition IV.1, and then assess the asymptotic stabdity” relative toO.
Should the computation of the sét be too difficult, Proposition 1V.5 above provides an altenrey
but conservative, criterion for-detectability that may prove useful in some cases. It isoirtgnt to
notice that condition (8) may be hard to check in practiceahse it involves the computation of the
prolongational limit set/*(S,S). The conditions found in [7, Proposition 3.4] and [9, Thewor&0]

suffer from the same limitation because they too involvedbmputation of limit sets.

V. SOLUTION OF THE SET STABILIZATION PROBLEM

We are now ready to solve the stabilization problem, by préasg conditions that guarantee that a
passivity-based controller of the form (4) makEsstable, attractive, or asymptotically stable for the
closed-loop system. All results are straightforward congaces of the reduction principles presented in

Section Ill, and they rely on the next fundamental obseovativhose proof is found in [11].

Proposition V.1. Consider the passive system (1) with a passivity-basedfaddof the form (4), and

the setO in Definition IV.1. Then, the se® is locally stable neal for the closed-loop system.

Theorem V.2 (Asymptotic stability ofl"). Consider system (1) with a passivity-based feedback of the
form (4). If T is compact, then

« ['is asymptotically stable for the closed-loop system if, anly if, system (1) is locally"-detectable,

« if all trajectories of the closed-loop system are boundeéent is globally asymptotically stable for

the closed-loop system if, and only if, system (1Yisletectable.

If T" is unbounded and the closed-loop system is locally unifpripdunded neaf’, then

« I'is asymptotically stable for the closed-loop system if, anly if, system (1) is localljf*-detectable.

« if all trajectories of the closed-loop system are boundeéd globally asymptotically stable for the

closed-loop system if, and only if, system (1)lisdetectable.
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Proof: The sufficiency part of the theorem follows from the follogiconsiderations. By Propo-
sition V.1, O is locally stable neaf'. If I is compact, by Theorem III.3 locdl-detectability implies
stability of I". The stability of " and its compactness in turn imply that all closed-loop tiajges in
some neighbourhood df are bounded. Since all bounded trajectories asymptatieglproachO, O is
locally attractive neat. If all trajectories of the closed-loop system are boundkdn O is globally
attractive. Theorem 111.2 yields the required result.

Now suppose thdt is unbounded. By local uniform boundedness rieave have that all closed-loop
solutions in some neighbourhood Bfare bounded and henc2is locally attractive neaf’. Once again,
if all closed-loop trajectories are bounded, th@ns globally attractive. The required result now follows
from Theorem II1.2.

The various necessity statements follow from the followlmggic observation. Any passivity-based
feedback of the form (4) mak&3 an invariant set for the closed-loop system (see Sectipriiierefore, if
T is [globally] asymptotically stable for the closed-loostsm, necessarily is [globally] asymptotically
stable relative taO for the closed-loop system. In other words, (1) is necelysktally I'-detectable
[T-detectable]. [ |

We conclude this section with the following result, whiclvaeg conditions that are alternatives to the

I'-detectability assumption.

Proposition V.3. Theorem V.2 still holds if the local'-detectability ['-detectability] assumption is

replaced by the following condition:

(") T is stable relative td’~!(0) andI is [globally] attractive relative ta.

We omit the proof of this proposition. If the sufficient cotidns for I'-detectability in Proposition IV.5
fail, rather than checking for-detectability one may find it easier to check condition (i) Proposi-
tion V.3, because verifying whethér is stable relative td’—!(0) does not require finding the maximal
open-loop invariant subs& of A~!(0); moreover, checking thdt is attractive relative ta> amounts

to checking the familiar condition in [7]
h(p(t,z9)) =0 = ¢(t,z9) — I ast — +oc.

Note that, in the framework of [7] and [10], the requireméati be stable relative t& ~1(0) is trivially

satisfied because in these references it is assumed taal’ —1(0).
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VI. DISCUSSION

Theorem 3.2 in [7] and Theorem 2.3 in [10], dealing with thedal case wheit = V=1(0) (= {0})
andTI' is compact, become corollaries of our main result, Theoretn We have already shown (see
Lemmas IV.3 and 1V.4) that in this special case the propguiezero-state detectability (whéh= {0}),
and V-detectability coincide with our notion df-detectability. In this context, then, the results in [7]
and [10] state that locdr-detectability is a sufficient condition for the asymptasimbilization of the
origin using a passivity-based feedback. We have shownattiaially this condition is alsoecessary.
An analogous remark can be made for the global solution okétestabilization problem.

The theory in [7] and [10] does not handle the special casenwhis compact and” C V~1(0), while
our theory does. This case includes the important situatiben one wants to stabilize an equilibrium
(T" = {0}) but the storage is only positive semi-definite. Based onréisalts in [7] and [10], it may be
tempting to conjecture that Theorem 3.2 in [7] and Theore&i2.[10] still hold if one employs the

following notion of detectability:

(Vxo € N(T)) h(p(t,z09)) =0 forall t e R
(10)
- ¢(t,$0) - Fa

which corresponds to requiring thét in Definition 1V.1 is an attractor for the open-loop systenmisl
conjecture is false: we have shown that (lodaljletectability (i.e., the asymptotic stability of relative

to O for the open-loop system) is a necessary condition for thbilszation of I'. Even if one relaxes
the asymptotic stability requirement and just asks fomativity of I' relative toO, the above conjecture
is still false. As a matter of fact, Theorem Ill.1 suggestatthven in this case (local)-detectability

is a key property. A counter-example illustrating this lagsattractivity is the pendulum. The upright
equilibrium is globally attractive, but unstable, relatito the homoclinic orbit of the pendulum. Despite
the fact that a passivity-based feedback can be used to astyrafly stabilize the homoclinic orbit
(see, e.g., [21], [22]), the upright equilibrium is uns&libr the closed-loop system. This well-known
phenomenon finds explanation in the theory developed inghjger: the cause of the problem is the
instability of the upright equilibrium relative to the howlimic orbit. We next present another explicit

counter-example illustrating our point.
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Fig. 2. On the left-hand side, phase portrait@rfor the open-loop system (12)). is globally attractive relative t@. On the

right-hand side, closed-loop system (11) with feedback —y. T is not attractive relative to the whole state space.

Example. Consider the control system with state;, z2, z3),

r=—r(r—1)
0 = sin®(0/2) + x3
(11)
ig =Uu
y = a3,

where(r,0) € (0, +00) x S! represent polar coordinates for;, z2). The control system is passive with
storageV (z) = x4 /4. Let T be the equilibrium poin{(z1,z2,23) : 1 = 1,29 = x3 = 0} and note that

O = {(x1,x2,23) : z3 = 0}. On O, the open-loop dynamics read as

r=—r(r—1)
(12)
6 = sin?(6/2),

and it is easily seen that the equilibriuth attracts every point irO except the origin. Hencd, is
attractive relative ta0, but unstable (indeed, the unit circle is a homoclinic oddithe equilibrium);
see Figure 2. Therefore, condition (10) holds but the systemot locally I'-detectable. Consider the
passivity-based feedback= —y, which rendersD globally asymptotically stable. Now for any initial
condition off of O such that(z;(0), z2(0)) # (0,0), z3(0) > 0, the corresponding trajectory is bounded,
but its positive limit set is the unit circle o®, and therefore it is not a subset Bf see Figure 2. In
conclusion[' is not attractive for the closed-loop system (and neithérggable). This example illustrates
the fact that, whed” C V—1(0) is compact, simply requiring condition (10) in place Ibfdetectability

may not be enough for attractivity &f.
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In the light of Theorem V.2 and the example above, it is cldsat tthe addition of the stability

requirement orf’, relative toO, is a crucial enhancement to the notions of detectability7]jrand [10].
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