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Abstract

We present a novel control design procedure for the passivity-based stabilization of closed

sets which leverages recent theoretical advances. The procedure involves using part of the

control freedom in order to enforce a detectability property, while the remaining part is used for

passivity-based stabilization. The procedure is illustrated in four case studies of path following

coordination for one or two kinematic unicycles, and variations of these problems. Among other

things, we present a smooth global path following controller making the unicycle converge to an

arbitrary closed and strictly convex curve, and a coordinated path following controller for two

unicycles.

1 Introduction

One of the far-reaching stabilization approaches for nonlinear control systems is based on the

notion of passivity. This approach involves selecting a candidate storage function whose minimum

represents the stabilization objective, defining an output function as the derivative of the storage in

the direction of the input vector field, and checking whether the system with this output enjoys a

property of detectability. If it does, then stabilization of the minimum of the storage is accomplished

by a simple static output feedback controller with arbitrarily small gain. At times, the selection

of the storage function may derive from trial and error, but more often such function arises from

physical considerations or structural properties of the system. This approach has proven to be

successful in many applications and has even been used as a modeling paradigm for the important

class of port-Hamiltonian systems (see, for instance, [1, 2, 3] and [4]). One of the reasons for

the success of passivity-based control approaches is that they allow one to think of stability in

terms of energy, and to view the stabilization problem in terms of interconnection of subsystems

exchanging energy. This particular point of view emerges elegantly in the aforementioned work on

port-controlled Hamiltonian systems by Ortega, van der Schaft, and others, and has its foundations

in the pioneering work of [5, 6]. Subsequently to Willems’ work, many authors focused on the

equilibrium stabilization problem for passive systems. Important contributions in this direction were
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made by [7, 8, 9, 10], and by [11]. This latter work, in particular, established a clear relationship

between stabilizability by passivity-based feedback and a detectability property referred to as zero-

state detectability.

Most of the nonlinear systems literature, including the papers cited above, focuses on the equi-

librium stabilization problem, assuming that the storage function is positive definite. In certain

applications, researchers use positive semi-definite storage functions and design passivity-based

controllers to stabilize their zero level sets. Such results are common in the multi-agent systems

literature whenever controllers are designed based on so-called artificial potentials. Two repre-

sentative works in this area are those by [12], and [13]. On the theoretical side, the equilibrium

theory of Byrnes-Isidori-Willems finds a straightforward extension to the stabilization of sets in the

work of [14] where, once again, the goal set is the zero level set of a positive semi-definite storage

function and, additionally, it is assumed to be compact. Imposing that the goal set coincides with

a level set of the storage is too restrictive, because it inextricably links the control objective to the

storage function and limits the flexibility of passivity-based control design. Our recent work, [15],

overcomes this problem by allowing the goal set to be a subset of the zero level set of the storage

function, without imposing that it be compact. The end result in [15], reviewed in Section 2.1 of

this paper, is a set of necessary and sufficient conditions for a passivity-based feedback to stabilize

a given goal set, expressed in terms of a new notion of Γ-detectability (where Γ denotes the goal

set) that generalizes the zero-state detectability property of Byrnes-Isidori-Willems. In the setting

of [15], the property of Γ-detectability corresponds to asymptotic stability of Γ when the system

dynamics are restricted to a special invariant subset of the state space.

In this paper we leverage the theory in [15] and present a control design procedure for passivity-

based stabilization of closed sets. The idea behind the procedure is to use part of the control

freedom to enforce detectability, while the remaining part is used for passivity-based stabilization.

Whenever feasible, this methodology has the advantage of simplifying the control design, because

stabilizing the goal set Γ amounts to designing a stabilizer for a system of smaller dimension, so the

dimensionality of the problem is effectively reduced. The control design procedure is presented in

Section 2.2. To illustrate the procedure, in Sections 3 to 6 we present four case studies concerning

the path following problem for one kinematic unicycle, the coordinated path following problem for

two unicycles, and variations of these two problems. Our examples have independent interest, but

their primary objective is to elucidate different aspects of the theory in [15], and demonstrate the

design flexibility gained by eliminating the requirement that the goal set coincides with the zero

level set of the storage function. Of course, ours is not the only possible approach to solving these

case studies.

In this paper we use the following notation, we denote by R+ the positive real line [0,+∞),

and by S1 the set Rmod 2π, where two scalars x and x + 2π are identified. If A and B are two

matrices or vectors, col(A,B) denotes the matrix [A⊤ B⊤]⊤, and blockdiag(A,B) denotes the

block-diagonal matrix with blocks A and B. By φ(t, x0) we denote the solution of ẋ = f(x) with

initial condition x0. Given an interval I of the real line and a set S ∈ X , denote by φ(I, S) the

set φ(I, S) := {φ(t, x0) : t ∈ I, x0 ∈ S}. We use ‖ · ‖S to denote the point-to-set distance to a set

S ⊂ X , Bα(x) an open ball of radius α centered at x, and Bα(S) the set of points with distance

< α to S. Denote by N (S) a generic open neighbourhood of S. We use the standard notation LfV

to denote the Lie derivative of a C1 function V along a vector field f on X .
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2 Passivity-based Set Stabilization

In this section we review recent results on the stabilization of closed sets by means of passivity-based

feedback. Consider the control-affine system

ẋ = f(x) +
m
∑

i=1

gi(x)ui := f(x) + g(x)u

y = h(x)

(1)

with state space X ⊂ Rn, set of input values U ⊂ Rm and set of output values Y ⊂ Rm. We

assume that X is either an open subset of Rn or a smooth submanifold therein. Further, f and gi,

i = 1, . . . ,m, are smooth vector fields on X , and h is a smooth mapping.

Suppose that system (1) is passive with C1 nonnegative storage function V : X → R. In other

words, for all piecewise-continuous functions u : [0,∞) → U , for all x0 ∈ X , and for all t in the

maximal interval of existence of the solution x(t), one has the dissipation inequality

V (x(t))− V (x0) ≤
∫ t

0

u(τ)⊤y(τ)dτ,

where y(t) = h(x(t)). For smooth control-affine systems, the above passivity property can be

equivalently stated as follows ([7])

(∀x ∈ X ) LfV (x) ≤ 0 and LgV (x) = h(x)⊤, (2)

where LgV = [Lg1V · · · LgmV ].

2.1 Preliminary definitions and set stabilization theorem

Definition 2.1. A smooth function u = −ϕ(x), where ϕ(x) is such that ϕ(x) = 0 whenever

h(x) = 0, and h(x)⊤ϕ(x) > 0 whenever h(x) 6= 0, is called a passivity-based feedback (PBF) with

respect to the output h(x).

The simplest example of PBF is the function ϕ(x) = −h(x). Before presenting the stabilization

result, we review the basic notions of set stability that are needed in the sequel. The next few

definitions concern a smooth system Σ : ẋ = f(x), x ∈ X , and a closed set Γ ⊂ X .

Definition 2.2. The set Γ is

1. stable for Σ if, for all ε > 0, there exists a neighbourhood N (Γ) such that φ(R+,N (Γ)) ⊂
Bε(Γ).

2. an attractor for Σ if there exists a neighbourhood N (Γ) such that, for all x0 ∈ N (Γ),

limt→∞ ‖φ(t, x0)‖Γ = 0. It is a global attractor if it is a attractor with N (Γ) = X . It is

an almost global attractor if it is an attractor with N (Γ) = X minus a set of measure zero.

3. [globally, almost globally] asymptotically stable for Σ if it is stable and attractive [globally

attractive, almost globally attractive] for Σ.

All stability notions in Definition 2.2 can be relativized to a subset of the state space as follows.
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Definition 2.3. Let O ⊂ X be such that O∩Γ 6= ∅. We say that Γ is stable relative to O for Σ if,

for any ε > 0, there exists a neighbourhood N (Γ) such that φ(R+,N (Γ) ∩ O) ⊂ Bε(Γ). Similarly,

one modifies all other notions in Definition 2.2 by restricting initial conditions to lie in O.

Next, we define a notion of boundedness near a set, uniform in some ball around each point of

the set.

Definition 2.4. Σ is locally uniformly bounded (LUB) near Γ if for each x ∈ Γ there exist positive

scalars λ and m such that φ(R+, Bλ(x)) ⊂ Bm(x).

We now return to the control system (1) and define a notion of detectability that is closely related

to stabilizability by passivity-based feedback. Let O denote the maximal open-loop invariant set

contained in h−1(0), that is, the set with the property that if Ô is any other open-loop invariant

set contained in h−1(0), then Ô ⊂ O. If (1) is linear time-invariant, then O is the unobservable

subspace.

Definition 2.5. System (1) is locally Γ-detectable if Γ is asymptotically stable relative to O for

the open-loop system, and Γ-detectable if Γ is globally asymptotically stable relative to O for the

open-loop system.

In the LTI setting, when Γ is the origin, Γ-detectability coincides with the classical notion of

detectability. The next stabilization result was presented in [15].

Theorem 2.6. Consider system (1) with a PBF. If Γ is compact, then

• Γ is asymptotically stable for the closed-loop system if, and only if, system (1) is locally

Γ-detectable,

• if all trajectories of the closed-loop system are bounded, then Γ is globally asymptotically

stable for the closed-loop system if, and only if, system (1) is Γ-detectable.

If Γ is unbounded and the closed-loop system is LUB near Γ, then

• Γ is asymptotically stable for the closed-loop system if, and only if, system (1) is locally

Γ-detectable.

• if all trajectories of the closed-loop system are bounded, then Γ is globally asymptotically

stable for the closed-loop system if, and only if, system (1) is Γ-detectable.

In the case when V is positive definite and Γ = V −1(0) = {0} is an equilibrium, an analogous

result to Theorem 2.6 was proved by [11]. This results was later extended by [14] to handle the

case when V isn’t positive definite, but still Γ = V −1(0) and Γ is a compact set. Theorem 2.6

encompasses both results and extends them in two directions, by not requiring Γ to be compact,

and by allowing Γ ( V −1(0). One of the aims of this paper is to illustrate the greater flexibility in

control design that these two extensions provide.
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2.2 Passivity-based control design

The aim of this paper is to outline a procedure for set stabilization by means of passivity-based

feedback based on Theorem 2.6, and to illustrate its various aspects through case studies.

Set stabilization procedure: Let Γ be a closed goal set that is controlled invariant (i.e., there

exists a smooth feedback rendering it invariant) for (1).

1. Candidate storage function and feedback transformation.

(a) Find a candidate C1 storage function V : X → R+ such that Γ ⊂ V −1(0) and LfV (x) ≤ 0

for all x ∈ X .

(b) Find, if possible, a locally Lipschitz matrix-valued function β1(x) : X → Rm×k, for some

k ∈ {1, . . . ,m− 1}, such that β1(x) has full rank k and LgV (x)β1(x) = 01×k for all x ∈ X .

(c) Let β2(x) : X → Rm×m−k be any locally Lipschitz function such that [β1(x) β2(x)] is

nonsingular for all x ∈ X , and define the feedback transformation

u = β1(x)ū+ β2(x)ũ, (3)

where ū ∈ Rk and ũ ∈ Rm−k are new control inputs. Define an output function h(x) :=

Lgβ2
V (x)⊤.

2. Γ-detectability enforcement. Find, if possible, a feedback ū(x) such that Γ is (globally) asymptot-

ically stable relative to O for the system ẋ = [f(x) + g(x)β1(x)ū(x)]|O, where O is the maximal

subset of h−1(0) invariant under the vector field f + gβ1ū.

3. Passivity-based stabilization. Pick any PBF ũ(x), and let u(x) = β1(x)ū(x) + β2(x)ũ(x), where

ū(x) is the feedback chosen in step 2.

Remark 2.7. (a) The inputs ū and ũ after feedback transformation (3) represent control directions

tangential and transversal to V −1(0), so that when ũ = 0 and ū(x) is any smooth feedback,

the set V −1(0) is invariant. Moreover, since for any smooth ū(x) it holds that Lf+gβ1ūV (x) =

LfV (x) + LgV (x)β1(x)ū(x) = LfV (x) ≤ 0, the system with input ũ and output h(x) =

Lgβ2
V (x)⊤ is passive. The idea then is to use ū(x) to enforce Γ-detectability (step 2), while ũ

is chosen to be any passivity-based feedback (step 3).

(b) In step 1a, it may be possible to ensure that LfV ≤ 0 through a preliminary feedback up(x), so

that Lf+gup
V ≤ 0. In this case, we would let u = up(x) + û, define f̂ := f + gup, and continue

the procedure with f̂ and û in place of f and u. The preliminary controller up(x) has the role

of passifying feedback.

(c) Suppose that the set Γ is expressed as the level set of C1 functions, Γ = {x ∈ X : ψ1(x) =

0, . . . , ψl(x) = 0}. In this case, the functions ψi(x) can be used to produce guesses for the

storage V by setting, for instance, V = ψ2
i (x) or V = ψ2

i (x) + ψ2
j (x), and so on. Since we only

require Γ to be a subset of V −1(0), there is some freedom in which of the functions to use, and

how to combine them. The storage functions in the four case studies presented in this paper

are chosen using this method.
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(d) A feature of the set stabilization procedure is that, whenever it is feasible, it allows one to

reduce the control design to the design of a controller ū(x) that asymptotically stabilizes Γ for

the system ẋ = [f(x) + g(x)β1(x)ū(x)]
∣

∣

O
, with state space O. Typically, O is a submanifold

of the state space, and hence the restriction of f + gβ1ū to O is a system of dimension smaller

than the original system (1).

(e) As shown in Proposition 2.10 below, the outcome of the control design procedure is independent

of the choice of β2(x) in step 1c.

Proposition 2.8. The feedback u(x) designed according to the procedure above has the following

properties:

(a) If Γ is compact, then u(x) asymptotically stabilizes it.

(b) If Γ is closed and unbounded, then u(x) asymptotically stabilizes it provided that the closed-

loop system is LUB near Γ.

(c) In both cases above, if all trajectories of the closed-loop system are bounded, and the Γ-

detectability property enforced in step 2 of the procedure is global, then the stabilization of Γ

is global as well.

Remark 2.9. When Γ is unbounded, a suitable choice of PBF ũ(x) may help achieve the LUB

property. This fact is illustrated in case studies 3 and 4 below.

Proof. Let u = β1(x)ū(x) + β2(x)ũ, where ū(x) is as in step 2 of the procedure, and consider the

system
ẋ = [f(x) + g(x)β1(x)ū(x)] + g(x)β2(x)ũ

y = Lgβ2
V (x)⊤.

Since Lf+gβ1ūV (x) = LfV (x) + LgV (x)β1(x)ū(x) = LfV (x) ≤ 0, the system above is passive.

By the construction in step 2, Γ is [globally] asymptotically stable relative to O, and hence the

system above is locally Γ-detectable [Γ-detectable]. Now the proposition follows directly from

Theorem 2.6.

Proposition 2.10. Steps 2 and 3 of the set stabilization procedure are independent of the choice

of β2(x).

Proof. We need to show that the set O is independent of the choice of β2(x). Let β1(x), β2(x) be

as in step 1 of the procedure and let β̂2(x) be another locally Lipschitz function X → Rm×m−k

such that [β1(x) β̂2(x)] is nonsingular. Denote ĥ(x) = Lgβ̂2
V (x)⊤ the corresponding output. Since

[β1 β2] is nonsingular, there exist continuous matrix-valued functions K1(x) and K2(x) such that

β̂2(x) = β1(x)K1(x) + β2(x)K2(x) and therefore

ĥ(x)⊤ = Lgβ̂2
V (x) = Lgβ1

V (x)K1(x) + Lgβ2
V (x)K2(x) = Lgβ2

V (x)K2(x) = h(x)⊤K2(x).

Since the matrix [β1 β̂2] is nonsingular, the matrix-valued function K2 : X → Rm−k×m−k must be

nonsingular. Therefore, the sets h−1(0) and ĥ−1(0) coincide, proving that the set O is the same for

both outputs h(x) and ĥ(x).
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The rest of this paper is dedicated to the application of the procedure above to four case studies

illustrating different aspects of Theorem 2.6:

CS1. Path following control design for the kinematic unicycle and strictly convex paths. In this

case, we will have Γ = V −1(0) and Γ compact.

CS2. Stabilizing the kinematic unicycle to the unit circle with a constant heading requirement on

the circle. Here, Γ ( V −1(0) and Γ is compact.

CS3. Coordinated path following for two unicycles: make the unicycles follow a unit circle (no

specified centre) while keeping a constant distance between each other. Here, Γ ( V −1(0)

and Γ is unbounded.

CS4. Coordination of two unicycles: make two unicycles meet at a fixed distance facing each other.

Here, Γ ( V −1(0) and Γ is unbounded.

3 Case study 1: path following for the kinematic unicycle

We consider the path following problem for the kinematic unicycle model with state (x1, x2, x3) ∈
R2 × S1,

ẋ1 = u1 cosx3

ẋ2 = u1 sinx3

ẋ3 = u2,

(4)

and a smooth regular path C ⊂ R2 which is closed and does not have self-intersections (i.e., it is a

Jordan curve). The path following problem for kinematic unicycles and, more generally, for wheeled

vehicles was the subject of considerable research in the 1990s. The seminal work by [16] (see also

the review paper [17]) proposed a smooth time-varying control law based on the conversion of the

path following problem to equilibrium stabilization by using Ferret-Serret frames moving along the

path. The idea of using Frenet-Serret frames for path following is also found in [18], where a virtual

target is used to make a unicycle converge to the path. Virtual targets are further explored in the

recent work [19]. A global discontinuous path following controller for a circle is proposed in the

work of [20]. No global solution to the unicycle path following problem has been found by means

of a smooth, static, and time-invariant feedback. In this section, we present the first such global

solution for the class of strictly convex paths, i.e., paths with strictly positive signed curvature.

The next lemma provides a useful characterization of strictly convex paths.

Lemma 3.1. If C is a smooth Jordan curve, then the following statements are equivalent:

i. C is strictly convex.

ii. There exists a regular parameterization σ : S1 → R2 of C such that, for each θ ∈ S1, the angle of

the tangent vector σ′(θ) is precisely θmod 2π. In other words, σ′(θ) = ‖σ′(θ)‖ col(cos θ, sin θ).

Proof. Let σ̃ : R → R2 be a unit speed parameterization of C, and for each t denote by ϕ(t) the

angle of the vector σ̃′(t) modulo 2π. If L is the length of C, then σ̃ is L-periodic, and we change

the domain of σ̃ from R to RmodL, so that σ̃ maps RmodL diffeomorphically onto C.
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(i) ⇒ (ii). The curvature of C at a point σ̃(t) is ϕ′(t), and it is a smooth function. Since

ϕ′(t) > 0 for all t ∈ R, the function t 7→ ϕ(t) is invertible, its inverse ϕ−1 : θ ∈ S1 → t ∈ RmodL

is smooth, and the derivative of ϕ−1(·) is positive. The function σ(θ) := σ̃ ◦ ϕ−1(θ) has the

required properties: its derivative σ′(θ) = σ̃′(ϕ−1(θ))(ϕ−1)′(θ) is never zero, and so it is a regular

parametrization. Moreover, the angle of σ′(θ) is the same as that of σ̃′(ϕ−1(θ)), which is precisely

θ.

(ii)⇒ (i). Let σ : S1 → R2 be a regular parameterization of C such that σ′(θ) = ‖σ′(θ)‖ col(cos(θ), sin(θ)).
The signed curvature k(θ) is given by the formula k(θ) = [σ′1(θ)σ

′′
2(θ) − σ′2(θ)σ

′′
1(θ)]/‖σ′(θ)‖3 =

1/‖σ′(θ)‖, which is everywhere positive.

Example 3.2. Suppose that C is a circle of radius r centred at the origin, and consider the regular

parameterization σ(θ) = r col(sin θ,− cos θ). The tangent vector at σ(θ) is σ′(θ) = r col(cos θ, sin θ),

whose angle is θ. Next, suppose that C is an ellipse with major semi-axis a and minor semi-axis b,

centred at the origin. The regular parameterization

σ(θ) =





a2 sin θ√
a2 sin2 θ+b2 cos2 θ

−b2 cos θ√
a2 sin2 θ+b2 cos2 θ





satisfies σ′(θ) = ‖σ′(θ)‖ col(cos θ, sin θ), where ‖σ′(θ)‖ = a2b2/(a2 sin2 θ + b2 cos2 θ)3/2.

We now return to the path following problem for the unicycle. Suppose that C is a strictly

convex curve with parametrization σ(θ) : S1 → R2, as in Lemma 3.1. We will design a global

path following controller making the unicycle follow the curve in the counter-clockwise direction.

In order to make the unicycle follow C in the clockwise direction, it suffices to replace θ by −θ in

the definition of σ.

If (x1(t), x2(t), x3(t)) is a solution of (4), then x3(t) is the angle of the tangent vector to the

curve (x1(t), x2(t)). This fact, and the property, due to strict convexity, that the angle of σ′(θ) is

θ, together imply that solving the path following problem is equivalent to stabilizing the controlled

invariant set

Γ = {(x1, x2, x3) ∈ R2 × S1 : x1 = σ1(x3), x2 = σ2(x3)}. (5)

Remark 3.3. Note that the set Γ̄ = {(x1, x2, x3) : (x1, x2) ∈ C} is not controlled invariant unless

u1(t) ≡ 0. For, if (x1, x2) ∈ C and the unicycle’s heading is not tangent to C, then the unicycle will

leave C. The set Γ in (5) is a connected component of the largest controlled invariant subset of Γ̄

subject to the requirement that u1 is bounded away from zero. The other connected component

corresponds to motion around C in the clockwise direction.

Step 1: Candidate storage function. We make the obvious choice

V (x) =
1

2

[

(x1 − σ1(x3))
2 + (x2 − σ2(x3))

2
]

.

Note that Γ = V −1(0) and Γ is a compact set because x3 ∈ S1, which is compact. For the

unicycle (4), f = col(0, 0, 0) and g = [g1 g2], with g1 = col(cos(x3), sin(x3), 0), g2 = col(0, 0, 1).

Since LfV = 0, V satisfies the requirements of step 1a of the procedure. Next, we find a feedback

transformation of the form (3). We have

LgV = [(x1 − σ1) cosx3 + (x2 − σ2) sinx3 − (x1 − σ1)σ
′
1 − (x2 − σ2)σ

′
2],
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and since, by strict convexity, σ′(x3) = ‖σ′(x3)‖ col(cosx3, sinx3), setting β1(x) = col(1, 1/‖σ′(x3)‖)
we have LgV (x)β1(x) = 0. Next, we need to pick a vector β2 that is linearly independent of β1.

We choose β2 = col(0, 1). The feedback transformation

u = β1(x)ū+ β2(x)ũ =

[

1

1/‖σ′(x3)‖

]

ū+

[

0

1

]

ũ

guarantees that, for any smooth ū(x), the system with input ũ and output y = h(x) := Lgβ2
V (x)⊤,

h(x) := −[x1 − σ1(x3)]σ
′
1(x3)− [x2 − σ2(x3)]σ

′
2(x3) (6)

is passive.

Step 2: Γ-detectability enforcement.

Lemma 3.4. Let ū(x) be any smooth positive feedback bounded away from 0, i.e., infx ū(x) > ε >

0, for some ε > 0. Then, the maximal subset O of h−1(0) invariant under f + gβ1ū is Γ.

Proof. If u = β1(x)ū(x), we have

ẋ1 = ū(x) cosx3

ẋ2 = ū(x) sinx3

ẋ3 =
ū(x)

‖σ′(x3)‖
.

Using the fact that σ′(θ) = ‖σ′(θ)‖ col(cos θ, sin θ), we have

d

dt

[

x1 − σ1(x3(t))

x2 − σ2(x3(t))

]

= 0,

and so the vector col(x1(t), x2(t)) − σ(x3(t)) is constant. Therefore, if infx ū(x) > ε > 0, the

curve t 7→ col(x1(t), x2(t)) coincides with C modulo a translation. Suppose that, for suitable initial

conditions, the output signal y(t) is identically zero. Then, the vectors col(x1(t)−σ1(x3(t)), x2(t)−
σ2(x3(t))) and σ

′(x3(t)) are orthogonal for all t ≥ 0. Therefore, either col(x1(t)−σ1(x3(t)), x2(t)−
σ2(x3(t))) is zero (i.e., x(t) ∈ Γ), or σ′(x3(t)) has a constant angle. However, the angle of σ′(x3(t))

is x3(t), whose derivative is positive. Thus, x(t) ∈ Γ, proving that O = Γ.

Letting u = β1(x)ū+ β2(x)ũ, Lemma 3.4 guarantees that the system with input ũ and output

h(x) is Γ-detectable.

Step 3: Passivity-based stabilization. The next result is a direct consequence of Theorem 2.6.

Proposition 3.5. For any smooth ū(x) : R2×S1 → R bounded away from zero, i.e., ū(x) > ǫ > 0,

and any PBF ũ(x) = −ϕ(x) with respect to the output h(x) in (6), the feedback

u1 = ū(x)

u2 =
ū(x)

‖σ′(x3)‖
+ ϕ(x)

(7)

globally asymptotically stabilizes the set Γ in (5), and thus solves the path following problem for

C globally.
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Figure 1: Simulation results for the global path following controller in (7), where C is an ellipse

with major semi-axis length 2 and minor semi-axis length 1.

Example 3.6. If C is a circle of radius r centred at the origin, then a global solution to the path

following problem in the counter-clockwise direction is given by the feedback

u1 = v

u2 =
v

r
+ r(x1 cosx3 + x2 sinx3).

If C is an ellipse centered at the origin with major semi-axis a and minor semi-axis b, then a global

solution to the path following problem in the counter-clockwise direction is given by the feedback

u1 = v

u2 = v
µ(x)3/2

a2b2
+ a2b2

[

(b2 − a2) sinx3 cosx3
µ(x)2

+
x1 cosx3 + x2 sinx3

µ(x)3/2

]

,

where µ(x) = a2 sin2 x3 + b2 cos2 x3. Simulation results for this controller, with a = 2 and b = 1,

are displayed in Figure 1.

Remark 3.7. An important advantage of the feedback (7) is that it can be made to be compatible

with any input saturation constraint. For, if the controller is subject to saturation constraints

|u1| ≤ U1, |u2| ≤ U2, one can choose ū(·) > 0 small enough that ū(·) ≤ U1 and ū/‖σ′(x3)‖ < U2.

Then, choose ϕ(y) to be any odd function of h(x) such that ū/‖σ′(x3)‖+ supR |ϕ(·)| ≤ U2.

4 Case study 2: stabilizing the unicycle to a circle with heading

angle requirement

Consider again the kinematic unicycle model in (4), and the problem of stabilizing the unicycle to

a unit circle centered at the origin, with a constant desired heading on the circle. This problem

can be stated equivalently as the stabilization of the set

Γ = {(x1, x2, x3) : x21 + x22 = 1, x3 = amod 2π}, (8)

where a is the desired reference heading.

10
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Figure 2: Failure of Γ-detectability in case study 2 when Γ = V −1(0).

Step 1: Candidate storage function. If one chooses a storage function V such that V −1(0) = Γ,

then a passivity-based feedback does not stabilize Γ. In order to illustrate this fact, consider the

storage function V = (x21 + x22 − 1)2/2 + (x3 − a)2/2. The unique value of u rendering V −1(0)

invariant is u = 0, so the feedback transformation (3) becomes trivial, u = ũ. Since f = 0 for the

kinematic unicycle, the system is passive with any storage function V (x1, x2, x3), and output

LgV
⊤ =

[

2(x21 + x22 − 1)(x1 cosx3 + x2 sinx3)

x3 − a

]

.

We now show that the system with input u and the output above is not Γ-detectable and hence,

since Γ-detectability is a necessary condition for passivity-based stabilization, no PBF can stabilize

Γ with the above choice of V . In order to check Γ-detectability, we need to find O. Suppose that

u(t) ≡ 0 and LgV (t) ≡ 0. Then, the unicycle dynamics are stationary and O = {x : (x21 + x22 −
1)(x1 cos a+ x2 sin a) = 0, x3 = a}, and all points on O are equilibria. Figure 2 illustrates the set

of configurations of the unicycle on O. It is clear that O contains and is not equal to Γ in (8).

Therefore, Γ is not asymptotically stable relative to O, and the system is not Γ-detectable. More

generally, if we choose for the system a storage function V (e1, e2), where e1 = (x21 + x22 − 1)/2,

e2 = x3 − a, and (e1, e2) 7→ V (e1, e2) is positive definite, then

Lg1V =
∂V

∂e1
(x1 cosx3 + x2 sinx3),

gives the same obstruction to Γ-detectability.

The above suggests that if one wants to stabilize Γ in (8) using a passivity-based approach,

one should not attempt to find a storage V with the property that V −1(0) = Γ. Guided by this

principle, we choose a simple storage V such that Γ ( V −1(0), namely

V (x) =
1

4
(x21 + x22 − 1)2.

Next, we define a feedback transformation according to step 2 of the procedure. Since LgV =

(x21+x22− 1)[x1 cosx3+x2 sinx3 0], we choose β1 = col(0, 1), so LgV (x)β1 = 0, and β2 = col(1, 0),

so the matrix [β1 β2] is nonsingular. The feedback transformation

u = β1(x)ū+ β2(x)ũ =

[

0

1

]

ū+

[

1

0

]

ũ.
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guarantees that, for any feedback ū(x), the system with input ũ and output y = h(x) := Lgβ2
V (x)⊤

below is passive,

h(x) := (x21 + x22 − 1)(x1 cosx3 + x2 sinx3). (9)

Step 2: Γ-detectability enforcement.

Lemma 4.1. Let ū(·) be any feedback such that, for any solution x(t) of ẋ = f+gβ1ū, ū(x(t)) ≡ 0

implies V (x(t)) ≡ 0. Then, the maximal subset of h−1(0) invariant under the vector field f + gβ1ū

is

O = V −1(0) ∪ {x : x1 = x2 = 0}.

Proof. We have f + gβ1ū = col(0, 0, ū), and so x1(t) and x2(t) are constant. If h(x(t)) ≡ 0,

then either x(t) ∈ V −1(0), or x1(t) cosx3(t) + x2(t) sinx3(t) ≡ 0. If x(t) 6∈ V −1(0), then the latter

identity can only be satisfied if x1(t) ≡ x2(t) ≡ 0, because otherwise we would have x3(t) =constant,

implying that ẋ3(t) ≡ ū(x(t)) ≡ 0 and this, by assumption, can only hold on V −1(0).

Under the assumption of the above lemma, O is the union of two disconnected components,

V −1(0) and {x : x1 = x2 = 0}. On V −1(0), f + gβ1ū = col(0, 0, ū). To enforce Γ-detectability,

choose ū = −ϕ1(x3−a)−ϕ2(x
2
1+x

2
2−1) sin t, where ϕ1(·) is 2π-periodic and such that ϕ1(y) sin y > 0

for all y 6= 0, πmod 2π, and ϕ2 is positive definite. If ū(x(t)) ≡ 0, then x3(t) is constant. Thus,

ϕ1(x3(t) − a) is constant and so −ϕ1(x3(t) − a) − ϕ2(x
2
1(t) + x22(t) − 1) sin t can only be zero if

x21(t) + x22(t) ≡ 1. Therefore, this choice of ū satisfies the assumption of Lemma 4.1. Moreover,

on V −1(0) we have ẋ3 = −ϕ1(x3 − a). By the choice of ϕ1, x3 = amod 2π is almost globally

asymptotically stable for this differential equation, with domain of attraction x3 6= a + πmod 2π.

Thus, Γ is almost globally asymptotically stable relative to V −1(0), and hence almost globally

asymptotically stable relative to O (because the set {x1 = x2 = 0} has measure zero).

Step 3: Passivity-based stabilization.

Proposition 4.2. Let ϕ1(y) be a locally Lipschitz and 2π-periodic function such that ϕ1(y) sin y >

0 for all y 6= 0, πmod 2π, and let ϕ2 : R → R+ be positive definite. Then, for any PBF ϕ(x) with

respect to the output h(x) in (9), the feedback

u1 = −ϕ(x)
u2 = −ϕ1(x3 − a) + ϕ2(x

2
1 + x22 − 1) sin t

(10)

almost globally stabilizes the set

V −1(0) = {(x1, x2, x3) : x21 + x22 = 1}

with domain of attraction D = (R2×S1)\{(x1, x2, x3) : x1 = x2 = 0}, and asymptotically stabilizes

the set

Γ = {(x1, x2, x3) : x21 + x22 = 1, x3 = amod 2π}.

Simulation results for the controller (10) solving case study 2 are found in Figure 3, in which

we have chosen ϕ1(·) = sin(·), ϕ2 = ‖ · ‖, and ϕ(x) = arctan(h(x)).
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Figure 3: Simulation results for the controller in (10).

Proof. In order to handle the presence of the term sin t in the control input, consider the augmented

system
ẋ1 = ũ cosx3

ẋ2 = ũ sinx3

ẋ3 = −ϕ1(x3 − a) + ϕ2(x
2
1 + x22 − 1) sin θ

θ̇ = 1,

with (x1, x2, x3, θ) ∈ R2 × S1 × S1. For notational simplicity, we will still denote by Γ, O, V −1(0),

and h−1(0) the lift of these sets to the augmented state space. Thus, for instance, we will denote

by Γ the set {(x1, x2, x3, θ) : (x1, x2, x3) ∈ Γ}. We have shown in step 2 of the procedure that

the system above with input ũ and output h(x) in (9) is passive and locally Γ-detectable. Let

ũ = −ϕ(x) be any PBF with respect to the output h(x). By Theorem 2.6, since Γ is compact, Γ

is asymptotically stable for the closed-loop system. Moreover, since V is proper, all trajectories of

the closed-loop system are bounded. On {x1 = x2 = 0}, V has a local maximum. Therefore, for

any initial condition in D, the corresponding solution of the closed-loop system remains in D and

converges to the maximal invariant subset of {V̇ = 0} = h−1(0), i.e., it converges toO∩D = V −1(0).

This fact, together with the properness of V , implies that V −1(0) is almost globally asymptotically

stable with domain of attraction D.

5 Case study 3: coordinated path following for two unicycles

Consider two kinematic unicycles

ẋ1 = ux1 cosx3

ẋ2 = ux1 sinx3

ẋ3 = ux2

ż1 = uz1 cos z3

ż2 = uz1 sin z3

ż3 = uz2,

(11)

and let χ = col(x, z). For this system, we have f = 0 and

g = blockdiag

















cosx3 0

sinx3 0

0 1






,







cos z3 0

sin z3 0

0 1

















.
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In this section we design a controller making the two unicycles follow a common circle of radius r

(unspecified centre) in the counter-clockwise direction, while maintaining a constant distance d from

each other, where 0 < d < 2r. Our design can be easily modified to follow a circle in the clockwise

direction. This problem is sometimes referred to as coordinated path following, and falls within

the class of cooperative control problems, although the case of two vehicles considered here is very

special. In [21], a Lie group setting is used to control formations of vehicles moving along parallel

straight lines or circles. A controller is provided for two vehicles, and one is conjectured for the

general case of n vehicles. The authors in [22] study closed related problems in the same framework

and provide controllers for various types of straight line and circular coordination problems based

on the construction of potential functions whose minimum corresponds to the desired coordinated

motion. In [23], the authors propose an approximate solution to the circular coordinated path

following problem which aims at decoupling the path following task from that of inter-vehicle

coordination. The solution relies on Jacobian linearization and gain scheduling.

Define the functions cx(x) and cz(z) as

cx(x) = col(x1 − r sinx3, x2 + r cosx3)

cz(z) = col(z1 − r sin z3, z2 + r cos z3).
(12)

For any x, the point cx(x) lies at distance r from (x1, x2), and the vector col(x1, x2) − cx(x) is

orthogonal to the normalized velocity vector (cosx3, sinx3) of the unicycle. Therefore, the point

cx(x) is the centre of the circle that the unicycle would follow if its controls were chosen as ux1 = v and

ux2 = v/r. The same observation holds for cz(z). The control specification for the coordinated path

following problem is to stabilize the set Γ = {χ : cx(x) = cz(z),
√

(x1 − z1)2 + (x2 − z2)2 = d}, and
guarantee that the linear velocities ux1 , u

z
1 are bounded away from zero. When the unicycles lie on a

common circle of radius r, i.e., when cx(x) = cz(z), the distance between them is 2r sin(|x3−z3|/2).
Therefore, the set Γ can be equivalently expressed as

Γ = {χ : cx(x) = cz(z), |x3 − z3| = 2 sin−1(d/2r)mod 2π}. (13)

The goal set Γ is unbounded because we are not putting any restriction on the location of the

centres cx(x) and cz(z).

Remark 5.1. Note that the representation of Γ in relative coordinates (x̃1, x̃2, x̃3) = (x1− z1, x2−
z2, x3 − z3) is compact. However, the stabilization of Γ in relative coordinates does not imply

stabilization of Γ in original coordinates because the map (x, z) 7→ x̃ is not a diffeomorphism. For

instance, it may happen that the centres of rotation cx and cz drift off to infinity with a finite

escape time while the relative positions of the unicycles remain bounded.

Step 1: Candidate storage function. Consider the candidate storage function

V =
1

2
‖cx(x)− cz(z)‖2,

and note that Γ ⊂ V −1(0). We define the feedback transformation










ux1
ux2
uz1
uz2











= β1ū+ β2ũ =











1 0

1/r 0

0 1

0 1/r











[

ūx

ūz

]

+











0 0

1 0

0 0

0 1











[

ũx

ũz

]

, (14)
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which has the property that LgV (x)β1 = 0. For any feedback ū(χ) = col(ūx(χ), ūz(χ)), when

ũ = 0 the unicycles travel along circles of radius r and the centres of rotation remain constant,

implying that V is constant along trajectories or, what is the same, Lf+gβ1ūV = 0. Therefore, for

any feedback ū(χ), the system with input ũ and output y = h(χ) := Lgβ2
V (χ)⊤ below is passive,

y = h(χ) =

[

∂V/∂x3
∂V/∂z3

]

=













−r(cx(x)− cz(z))
⊤

[

cosx3
sinx3

]

r(cx(x)− cz(z))
⊤

[

cos z3
sin z3

]













. (15)

Step 2: Γ-detectability enforcement.

Lemma 5.2. Let ū(χ) be any feedback which is bounded away from zero component-wise, i.e.,

for some ε > 0, infχ ū
x(χ) ≥ ε > 0 and infχ ū

z(χ) ≥ ε > 0. Then, the maximal subset of h−1(0)

invariant under the vector field f + gβ1ū is V −1(0), i.e., O = V −1(0).

Proof. As observed earlier, if ũ = 0 and infχ ū > ε > 0 component-wise, then each unicycle

moves along a circle of radius r, and so the vector cx(x(t)) − cz(z(t)) is constant. Suppose that,

for some solution χ(t) of the open-loop system, h(χ(t)) ≡ 0. Then, either χ(t) ∈ V −1(0), or

the constant vector cx(x(t)) − cz(z(t)) is perpendicular to the vectors col(cosx3(t), sinx3(t)) and

col(cos z3(t), sin z3(t)) for all t ∈ R, implying that the linear velocities of the unicycles have constant

angle. However, the unicycles move along two circles with nonzero linear velocities vectors whose

angles are not constant.

We mentioned earlier that the functions cx(x), cz(z) remain constant along solutions of (11)

with feedback transformation (14) and ũ = 0. Therefore, when ũ = 0, the dynamics of the unicycles

are entirely described by those of their angular velocities x3 and z3. In other words, the restriction

of the vector field f + gβ1ū to O is

ẋ3 =
1

r
ūx, ż3 =

1

r
ūz. (16)

We rewrite the set Γ as Γ = {χ ∈ V −1(0) : |x3 − z3| = 2 sin−1(d/2r)mod 2π}. Let α :=

2 sin−1(d/2r). Since d ∈ (0, 2r), we have that 0 < α < π. Referring to the restriction of the

system dynamics on O in (16), in order to enforce Γ-detectability we need to design ū to sta-

bilize the set {|x3 − z3| = α}. In designing the stabilizer, we must take into account the fact

that x3, z3 ∈ S1, so the stabilization must be performed modulo 2π. To fulfill the assumption of

Lemma 5.2, we also need both ūx and ūz to be bounded away from zero. There are many ways to

fulfill these objectives. We base our design on the candidate Lyapunov function

W =
1

2
[cos(x3 − z3)− cosα]2 , (17)

whose derivative along (16) is

Ẇ = −1

r
[cos(x3 − z3)− cosα] sin(x3 − z3)(ū

x − ūz).

The feedback
ūx = v + ϕ1 ((cos(x3 − z3)− cosα) sin(x3 − z3))

ūz = v − ϕ1 ((cos(x3 − z3)− cosα) sin(x3 − z3))
(18)
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Figure 4: Simulation results for the coordinated path following controller in (19) for two different

initial conditions.

where v > 0 is a design constant, and ϕ1(·) is an odd function such that supR |ϕ1(·)| < v, is bounded

away from zero component-wise. Moreover, it almost globally stabilizes the set |x3 − z3| = α with

domain of attraction {(x3, z3) : sin(x3 − z3) 6= 0}, and thus enforces local Γ-detectability for

system (11) after feedback transformation (14), with input ũ and output y = h(χ) in (15).

Step 3: Passivity-based stabilization.

Proposition 5.3. Let v be a positive scalar, and ϕ1 : R → R be a smooth odd function which

is strictly increasing and such that supR |ϕ1(·)| < v. Then, there exists K⋆ > 0 such that for all

K ∈ (0,K⋆) the feedback

ux1 = v + ϕ1 ((cos(x3 − z3)− cosα) sin(x3 − z3))

ux2 =
ux1
r

−Kh1(χ)

uz1 = v − ϕ1 ((cos(x3 − z3)− cosα) sin(x3 − z3))

uz2 =
uz1
r

−Kh2(χ)

(19)

where α = 2 sin−1(d/2r) and h(x) is defined in (15), renders V −1(0) globally exponentially stable

and Γ asymptotically stable for the closed-loop system, thus solving the coordinated path following

problem. Moreover, for all initial conditions the centres of rotation cx and cz of both unicycles

converge exponentially to a common constant value.

Simulation results for the controller in (19), with d = 3r/2, v = 1, K = 1, and ϕ1(y) =
1.6v
π arctan(y), are found in Figure 4.

Proof. Since ux1 , u
z
1 are bounded away from zero, if we show that Γ is asymptotically stable for the

closed-loop system then we can conclude that the coordinated path following problem is solved.

Referring to the feedback transformation (14), the feedback (19) corresponds to choosing ū as in (18)

and the PBF ũ = −Kh(χ). Therefore, in light of Proposition 2.8, to show that Γ is asymptotically

stable we only need to show that the closed-loop system is LUB near Γ. Since x3 and z3 belong
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to S1, a compact set, we need to prove the LUB property for the displacements x1, x2, z1, z2 or,

equivalently, for the centres of rotation cx(x), cz(z). First off, note that the trajectories of the

closed-loop system are defined for all t ≥ 0 because |ẋ1|, |ẋ2| ≤ |ux1 |, |ż1|, |ż2| ≤ |uz1|, and both ux1
and uz1 are bounded by v. Next, the time derivatives of the centres of rotation along solutions of

the closed-loop system are

ċx =

[

r cosx3
r sinx3

]

Kh1(χ) = −Kr2
[

cos2 x3 sinx3 cosx3
sinx3 cosx3 sin2 x3

]

(cx(x)− cz(z))

ċz =

[

r cos z3
r sin z3

]

Kh2(χ) = Kr2

[

cos2 z3 sin z3 cos z3
sin z3 cos z3 sin2 z3

]

(cx(x)− cz(z)).

Letting S(·) = [cos(·) sin(·)]⊤[cos(·) sin(·)], we have

[

ċx
ċz

]

= −Kr2
[

S(x3)(cx − cz)

−S(z3)(cx − cz)

]

. (20)

Letting e = cx − cz, we have ė = −Kr2(S(x3) + S(z3))e, which can be viewed as a linear time-

varying system. We study its stability using averaging theory. The averaged system is ėavg =

−Kr2(S̄1 + S̄2)e, where S̄1 = limT→∞(1/T )
∫ T
0
S(x3(τ))dτ and S̄2 = limT→∞(1/T )

∫ T
0
S(z3(τ))dτ .

By Cauchy-Schwarz’s inequality we have

(
∫ T

0

sinx3(τ) cosx3(τ)dτ

)2

≤
∫ T

0

sin2(x3(τ))dτ

∫ T

0

cos2(x3(τ))dτ,

with equality holding only if x3(t) is constant. The same inequality holds for z3(t). Therefore,

assuming for the time being that x3(t), z3(t) are not constant, the matrices S̄1 and S̄2 are positive

definite and therefore the origin eavg = 0 of the averaged system is globally exponentially stable. By

the averaging theorem in [24, Theorem 10.5], there exists K⋆ > 0 such that for all K ∈ (0,K⋆) the

equilibrium e = 0 is globally exponentially stable as well, proving the global exponential stability

of V −1(0). Referring to equation (20), the exponential convergence of cx(x(t)) − cz(z(t)) to zero

implies that cx(x(t)), cz(z(t)) are bounded and have a constant limit as t→ ∞. Moreover, in light

of (20), the bound on cx, cz can be expressed as ‖cx(x(t))‖, ‖cz(z(t))‖ ≤M‖cx(x(0))− cz(z(0))‖ for

some M > 0. This bound is uniform over Γ, proving the LUB property. We are left to show that

x3(t), z3(t) are not constant. Suppose they were, then ux2(t), u
z
2(t) ≡ 0. By design, ux1(t), u

z
1(t) > 0

and K > 0, so referring to (19), h1(χ(t)), h2(χ(t)) > 0 for all t. By (15), this can only happen if

x3 6= z3mod 2π. Therefore, the unicycles travel along nonparallel straight lines with positive speed,

implying that their centres of rotation diverge from each other, ‖cx(x(t)) − cz(z(t))‖ → ∞. In

other words, V (χ(t)) → ∞, contradicting the fact that the storage function is nonincreasing along

solutions of the closed-loop system.

Remark 5.4. a. In [22] the authors address the stabilization of n-unicycles to a circular formation

using an all-to-all communication model. Their results can be used to solve this case study by

appropriate choice of a phase potential function.

b. In [25] we address the extension of this case study to the circular formation control problem for

n-unicycles with the extra requirement of stabilizing arbitrary phase formations on the circle.
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We address different situations with different information flow graphs the most general of which

is one with arbitrary static directed graph. These results provide a more general solution to

the problem than that in [22] which relies on all-to-all communication, and those in [26] which

address only symmetrical formations using dynamic feedbacks.

c. As in case studies 1 and 2, a candidate storage function V such that Γ = V −1(0) is not a feasible

starting point to solve this case study. If, for instance, we set

V =
1

2
‖cx(x)− cz(z)‖2 +

1

2

[

(x1 − z1)
2 + (x2 − z2)

2 − d2
]2
,

and we let
ux1 = v, ux2 = v/r + ũx

uz1 = v, uz2 = v/r + ũz
(21)

so as to make V −1(0) invariant when ũx, ũz = 0, then the system with input (ũx, ũz) and

output Lg̃V
⊤, with g̃ = [g2 g4], would not be passive because V fails to be nonincreasing along

trajectories of the open-loop system. The reason is that, when ũx, ũz = 0, the unicycles move

along circles of radius r, and so cx(x), cz(z) remain constant along solutions, but the distance

between the unicycles is not constant when the centres of rotation do not coincide, and it fails

to be nonincreasing.

6 Case study 4: coordination of two unicycles

Consider again the two kinematic unicycles in (11), but this time consider the problem of making

the unicycles meet at a distance ∆ > 0 facing each other. Solving this problem corresponds to

stabilizing the set

Γ =
{

χ ∈ X :
√

d1(χ)2 + d2(χ)2 = ∆, z3 = θ(χ), x3 = θ(χ) + π
}

. (22)

where d1(χ) = x1 − z1, d2(χ) = x2 − z2, and θ(χ) = arg(d1(χ) + i d2(χ)), with θ ∈ S1.

Step 1: Candidate storage function. Once again, choosing a candidate storage function V with

the property that Γ = V −1(0) does not lead to a solution of the problem, because such a choice

would lead to an obstruction to Γ-detectability similar to the one described in case study 2. For,

consider a storage function V (e1, e2) where e1 = (x1 − z1)
2 + (x2 − z2)

2 −∆2, e2 = x3 − z3 + π and

(e1, e2) 7→ V (e1, e2) is positive definite. Then,

LgV =

[

∂V

∂e1
(d1 cosx3 + d2 sinx3)

∂V

∂e2
− ∂V

∂e1
(d1 cos z3 + d2 sinx3) − ∂V

∂e2

]

.

From this it is clear that any configuration with z3 − x3 = π and (d1, d2) perpendicular to x3 is an

equilibrium that belongs to the set O, and thus the system with output LgV
⊤ is not Γ-detectable.

Instead, we choose

V (χ) =
1

4

[

d1(χ)
2 + d2(χ)

2 −∆2
]2
, (23)

which has the property that Γ ( V −1(0). We choose the feedback transformation










ux1
ux2
uz1
uz2











= β1ū+ β2ũ =











0 0

1 0

0 0

0 1











[

ūx

ūz

]

+











1 0

0 0

0 1

0 0











[

ũx

ũz

]

. (24)
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For any feedback ū(χ), when ũ = 0, we have that the unicycles rotate without translating, and

therefore the distance between them, (d1(χ), d2(χ)), remains constant. In other words, LgV β1 = 0.

Therefore, for any feedback ū(χ), the system with input ũ and output y = h(χ) := Lgβ2
V (χ)⊤

below is passive,

y = h(χ) = (d21 + d22 −∆2)

[

d1 cosx3 + d2 sinx3
−(d1 cos z3 + d2 sin z3)

]

. (25)

Step 2: Γ-detectability enforcement.

Lemma 6.1. Let ū(·) be any feedback which does not vanish on the set {χ : (d1(χ), d2(χ)) 6=
0, d1(χ) cosx3 + d2(χ) sinx3 = 0, d1(χ) cos z3 + d2(χ) sin z3 = 0}. Then, the maximal subset O of

h−1(0) invariant under the vector field f + gβ1ū is O = V −1(0) ∪ {χ : d1(χ) = d2(χ) = 0}.

Proof. The solutions of χ̇ = f + gβ1ū correspond to the two unicycles rotating and not translating.

Therefore, d1, d2 are constant along solutions. The set {χ : d1(χ) = d2(χ) = 0}, being invariant

under the vector field f + gβ1ū and contained in h−1(0), is contained in O. Now suppose that

(d1(χ(0)), d2(χ(0))) 6= 0, so that (d1(χ(t)), d2(χ(t))) 6= 0 for all t ∈ R, and that h(χ(t)) ≡ 0. Then,

dh(χ(t))/dt ≡ 0 so either d21(χ(t)) + d22(χ(t)) ≡ ∆2 (i.e., χ(t) ∈ V −1(0)), or

d1 cosx3(t) + d2 sinx3(t) ≡ 0

d1 cos z3(t) + d2 sin z3(t) ≡ 0

(−d1 sinx3(t) + d2 cosx3(t))ū
x ≡ 0

(−d1 sin z3(t) + d2 cos z3(t))ū
z ≡ 0.

By assumption, ūx, ūz are not zero on the set where the first two equations are satisfied. Therefore,

the equations can only be satisfied if d1(χ(t)) = d2(χ(t)) ≡ 0, which is not the case.

The sets V −1(0) and {d1(χ) = d2(χ) = 0} are disjoint and, for any ū, they are invariant under

f + gβ1ū. In order to enforce Γ-detectability, we need to design ū such that Γ is asymptotically

stable relative to V −1(0) and ū 6= 0 on the set {χ : (d1(χ), d2(χ)) 6= 0, d1(χ) cosx3 + d2(χ) sinx3 =

0, d1(χ) cos z3 + d2(χ) sin z3 = 0}. The restriction of f + gβ1ū to V −1(0) is

ẋ1 = 0, ẋ2 = 0, ẋ3 = ūx

ż1 = 0, ż2 = 0, ż3 = ūz.

The function θ(χ) is constant along solutions of the above differential equation, so stabilizing Γ

corresponds to stabilizing the equilibria x3 = θ(χ)+π, z3 = θ(χ) modulo 2π. There are many ways

to achieve this goal. We choose

ūx = −K1

√

d21 + d22 sin(x3 − θ(χ)− π)

= K1 [d1 sinx3 − d2 cosx3]

ūz = −K1

√

d21 + d22 sin(z3 − θ(χ))

= K1 [−d1 sin z3 + d2 cos z3] ,

with K1 > 0, which almost globally stabilizes Γ relative to V −1(0), with domain of attraction

{χ ∈ V −1(0) : x3 6= θ(χ), z3 6= θ(χ)+π}. Our choice of ū is not zero on the set {χ : (d1(χ), d2(χ)) 6=

19



−5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

x3z1

z2

z3

x1, z1

x
2
,z

2

Figure 5: Simulation results for the coordination controller in (26).

0, d1(χ) cosx3 + d2(χ) sinx3 = 0, d1(χ) cos z3 + d2(χ) sin z3 = 0} and therefore, by Lemma 6.1, the

feedback above almost globally stabilizes Γ relative toO with domain of attraction {χ ∈ O : d1(χ) 6=
0, d2(χ) 6= 0, x3 6= θ(χ), z3 6= θ(χ) + π}, and thus ensures local Γ-detectability for system (11)

with feedback transformation (24), input ũ and output y defined in (25).

Step 4: Passivity-based stabilization.

Proposition 6.2. For any positive scalars K1,K2, the feedback

ux1 = −K2h1(χ)

ux2 = K1 [d1(χ) sinx3 − d2(χ) cosx3]

uz1 = −K2h2(χ)

uz2 = K1 [−d1(χ) sin z3 + d2(χ) cos z3] ,

(26)

where h(χ) is defined in (25), renders Γ asymptotically stable for the closed-loop system and solves

the coordination problem.

Simulation results for the controller in (26), with K1 = K2 = 1, are found in Figure 5.

Proof. In order to prove that Γ is asymptotically stable, by Theorem 2.6 it suffices to show that

the closed-loop system is LUB near Γ. Solutions of the closed-loop system are defined for all t ≥ 0

because x3 and z3 are variables in S
1, a compact set, and ux1(χ(t)), u

z
1(χ(t)) are uniformly bounded,

|ux1 |, |uz1| ≤ 2K2

√

V (2
√
V +∆2), (27)

and V is nonincreasing along solutions. The derivative of the storage function along closed-loop

solutions is

V̇ = −4V
[

(d1 cosx3 + d2 sinx3)
2 + (d1 cos z3 + d2 sin z3)

2
]

. (28)

We will show that for all initial conditions in some neighborhood N (Γ), the term in square brackets

in (28) is bounded away from zero. This fact then implies the LUB property. For, the claim

20



implies that on N (Γ), V converges to zero exponentially and thus, by (25), h(χ(t)) tends to

zero exponentially. Therefore, ux1 , u
z
1 tend to zero exponentially and so x1, x2, z1, z2 are bounded.

Moreover, their bound is uniform on Γ, proving the LUB property.

It is easy to see that (d1 cosx3 + d2 sinx3)
2 = (d21 + d22) cos

2(x3 − θ). Since V is nonincreasing,

if d1(χ0)
2 + d2(χ0)

2 6= 0 and V (χ0) < (1/4)∆4, then the solution χ(t) is such that, for all t ≥ 0,

d21(χ(t)) + d22(χ(t)) ≥ ∆2 − 2
√

V (χ0) > 0. Therefore, for the purpose of showing that the term

in square brackets in (28) is bounded away from zero, it is enough to show that there exists a

neighborhood N (Γ) ⊂ {V < (1/4)∆4} such that all closed-loop solutions originating in N (Γ) yield,

for all t ≥ 0, cos2(x3(t)− θ(t)) ≥ 1/2. Let

W (χ) =
1

2
[x3 − θ(χ)− π]2 .

The time derivative of W along closed-loop solutions is

Ẇ = −(x3 − θ − π) sin(x3 − θ − π)
√

d21 + d22

(

1 +− ux1
d21 + d22

)

+ (x3 − θ − π) sin(z3 − θ)
uz1

√

d21 + d22

≤ −
√
2W sin(

√
2W )

√

d21 + d22

(

1− |ux1 |
d21 + d22

)

+
√
2W

|uz1|
√

d21 + d22
.

Note that, when ux1 = uz1 = 0, if W (χ0) < π2/2, then the solution asymptotically converges to

{W = 0}. Moreover, given any c, with 0 < c < π2/2, there exists U > 0 such that, for |ux1 |, |uz1| < U

the set {χ ∈ X :W (χ) ≤ c} is positively invariant. Pick c = 1/2(π/4)2, and let U be as above.

Given any V0 > 0, by the inequalities in (27) and the fact that V is nonincreasing along solutions

of the closed-loop system, for any initial condition χ0 ∈ {χ ∈ X : V (χ) ≤ V0}, we have

|ux1(t)|, |uz1(t)| ≤ 2K2

√

V0
(

2
√

V0 +∆2
)

.

Let V0 be small enough that 2K2

√

V0
(

2
√
V0 +∆2

)

< U and V0 < (1/4)∆4. Consider the set

N (Γ) = {χ : V < V0} ∩ {χ :W < 1/2(π/4)2}.

On Γ, V = 0 and W = 0, so N (Γ) is a neighborhood of Γ. By construction, the set N (Γ) is

positively invariant. In particular, for all χ0 ∈ N (Γ) and all t ≥ 0, |x3(t) − θ(t) − π| < π/4, and

hence

cos2(x3(t)− θ(t)− π) > 1/2,

as required.

Conclusions

We presented four case studies illustrating a novel set stabilization procedure for closed sets based

on recent theoretical advances in [15]. In case studies 2-4 the stabilization of the goal set is only

proved to be local, although the detectability property is almost global. We conjecture1 that, in

fact, the controllers in case studies 2-4 stabilize the respective goal sets almost globally.

1Such a result would follow by extending those in [15] to the case when Γ-detectability is satisfied except on a set

of Lebesgue measure zero. This would require one to show that the set of initial conditions that approach this set is

of measure zero as well.
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