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Abstract— We investigate the following problem: design a reachable node, i.e. a node with arcs from every other node
distributed control law making n kinematic unicycles converge in the digraph. Equivalently, the graph has a spanning &ee.

to a common circle of prespecified radius, whose centre is At ; ;
i - useful characterization of this property, used in the fei
stationary but dependent on the initial conditions, and traverse L . property g
sequel, is given in [2] as follows.

the circle in a desired direction. Moreover, the vehicles are
required to converge to a formation on the circle, expressed by | emma 1.1 (Lemma 2, [2]) The digraphg has a globally

desired separations and ordering of the unicycles. We present . . - .
a solution for the case when the information flow graph is reachable node if and only {f is a simple eigenvalue df.

undirected. In part _II of this paper we generalize the solution By this lemma, if a digraph with Laplaciad has a
to the case of_arblt_rary information flow graphs, and to the globally reachable node theker I — span1 where1 —
case of dynamic unicycles.
col(1,...,1) € R™ and ker denotes the kernel. Note also

. INTRODUCTION that, by the Gershgorin circle Theorem [3], the eigenvalues
of any Laplacian are either zero or have positive real part.
) , ] Thus, if the digraph has a globally reachable node, then all
&y = uj cos g the eigenvalues of, have positive real part except for one
ih =ujsinzy  i=1,...,n. (1)  which is zero.

Circular Formation Control Problem (CFCP) . Consider
then-unicycles in (1). For a given static information flow di-
The state of unicycle is 2! = (2%,2%,2%) € R? x S',  graphg with a globally reachable node, design a distributed
where S! is the set(R mod 27) of real numbers modulo control law achieving the following objectives:

27, diffeomorphic to the unit circle. The state space of the (i) Circular path following. For a suitable set of initial

Consider a system of kinematic unicycles, witm > 2,

i = u

overall system ist = (R? x S1)". Let xy = col(z?,--- ,2") conditions, the unicycles should converge to a common

be the overall state, and le§ = col(z3, - - -, 2%). System (1) circle of radiusr > 0, whose centre is stationary
can be written in the driftless forngy = g(x)u, with but dependent on the initial condition, and traverse
1 n the circle in a desired direction (clockwise or counter-

cosxz 0 cosxy 0 ; . ,
_ . oy .. clockwise). The unicycles’ forward speed should be
g = blockdiag sinzz 0] ,---,|sinzf 0
0 1 0 1 bounded away from zero.

(i) Formation stabilization.On the circle in part (i) of

We will assume that each unicycle has access to its own the problem, the:-unicycles are required to converge
absolute heading (this can be achieved with an on-board to a formation expressed by desired separations and
compass) and that it can exchange relative information with  ordering of the unicycles.
some other unicycles. As is customary in the multi-agenh Section Ill, we give a more precise formulation of CFCP
literature, the information flow shall be modelled by aas the problem of stabilizing a suitable subset of the overal
directed graphg. Each node ofG represents a unicycle, state space’. In this paper, we solve CFCP in the case where
and the edges ofj represent which unicycles exchangethe information flow graph is undirected, which corresponds
information. Specifically, an edge from nodeto node;j to the situation when the Laplaciah is symmetric. The
means that unicyclé has access to its relative displacemenolution, presented in Section V (see Proposition V.3)esel
and relative heading with respect to unicygld_et L denote  on recent results concerning the passivity-based statidiz
the Laplacian of the digrapti of the n-unicycles. We will  of closed sets [4], [5]. These results are briefly reviewed
use the notation’’ for the i-th row of L, and we denote in Section IV. In part I, we generalize the solution in two
L9y = L®I> wherel is the2 x 2 identity matrix. Refer to  directions: we allow the information graph to be an arbjtrar
[1] for an overview on algebraic graph theory and digraphsstatic directed graph with a globally reachable node, and we
In this paper, we assume thaitis static, and it has a globally present the solution to CFCP for dynamic unicycles. Our
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col(A, B) denotes the matrixA” BT]T whereT denotes averaged quantities required by the all-to-all stabitizaon-
transpose, andlockdiag(A, B) denotes the block-diagonal trol law. The scheme in [11] requires extra communication,
matrix with blocks A and B. If a4,...,a, are scalars, since particles must exchange relative estimated vasalrle
diag(aq, ..., a,) is the diagonal matrix with diagonal entriesaddition to relative displacement and relative heading.

a;. By ¢(t,zo) we denote the solution of = f(x) with
initial conditionzy. Given an interval of the real line and a o
setS € X, denote byy(I, S) the set(I,S) = {o(t, xo) : Fori € {1,...,n}, define the function’(z*) as
t € I,xyg € S}. We use| - ||s to denote the point-to-set
distance to a sef C X, B,(x) an open ball of radius
centered atr, and B, (.S) the set of points with distance lessFor unicyclei, the pointci(z?) lies at a distance from
thana to S. Denote by\(S) a generic open neighbourhood (2%, z%), and the vectorol (2%, z3) — c¢*(z?) is orthogonal to
of S. We use the standard notatidry V' to denote the Lie the normalized velocity vectdicos x4, sin z%) of unicyclei,
derivative of aC"! function V' along a vector fieldf on X.  see Figure 1. Therefore, the poiritz?) is the centre of the
For a functionf : R® — R™, f~1(0) = {z : f(z) = 0} circle that the unicycle would follow in the counter-clocike
denotes the zero level set ¢f Finally, we denote byA@ B direction if its controls were chosen a% = v andul, = v/r.
the Kronecker product of two matrices and B. Using the functions:’ in (2), part (i) of the CFCP can be

IIl. CFCPAS A SET STABILIZATION PROBLEM

(x?) = (28 — rsinal, xb + rcos ) 2

Il. PREVIOUS RESULTS

The work in [6], [7] addresses the cyclic pursuit control
problem where agerithas communication link with ageit
1. The authors obtain circular formations and show that the
resulting relative equilibria are generalized regulalygohs.
The cyclic pursuit law in [6] has been studied in many other Fig. 1. The centre (x?)
works, such as [8] and [9].

Another important research direction on formation stastated as the stabilization of the set
bilization is found in [10], where the authors investigate i . P
problems of synchronization for systems of particles mediel Di={x: @) =c@)i=1,n} @
as unicycles. Potential functions are defined for variosksta with the additional requirements that the linear velositié

and used to generate gradient control laws. Among othehie unicycles be bounded away from zero and that'(t)),
things, the authors stabilize the unicycles to a circle. The — 1 ... n, tend to constant values. In the above, and

results are based on an all-to-all communication assumption what follows, the indices < {1,...,n} are evaluated
In [11] the authors extend the results in [10] to addresgodulon. For instancen + 1 is identified with1.

different communication topologies. First, they provide a o )
direct extension to the case of undirected time invariant-co Remark. 2The flunctlpng (') gives a smooth maf™ x
munication topologies. Then they provide dynamic feedbackd. — B X 5%, (21,25, 25) = (¢'(2"),x3) which is a
to address the case where the communication topology $df€omorphism. Using this, instead of the dynamics (1) on
time varying and directed. The ideas used in [10] and [11§a" €xPress the unicycle model as

are incorporated in several other works, such as [12], [13]. ¢ = (ul — rub) cosxh

The results above deal mainly with symmetric formations.
In particular, the formations in [6], [7] are regular polygo G ;
In [10] the authors show that general formations can be T3 = Us-
stabilized using phase potentials that are minimum at@esir \We now turn our attention to part (i) of CFCP. Consider a
phase formations; the control design in [10] focuses ofprmation where unicyclg travels on the circle at distance
symmetric formations using specific potentials. In thisgrap ¢ from unicycle i, as shown in Figure 2. This formation
we present controllers that stabilize arbitrary formadiam
the circle. Selecting the formation to be stabilized does no
require extra design; the formation is simply encoded in a
vector parametrizing our feedback controller.

As mentioned earlier, our results in part Il solve the
circular formation problem for general static graphs. Alto
controllers are time invariant static feedbacks. The imi@r
tion required by unicycle is the relative displacement and
relative heading with respect to neighbouring unicyclesl a
its own absolute heading. In [11], the authors allow for time
varying and directed graphs by using dynamic feedbacks
utilizing consensus filters that asymptotically reconstithe Fig. 2. Formation on the circle

& = (u} — rub)sinz 4




constraint can be equivalently expressed ads— :c§ = stable relative toO for X if, for any ¢ > 0, there exists a
2sin™" (£) mod 2. In light of this observation, part (ii) of neighbourhoodV/(I") such thaty(R*, N'(I') N O) C B.().
CFCP can be restated as the stabilization of the configarati®imilarly, one modifies all other notions in Definition V.1
on the circle where the unicycles headings differ by prespeby restricting initial conditions to lie irO.

ified constant angles, or(t) = a(t) + ; mod 2m, i =
1,---,n, for some differentiable function(t) and desired
anglesa;. The anglesy; € [0,27) determine the ordering
of the unicycles on the circle and their inter-distancest PaDefinition IV.3 (Local uniform boundedness} is locally
(i) of CFCP can be restated as the stabilization of the seniformly bounded (LUB) nedr if for eachz € I there exist
I’y defined as positive scalars\ andm such thatp(R™, By(z)) C B, (z).

The next definition presents a notion of boundedness near
set.

I'y={x:L(zr3s—a)=0 mod 27} (5) Now we turn our attention to the control-affine system

wherea = col(ay, -+, ) is the vector of desired angles i = flz)+ - (2w = F(x) + g(2)u
specifying the formation. Notice, indeed, that since we @) ;gz( Jus = J(@) + 9(a)
assume thaf has a globally reachable nodesr L = span 1 y = h(z)
and x(t) € 'y if and only if 24(t) = a(t) + a; mod 2, . o
i=1,---,n. Using the setd’; in (3) andT; in (5), CFCP with state spacet C R” that is either an open subset of
can be restated as follows. R™ or a smooth submanifold. We assume tlisand g;, i =
CFCP (equivalent statement) Consider then-unicycles L+ -, are smooth vector fields ok, andh : & — R™is
in (1). For a given information flow digrapé with a glob- & 1smooth mapping. Suppose that system (7) is passive with
ally reachable node, and a desired formation specificatidn nonnegative storage functidri : & — R, i.e., [14],
expressed by a vector of angles= S, design a distributed (Vo € X) L;V(x) <0andL,V(z) = h(z)", (8)
control law which asymptotically stabilizeshe set

()

where L,V = [L,,V --- L, V]. We consider the class of
F=T1nIs passivity-based feedbacks defined as follows.
={x: L(zz —a) =0, (") = c'(z%),1 <i < n},
(6)
where ¢i(x?) is defined in (2). Additionally, the linear ve-
locities u¢ and angular velocitiea? of the unicycles should . .
be bounded away from zero df and the unicycles should Zpasswlty-based feedback (PBF) with respect to the output
have acommon asymptotic centre of rotatidsy which it is (@).
meant that for ally(0) € X there existsc € R? such that Now suppose thdt C X is a closed set which is positively

Definition IV.4 (Passivity-based feedbackd smooth func-
tion u = —p(x), wherep(z) is such thatp(x) = 0 whenever
h(z) = 0, andh(x) "p(z) > 0 wheneverh(z) # 0, is called

c(z'(t)) > cast w00, i=1,...,n. invariant for the open-loop system, i.e., such that, for all
Note thatI" is closed but not compact since there are ne, € T', the solution of the open-loop systein= f(z)
restrictions on the centres of rotatioh(z"). throughzo remains inI’ for all positive times. The results

in [4] answer this question: under what conditions does a
passivity-based feedback with respectita) asymptotically

In this section we review recent results on the stabilizatiostabilize the sef for the control system (7)? The answer to
of closed sets by means of passivity-based feedback. Wgs question relies on the following notion of detectaili
begin with some basic stability definitions concerning aet ® denote themaximalopen-loop invariant set contained
smooth dynamical syste® : & = f(z), = € X, and @ in 1,1(0), that is, the set with the property that @ is
closed sef’ C X. any other open-loop invariant set containedhin' (0), then

Definition V.1 (Set stability and attractivity) The setl” is 0co.

1) stablefor ¥ if, for all £ > 0, there exists a neighbour- Definition V.5 (I'-detectability) System (7) islocally I'-
hood NV (T") such thatp(R™, V(")) € B.(I). detectableif I' is asymptotically stable relative t& for

2) anattractor for X if there exists a neighbourhodd(I")  the open-loop system, anb-detectableif I' is globally
such that, for allcg € AV (T), lim; o ||¢(t, 0)|lr = 0. asymptotically stable relative 0 for the open-loop system.
Itis aglobal attractorif it is a attractor with\/(T') = X’.

3) [globally] asymptotically stabldor 3 if it is stable and
attractive [globally attractive] fob.

IV. PASSIVITY-BASED SET STABILIZATION

In [5], the following a procedure was introduced to design
set stabilizing controllers.
Set stabilization procedurelLet I' be a closed goal set
All stability notions in Definition IV.1 can be relativized that is controlled invariant for (7), i.e., there exists aositi
to a subset of the state space as follows. feedbacku*(x) such thatl’ is a positively invariant set for
the closed-loop system = f(z) + g(z)u*(z).
1. Candidate storage function and feedback transformation.
a) Find a candidate&® storage functiont : X — RT
1The notion of asymptotic stability of a set is reviewed in Digitim V. 1. such thafl' ¢ V~1(0) andL;V (z) <0 forall z € X.

Definition IV.2 (Relative set stability and attractivity) et
O C X be such thatO N T # (. We say thatl is



b) Find, if possible, a locally Lipschitz matrix-valued and henceV/, constant along solutions of the closed-loop
function By(x) : X — R™*k for somek € system, we choose the feedback transformation
{1,...,m — 1}, such thatg;(z) has full rankk and
L,V (x)Bi(x) =014y for all z € X. u' = [

“1] =+ By = { ! }awm @, 1<i<n
c) Let By(z) : X — R™>™~F pe any locally Lipschitz

uh 1/r 1

function such thafs; (z) Ba(z)] is nonsingular for all Setting, fori = 1,...,n, uj = @', u = @'/r+a’, we obtain
x € X, and define the feedback transformation the feedback transformation
u = Bi(z)a + B2 (z)i, 9) u=p1u+ B, (12)
) with 3; = blockdiag{[1 1/r]T,---,[1 1/r]T}, B2 =
m k ~ m—k
wherew € R" anda € R are new control inputs. blockdiag{[0 1]T,---,[0 1]T}. The above feedback trans-

. : o T
Define an output function(z) := Lgs, V(z) . formation has the property thdt,V (x)8; = 01x,. More-
2. I'-detectability enforcemenEind, if possible, a feedback gyer, L;V = 0 becausef = 0. Therefore, for any feedback
Q(m) such thatl" is (globglly) asymptotically stable rela- ;(y), the system with inputi and outputy = h(x) :=
tive to O for the systemi: = [f(z) + g(z)b1(z)u(z)]lo,  L,5,V(x)T is passive. The output is given as follows
where( is the maximal subset df~1(0) invariant under
the vector fieldf + g3 . y = h(x) = —rR(z3)L2) c(x) (13)
3. Passivity-based stabilizatiorRick any PBF4(z), and \here
let u(z) = B1(z)u(x) + Po(x)a(z), whereu(z) is the _
feedback chosen in step 2. R(xs) = blockdiag {[coswj sinaj], .- [cosa} sinaf]}

Proposition V.6 (Set stabilizing procedure)The feedback ~ Step 2:I'-detectability enforcement.

u(x) designed according to the procedure above has theemma V.1. Let u(y) be any feedback which is bounded

following properties: away from zero component-wise, i.e., for some> 0,

(a) If T is compact, thenu(z) asymptotically stabilizes it.  inf, @'(x) > & > 0 for i = 1,--- ,n. Then, the maximal

(b) If T is closed and unbounded, theriz) asymptotically Subset ofa~'(0) invariant under the vector field + gf1a
stabilizes it provided that the closed-loop system is LUBS I'1, i.e., O =T'.
nearl'. _ _ _ Proof: As observed earlier, ifi = 0 and inf, @ >

(c) In both cases above, if all trajectories of the closeddlo . - ( component-wise, then each unicycle moves along a
system are bounded, and tiédetectability property circle of radiusr, and so the vector s ¢, in the output
enforced in step 2 of the procedure is global, then th@nction (13), is constant. Suppose that, for some solution

stabilization ofl" is global as well. x(t) of the system withii = 0, h(x(t)) = 0. Then, either
In the rest of this paper we apply this procedure to solv&() ¢(x(t)) = 0 which, because of (11), is only possible
CECP. when all the centres coincide, i.e., wherit) € I'y, or,
for somei, the constant vectoL (z)c is perpendicular to
V. SOLUTION OF CFCPFOR UNDIRECTED GRAPHS e Vector[0 0 ... coszi(t) sinas(t) --- 0 0]7, for

i=1,---,n andt € R, implying that z%(¢) is constant.
In this section we use the passivity-based set stabilizatiHowever, by assumption the unicycles move alangjrcles
procedure outlined before to solve CFCP when the informavith nonzero linear velocity vectors, and therefore thelang

tion flow digraph is undirected. xi(t) is not constant. u
Step 1: Candidate storage function. As mentioned earlier, the functiom§(x?) in (2) remain con-
Let c(x) = col(c'(z'),---,c"(z™)) € R?® with ¢!(z?) stant along the solutions of (1) with feedback transforomati

defined in (2). Consider the following candidate storagél2) anda = 0. Whena = 0, the restriction of the vector

function field f +gfiuto O =T is
1 T
_ 2 , , S , T
Vo = QC(X) L) c(x) (10) i) = u'cosxly, &b = u'sinzy, i = ;127’ (14)

Since L is symmetric, Ly is positive semidefinite. Also, Using the model (4), the dynamics above takes the form

since the information digraph has a globally reachable node _ _ 1

from Lemma 1.1 we have thak,) has2 eigenvalues a0 =0, ¢=0, &5 = —u' (15)

r
i.e., the dynamics of the unicycles are entirely describged b
ker Lz) = Image {col(Iz, - , Is)} (11) those of their angular velocitiess;. Under the assumption of

Lemma V.1, the goal sdf can be expressed as
from which it follows thatV —1(0) is the set where all the _ ) _
centres of rotation coincide, i.el,~1(0) = T';. Based on ['={x€0:Lizs—a)=0} (16)
the observation that any feedback of the fofni,u) = so we need to designto stabilize the sefxs : L(z3—a) =
(@i (x),u'(x)/r),i =1,--- ,n, keeps the centres of rotation, 0}. In designing the stabilizer, we must take into account

with geometric multiplicity2, and thus



the fact thatrl € S, so the stabilization must be performedbe that1 ™1 arcsin s(t) = 0 mod 27, or narcsin s(t) = 0
modulo 27. To fulfill the assumption of Lemma V.1, we mod 2. In other words,arcsin s(t) € {27k/n+2xl, k,l €
also needi’ to be bounded away from zero. There are many{}. But since|L?(z3 — a)| < min{27/n,7/2} mod 2, it
ways to obtain these objectives. We base our design on thaust be thatarcsin s(t) = 0 mod 27, proving thati —1(0)

following candidate Lyapunov function is attractive, and hence asymptotically stable. ]
n Step 3: Passivity-based stabilization.
W(x3) = 2[1 —cos(Li(z3 — a))] an We are now ready to solve CFCP in the case of undirected
i=1 information flow graph.

whereL" is thei-th row of the LaplaciarL.. Note that’ > 0 Proposition V.3 (Solution of CFCP for undirected informa-
and W = 0 if and only if L'(z3 — o) = 0 mod 2, for tion flow graph) Assume that the information flow graph
i=1,---,n. ThusW~'(0) is precisely the set we wish t0 js undirected and has a globally reachable node. For any
stabilize. The derivative ofV along (14) is v > v > 0, there existsk* > 0 such that for all
) n ‘ _ 1 K € (0, K*) the feedback
W =>sin(L(xs — ) L' /r = ;S(nsg)TL u, (18)

P ul = — U sin(Li(z3 — «))

{ 21)
where iU e 1. (
sin(L!(z3 — «)) Uy =~ Khi(x), i=1,---,n
S(xs) = : . where h(x) is given in(13), solves CFCP and renders the
sin(L"(z3 — a)) goal setl” in (6) asymptotically stable, ani; in (3) globally

Lemma V2. The feedback asymptotically stable for the closed-loop system.

A o ) The proof is omitted due to space limitations.
' =v—wvsin(L'(z3 — ), i=1,...,n, (19)

. , Remark. Note that unicycle needs to compute
where andv > v; > 0 are design constants, is bounded

away from zero component-wise and makes th& sstymp-  h;(x) =[00 -+ —rcosz —rsinz§ - - 0 0]Lz)c(x)
totically stable relative tal; for system(1) after feedback

transformation (12) and & = 0, thus enforcing locall- and L'(z; — a). In order to perform this computation,

detectability of the system with inpiatand outputy = h(x) thg uni(_:ycle .needs to sense it§ relative. displqcement. and
in (13) orientation with respeqt to its nelghbpurs m_the inforroati
flow graph, as well as its absolute orientatigh Therefore,
Proof: By Lemma V.1, the maximal subset 6f '(0)  feedback (21) is a distributed control law respecting the
invariant under the vector fielfH-g3,uis O = I'y. Referring  information flow graph.
to the system restriction o in (15), to prove the Lemma )
it suffices to show that the sé¥’~1(0) is asymptotically Simulations

stable for the system} = @'/r, i = 1,--- ,n, with @’ given We consider6 unicycles exchanging information in a
in (19). By substituting the control (19) into the derivativ cyclic manner: unicycleé exchanges information with unicy-
(18) we getW = —uv1S(z3) L S(x3). The matrix L is clesi+ 1 andi — 1. The Laplacian of the information flow

positive semidefinite with one eigenvalue at zero andiso digraph is
is nonincreasing along solutions, proving tHat—1(0) is

stable. As for its attractivity, sincers, ..., z%) € S™ is com- 2 -1 0 0 0 -1
pact, we can apply the LaSalle invariance principle and con- -2 -0 0 0
clude that, for all initial conditionsS(x(t),...,2%(t)) — r—|% -t 2 -0 0
ker L = span1. Therefore, there exists @' real-valued 0 S
function s(t) such thatsin(Li(z3 — «)) — s(t) for all Pl 8 8 _01 31 _21

i. Let @ = {x3 : W(z3) < 1 — min{cos(2n/n),0}}.
The set() is positively invariant. Moreover, since for eachWe present simulation results for the following two forma-

z3 € Q and eachi € {1,...,n}, 1 — COS(Li(JI3 —a)) < tions.
W(z3) < 1—min {cos 2X,0}, we havecos(L’(z3 —a)) > A. The unicycles converge to a circular formation
min{cos(27/n),0}, so that whereby they are uniformly distributed on the circle

in a counter-clockwise cyclic ordef1,2,3,4,5,6}. To

[L*(ws — )| < min{2m/n, 7/2} modulo2r. (20) achieve this formation the vector is set as:a =

Now let z3(0) be an arbitrary initial condition inQ. [0 2r 4r Ox 8¢ NT’“]T.

Since for alli € {1,...,n}, |L'(z3 — a)] < =/2 B. The unicycles converge to a circular formation
we can invert thesin function and deduce thatvi € whereby they are uniformly distributed on half of the
{1,...,n}) Li(xs — a) — arcsin s(t) mod 2, or L(z3 — circle in a counter-clockwise cyclic ordefl,2,3,4,5,6}.

a) — larcsins(t) mod 27. Since ker L = ker LT = To achieve this formation the vectar is set asia =

spanl, we havel' L(z3 — o) = 0, and therefore it must [0 27 4z 67 &z 10r]



Figures 3 and 4 show the simulations results for cases @FCP in Proposition V.3 which assumes thdtc R, rather
and B using feedback (21) with the following parametersthan S*, but globally asymptotically stabilizes the goal set

r=1v =1, vy = 0.9, and K = 1. Empirically, we
observed that by either increasing or decreadindpeyond
1 the convergence of the centres of rotation degrades.
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Global solution of CFCP

The passivity-based design in Section V took into account,
the fact thatz, € S* and so the stabilization was performed

modulo2x. This was accomplished by using the functioh  [15]
in (17), which is27-periodic with respect te}, i = 1,..., n.
Moreover, the centres’(z?), upon which the output (13) [16]
depends, ar@r-periodic with respect ta?, j = 1,...,n.

Motivated by the fact that several results in literature)ud-
ing the work in [6], do not account for the fact thaf € S*,

T", hence solving CFCP globally.

Proposition V.4 (Global solution of CFCP for undirected
information flow graph) Assume that the information flow
graph is undirected and has a globally reachable node. Let
3 v >0, and let p : R — R" be defined as(y) = ¢(v)y,
where¢ : R® — (0,+00) is a locally Lipschitz map such
that supg=. ||¢|| < v. Then, there exist&™ > 0 such that,
2 ] for all K € (0, K*), the feedback

uf = v —@i(L(zs — @)
' (22)

u12: _Khl(x)7 Zzl7ana

where h(x) is defined in(13) and ¢; denotes thei-th
component ofp, globally asymptotically stabilizeE in (6)
and solves CFCP globally when the state space is taken to
be X = R3".

To prove this result one cannot use the same method as
that of Proposition V.3 becausé (¢) is no longer a solution
on the compact ses§’.
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20ne possible choice of functiap is p(y) = v1 min{1, 1/||y||}y, with

in this section we present a variation of the controller s@v 0 < v < v.



