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Abstract— We investigate the following problem: design a
distributed control law making n kinematic unicycles converge
to a common circle of prespecified radius, whose centre is
stationary but dependent on the initial conditions, and traverse
the circle in a desired direction. Moreover, the vehicles are
required to converge to a formation on the circle, expressed by
desired separations and ordering of the unicycles. We present
a solution for the case when the information flow graph is
undirected. In part II of this paper we generalize the solution
to the case of arbitrary information flow graphs, and to the
case of dynamic unicycles.

I. I NTRODUCTION

Consider a system ofn kinematic unicycles, withn ≥ 2,
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ẋi
3 = ui

2

i = 1, . . . , n. (1)

The state of unicyclei is xi = (xi
1, x

i
2, x

i
3) ∈ R

2 × S1,
whereS1 is the set(R mod 2π) of real numbers modulo
2π, diffeomorphic to the unit circle. The state space of the
overall system isX = (R2×S1)n. Let χ = col(x1, · · · , xn)
be the overall state, and letx3 = col(x1
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can be written in the driftless forṁχ = g(χ)u, with
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We will assume that each unicycle has access to its own
absolute heading (this can be achieved with an on-board
compass) and that it can exchange relative information with
some other unicycles. As is customary in the multi-agent
literature, the information flow shall be modelled by a
directed graphG. Each node ofG represents a unicycle,
and the edges ofG represent which unicycles exchange
information. Specifically, an edge from nodei to node j
means that unicyclei has access to its relative displacement
and relative heading with respect to unicyclej. Let L denote
the Laplacian of the digraphG of the n-unicycles. We will
use the notationLi for the i-th row of L, and we denote
L(2) = L⊗I2 whereI2 is the2×2 identity matrix. Refer to
[1] for an overview on algebraic graph theory and digraphs.
In this paper, we assume thatG is static, and it has a globally
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reachable node, i.e. a node with arcs from every other node
in the digraph. Equivalently, the graph has a spanning tree.A
useful characterization of this property, used in the following
sequel, is given in [2] as follows.

Lemma I.1 (Lemma 2, [2]). The digraphG has a globally
reachable node if and only if0 is a simple eigenvalue ofL.

By this lemma, if a digraph with LaplacianL has a
globally reachable node thenkerL = span1 where 1 =
col(1, . . . , 1) ∈ R

n and ker denotes the kernel. Note also
that, by the Gershgorin circle Theorem [3], the eigenvalues
of any Laplacian are either zero or have positive real part.
Thus, if the digraph has a globally reachable node, then all
the eigenvalues ofL have positive real part except for one
which is zero.

Circular Formation Control Problem (CFCP) . Consider
then-unicycles in (1). For a given static information flow di-
graphG with a globally reachable node, design a distributed
control law achieving the following objectives:

(i) Circular path following. For a suitable set of initial
conditions, the unicycles should converge to a common
circle of radius r > 0, whose centre is stationary
but dependent on the initial condition, and traverse
the circle in a desired direction (clockwise or counter-
clockwise). The unicycles’ forward speed should be
bounded away from zero.

(ii) Formation stabilization.On the circle in part (i) of
the problem, then-unicycles are required to converge
to a formation expressed by desired separations and
ordering of the unicycles.

In Section III, we give a more precise formulation of CFCP
as the problem of stabilizing a suitable subset of the overall
state spaceX . In this paper, we solve CFCP in the case where
the information flow graph is undirected, which corresponds
to the situation when the LaplacianL is symmetric. The
solution, presented in Section V (see Proposition V.3), relies
on recent results concerning the passivity-based stabilization
of closed sets [4], [5]. These results are briefly reviewed
in Section IV. In part II, we generalize the solution in two
directions: we allow the information graph to be an arbitrary
static directed graph with a globally reachable node, and we
present the solution to CFCP for dynamic unicycles. Our
control design for CFCP provides circular path following in
the counter-clockwise direction, but can be easily modified
to achieve clockwise path following.

Notation: In this paper we use the following notation. We
will denote by Sn the n-torus, i.e., the Cartesian product
S1×· · ·×S1, n times. IfA andB are two matrices or vectors,



col(A,B) denotes the matrix[A⊤ B⊤]⊤ where⊤ denotes
transpose, andblockdiag(A,B) denotes the block-diagonal
matrix with blocks A and B. If a1, . . . , an are scalars,
diag(a1, . . . , an) is the diagonal matrix with diagonal entries
ai. By φ(t, x0) we denote the solution oḟx = f(x) with
initial conditionx0. Given an intervalI of the real line and a
setS ∈ X , denote byφ(I, S) the setφ(I, S) := {φ(t, x0) :
t ∈ I, x0 ∈ S}. We use‖ · ‖S to denote the point-to-set
distance to a setS ⊂ X , Bα(x) an open ball of radiusα
centered atx, andBα(S) the set of points with distance less
thanα to S. Denote byN (S) a generic open neighbourhood
of S. We use the standard notationLfV to denote the Lie
derivative of aC1 function V along a vector fieldf on X .
For a functionf : Rn → R

m, f−1(0) = {x : f(x) = 0}
denotes the zero level set off . Finally, we denote byA⊗B
the Kronecker product of two matricesA andB.

II. PREVIOUS RESULTS

The work in [6], [7] addresses the cyclic pursuit control
problem where agenti has communication link with agenti+
1. The authors obtain circular formations and show that the
resulting relative equilibria are generalized regular polygons.
The cyclic pursuit law in [6] has been studied in many other
works, such as [8] and [9].

Another important research direction on formation sta-
bilization is found in [10], where the authors investigate
problems of synchronization for systems of particles modeled
as unicycles. Potential functions are defined for various tasks
and used to generate gradient control laws. Among other
things, the authors stabilize the unicycles to a circle. The
results are based on an all-to-all communication assumption.
In [11] the authors extend the results in [10] to address
different communication topologies. First, they provide a
direct extension to the case of undirected time invariant com-
munication topologies. Then they provide dynamic feedbacks
to address the case where the communication topology is
time varying and directed. The ideas used in [10] and [11]
are incorporated in several other works, such as [12], [13].

The results above deal mainly with symmetric formations.
In particular, the formations in [6], [7] are regular polygons.
In [10] the authors show that general formations can be
stabilized using phase potentials that are minimum at desired
phase formations; the control design in [10] focuses on
symmetric formations using specific potentials. In this paper
we present controllers that stabilize arbitrary formations on
the circle. Selecting the formation to be stabilized does not
require extra design; the formation is simply encoded in a
vector parametrizing our feedback controller.

As mentioned earlier, our results in part II solve the
circular formation problem for general static graphs. All our
controllers are time invariant static feedbacks. The informa-
tion required by unicyclei is the relative displacement and
relative heading with respect to neighbouring unicycles, and
its own absolute heading. In [11], the authors allow for time
varying and directed graphs by using dynamic feedbacks
utilizing consensus filters that asymptotically reconstruct the

averaged quantities required by the all-to-all stabilizing con-
trol law. The scheme in [11] requires extra communication,
since particles must exchange relative estimated variables, in
addition to relative displacement and relative heading.

III. CFCP AS A SET STABILIZATION PROBLEM

For i ∈ {1, . . . , n}, define the functionci(xi) as
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the normalized velocity vector(cosxi
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see Figure 1. Therefore, the pointci(xi) is the centre of the
circle that the unicycle would follow in the counter-clockwise
direction if its controls were chosen asui

1 = v andui
2 = v/r.

Using the functionsci in (2), part (i) of the CFCP can be
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Fig. 1. The centreci(xi)

stated as the stabilization of the set

Γ1 = {χ : ci+1(xi+1) = ci(xi), i = 1, · · · , n} (3)

with the additional requirements that the linear velocities of
the unicycles be bounded away from zero and thatci(xi(t)),
i = 1, . . . , n, tend to constant values. In the above, and
in what follows, the indicesi ∈ {1, . . . , n} are evaluated
modulon. For instance,n+ 1 is identified with1.

Remark. The function ci(xi) gives a smooth mapR2 ×
S1 → R

2 × S1, (xi
1, x

i
2, x

i
3) 7→ (ci(xi), xi

3) which is a
diffeomorphism. Using this, instead of the dynamics (1), one
can express the unicycle model as
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We now turn our attention to part (ii) of CFCP. Consider a
formation where unicyclej travels on the circle at distance
d from unicycle i, as shown in Figure 2. This formation
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Fig. 2. Formation on the circle



constraint can be equivalently expressed asxi
3 − xj

3 =
2 sin−1

(

d
2r

)

mod 2π. In light of this observation, part (ii) of
CFCP can be restated as the stabilization of the configuration
on the circle where the unicycles headings differ by prespec-
ified constant angles, orxi

3(t) = ᾱ(t) + αi mod 2π, i =
1, · · · , n, for some differentiable function̄α(t) and desired
anglesαi. The anglesαi ∈ [0, 2π) determine the ordering
of the unicycles on the circle and their inter-distances. Part
(ii) of CFCP can be restated as the stabilization of the set
Γ2 defined as

Γ2 = {χ : L(x3 − α) = 0 mod 2π} (5)

whereα = col(α1, · · · , αn) is the vector of desired angles
specifying the formation. Notice, indeed, that since we
assume thatG has a globally reachable node,kerL = span1
andχ(t) ∈ Γ2 if and only if xi

3(t) = ᾱ(t) + αi mod 2π,
i = 1, · · · , n. Using the setsΓ1 in (3) andΓ2 in (5), CFCP
can be restated as follows.

CFCP (equivalent statement). Consider then-unicycles
in (1). For a given information flow digraphG with a glob-
ally reachable node, and a desired formation specification
expressed by a vector of anglesα ∈ Sn, design a distributed
control law which asymptotically stabilizes1 the set

Γ = Γ1 ∩ Γ2

= {χ : L(x3 − α) = 0, ci+1(xi+1) = ci(xi), 1 ≤ i ≤ n},
(6)

where ci(xi) is defined in (2). Additionally, the linear ve-
locitiesui

1 and angular velocitiesui
2 of the unicycles should

be bounded away from zero onΓ, and the unicycles should
have acommon asymptotic centre of rotation,by which it is
meant that for allχ(0) ∈ X there exists̄c ∈ R

2 such that
c(xi(t)) → c̄ as t → ∞, i = 1, . . . , n.

Note thatΓ is closed but not compact since there are no
restrictions on the centres of rotationci(xi).

IV. PASSIVITY-BASED SET STABILIZATION

In this section we review recent results on the stabilization
of closed sets by means of passivity-based feedback. We
begin with some basic stability definitions concerning a
smooth dynamical systemΣ : ẋ = f(x), x ∈ X , and a
closed setΓ ⊂ X .

Definition IV.1 (Set stability and attractivity). The setΓ is

1) stablefor Σ if, for all ε > 0, there exists a neighbour-
hoodN (Γ) such thatφ(R+,N (Γ)) ⊂ Bε(Γ).

2) anattractor for Σ if there exists a neighbourhoodN (Γ)
such that, for allx0 ∈ N (Γ), limt→∞ ‖φ(t, x0)‖Γ = 0.
It is aglobal attractorif it is a attractor withN (Γ) = X .

3) [globally] asymptotically stablefor Σ if it is stable and
attractive [globally attractive] forΣ.

All stability notions in Definition IV.1 can be relativized
to a subset of the state space as follows.

Definition IV.2 (Relative set stability and attractivity). Let
O ⊂ X be such thatO ∩ Γ 6= ∅. We say thatΓ is

1The notion of asymptotic stability of a set is reviewed in Definition IV.1.

stable relative toO for Σ if, for any ε > 0, there exists a
neighbourhoodN (Γ) such thatφ(R+,N (Γ)∩O) ⊂ Bε(Γ).
Similarly, one modifies all other notions in Definition IV.1
by restricting initial conditions to lie inO.

The next definition presents a notion of boundedness near
a set.

Definition IV.3 (Local uniform boundedness). Σ is locally
uniformly bounded (LUB) nearΓ if for eachx ∈ Γ there exist
positive scalarsλ andm such thatφ(R+, Bλ(x)) ⊂ Bm(x).

Now we turn our attention to the control-affine system

ẋ = f(x) +

m
∑

i=1

gi(x)ui := f(x) + g(x)u

y = h(x)

(7)

with state spaceX ⊂ R
n that is either an open subset of

R
n or a smooth submanifold. We assume thatf andgi, i =

1, . . . ,m, are smooth vector fields onX , andh : X → R
m is

a smooth mapping. Suppose that system (7) is passive with
C1 nonnegative storage functionV : X → R, i.e., [14],

(∀x ∈ X ) LfV (x) ≤ 0 andLgV (x) = h(x)⊤, (8)

whereLgV = [Lg1V · · · LgmV ]. We consider the class of
passivity-based feedbacks defined as follows.

Definition IV.4 (Passivity-based feedback). A smooth func-
tion u = −ϕ(x), whereϕ(x) is such thatϕ(x) = 0 whenever
h(x) = 0, andh(x)⊤ϕ(x) > 0 wheneverh(x) 6= 0, is called
a passivity-based feedback (PBF) with respect to the output
h(x).

Now suppose thatΓ ⊂ X is a closed set which is positively
invariant for the open-loop system, i.e., such that, for all
x0 ∈ Γ, the solution of the open-loop systeṁx = f(x)
throughx0 remains inΓ for all positive times. The results
in [4] answer this question: under what conditions does a
passivity-based feedback with respect toh(x) asymptotically
stabilize the setΓ for the control system (7)? The answer to
this question relies on the following notion of detectability.
Let O denote themaximalopen-loop invariant set contained
in h−1(0), that is, the set with the property that if̂O is
any other open-loop invariant set contained inh−1(0), then
Ô ⊂ O.

Definition IV.5 (Γ-detectability). System (7) islocally Γ-
detectableif Γ is asymptotically stable relative toO for
the open-loop system, andΓ-detectable if Γ is globally
asymptotically stable relative toO for the open-loop system.

In [5], the following a procedure was introduced to design
set stabilizing controllers.

Set stabilization procedure:Let Γ be a closed goal set
that is controlled invariant for (7), i.e., there exists a smooth
feedbacku⋆(x) such thatΓ is a positively invariant set for
the closed-loop systeṁx = f(x) + g(x)u⋆(x).
1. Candidate storage function and feedback transformation.

a) Find a candidateC1 storage functionV : X → R
+

such thatΓ ⊂ V −1(0) andLfV (x) ≤ 0 for all x ∈ X .



b) Find, if possible, a locally Lipschitz matrix-valued
function β1(x) : X → R

m×k, for some k ∈
{1, . . . ,m − 1}, such thatβ1(x) has full rankk and
LgV (x)β1(x) = 01×k for all x ∈ X .

c) Let β2(x) : X → R
m×m−k be any locally Lipschitz

function such that[β1(x) β2(x)] is nonsingular for all
x ∈ X , and define the feedback transformation

u = β1(x)ū+ β2(x)ũ, (9)

where ū ∈ R
k and ũ ∈ R

m−k are new control inputs.
Define an output functionh(x) := Lgβ2

V (x)⊤.

2. Γ-detectability enforcement.Find, if possible, a feedback
ū(x) such thatΓ is (globally) asymptotically stable rela-
tive to O for the systemẋ = [f(x) + g(x)β1(x)ū(x)]|O,
whereO is the maximal subset ofh−1(0) invariant under
the vector fieldf + gβ1ū.

3. Passivity-based stabilization.Pick any PBF ũ(x), and
let u(x) = β1(x)ū(x) + β2(x)ũ(x), where ū(x) is the
feedback chosen in step 2.

Proposition IV.6 (Set stabilizing procedure). The feedback
u(x) designed according to the procedure above has the
following properties:

(a) If Γ is compact, thenu(x) asymptotically stabilizes it.
(b) If Γ is closed and unbounded, thenu(x) asymptotically

stabilizes it provided that the closed-loop system is LUB
nearΓ.

(c) In both cases above, if all trajectories of the closed-loop
system are bounded, and theΓ-detectability property
enforced in step 2 of the procedure is global, then the
stabilization ofΓ is global as well.

In the rest of this paper we apply this procedure to solve
CFCP.

V. SOLUTION OF CFCPFOR UNDIRECTED GRAPHS

In this section we use the passivity-based set stabilization
procedure outlined before to solve CFCP when the informa-
tion flow digraph is undirected.

Step 1: Candidate storage function.
Let c(χ) = col(c1(x1), · · · , cn(xn)) ∈ R

2n with ci(xi)
defined in (2). Consider the following candidate storage
function

V (χ) =
1

2
c(χ)⊤L(2) c(χ) (10)

SinceL is symmetric,L(2) is positive semidefinite. Also,
since the information digraph has a globally reachable node,
from Lemma I.1 we have thatL(2) has2 eigenvalues at0
with geometric multiplicity2, and thus

kerL(2) = Image {col(I2, · · · , I2)} , (11)

from which it follows thatV −1(0) is the set where all the
centres of rotation coincide, i.e.,V −1(0) = Γ1. Based on
the observation that any feedback of the form(ui

1, u
i
2) =

(ūi(χ), ūi(χ)/r), i = 1, · · · , n, keeps the centres of rotation,

and henceV , constant along solutions of the closed-loop
system, we choose the feedback transformation

ui =

[

ui
1

ui
2

]

= βi
1 ū

i+βi
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i =

[

1
1/r

]

ūi+

[

0
1

]

ũi, 1 ≤ i ≤ n.

Setting, fori = 1, . . . , n, ui
1 = ūi, ui

2 = ūi/r+ũi, we obtain
the feedback transformation

u = β1 ū+ β2 ũ, (12)

with β1 = blockdiag{[1 1/r]⊤, · · · , [1 1/r]⊤}, β2 =
blockdiag{[0 1]⊤, · · · , [0 1]⊤}. The above feedback trans-
formation has the property thatLgV (χ)β1 = 01×n. More-
over,LfV = 0 becausef = 0. Therefore, for any feedback
ū(χ), the system with input̃u and outputy = h(χ) :=
Lgβ2

V (χ)⊤ is passive. The outputy is given as follows

y = h(χ) = −rR(x3)L(2) c(χ) (13)

where

R(x3) = blockdiag {[ cosx1

3
sinx1

3] , · · · , [ cosx
n

3
sinxn

3 ]}

Step 2:Γ-detectability enforcement.

Lemma V.1. Let ū(χ) be any feedback which is bounded
away from zero component-wise, i.e., for someε > 0,
infχ ūi(χ) ≥ ε > 0 for i = 1, · · · , n. Then, the maximal
subset ofh−1(0) invariant under the vector fieldf + gβ1ū
is Γ1, i.e.,O = Γ1.

Proof: As observed earlier, if̃u = 0 and infχ ū >
ε > 0 component-wise, then each unicycle moves along a
circle of radiusr, and so the vectorL(2) c, in the output
function (13), is constant. Suppose that, for some solution
χ(t) of the system withũ = 0, h(χ(t)) ≡ 0. Then, either
L(2) c(χ(t)) = 0 which, because of (11), is only possible
when all the centres coincide, i.e., whenχ(t) ∈ Γ1, or,
for some i, the constant vectorL(2)c is perpendicular to
the vector [0 0 · · · cosxi

3(t) sinxi
3(t) · · · 0 0]⊤, for

i = 1, · · · , n and t ∈ R, implying that xi
3(t) is constant.

However, by assumption the unicycles move alongn circles
with nonzero linear velocity vectors, and therefore the angle
xi
3(t) is not constant.

As mentioned earlier, the functionsci(xi) in (2) remain con-
stant along the solutions of (1) with feedback transformation
(12) andũ = 0. When ũ = 0, the restriction of the vector
field f + gβ1ū to O = Γ1 is

ẋi
1 = ūi cosxi

3, ẋi
2 = ūi sinxi

3, ẋi
3 =

1

r
ūi (14)

Using the model (4), the dynamics above takes the form

ċi1 = 0, ċi2 = 0, ẋi
3 =

1

r
ūi (15)

i.e., the dynamics of the unicycles are entirely described by
those of their angular velocitieṡxi

3. Under the assumption of
Lemma V.1, the goal setΓ can be expressed as

Γ = {χ ∈ O : L(x3 − α) = 0}, (16)

so we need to design̄u to stabilize the set{x3 : L(x3−α) =
0}. In designing the stabilizer, we must take into account



the fact thatxi
3 ∈ S1, so the stabilization must be performed

modulo 2π. To fulfill the assumption of Lemma V.1, we
also need̄ui to be bounded away from zero. There are many
ways to obtain these objectives. We base our design on the
following candidate Lyapunov function

W (x3) =
n
∑

i=1

[1− cos(Li(x3 − α))] (17)

whereLi is thei-th row of the LaplacianL. Note thatW ≥ 0
and W = 0 if and only if Li(x3 − α) = 0 mod 2π, for
i = 1, · · · , n. ThusW−1(0) is precisely the set we wish to
stabilize. The derivative ofW along (14) is

Ẇ =

n
∑

i=1

sin(Li(x3 − α))Li ū/r =
1

r
S(x3)

⊤L ū, (18)

where

S(x3) =







sin(L1(x3 − α))
...

sin(Ln(x3 − α))






.

Lemma V.2. The feedback

ūi = v − v1 sin(L
i(x3 − α)), i = 1, . . . , n, (19)

where andv > v1 > 0 are design constants, is bounded
away from zero component-wise and makes the setΓ asymp-
totically stable relative toΓ1 for system(1) after feedback
transformation (12) and ũ = 0, thus enforcing localΓ-
detectability of the system with inputũ and outputy = h(χ)
in (13).

Proof: By Lemma V.1, the maximal subset ofh−1(0)
invariant under the vector fieldf+gβ1ū isO = Γ1. Referring
to the system restriction onO in (15), to prove the Lemma
it suffices to show that the setW−1(0) is asymptotically
stable for the systeṁxi

3 = ūi/r, i = 1, · · · , n, with ūi given
in (19). By substituting the control (19) into the derivative
(18) we getẆ = −v1S(x3)

⊤LS(x3). The matrix L is
positive semidefinite with one eigenvalue at zero and soW
is nonincreasing along solutions, proving thatW−1(0) is
stable. As for its attractivity, since(x1

3, . . . , x
n
3 ) ∈ Sn is com-

pact, we can apply the LaSalle invariance principle and con-
clude that, for all initial conditions,S(x1

3(t), . . . , x
n
3 (t)) →

kerL = span1. Therefore, there exists aC1 real-valued
function s(t) such that sin(Li(x3 − α)) → s(t) for all
i. Let Ω = {x3 : W (x3) < 1 − min{cos(2π/n), 0}}.
The setΩ is positively invariant. Moreover, since for each
x3 ∈ Ω and eachi ∈ {1, . . . , n}, 1 − cos(Li(x3 − α)) ≤
W (x3) < 1−min

{

cos 2π
n
, 0
}

, we havecos(Li(x3 −α)) >
min{cos(2π/n), 0}, so that

|Li(x3 − α)| < min{2π/n, π/2} modulo2π. (20)

Now let x3(0) be an arbitrary initial condition inΩ.
Since for all i ∈ {1, . . . , n}, |Li(x3 − α)| < π/2
we can invert the sin function and deduce that(∀i ∈
{1, . . . , n}) Li(x3 − α) → arcsin s(t) mod 2π, or L(x3 −
α) → 1 arcsin s(t) mod 2π. Since kerL = kerL⊤ =
span1, we have1⊤L(x3 − α) = 0, and therefore it must

be that1⊤
1 arcsin s(t) = 0 mod 2π, or n arcsin s(t) = 0

mod 2π. In other words,arcsin s(t) ∈ {2πk/n+2πl, k, l ∈
N}. But since|Li(x3 − α)| < min{2π/n, π/2} mod 2π, it
must be thatarcsin s(t) = 0 mod 2π, proving thatW−1(0)
is attractive, and hence asymptotically stable.

Step 3: Passivity-based stabilization.
We are now ready to solve CFCP in the case of undirected

information flow graph.

Proposition V.3 (Solution of CFCP for undirected informa-
tion flow graph). Assume that the information flow graph
is undirected and has a globally reachable node. For any
v > v1 > 0, there existsK⋆ > 0 such that for all
K ∈ (0,K⋆) the feedback

ui
1 = v − v1 sin(L

i(x3 − α))

ui
2 =

ui
1

r
−Khi(χ), i = 1, · · · , n

(21)

whereh(χ) is given in (13), solves CFCP and renders the
goal setΓ in (6) asymptotically stable, andΓ1 in (3) globally
asymptotically stable for the closed-loop system.

The proof is omitted due to space limitations.

Remark. Note that unicyclei needs to compute

hi(χ) = [0 0 · · · − r cosxi
3 − r sinxi

3 · · · 0 0]L(2)c(χ)

and Li(x3 − α). In order to perform this computation,
the unicycle needs to sense its relative displacement and
orientation with respect to its neighbours in the information
flow graph, as well as its absolute orientationxi

3. Therefore,
feedback (21) is a distributed control law respecting the
information flow graph.

Simulations

We consider6 unicycles exchanging information in a
cyclic manner: unicyclei exchanges information with unicy-
cles i+ 1 and i− 1. The Laplacian of the information flow
digraph is

L =

















2 − 1 0 0 0 − 1
− 1 2 − 1 0 0 0
0 − 1 2 − 1 0 0
0 0 − 1 2 − 1 0
0 0 0 − 1 2 − 1
− 1 0 0 0 − 1 2

















.

We present simulation results for the following two forma-
tions.
A. The unicycles converge to a circular formation
whereby they are uniformly distributed on the circle
in a counter-clockwise cyclic order{1, 2, 3, 4, 5, 6}. To
achieve this formation the vectorα is set as: α =
[

0 2π
6

4π
6

6π
6

8π
6

10π
6

]⊤
.

B. The unicycles converge to a circular formation
whereby they are uniformly distributed on half of the
circle in a counter-clockwise cyclic order{1, 2, 3, 4, 5, 6}.
To achieve this formation the vectorα is set as:α =
[

0 2π
10

4π
10

6π
10

8π
10

10π
10

]⊤
.



Figures 3 and 4 show the simulations results for cases A
and B using feedback (21) with the following parameters:
r = 1, v = 1, v1 = 0.9, and K = 1. Empirically, we
observed that by either increasing or decreasingK beyond
1 the convergence of the centres of rotation degrades.
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Fig. 3. CFCP Simulation - A
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Fig. 4. CFCP Simulation - B

Global solution of CFCP

The passivity-based design in Section V took into account
the fact thatxi

3 ∈ S1 and so the stabilization was performed
modulo2π. This was accomplished by using the functionW
in (17), which is2π-periodic with respect toxi

3, i = 1, . . . , n.
Moreover, the centresci(xi), upon which the output (13)
depends, are2π-periodic with respect toxj

3, j = 1, . . . , n.
Motivated by the fact that several results in literature, includ-
ing the work in [6], do not account for the fact thatx3 ∈ S1,
in this section we present a variation of the controller solving

CFCP in Proposition V.3 which assumes thatx3
i ∈ R, rather

than S1, but globally asymptotically stabilizes the goal set
Γ, hence solving CFCP globally.

Proposition V.4 (Global solution of CFCP for undirected
information flow graph). Assume that the information flow
graph is undirected and has a globally reachable node. Let
v > 0, and let2 ϕ : Rn → R

n be defined asϕ(y) = φ(y)y,
whereφ : Rn → (0,+∞) is a locally Lipschitz map such
that sup

Rn ‖ϕ‖ < v. Then, there existsK⋆ > 0 such that,
for all K ∈ (0,K⋆), the feedback

ui
1 = v − ϕi(L(x3 − α))

ui
2 =

ui
1

r
−Khi(χ), i = 1, · · · , n,

(22)

where h(χ) is defined in (13) and ϕi denotes thei-th
component ofϕ, globally asymptotically stabilizesΓ in (6)
and solves CFCP globally when the state space is taken to
beX = R

3n.

To prove this result one cannot use the same method as
that of Proposition V.3 becausexi

3(t) is no longer a solution
on the compact setS1.
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