# Reduction Theorems for Stability of Closed Sets with Application to Backstepping Control Design

Mohamed I. El-Hawwary<sup>a</sup>, Manfredi Maggiore<sup>a</sup>

<sup>a</sup>Department of Electrical and Computer Engineering University of Toronto, Toronto, Ontario M5S 3G4, Canada

#### Abstract

We present a solution to the following reduction problem for asymptotic stability of closed sets in nonlinear systems. Given two closed, positively invariant subsets of the state space of a nonlinear system,  $\Gamma_1 \subset \Gamma_2$ , assuming that  $\Gamma_1$  is asymptotically stable relative to  $\Gamma_2$ , find conditions under which  $\Gamma_1$  is asymptotically stable. We also investigate analogous reduction problems for stability and attractivity. We illustrate the implications of our results on the stability of sets for cascade-connected systems and on a hierarchical control design problem. For upper triangular control systems, we present a reduction-based backstepping technique that does not require the knowledge of a Lyapunov function, and mitigates the problem of controller complexity arising in classical backstepping design.

## 1. Introduction

Consider a dynamical system  $\Sigma$  modelled as

$$\Sigma: \dot{x} = f(x), \tag{1}$$

with state space a domain  $\mathcal{X} \subset \mathbb{R}^n$ . Assume that f is locally Lipschitz on  $\mathcal{X}$ , and let  $\phi(t, x_0)$  denote the solution of (1) at time t with initial condition  $x(0) = x_0$ . Suppose that two closed sets  $\Gamma_1 \subset \Gamma_2$  are positively invariant for  $\Sigma$ . That is, for all  $x_0 \in \Gamma_i$ , i = 1, 2, and for all  $t \ge 0$ ,  $\phi(t, x_0) \in \Gamma_i$ . Suppose further that the set  $\Gamma_1$  is (globally) asymptotically stable *relative to*  $\Gamma_2$ , i.e., it is (globally) asymptotically stable when initial conditions of  $\Sigma$  are restricted to lie on  $\Gamma_2$ . In this paper, we investigate the following

Reduction Problem for Asymptotic Stability (RPAS): Find conditions under which  $\Gamma_1$  is (globally) asymptotically stable relative to  $\mathcal{X}$ .

We also investigate reduction problems for stability and attractivity in which  $\Gamma_1$  is, respectively, stable or (globally) attractive relative to  $\Gamma_2$ , and we seek conditions under which  $\Gamma_1$  is, respectively, stable or (globally) attractive relative to  $\mathcal{X}$ .

The above reduction problems were formulated for the first time by P. Seibert and J.S. Florio in [1,2]. In [3], Seibert and Florio presented reduction theorems for (global) stability and (global) asymptotic stability of dynamical systems on metric spaces under the restriction that  $\Gamma_1$  is compact. To date, these are the most general results available for compact  $\Gamma_1$ . See also work by B.S. Kalitin [4] and co-workers [5].

In the linear time-invariant setting, the reduction problem takes on a familiar form. For a system  $\dot{z} = Az$ with  $z \in \mathcal{Z} = \mathbb{R}^n$ , if  $\mathcal{V} \subset \mathcal{Z}$  is an A-invariant subspace, then a necessary and sufficient condition for z = 0 to be asymptotically stable is that z = 0 be asymptotically stable relative to  $\mathcal{V}$ , and that  $\mathcal{V}$  be asymptotically stable. Indeed, by A-invariance of  $\mathcal{V}$ , there exists an isomorphism  $T : z \mapsto (x, y)$ , such that the system takes on the cascade-connected form

$$\dot{x} = A_{11}x + A_{12}y$$
  
 $\dot{y} = A_{22}y,$ 
(2)

where  $T(\mathcal{V}) = \{(x, y) : y = 0\}$ . The asymptotic stability of z = 0 relative to  $\mathcal{V}$  is equivalent to the property  $\sigma(A_{11}) \subset \mathbb{C}^-$ , while the asymptotic stability of  $\mathcal{V}$  is equivalent to the property  $\sigma(A_{22}) \subset \mathbb{C}^-$ . In the context

Published in Automatica, vol. 49, 2013, pp. 214–222

<sup>\*</sup> This paper was not presented at any IFAC meeting. Corresponding author M. Maggiore. Tel. +416-946 5095. Fax +419-978 0804.

*Email addresses:* melhawwary@control.utoronto.ca (Mohamed I. El-Hawwary), maggiore@control.utoronto.ca (Manfredi Maggiore).

of nonlinear systems, researchers in control theory have focused on another special case of the reduction problem which generalizes the linear result above. Consider a cascade-connected system of the form

$$\begin{aligned} \dot{x} &= f(x, y) \\ \dot{y} &= g(y), \end{aligned} \tag{3}$$

where f(0,0) = 0 and g(0) = 0. Letting  $\Gamma_1 = \{(x,y) : x = y = 0\}$  and  $\Gamma_2 = \{(x,y) : y = 0\}$ , we have that  $\Gamma_1$  is (globally) asymptotically stable relative to  $\Gamma_2$  if and only if x = 0 is (globally) asymptotically stable for the subsystem  $\dot{x} = f(x,0)$  and the y subsystem does not have finite escape times. Here, the reduction problem seeks conditions under which the equilibrium (x,y) = (0,0) is (globally) asymptotically stable for (3). Vidyasagar [6] showed that the required condition is the asymptotic stability of y = 0 for  $\dot{y} = g(y)$  (this is actually a corollary of Seibert-Florio's results in [3]). Vidyasagar's result was extended by various researchers, see [7–12]. While the equilibrium stability problem for cascade-connected systems has been researched with vigour, the more general RPAS has received little attention, particularly in the case when the set  $\Gamma_1$  is not compact. To highlight the distinction between RPAS and the problem of stability of cascade-connected systems, it is worth noting that while in the LTI setting the A-invariance of the subspace  $\mathcal{V}$  implies the existence of the upper triangular representation (2), in the nonlinear setting this is not the case. Specifically, the positive invariance of  $\Gamma_2$  does not guarantee the existence of a coordinate transformation making system  $\Sigma$  take on the cascade-connected form (3) with  $\Gamma_2 = \{y = 0\}$ .

The main contribution of this paper is the extension, in Section 2, of Seibert-Florio's reduction theorems for the case when  $\Gamma_1$  is not compact, and a new reduction theorem for attractivity. We also investigate the implications of our reduction theorems on three problems. For cascade-connected systems of the form (3), in Section 3 we derive conditions under which the asymptotic stability of a set  $\tilde{\Gamma}_1$  for the system  $\dot{x} = f(x, 0)$ implies that  $\Gamma_1 := \tilde{\Gamma}_1 \times 0$  is asymptotically stable for (3). For a control system of the form

$$\dot{x} = f(x, u),$$

in Section 4 we investigate a problem of hierarchical control design involving the simultaneous asymptotic stabilization of a chain of nested closed sets  $\Gamma_1 \subset \Gamma_2 \subset \cdots \subset \Gamma_l$ . Such a problem is encountered in applications in which the designer must simultaneously meet control specifications that can be formulated hierarchically. One such application is illustrated in Example 20. Finally, in Section 5 we specialize the hierarchical control design idea to derive a *reduction-based backstepping* technique to stabilize closed sets for upper triangular systems. This procedure does not require the recursive construction of a Lyapunov function, and it mitigates the problem of controller complexity arising in classical backstepping. Besides the problems discussed in this paper, RPAS arises in other problems of nonlinear control. One of them is the passivity-based stabilization of closed sets. In [13], we used the solution of RPAS presented here<sup>1</sup> to determine conditions for stabilizability of a closed set by passivity-based feedback.

Notation: Given an interval I of the real line and a set  $S \in \mathcal{X}$ , we denote by  $\phi(I, S)$  the set  $\phi(I, S) := \{\phi(t, x_0) : t \in I, x_0 \in S\}$ . Given a closed nonempty set  $S \subset \mathbb{R}^n$ , a point  $x \in \mathbb{R}^n$ , and a vector norm  $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$ , the point-to-set distance  $\|x\|_S$  is defined as  $\|x\|_S := \inf\{\|x-y\| : y \in S\}$ . Throughout this paper, we will use the Euclidean norm  $\|x\| = (x^\top x)^{1/2}$ . Given two subsets  $S_1$  and  $S_2$  of  $\mathcal{X}$ , the distance of  $S_1$  to  $S_2$ ,  $d(S_1, S_2)$ , is defined as  $d(S_1, S_2) := \sup\{\|x\|_{S_2} : x \in S_1\}$ . For a scalar  $\alpha > 0$ , a point  $x \in \mathcal{X}$ , and a set  $S \subset \mathcal{X}$ , define the open sets  $B_\alpha(x) = \{y \in \mathcal{X} : \|y - x\| < \alpha\}$  and  $B_\alpha(S) = \{y \in \mathcal{X} : \|y\|_S < \alpha\}$ . We denote by cl(S) the closure of the set S, and by  $\mathcal{N}(S)$  an open neighbourhood of S. For  $x_0 \in \mathcal{X}$ , we will denote by  $L^+(x_0)$  the positive limit set of the solution  $\phi(t, x_0)$ , defined as  $L^+(x_0) := \{p \in \mathcal{X} : (\exists\{t_n\} \subset \mathbb{R}^+) t_n \to +\infty, \phi(t_n, x_0) \to p\}$ . The negative limit set of  $\phi(t, x_0)$  is denoted  $L^-(x_0)$ .

# 2. Main Results

In this section, we present solutions to the reduction problems for stability, attractivity, and asymptotic stability. We begin with stability definitions.

Let  $\Gamma \subset \mathcal{X}$  be a closed positively invariant for  $\Sigma$  in (1).

 $<sup>^{1}</sup>$  In [13], the three reduction theorems presented in this paper were reported without proof.

- **Definition 1 (Set stability and attractivity)** (i)  $\Gamma$  is *stable* for  $\Sigma$  if for all  $\varepsilon > 0$  there exists a neighbourhood  $\mathcal{N}(\Gamma)$  such that  $\phi(\mathbb{R}^+, \mathcal{N}(\Gamma)) \subset B_{\varepsilon}(\Gamma)$ .
- (ii)  $\Gamma$  is an *attractor* for  $\Sigma$  if there exists a neighbourhood  $\mathcal{N}(\Gamma)$  such that  $\lim_{t\to\infty} \|\phi(t, x_0)\|_{\Gamma} = 0$  for all  $x_0 \in \mathcal{N}(\Gamma)$ .
- (iii)  $\Gamma$  is a global attractor for  $\Sigma$  if it is an attractor with  $\mathcal{N}(\Gamma) = \mathcal{X}$ .
- (iv)  $\Gamma$  is a uniform semi-attractor for  $\Sigma$  if for all  $x \in \Gamma$ , there exists  $\lambda > 0$  such that, for all  $\varepsilon > 0$ , there exists T > 0 yielding  $\phi([T, +\infty), B_{\lambda}(x)) \subset B_{\varepsilon}(\Gamma)$ .
- (v)  $\Gamma$  is [globally] asymptotically stable for  $\Sigma$  if it is stable and attractive [globally attractive] for  $\Sigma$ .

**Remark 2** The definitions above, except that of a uniform semi-attractor, are found in [14]. If  $\Gamma$  is not compact, then uniform semi-attractivity is a weaker property than the uniform attractivity notion found in [14] or [15].

**Definition 3 (Local stability and attractivity near**  $\Gamma_1$ ) Let  $\Gamma_1$  and  $\Gamma_2$ ,  $\Gamma_1 \subset \Gamma_2 \subset \mathcal{X}$ , be closed positively invariant sets. The set  $\Gamma_2$  is *locally stable near*  $\Gamma_1$  if for all  $x \in \Gamma_1$ , for all c > 0, and all  $\varepsilon > 0$ , there exists  $\delta > 0$  such that for all  $x_0 \in B_{\delta}(\Gamma_1)$  and all t > 0, whenever  $\phi([0,t],x_0) \subset B_c(x)$  one has that  $\phi([0,t],x_0) \subset B_{\varepsilon}(\Gamma_2)$ . The set  $\Gamma_2$  is *locally attractive near*  $\Gamma_1$  if there exists a neighbourhood  $\mathcal{N}(\Gamma_1)$  such that, for all  $x_0 \in \mathcal{N}(\Gamma_1)$ ,  $\phi(t,x_0) \to \Gamma_2$  at  $t \to +\infty$ .



Fig. 1. An illustration of the notion of local stability near  $\Gamma_1$ 

The definition of local stability can be rephrased as follows. Given an arbitrary ball  $B_c(x)$  centred at a point x in  $\Gamma_1$ , trajectories originating in  $B_c(x)$  sufficiently close to  $\Gamma_1$  cannot travel far away from  $\Gamma_2$  before first exiting  $B_c(x)$ ; see Figure 1. It is immediate to see that if  $\Gamma_1$  is stable, then  $\Gamma_2$  is locally stable near  $\Gamma_1$ , and therefore local stability of  $\Gamma_2$  near  $\Gamma_1$  is a necessary condition for the stability of  $\Gamma_1$ .

**Definition 4 (Relative set stability and attractivity)** Let  $\Gamma_1$  and  $\Gamma_2$ ,  $\Gamma_1 \subset \Gamma_2 \subset \mathcal{X}$ , be closed positively invariant sets. We say that  $\Gamma_1$  is *stable relative to*  $\Gamma_2$  for  $\Sigma$  if, for any  $\varepsilon > 0$ , there exists a neighbourhood  $\mathcal{N}(\Gamma_1)$  such that  $\phi(\mathbb{R}^+, \mathcal{N}(\Gamma_1) \cap \Gamma_2) \subset B_{\varepsilon}(\Gamma_1)$ . Similarly, one modifies all other notions in Definitions 1 and 3 by restricting initial conditions to lie in  $\Gamma_2$ .

**Definition 5 (Local uniform boundedness (LUB))** System  $\Sigma$  is locally uniformly bounded near  $\Gamma$  (LUB) if for each  $x \in \Gamma$  there exist positive scalars  $\lambda$  and m such that  $\phi(\mathbb{R}^+, B_\lambda(x)) \subset B_m(x)$ .

Now we present the main results, whose proofs are found in the appendix. When  $\Gamma_1$  is a compact set, Theorems 6 and 10 below coincide with analogous results by Seibert-Florio in [3]. All results below refer to the dynamical system  $\Sigma$  in (1).

**Theorem 6 (Stability)** Let  $\Gamma_1 \subset \Gamma_2$  be two closed positively invariant subsets of  $\mathcal{X}$ . Then,  $\Gamma_1$  is stable if the following conditions hold:

(i)  $\Gamma_1$  is asymptotically stable relative to  $\Gamma_2$ ,

- (ii)  $\Gamma_2$  is locally stable near  $\Gamma_1$ ,
- (iii) If  $\Gamma_1$  is unbounded, then  $\Sigma$  is LUB near  $\Gamma_1$ .

By noting that if  $\Gamma_2$  is stable for  $\Sigma$ , then it is also locally stable near  $\Gamma_1$ , we get the following useful corollary. **Corollary 7** Let  $\Gamma_1$  and  $\Gamma_2$ ,  $\Gamma_1 \subset \Gamma_2 \subset \mathcal{X}$ , be two closed positively invariant sets. Then,  $\Gamma_1$  is stable if conditions (i) and (iii) in Theorem 6 hold and condition (ii) is replaced by the following one: (ii)  $\Gamma_2$  is stable.

**Theorem 8 (Attractivity)** Let  $\Gamma_1$  and  $\Gamma_2$ ,  $\Gamma_1 \subset \Gamma_2 \subset \mathcal{X}$ , be two closed positively invariant sets. Then,  $\Gamma_1$  is attractive if the following conditions hold:

(i)  $\Gamma_1$  is asymptotically stable relative to  $\Gamma_2$ 

- (ii)  $\Gamma_2$  is locally attractive near  $\Gamma_1$ ,
- (iii) there exists a neighbourhood  $\mathcal{N}(\Gamma_1)$  such that, for all initial conditions in  $\mathcal{N}(\Gamma_1)$ , the associated solutions are bounded and such that the set  $cl(\phi(\mathbb{R}^+, \mathcal{N}(\Gamma_1))) \cap \Gamma_2$  is contained in the domain of attraction of  $\Gamma_1$  relative to  $\Gamma_2$ .

The set  $\Gamma_1$  is globally attractive if:

- (i)'  $\Gamma_1$  is globally asymptotically stable relative to  $\Gamma_2$ ,
- (ii)'  $\Gamma_2$  is a global attractor,
- (iii)' all trajectories in  $\mathcal{X}$  are bounded.

Conditions (ii) and (ii)' are also necessary.

**Remark 9** This Theorem generalizes Theorem 10.5.2 in [10]. If condition (i) is replaced by the stronger (i)', then one can replace (iii) by the simpler requirement that trajectories in some neighbourhood of  $\Gamma_1$  be bounded.

By combining Theorems 8 and 6 we obtain the solution to RPAS.

**Theorem 10 (Asymptotic stability)** Let  $\Gamma_1$  and  $\Gamma_2$ ,  $\Gamma_1 \subset \Gamma_2 \subset \mathcal{X}$ , be two closed positively invariant sets. Then,  $\Gamma_1$  is [globally] asymptotically stable if the following conditions hold:

- (i)  $\Gamma_1$  is [globally] asymptotically stable relative to  $\Gamma_2$ ,
- (ii)  $\Gamma_2$  is locally stable near  $\Gamma_1$ ,
- (iii)  $\Gamma_2$  is locally attractive near  $\Gamma_1$  [ $\Gamma_2$  is globally attractive],
- (iv) if  $\Gamma_1$  is unbounded, then  $\Sigma$  is LUB near  $\Gamma_1$ ,
- (v) [all trajectories of  $\Sigma$  are bounded.]

Conditions (i), (ii), and (iii) in the theorem above are necessary. If  $\Gamma_1 \subset \Gamma_2 \subset \Gamma_3$  are positively invariant for (1) and conditions (ii)-(v) are relaxed by only assuming that they hold relative to  $\Gamma_3$ , then the conclusions of Theorem 10 hold relative to  $\Gamma_3$ .

By combining Theorem 10 and Corollary 7 we obtain the following corollary.

**Corollary 11** Let  $\Gamma_1$  and  $\Gamma_2$ ,  $\Gamma_1 \subset \Gamma_2 \subset \mathcal{X}$ , be two closed positively invariant sets. Then,  $\Gamma_1$  is [globally] asymptotically stable if conditions (i), (iii), (iv) [and (v)] in Theorem 10 hold, and condition (ii) is replaced by the following one:

(ii)'  $\Gamma_2$  is stable.

# 3. Cascade-connected systems

We now return to the cascade-connected system (3). As pointed out in the introduction, when f(0,0) = 0and g(0) = 0, conditions for asymptotic stability and attractivity of the equilibrium (x, y) = (0, 0) are well-known in the control literature (see [6, Theorem 3.1], [7, Corollary 5.2], [10, Corollaries 10.3.2, 10.3.3]). We now present an application of Theorems 6 and 8, and Corollary 11.

**Corollary 12** Consider system (3) with f and g locally Lipschitz on  $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ , and let  $\tilde{\Gamma}_1 \subset \mathbb{R}^{n_1}$  be a positively invariant set for system  $\dot{x} = f(x, 0)$ . Denote  $\Gamma_1 := \tilde{\Gamma}_1 \times 0$  and suppose that g(0) = 0. Then,  $\Gamma_1$  is an attractor [global attractor] for (3) if

- (i)  $\Gamma_1$  is globally asymptotically stable for  $\dot{x} = f(x, 0)$ ,
- (ii) y = 0 is a [globally] attractive equilibrium for  $\dot{y} = g(y)$ ,

(iii) all solutions of (3) originating in some neighbourhood of  $\Gamma_1$  [originating in  $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ ] are bounded. Moreover,  $\Gamma_1$  is [globally] asymptotically stable if

(iv)  $\tilde{\Gamma}_1$  is [globally] asymptotically stable for  $\dot{x} = f(x, 0)$ ,

- (v) y = 0 is a [globally] asymptotically stable equilibrium of  $\dot{y} = g(y)$ ,
- (vi) if  $\Gamma_1$  is unbounded, then (3) is LUB near  $\Gamma_1$ ,
- (vii) [all trajectories of (3) are bounded.]

The proof is presented in Appendix B. In the special case when  $\Gamma_1$  is an equilibrium, the part of Corollary 12 concerning attractivity recovers the result in [10, Theorem 10.3.1], while the part concerning asymptotic stability recovers well-known results in [6, Theorem 3.1] (see also [10, Corollaries 10.3.2, 10.3.3] and [8]).

**Remark 13** The asymptotic stability result of Corollary 12 relies on two boundedness assumptions, (vi) and (vii). Assumption (vi) only needs to be checked when  $\Gamma_1$  is unbounded, while Assumption (vii) needs

to be checked when one wants to infer that  $\Gamma_1$  is globally asymptotically stable. The requirement, when  $\Gamma_1$ is unbounded, that system (3) is LUB near  $\Gamma_1$  may seem surprising, but it can be shown that if trajectories of (3) near  $\Gamma_1$  are not bounded, then the asymptotic stability of  $\Gamma_2$ , and that of  $\Gamma_1$  relative to  $\Gamma_2$  are not sufficient to guarantee asymptotic stability of  $\Gamma_1$ . Instead of assuming that the cascade system (3) is LUB near  $\Gamma_1$ , one could assume that the x subsystem,  $\dot{x} = f(x, y(t))$ , is LUB near  $\tilde{\Gamma}_1$  uniformly with respect to continuous signals y(t) that asymptotically tend to zero. This idea is investigated further in Section 5. In the context of asymptotic stability of equilibria, sufficient conditions guaranteeing that assumption (vii) holds have been widely investigated in the literature. Sontag, in [16], used a property of converging input bounded state (CIBS) stability. In the context of time-varying cascades, Panteley and Loria [9,11] proved global uniform stability of equilibria using Lyapunov-type conditions and growth rate conditions. In terms of control design, several results addressed the global stabilization problem for cascade systems, see [17]. Several of these results present growth rate conditions, see for instance [18], [19], [20].

# 4. Hierarchical Control Design

Consider a locally Lipschitz control system

$$\dot{x} = f(x, u) \tag{4}$$

with state space a domain  $\mathcal{X} \subset \mathbb{R}^n$ , and let  $\Gamma_1 \subset \Gamma_2 \subset \cdots \subset \Gamma_l$  be a nested sequence of closed subsets of  $\mathcal{X}$  encoding hierarchical specifications spec 1, ..., spec l, where spec i is met when  $x \in \Gamma_i$ . The property that  $\Gamma_i \subset \Gamma_{i+1}$  induces a hierarchy of control specifications, where spec i is met only if spec i + 1 is met, and thus spec i + 1 has higher priority than spec i. In the next section, we illustrate how such a hierarchical set of specifications arises in a coordination problem for two unicycles. Suppose that one can recursively design a locally Lipschitz feedback  $\bar{u}(x)$  which, for each  $i \in \{1, \ldots, l\}$ , asymptotically stabilizes  $\Gamma_i$  relative to  $\Gamma_{i+1}$ . The questions we ask in this context are:

(a) Under what conditions does the feedback  $\bar{u}(x)$  stabilize the set  $\Gamma_1$  for (4)?

(b) Additionally, when does it simultaneously stabilize all sets  $\Gamma_i$ , i = 1, ..., l, for (4)?

The answers to these question are contained in the next proposition. An important special case is the backstepping design technique, discussed in the next section. The problem outlined above bears a vague resemblance to the problem of uniting local and global controllers studied in [21], in which the objective is to design a hybrid feedback merging two equilibrium stabilizing controllers. However, the design in [21] is not hierarchical.

**Proposition 14** Consider system (4), and assume that there exists a locally Lipschitz feedback  $\bar{u}(x)$  making the sets  $\Gamma_1 \subset \cdots \subset \Gamma_l$ , positively invariant for the closed-loop system. Let  $\Gamma_{l+1} := \mathcal{X}$ , and consider the following conditions for the closed-loop system  $\dot{x} = f(x, \bar{u}(x))$ :

- (i) For i = 1, ..., l,  $\Gamma_i$  is asymptotically stable relative to  $\Gamma_{i+1}$  for the closed-loop system.
- (i)' For i = 1, ..., l,  $\Gamma_i$  is globally asymptotically stable relative to  $\Gamma_{i+1}$  for the closed-loop system.
- (ii) For some  $k \in \{1, ..., l\}$ ,  $\Gamma_k$  is either compact or it is unbounded and the closed-loop system is LUB near  $\Gamma_k$ .
- (iii) All trajectories of the closed-loop system are bounded.

Then, the following implications hold:

(a) (i)  $\wedge$  ( $\Gamma_1$  is compact)  $\implies$   $\Gamma_1$  is asymptotically stable for the closed-loop system.

- (b) (i)'  $\wedge$  (iii)  $\wedge$  ( $\Gamma_1$  is compact)  $\implies$   $\Gamma_1$  is globally asymptotically stable for the closed-loop system.
- (c) (i)  $\wedge$  (ii)  $\implies \Gamma_1, \dots, \Gamma_k$  are asymptotically stable for the closed-loop system.
- (d) (i)'  $\wedge$  (ii)  $\wedge$  (iii)  $\implies \Gamma_1, \ldots, \Gamma_k$  are globally asymptotically stable for the closed-loop system.

**PROOF.** By assumption (i),  $\Gamma_1$  is asymptotically stable relative to  $\Gamma_2$ . Moreover, the asymptotic stability of  $\Gamma_2$  relative to  $\Gamma_3$  implies that  $\Gamma_2$  is locally stable and locally attractive near  $\Gamma_1$  relative to  $\Gamma_3$ . By Theorem 6, if  $\Gamma_1$  is compact, then it is also asymptotically stable relative to  $\Gamma_3$  for the closed-loop system. Suppose, by induction, that  $\Gamma_1$  is asymptotically stable relative to  $\Gamma_j$ ,  $j \in \{3, \ldots, l\}$ . By assumption (i),  $\Gamma_j$  is locally stable and locally attractive near  $\Gamma_1$  relative to  $\Gamma_{j+1}$ . By Theorem 6, if  $\Gamma_1$  is compact, then it is also asymptotically stable relative to  $\Gamma_{j+1}$ . Thus, by induction we conclude that  $\Gamma_1$  is asymptotically stable for the closed-loop system, proving part (a). The proof of part (b) relies on an analogous argument. Now suppose that assumptions (i), (ii) hold. If  $\Gamma_k$  is compact, then so too are  $\Gamma_1, \ldots, \Gamma_{k-1}$ . Analogously, if the closed-loop system is LUB near  $\Gamma_k$ , then the same property holds near  $\Gamma_1, \ldots, \Gamma_{k-1}$ . The application of Theorem 10 with an induction argument similar to the one above yields the claim in part (c). The proof of part (d) relies on an analogous argument.  $\Box$ 

**Remark 15** Assumption (i) in Proposition 14 can be replaced by the weaker requirement that  $\Gamma_i$  be asymptotically stable relative to  $\Gamma_{i+1}$  provided that the closed-loop system has no finite escape times near  $\Gamma_1$ . Similarly, assumption (ii) could be made conditional upon the property that the closed-loop system has no finite escape times. This minor relaxation has been implicitly used in proving Corollary 12, and will be used in the backstepping design of Section 5.

# 5. Reduction-Based Backstepping

One of the incarnations of the hierarchical control idea explored in the previous section is the backstepping control design technique [22]. In this section we will explore the connection with backstepping in the simplest situation when disturbances and uncertainties are ignored. Consider the block-upper triangular control system

$$\dot{x} = f(x, z_{1}) 
\dot{z}_{1} = f_{1}(x, z_{1}) + g_{1}(x, z_{1})z_{2} 
\vdots 
\dot{z}_{i} = f_{i}(x, z^{i}) + g_{i}(x, z^{i})z_{i+1} 
\vdots 
\dot{z}_{l} = f_{l}(x, z) + g_{l}(x, z)u$$
(5)

where  $x \in \mathcal{X} \subset \mathbb{R}^n$ ,  $z_1, \dots, z_l \in \mathbb{R}^m$ ,  $z^i := \operatorname{col}(z_1, \dots, z_i)$ ,  $i = 1, \dots, l$ , and  $z := \operatorname{col}(z_1, \dots, z_l)$ . All vector fields in (5) are assumed to be smooth. Moreover, the matrix-valued functions  $g_i$ ,  $i = 1, \dots, l$ , are assumed to be uniformly bounded and invertible everywhere.

**Assumption 16** There exist a smooth function  $u_1 : \mathcal{X} \to \mathbb{R}^m$  and a closed set  $\Gamma \subset \mathcal{X}$  such that  $\Gamma$  is [globally] asymptotically stable for  $\dot{x} = f(x, u_1(x))$ .

For notational consistency, we denote  $u_1(x, z^0) := u_1(x)$ . The control objective is to design a feedback u(x, z) that globally asymptotically stabilizes the set

$$\Gamma_0 = \{ (x, z) : x \in \Gamma, z_i = u_i(x, z^{i-1}), i = 1, \dots, l \},\$$

where  $u_i(x, z^{i-1})$ , i = 2, ..., l, are smooth functions to be designed recursively using the backstepping philosophy. In classical backstepping, one begins with a Lyapunov function  $V_0(x)$  for the subsystem  $\dot{x} = f(x, u_1(x))$ , and at step i one defines, recursively,  $V_i(x, z^i) = V_{i-1}(x, z^{i-1}) + (1/2)e_i^{\top}e_i$ , where  $e_i = z_i - u_i(x, z^{i-1})$ . Then, a function  $u_{i+1}(x, z^i)$  is chosen to make  $\dot{V}_i$  negative definite when  $z_{i+1} = u_{i+1}(x, z^i)$ . The recursion continues until, at step l, a feedback u(x, z) is found. For large l, this procedure suffers from a well-known explosion in controller complexity. This is due in part to the fact that  $u_{i+1}(x, z^i)$  contains the term  $\partial V_{i-1}/\partial z_{i-1}$  whose time derivative is needed in the computation of  $u_{i+2}(x, z^{i+1})$ . As i grows larger, so does the complexity of the time derivative of  $\partial V_{i-1}/\partial z_{i-1}$ . We now present a reduction-based backstepping design that does not require the computation of the term  $\partial V_{i-1}/\partial z_{i-1}$ .

For  $i = 2, \ldots, l$ , define

$$u_{i}(x, z^{i-1}) := g_{i-1}^{-1}(x, z^{i-1}) \Big[ -f_{i-1}(x, z^{i-1}) + \dot{u}_{i-1}(x, z^{i-1}) \\ -K_{i-1}(z_{i-1} - u_{i-1}(x, z^{i-2})) \Big],$$
(6)

where  $K_{i-1} > 0$  and  $\dot{u}_{i-1}(x, z^{i-1})$  is the Lie derivative of  $u_{i-1}$  along (5). Consider the feedback

$$u(x,z) = g_l^{-1}(x,z) \Big[ -f_l(x,z) + \dot{u}_l(x,z^{l-1}) \\ -K_l(z_l - u_l(x,z^{l-1})) \Big],$$
(7)

where  $K_l > 0$ . Letting  $e_i := z_i - u_i(x, z^{i-1})$ , we have

$$\dot{e}_i = -K_i e_i + g_i(x, z^i) e_{i+1}, \ i = 1, \dots, l-1$$
  
$$\dot{e}_l = -K_l e_l.$$
(8)

Now define closed sets  $\Gamma_i$ ,  $i = 1, \ldots, l$ , as

$$\Gamma_i = \{(x, z) : z_i = u_i(x, z^{i-1}), \dots, z_l = u_l(x, z^{l-1})\}.$$
(9)

We will denote the state space of (5) by  $\Gamma_{l+1}$ . Note that  $\Gamma_0 \subset \Gamma_1 \subset \cdots \subset \Gamma_l$ . The feedback u(x, z) in (7) makes  $\Gamma_i$  invariant and asymptotically stable relative to  $\Gamma_{i+1}$ ,  $i = 1, \ldots, l$ , provided that there are no escape times. Applying Proposition 14, we get the following result.

**Proposition 17** Consider the upper triangular system (5), and suppose there exist a smooth function  $u_1(x)$  and a closed set  $\Gamma \subset \mathcal{X}$  satisfying Assumption 16. Consider the following conditions:

- (i)  $\Gamma$  is asymptotically stable for  $\dot{x} = f(x, u_1(x))$ .
- (i)'  $\Gamma$  is globally asymptotically stable for  $\dot{x} = f(x, u_1(x))$ .
- (ii) For all  $\bar{x} \in \Gamma$ , there exist  $\lambda, m > 0$  such that for all  $x(0) \in B_{\lambda}(\bar{x})$ , and for any continuous signal  $e_1(t)$ with  $e_1(t) \to 0$  and  $e_1(t) \in B_{\lambda}(0)$  for all  $t \ge 0$ , the solution x(t) of  $\dot{x} = f(x, u_1(x) + e_1(t))$  satisfies  $x(t) \in B_m(\bar{x})$  for all  $t \ge 0$ .
- (iii) For any continuous signal  $e_1(t)$  such that  $e_1(t) \to 0$  as  $t \to \infty$ , and for any  $x(0) \in \mathcal{X}$ , the solution x(t) of  $\dot{x} = f(x, u_1(x) + e_1(t))$  exists for all  $t \ge 0$ , and it is bounded.
- Then, the following implications hold for system (5) with feedback u(x, z) in (7):
- (a) (i)  $\wedge$  ( $\Gamma$  is compact)  $\implies$   $\Gamma_0$  is asymptotically stable for the closed-loop system.
- (b) (i)'  $\wedge$  (iii)  $\wedge$  ( $\Gamma$  is compact)  $\implies$   $\Gamma_0$  is globally asymptotically stable for the closed-loop system.
- (c) (i)  $\wedge$  (ii)  $\implies$   $\Gamma_0$  is asymptotically stable for the closed-loop system.
- (d) (i)'  $\wedge$  (ii)  $\wedge$  (iii)  $\implies$   $\Gamma_0$  is globally asymptotically stable for the closed-loop system.

**Remark 18** Assumption (ii) in Proposition 17 can be rephrased as follows. The feedback  $u_1(x)$  makes system  $\dot{x} = f(x, u_1(x))$  LUB near  $\Gamma$ . Moreover, the LUB property persists under small vanishing perturbations of the control input. Assumption (iii) is the familiar *converging input bounded state* property of Sontag in [16] applied to the system  $\dot{x} = f(x, u_1(x) + e_1)$  with input  $e_1$ . If  $\Gamma$  is an equilibrium, then a sufficient condition for assumption (iii) to hold is that system  $\dot{x} = f(x, u_1(x) + e_1)$  with input  $e_1$  be input-to-state stable. More generally, one can rewrite the x subsystem as  $\dot{x} = f(x, u_1(x)) + e_1^{\top} \tilde{f}(x, z_1)$ , and replace assumption (iii) by the requirement that  $\|\tilde{f}(x, z_1)\|$  satisfies a suitable growth condition. In [11], the role that such growth conditions play on the boundedness of solutions is discussed in detail.

**PROOF.** We claim that the equilibrium  $(e_1, \ldots, e_l) = (0, \ldots, 0)$  is globally asymptotically stable for (8). Indeed, for  $i = 1, \ldots, l - 1$ , the set  $\{e_i = 0, \ldots, e_l = 0\}$  is globally asymptotically stable for (8) relative to the set  $\{e_{i+1} = 0, \ldots, e_l = 0\}$ . Moreover, given an arbitrary initial condition  $(e_1(0), \ldots, e_l(0))$ , by the second equation in (8) we have that  $e_l(t)$  is bounded. By induction, assume that  $e_{i+1}(t)$  is bounded. Then, the uniform boundedness of  $g_i(x, z^i)$  and the boundedness of  $e_{i+1}(t)$  imply that  $e_i(t)$  is bounded. Hence,  $e_1(t), \ldots, e_l(t)$  are bounded. Applying Proposition 14 to system (8) we get that  $(e_1, \ldots, e_l) = (0, \ldots, 0)$ is globally asymptotically stable for (8). Moreover, by equation (8), for  $i \in \{1, \ldots, l-1\}$ ,  $\Gamma_i$  is globally asymptotically stable relative to  $\Gamma_{i+1}$  provided there are no finite escape times in the x subsystem. To prove assertion (a), suppose that  $\Gamma$  is compact. Then, by continuity of the functions  $u_i(x, z^{i-1})$ ,  $\Gamma_0$  is compact as well. The asymptotic stability of  $(e_1, \ldots, e_l) = (0, \ldots, 0)$  for system (8) implies that  $\Gamma_1$  is locally stable near  $\Gamma_0$ . By assumption (i),  $\Gamma_0$  is asymptotically stable relative to  $\Gamma_1$ . Therefore, by Theorem 6,  $\Gamma_0$  is stable for the closed-loop system. Since  $\Gamma_0$  is compact, its stability implies that all solutions of the closed-loop system originating near  $\Gamma_0$  are bounded, and thus they have no finite escape times. This fact and assumption (i) imply that  $\Gamma_1$  is locally attractive near  $\Gamma_0$ . Then, Theorem 10 implies that  $\Gamma_0$  is asymptotically stable for the closed-loop system, proving part (a). If assumption (iii) holds, then all solutions of the closed-loop system are bounded, and  $\Gamma_1$  is globally asymptotically stable. Thus, by Theorem 10 assumptions (i)' and (iii) imply that  $\Gamma_0$  is globally asymptotically stable, proving part (b). Now suppose that  $\Gamma$ , and hence  $\Gamma_0$ , is not compact and assumptions (i), (ii) hold. For each  $\bar{x} \in \Gamma$ , let  $\lambda(\bar{x})$  be as in assumption (ii). By asymptotic stability of  $(e_1, \ldots, e_l) = (0, \ldots, 0)$  for (8), for all  $\bar{x} \in \Gamma$  there exists  $\delta(\bar{x}) > 0$  such that  $||e_i(0)|| < \delta(\bar{x}), i = 1, \ldots, l$ , implies  $||e_i(t)|| < \lambda(\bar{x}), i = 1, \ldots, l$ , for all  $t \ge 0$ . Define the neighbourhood of  $\Gamma_0$ ,

$$\mathcal{N}(\Gamma_0) = \{ (x, z) : x \in B_{\lambda(\bar{x})}(\bar{x}), \| z_i - u_i(x, z^{i-1}) \| < \delta(\bar{x}), \\ i = 1, \dots, l, \ \bar{x} \in \Gamma \}.$$

By assumption (ii), all solutions of the closed-loop system originating in  $\mathcal{N}(\Gamma_0)$  are bounded, and hence they have no finite escape times. The asymptotic stability of  $(e_1, \ldots, e_l) = (0, \ldots, 0)$  for (8) and assumption (ii) imply that the closed-loop system is LUB near  $\Gamma_0$ . Thus, by Proposition 14, assumptions (i) and (ii) imply that  $\Gamma_0$  is asymptotically stable for the closed-loop system, proving implication (c). The global asymptotic stability of  $(e_1, \ldots, e_l) = (0, \ldots, 0)$  for (8) and assumption (iii) imply that all solutions of (5) with feedback u(x, z) in (7) are bounded. Since the closed-loop system is LUB near  $\Gamma_0$ , by Proposition 14, assumptions (i)', (ii), (iii) imply that  $\Gamma_0$  is globally asymptotically stable.  $\Box$ 

**Example 19** In this example we illustrate the difference between classical backstepping and reductionbased backstepping. Consider the control system with state  $(x, z_1, z_2) \in \mathbb{R}^3$ ,

$$\dot{x} = f(x) + z_1$$
$$\dot{z}_1 = z_2$$
$$\dot{z}_2 = u.$$

If  $z_1 = u_1(x) := -f(x) - x$ , then Assumption 16 is satisfied with  $\Gamma = \{0\}$ . In classical backstepping, we would let  $V_1(x) = (1/2)x^2$ , then define  $e_1 := z_1 - u_1(x)$ , and let  $V_2(x, z_1) = V_1(x) + (1/2)e_1^2$ . Since

$$V_2 = -x^2 + (\partial V_1)/(\partial x)e_1 + e_1(z_2 - \dot{u}_1),$$
  
letting  $u_2(x, z^2) := -(\partial V_1)/(\partial x) + \dot{u}_1 - e_1$ , and  $e_2 := z_2 - u_2(x, z^2)$ , we get  
 $\dot{V}_2 = -x^2 - e_1^2 + e_1e_2.$ 

0

Finally, letting  $V_3(x, z) = V_2(x, z_1) + (1/2)e_2^2$ , we get

$$\dot{V}_3 = -x^2 - e_1^2 + e_1 e_2 + e_2 (u - \dot{u}_2),$$

from which a globally asymptotically stabilizing feedback is  $u(x, z) = \dot{u}_2 - e_1 - e_2$ . In terms of the problem data, namely  $u_1(x)$  and the associated Lyapunov function  $V_1(x)$ , the feedback u(x, z) is given by

$$u(x,z) = -\frac{d}{dt} [(\partial V_1)/(\partial x)] + \ddot{u}_1 - (z_2 - \dot{u}_1) - (z_1 - u_1) - (z_2 - (-(\partial V_1)/(\partial x) + \dot{u}_1 - (z_1 - u_1))).$$
(10)

On the other hand, reduction-based backstepping proceeds as follows. From (6),  $u_2(x, z_1) = \dot{u}_1 - e_1$ , where  $e_1 = z_1 - u_1(x)$ . The final feedback is  $u(x, z) = \dot{u}_2 - e_2$ , where  $e_2 = z_2 - u_2(x, z_1)$ . In terms of the problem data, we have

$$u(x,z) = \ddot{u}_1 - (z_2 - \dot{u}_1) - (z_2 - (\dot{u}_1 - (z_1 - u_1))).$$
(11)

Clearly, feedback (11) is simpler than (10). This simplification results from the fact that the control design does not rely on the recursive definition of a Lyapunov function. Rather, at each step the design focuses exclusively on making  $\Gamma_i$  asymptotically stable relative to  $\Gamma_{i+1}$ . Another feature of our design is that it does not rely on the knowledge of a Lyapunov function for the x subsystem.

**Example 20** Consider two dynamic unicycles modeled as rolling disks (see [23]),

$$\dot{x}_{1}^{i} = x_{5}^{i} \cos x_{3}^{i} 
\dot{x}_{2}^{i} = x_{5}^{i} \sin x_{3}^{i} 
\dot{x}_{3}^{i} = x_{4}^{i} 
\dot{x}_{4}^{i} = \frac{1}{J} w_{2}^{i} 
\dot{x}_{5}^{i} = \frac{R}{(I+mR^{2})} w_{1}^{i}$$
(12)

for i = 1, 2, where  $(x_1^i, x_2^i)$  are the coordinates of the point of contact of the rolling disk with the plane,  $x_3^i$  is the heading angle of the unicycle, and  $x_5^i$  is the speed of the contact point. The state of unicycle *i* is  $x^i := (x_1^i, x_2^i, x_3^i, x_4^i, x_5^i) \in \mathbb{R}^2 \times S^1 \times \mathbb{R}^2$ . The collective state of the two unicycles is  $\chi := \operatorname{col}(x^1, x^2)$ . The scalars *R* and *m* are, respectively, the radius and the mass of each unicycle; *I* and *J* are, respectively, the moments of inertia of the unicycle about axes perpendicular to and in the plane of the unicycle, passing through the centre. Finally  $w_1^i$  and  $w_2^i$  are the torques about those axes. These are the control inputs.

We want to solve the following coordination problem. Make the unicycles follow, in the counter-clockwise direction, a common circle of radius r > 0 with unspecified centre. On the circle, the unicycles should travel with a constant speed v > 0, and keep a constant distance  $d \in (0, 2r)$  from each other. In [24] we solved the kinematic version of this problem. In this example, we use reduction-based backstepping to generate a solution for the dynamic unicycles in (12). Let  $c^i(x^i) = col(x_1^i - r \sin x_3^i, x_2^i + r \cos x_3^i)$ . The point  $c^i(x^i)$  is the centre of the circle that unicycle *i* would follow if the magnitude of its linear velocity were  $x_5^i = v$  and its angular velocity where  $x_4^i = v/r$ . We formulate three hierarchical control specifications (recall that spec i + 1 has higher priority than spec *i*).

spec 3: Stabilize a desired "kinematic behavior," i.e., stabilize  $\Gamma_3 = \{\chi_d : x_4^i = u_2^i(\chi), x_5^i = u_1^i(\chi), i = 1, 2\}$ , where  $u_1^i(\chi)$ ,  $u_2^i(\chi)$  are smooth functions defined later. On  $\Gamma_3$ , the dynamic unicycles become purely kinematic, with new inputs  $u_1^i$ ,  $u_2^i$ .

spec 2: Considering the kinematic motion on  $\Gamma_3$ , make the unicycles follow a common circle, i.e., stabilize  $\Gamma_2 = \{\chi_d \in \Gamma_3 : c^1(x^1) = c^2(x^2)\}.$ 

spec 1: On  $\Gamma_2$ , make the unicycles maintain a distance d from each other. This corresponds to stabilizing  $\Gamma_1 = \{\chi_d \in \Gamma_2 : |x_3^1 - x_3^2| = 2\sin^{-1}(d/2r) \mod 2\pi\}$ . Note that  $\Gamma_1$  is not compact, because there is no restriction on the centre of the common circle the unicycles converge to.

Thus, we have a hierarchical control design problem, involving the simultaneous stabilization of  $\Gamma_1 \subset \Gamma_2 \subset \Gamma_3$ . Consider the functions

$$u_{1}^{1}(\chi) = v + \varphi_{1} \left( \left( \cos(x_{3}^{1} - x_{3}^{2}) - \cos \alpha \right) \sin(x_{3}^{1} - x_{3}^{2}) \right)$$
  

$$u_{2}^{1}(\chi) = \frac{u_{1}^{1}}{r} - Kh_{1}(\chi)$$
  

$$u_{1}^{2}(\chi) = v - \varphi_{1} \left( \left( \cos(x_{3}^{1} - x_{3}^{2}) - \cos \alpha \right) \sin(x_{3}^{1} - x_{3}^{2}) \right)$$
  

$$u_{2}^{2}(\chi) = \frac{u_{1}^{2}}{r} - Kh_{2}(\chi),$$
  
(13)

where v > 0 is a design parameter,  $\varphi_1 : \mathbb{R} \to \mathbb{R}$  is a smooth odd function which is strictly increasing and such that  $\sup_{\mathbb{R}} |\varphi_1(\cdot)| < v$ ,  $\alpha = 2 \sin^{-1}(d/2r)$ , and  $h_i(\chi)$ , i = 1, 2, are given by

$$h_i(\chi) = (-1)^i r(c^1(x^1) - c^2(x^2))^\top \begin{bmatrix} \cos x_3^i \\ \sin x_3^i \end{bmatrix},$$

In [24], we proved that there exists  $K^* > 0$  such that for all  $K \in (0, K^*)$ , the functions in (13) make  $\Gamma_2$  globally asymptotically stable relative to  $\Gamma_3$ , and  $\Gamma_1$  asymptotically stable relative to  $\Gamma_2$ . In order to extend the kinematic result of [24], we should simply design feedbacks that asymptotically stabilize  $\Gamma_3$ . The work in [24] does not provide a Lyapunov function, so one cannot use classical backstepping to extend the

solution given above to dynamic unicycles. On the other hand, the reduction-based backstepping procedure of Section 5 is readily applicable, and it provides the feedback

$$w_1^i = \frac{I + mR^2}{R} \left( \frac{\partial u_1^i(\chi)}{\partial \chi} \dot{\chi} - K_1(x_5^i - u_1^i(\chi)) \right)$$
  

$$w_2^i = J \left( \frac{\partial u_2^i(\chi)}{\partial \chi} \dot{\chi} - K_2(x_4^i - u_2^i(\chi)) \right)$$
(14)

for i = 1, 2, where  $K_1, K_2 > 0$  are design constants.

**Proposition 21** Consider system (12) with feedback (14), with  $u_j^i(\chi)$ , i, j = 1, 2, defined in (13), and  $K, K_1, K_2 > 0$ . Then, there exists  $K^* > 0$  such that for all  $K \in (0, K^*)$ , the set  $\Gamma_2$  is globally asymptotically stable, and  $\Gamma_1$  is asymptotically stable for the closed-loop system. Thus, for any initial condition the unicycles converge to a common circle of radius r, and for suitable initial conditions the distance between them converges to d.

**PROOF.** To show that the feedback (14) asymptotically stabilizes  $\Gamma_1$ , hence solving the coordination problem, we apply Proposition 17 setting  $x = (x_1^1, x_2^1, x_3^1, x_1^2, x_2^2, x_3^2)$ ,  $z_1 = (x_5^1, x_4^1, x_5^2, x_4^2)$ ,  $u_1(x) = (u_1^1(\chi), u_2^1(\chi), u_2^2(\chi))$ , and  $\Gamma = \{x : (x^1, x^2) \in \Gamma_1\}$ . To this end, we need to show that assumption (ii) in Proposition 17 holds. This is a straightforward adaptation of the analysis presented in [24], and it is briefly sketched. The evolution of the centres  $c^i$  under the closed-loop system is governed by

$$\begin{bmatrix} \dot{c}^{1} \\ \dot{c}^{2} \end{bmatrix} = -Kr^{2} \begin{bmatrix} S(x_{3}^{1}) & -S(x_{3}^{1}) \\ -S(x_{3}^{2}) & S(x_{3}^{2}) \end{bmatrix} \begin{bmatrix} c^{1} \\ c^{2} \end{bmatrix} + \begin{bmatrix} T(x_{3}^{1})e^{1} \\ T(x_{3}^{2})e^{2} \end{bmatrix},$$
(15)

where  $S(\cdot) = [\cos(\cdot) \sin(\cdot)]^{\top} [\cos(\cdot) \sin(\cdot)], T(\cdot) = r[\cos(\cdot) \sin(\cdot)]^{\top} [1 - r], \text{ and } e^i = [x_5^i - u_1^i(\chi) x_4^i - u_2^i(\chi)]^{\top}.$ As in Section 5, we let  $e_1 = z_1 - u_1(x) = [(e^1)^{\top} (e^2)^{\top}]^{\top}.$  Feedback (14) gives  $\dot{e}^i = -K_i e^i$ , so (15) can be viewed as a system with asymptotically vanishing input  $e_1(t)$ . Letting  $\tilde{c} = c^1 - c^2$ , we have

$$\dot{\tilde{c}} = -Kr^2(S(x_3^1) + S(x_3^2))\tilde{c} + [T(x_3^1) - T(x_3^2)]e_1.$$

Viewing  $x_3^i(t)$  as exogenous signals, the above can be viewed as a linear time-varying system with exponentially vanishing input. We now use averaging theory to analyze this system. The averaged system is

$$\dot{\tilde{c}}_{\text{avg}} = -Kr^2(\bar{S}_1 + \bar{S}_2)\tilde{c},\tag{16}$$

where  $\bar{S}_i = \lim_{t\to\infty} (1/t) \int_0^t S(x_3^i(\tau)) d\tau$ . The signal  $e_1(t)$  does not affect the averaged system because it vanishes asymptotically and  $T(\cdot)$  is uniformly bounded, and therefore  $\lim_{t\to\infty} (1/t) \int_0^t T(x_3^1(\tau))e^1(\tau) - T(x_3^2(\tau))e^2(\tau)d\tau = 0$ . In [24] it was shown that the matrix  $-Kr^2(\bar{S}_1+\bar{S}_2)$  is Hurwitz, so that the equilibrium  $c_{avg} = 0$  is globally exponentially stable for the averaged system. By the averaging theorem [25], there exists  $K^* > 0$  such that for all  $K \in (0, K^*)$  the origin  $\tilde{c} = 0$  of (16) is globally exponentially stable. This fact implies that  $\|c^i(x^i(t))\| \leq M_1 \|c^1(x^1(0)) - c^2(x^2(0))\|$  for some  $M_1 > 0$ . Moreover  $\|e^i(t)\| \leq M_2 \|x_4^i(0) - u_2^i(\chi(0))\|$ for some  $M_2 > 0$ . The two inequalities above imply that all solutions of the closed-loop system are bounded, and the bound is uniform over neighbourhoods of  $\Gamma_2$ , so that assumption (ii) of Proposition 17 holds near the set  $\{(x, z) : (x^1, x^2) \in \Gamma_2\}$ , and hence also near  $\Gamma = \{(x, z) : (x^1, x^2) \in \Gamma_1\}$ . This proves the asymptotic stability of  $\Gamma_1$ . The fact that assumption (ii) holds near  $\{(x, z) : (x^1, x^2) \in \Gamma_2\}$  allows us to apply Proposition 17 to prove that  $\Gamma_2$  is globally asymptotically stable. Letting  $x, z_1$ , and  $u_1(x)$  be as above, and setting  $\Gamma = \{(x, z) : (x^1, x^2) \in \Gamma_2\}$ , the global asymptotic stability of  $\Gamma_2$  relative to  $\Gamma_3$  implies that assumption (i)' of Proposition 17 holds. We have already shown that assumption (ii) holds for x(0) near  $\Gamma_2$ . Finally, assumption (iii) holds because the averaging result above shows that for any asymptotically vanishing signal  $e_1(t)$ , all closed-loop trajectories are bounded.  $\Box$ 

#### 6. Conclusion

We presented novel reduction theorems for stability, attractivity, and asymptotic stability of closed invariant sets. We investigated the implications of these theorems on the stability of invariant sets for cascadeconnected systems, on a hierarchical control problem, and on backstepping control design.

#### Appendix A. Proofs of reduction theorems

## A.1. Proof of Theorem 6

The proof of the theorem relies on the next result.

**Lemma 22** Let  $\Gamma_1 \subset \mathcal{X}$  be a closed set which is positively invariant set for  $\Sigma$ . If  $\Gamma_1$  is unstable, then there exist  $\varepsilon > 0$ , a bounded sequence  $\{x_i\} \subset \mathcal{X}$ , and a sequence  $\{t_i\} \subset \mathbb{R}^+$ , such that  $x_i \to \overline{x} \in \Gamma_1$ , and  $\|\phi(t_i, x_i)\|_{\Gamma_1} = \varepsilon$  for all *i*.

**PROOF.** The instability of  $\Gamma_1$  implies that there exists  $\varepsilon > 0$ , a sequence  $\{x_i\} \subset \mathcal{X}$ , and a sequence  $\{t_i\} \subset \mathbb{R}^+$ , such that  $\|x_i\|_{\Gamma_1} \to 0$ , and  $\|\phi(t_i, x_i)\|_{\Gamma_1} = \varepsilon$ . If we show that  $\{x_i\}$  above can be chosen to be bounded, then, without loss of generality, there exists  $\bar{x} \in \Gamma_1$  such that  $x_i \to \bar{x}$  and we are done. Let S be defined as follows

$$S = \{ x \in B_{\varepsilon}(\Gamma_1) : (\exists t > 0) \| \phi(x, t) \| = \varepsilon \}.$$

The instability of  $\Gamma_1$  implies that S is not empty. Moreover, since  $\Gamma_1$  is positively invariant,  $S \cap \Gamma_1 = \emptyset$ . Suppose, by way of contradiction, that there does not exist a bounded sequence  $\{x_i\}$  and a sequence  $\{t_i\}$  such that  $\|x_i\|_{\Gamma_1} \to 0$  and  $\|\phi(t_i, x_i)\|_{\Gamma_1} = \varepsilon$ . This implies that, for any  $x \in \Gamma_1$ , there exists  $\delta(x) > 0$  such that  $B_{\delta(x)}(x) \cap S = \emptyset$ . For, if this were not true, then there would exist a bounded sequence  $\{x_i\} \subset S$ , with  $x_i \to \Gamma_1$  contradicting the assumption we have made. Let  $U = \bigcup_{x \in \Gamma_1} B_{\delta(x)}(x)$ . By construction, U is a neighbourhood of  $\Gamma_1$  such that  $U \cap S = \emptyset$ . In other words, for all  $x \in U$ , there does not exist t > 0 such that  $\|\phi(t, x)\|_{\Gamma_1} = \varepsilon$ , contradicting the assumption that  $\Gamma_1$  is unstable.  $\Box$ 

## Proof of Theorem 6

By way of contradiction, suppose that  $\Gamma_1$  is unstable. Then, by Lemma 22, there exist  $\varepsilon > 0$ , a bounded sequence  $\{x_i\} \subset \mathcal{X}$ , with  $x_i \to \overline{x} \in \Gamma_1$ , and a sequence  $\{t_i\} \subset \mathbb{R}^+$ , such that

$$\|\phi(t_i, x_i)\|_{\Gamma_1} = \varepsilon$$
, and  $\phi([0, t_i), x_i) \in B_{\varepsilon}(\Gamma_1)$ .

By local uniform boundedness of  $\Sigma$  near  $\Gamma_1$ , there exist  $\lambda, m > 0$  such that  $\phi(\mathbb{R}^+, B_\lambda(\bar{x})) \subset B_m(\bar{x})$ . We can assume  $\{x_i\} \subset B_\lambda(\bar{x})$ . Take a decreasing sequence  $\{\varepsilon_i\} \subset \mathbb{R}^+$ ,  $\varepsilon_i \to 0$ . By assumption (ii),  $\Gamma_2$  is locally stable near  $\Gamma_1$ . Using the definition of local stability with c = m and  $\varepsilon = \varepsilon_i$ , there exists  $\delta_i > 0$  such that for all  $x_0 \in B_{\delta_i}(\bar{x})$  and all t > 0, if  $\phi([0, t], x_0) \subset B_m(\bar{x})$ , then  $\phi([0, t], x_0) \subset B_{\varepsilon_i}(\Gamma_2)$ . By taking  $\delta_i \leq \lambda$  we have

$$(\forall x_0 \in B_{\delta_i}(\bar{x})) \ \phi(\mathbb{R}^+, x_0) \subset B_{\varepsilon_i}(\Gamma_2).$$

By passing, if needed, to a subsequence we can assume without loss of generality that, for all  $i, x_i \in B_{\delta_i}(\bar{x})$  so that

$$\limsup_{i \to \infty} d(\phi([0, t_i], x_k), \Gamma_2) = 0$$

Using assumptions (i) and (iii) (if  $\Gamma_1$  is unbounded), by Lemma 2.5 in [26], it follows that  $\Gamma_1$  is a uniform semi-attractor relative to  $\mathcal{O}$ . Therefore,

$$(\forall x \in \Gamma_1)(\exists \mu > 0)(\forall \varepsilon' > 0)(\exists T > 0) \text{ s.t.} \phi([T, +\infty), B_\mu(x) \cap \Gamma_2) \subset B_{\varepsilon'}(\Gamma_1).$$
(A.1)

Consider the set  $\Gamma'_1 = \Gamma_1 \cap cl(B_{2m}(\bar{x}))$ . Since  $\Gamma'_1$  is compact, then the infimum of  $\mu(x)$ , in (A.1), for all  $x \in \Gamma'_1$  exists and is greater than zero. Thus we infer the existence of  $\mu > 0$  such that

$$(\forall x \in \Gamma_1') (\forall \varepsilon' > 0) (\exists T > 0) \phi([T, +\infty), B_\mu(x) \cap \Gamma_2) \subset B_{\varepsilon'}(\Gamma_1).$$
(A.2)

By reducing, if necessary,  $\varepsilon$  in the instability definition, we may assume that  $\varepsilon^2 = \varepsilon - \mu$ . Now choose  $\varepsilon' < \varepsilon/2$ . Using again a compactness argument, by (A.2) one infers the following condition

$$(\exists T > 0)(\forall x \in \Gamma_1')\phi([T, +\infty), B_\mu(x) \cap \Gamma_2) \subset B_{\varepsilon'}(\Gamma_1).$$
(A.3)

We claim that  $B_{\mu}(\Gamma_1) \cap B_m(\bar{x}) \subset B_{\mu}(\Gamma'_1)$ . For, if  $\mu \geq m$ , then

$$B_{\mu}(\Gamma_1) \cap B_m(\bar{x}) = B_m(\bar{x}) \subset B_{\mu}(\bar{x}) \subset B_{\mu}(\Gamma_1 \cap \operatorname{cl}(B_{2m}(\bar{x}))).$$

If  $\mu < m$ , then  $x \in B_{\mu}(\Gamma_1) \cap B_m(\bar{x})$  if and only if  $\|x\|_{\Gamma_1} < \mu$  and  $\|x - \bar{x}\| < m$ ; in particular, there exists  $y \in \Gamma_1$  such that  $||x - y|| < \mu$ . Since  $||y - \overline{x}|| \le ||x - y|| + ||x - \overline{x}|| \le \mu + m < 2m$ , we have that  $y \in \Gamma_1 \cap \operatorname{cl}(B_{2m}(\bar{x}))$ , and thus  $x \in B_\mu(\Gamma_1 \cap \operatorname{cl}(B_{2m}(\bar{x})))$ .

Using (A.3) and the claim we have just proved we obtain

$$(\forall x \in B_{\mu}(\Gamma_1) \cap B_m(\bar{x}) \cap \Gamma_2) \ \phi([T, +\infty), x) \subset B_{\varepsilon'}(\Gamma_1).$$
(A.4)

Now, since  $\{t_k\}$  is unbounded there exists  $K_1 > 0$  such that  $t_k > T$  for all  $k \ge K_1$ . Since  $\phi([0, t_k), x_k) \subset$  $B_{\varepsilon}(\Gamma_1)$  we have  $\phi(t_k - T, x_k) \in B_{\varepsilon}(\Gamma_1)$  for all  $k \geq K_1$ . Let

$$y_k = \phi(t_k, x_k)$$
, and  $z_k = \phi(t_k - T, x_k)$ .

Thus,  $y_k = \phi(T, z_k)$ ,  $\|y_k\|_{\Gamma_1} = \varepsilon$  and  $z_k \in B_{\varepsilon}(\Gamma_1)$ . By local uniform boundedness, it also holds that  $z_k \in B_m(\bar{x})$ . Pick  $\delta \in (0, \mu - \varepsilon)$ . Since  $z_k \in \phi([0, t_k), x_k) \subset B_m(\bar{x})$ , and since

$$\limsup_{k \to \infty} d(\phi([0, t_k], x_k), \Gamma_2) = 0,$$

then there exists  $K_2 \ge K_1$  such that, for all  $k \ge K_2$ , there exists  $z'_k \in B_m(\bar{x}) \cap \Gamma_2$  such that  $||z_k - z'_k|| < \delta$ . Since  $z_k \in B_{\varepsilon}(\Gamma_1)$ , then

$$z'_k \in B_{\varepsilon + \delta}(\Gamma_1) \cap B_m(\bar{x}) \cap \mathcal{O} \subset B_\mu(\Gamma_1) \cap B_m(\bar{x}) \cap \Gamma_2$$

and, by (A.4),  $\phi([T, +\infty), z'_k) \subset B_{\varepsilon'}(\Gamma_1)$ . By continuous dependence on initial conditions,  $\delta$  can be chosen small enough that

$$(\forall x \in B_m(\bar{x}))(\forall x_0 \in B_\delta(x)) \|\phi(T, x) - \phi(T, x_0)\| < \varepsilon/2.$$

We have  $z_k \in B_m(\bar{x})$  and  $||z_k - z'_k|| < \delta$ , hence  $||\phi(T, z_k) - \phi(T, z'_k)|| < \varepsilon/2$ , which implies  $u_k \in B_{\varepsilon/2}(\phi(T, z'_k)) \subset B_{\varepsilon/2+\varepsilon'}(\Gamma_1) \subset B_{\varepsilon}(\Gamma_1)$ .  $y_1$ 

$$B_{\varepsilon/2}(\phi(T, z'_k)) \subset B_{\varepsilon/2+\varepsilon'}(\Gamma_1) \subset B_{\varepsilon}(\Gamma_1),$$

contradicting  $||y_k||_{\Gamma_1} = \varepsilon$ .  $\Box$ 

# A.2. Proof of Theorem 8

Part of the proof was inspired by the stability results using positive semidefinite Lyapunov functions presented in [5] and by the proof of Lemma 1 in [27].

By assumption (ii), there exists a neighbourhood  $\mathcal{N}_1(\Gamma_1)$  of  $\Gamma_1$  such that all trajectories originating there asymptotically approach  $\Gamma_2$  in positive time. Let  $\mathcal{N}_2(\Gamma_1)$  be the neighbourhood in assumption (iii), and define  $\mathcal{N}_3(\Gamma_1) = \mathcal{N}_1(\Gamma_1) \cap \mathcal{N}_2(\Gamma_1)$ . Clearly,  $\mathcal{N}_3(\Gamma_1)$  is a neighbourhood of  $\Gamma_1$ . By construction, for all  $x_0 \in \mathcal{N}_3(\Gamma_1)$ , the solution is bounded and approaches  $\Gamma_2$ . Therefore, the positive limit set  $L^+(x_0)$  is non-empty, compact, invariant, and  $L^+(x_0) \subset \Gamma_2$ . Moreover, by definition of positive limit set, and by assumption (iii) we have the following inclusion,

$$L^+(x_0) \subset \operatorname{cl}(\phi(\mathbb{R}^+, x_0)) \cap \Gamma_2 \tag{A.5}$$

$$\subset$$
 {domain of attraction of  $\Gamma_1$  rel. to  $\Gamma_2$ }.

We need to show that  $L^+(x_0) \subset \Gamma_1$ . Assume, by way of contradiction, that there exists  $\omega \in L^+(x_0)$  and  $\omega \notin \Gamma_1$ . By the invariance of  $L^+(x_0), \phi(\mathbb{R}, \omega) \subset L^+(x_0)$ , and therefore  $L^-(\omega) \subset L^+(x_0)$ . By the inclusion

<sup>&</sup>lt;sup>2</sup> In the contradiction assumption that  $\Gamma_1$  is unstable we employ  $\varepsilon > 0$  as in Lemma 22. By instability of  $\Gamma_1$ , any  $\epsilon \in (0, \varepsilon]$ works in place of  $\varepsilon$ . Therefore, it is always possible to find  $\varepsilon < \mu$ .

in (A.5), all trajectories in  $L^{-}(\omega)$  asymptotically approach  $\Gamma_{1}$  in positive time, and so since  $L^{-}(\omega)$  is closed,  $L^{-}(\omega) \cap \Gamma_{1} \neq \emptyset$ . Let  $p \in L^{-}(\omega) \cap \Gamma_{1}$ . Pick  $\varepsilon > 0$  such that  $\|\omega\|_{\Gamma_{1}} > \varepsilon$ . By the stability of  $\Gamma_{1}$  relative to  $\Gamma_{2}$ , there exists a neighbourhood  $\mathcal{N}_{4}(\Gamma_{1})$  of  $\Gamma_{1}$  such that  $\phi(\mathbb{R}^{+}, \mathcal{N}_{4}(\Gamma_{1}) \cap \Gamma_{2}) \subset B_{\varepsilon}(\Gamma_{1})$ . Since  $p \in L^{-}(\omega)$ , there exists a sequence  $\{t_{k}\} \subset \mathbb{R}^{+}$ , with  $t_{k} \to +\infty$ , such that  $\phi(-t_{k}, \omega) \to p$  at  $k \to +\infty$ . Since  $p \in \Gamma_{1}$ , we can pick  $k^{*}$  large enough that  $\phi(-t_{k^{*}}, \omega) \in \mathcal{N}_{4}(\Gamma_{1})$ . Let  $T = t_{k^{*}}$  and  $z = \phi(-t_{k^{*}}, \omega)$ . We have thus obtained that  $z \in \mathcal{N}_{4}(\Gamma_{1})$ , but  $\phi(T, z) = \omega$  is not in  $B_{\varepsilon}(\Gamma_{1})$ . This contradicts the stability of  $\Gamma_{1}$ , and therefore, for all  $x_{0} \in \mathcal{N}_{3}(\Gamma_{1})$ ,  $L^{+}(x_{0}) \subset \Gamma_{1}$ , proving that  $\Gamma_{1}$  is an attractor for  $\Sigma$ . To prove global attractivity of  $\Gamma_{1}$  it is sufficient to notice that by assumptions (ii)' and (iii)', for all  $x_{0} \in \mathcal{X}$ ,  $L^{+}(x_{0})$  is non-empty and  $L^{+}(x_{0}) \subset \Gamma_{2}$ . On  $\Gamma_{2}$ , by assumption (i)' all trajectories approach  $\Gamma_{1}$ , so by the contradiction argument above we conclude that  $L^{+}(x_{0}) \subset \Gamma_{1}$ .  $\Box$ 

# Appendix B. Proof of Corollary 12

The attractivity part of the Corollary follows directly from Theorem 8 and Remark 9. Now let  $\Gamma_2 = \{(x, y) : y = 0\}$ . Assumption (iv) implies that  $\Gamma_1$  is [globally] asymptotically stable relative to  $\Gamma_2$ . In light of Theorem 10, to prove asymptotic stability of  $\Gamma_1$  we need to show that  $\Gamma_2$  is locally stable and locally attractive near  $\Gamma_1$ . These properties are implied by the asymptotic stability of y = 0 for  $\dot{y} = g(y)$  provided that system (3) has no finite escape times in a neighbourhood of  $\Gamma_1$ . If  $\Gamma_1$  is unbounded, the LUB assumption (vi) rules out finite escape times near  $\Gamma_1$ . Now suppose that  $\Gamma_1$  is compact. The stability of y = 0 for  $\dot{y} = g(y)$  implies that  $\Gamma_2$  is locally stable near  $\Gamma_1$ . Thus, by Theorem 6, assumptions (iv) and (v) imply that  $\Gamma_1$  is stable. The compactness of  $\Gamma_1$  and its stability imply that solutions in a neighbourhood of  $\Gamma_1$ . For the global version, assumption (vi) implies that the cascade system (3) has no finite escape times, and so assumption (v) guarantees that  $\Gamma_2$  is globally asymptotically stable. Global asymptotic stability of  $\Gamma_1$  then follows directly from Theorem 10.

#### Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). M.I. El-Hawwary was partially supported by the Ontario Graduate Scholarship (OGS).

# References

- P. Seibert, On stability relative to a set and to the whole space, in: Papers presented at the 5<sup>th</sup> Int. Conf. on Nonlinear Oscillations (Izdat. Inst. Mat. Akad. Nauk. USSR, 1970), Vol. 2, Kiev, 1969, pp. 448–457.
- P. Seibert, Relative stability and stability of closed sets, in: Sem. Diff. Equations and Dynam. Systs. II; Lect. Notes Math., Vol. 144, Springer-Verlag, Berlin-Heidelberg-New York, 1970, pp. 185–189.
- [3] P. Seibert, J. S. Florio, On the reduction to a subspace of stability properties of systems in metric spaces, Annali di Matematica pura ed applicata CLXIX (1995) 291–320.
- [4] B. S. Kalitin, B-stability and the Florio-Seibert problem, Differential Equations 35 (1999) 453–463.
- [5] A. Iggidr, B. Kalitin, R. Outbib, Semidefinite Lyapunov functions stability and stabilization, Mathematics of Control, Signals and Systems 9 (1996) 95–106.
- [6] M. Vidyasagar, Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability, IEEE Transactions on Automatic Control 25 (4) (1980) 773–779.
- [7] E. D. Sontag, Further facts about input to state stabilization, IEEE Transactions on Automatic Control 35 (1990) 473-476.
- [8] P. Seibert, R. Suárez, Global stabilization of nonlinear cascaded systems, Systems & Control Letters 14 (5) (1990) 347–352.
- [9] E. Panteley, A. Loria, On global uniform asymptotic stability of nonlinear time-varying systems in cascade, Systems & Control Letters 33 (2) (1998) 131–138.
- [10] A. Isidori, Nonlinear Control Systems II, Springer-Verlag, London, 1999.
- [11] E. Panteley, A. Loria, Growth rate conditions for uniform asymptotic stability of cascaded time-varying systems, Automatica 37 (2001) 453–460.
- [12] A. Chaillet, Uniform semiglobal practical asymptotic stability for non-autonomous cascaded systems and applications, Automatica 44 (2) (2008) 337–347.
- [13] M. I. El-Hawwary, M. Maggiore, Reduction principles and the stabilization of closed sets for passive systems, IEEE Transactions on Automatic Control 55 (4) (2010) 982–987.

- [14] N. P. Bathia, G. P. Szegö, Stability Theory of Dynamical Systems, Springer-Verlag, Berlin, 1970.
- [15] Y. Lin, E. Sontag, Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM Journal on Control and Optimization 34 (1996) 124–160.
- [16] E. Sontag, Remarks on stabilization and input-to-state stability, in: Proc. of the 28<sup>th</sup> IEEE Conference on decision and Control, Tampa, Florida, 1989, pp. 1376 – 1378.
- [17] J. M. Coron, A. Teel, L. Praly, Feedback stabilization of nonlinear systems: Sufficient and necessary conditions and Lyapunov input-output techniques, in: A. Isidori (Ed.), New trends in control, Springer-Verlag, New York, 1995, pp. 293–347.
- [18] A. Saberi, P. Kokotović, H. Sussmann, Global stabilization of partially linear systems, SIAM Journal of Control and Optimization 28 (1990) 1491–1503.
- [19] Janković, R. Sepulchre, P. V. Kokotović, Constructive Lyapunov stabilization of nonlinear canscade systems, IEEE Transactions on Automatic Control 41 (1996) 1723–1736.
- [20] F. Mazenc, L. Praly, Adding integrators, saturated controls and global asymptotic stabilization of feedforward systems, IEEE Transactions on Automatic Control 41 (1996) 1559–1579.
- [21] C. Prieur, Uniting local and global controllers with robustness to vanishing noise, Mathematics of Control, Signals, and Systems (MCSS) 14 (2001) 143–172.
- [22] M. Kristić, I. Kanellakopoulos, P. Kokotović, Nonlinear and Adaptive Control Design, John Wiley and Sons, Inc., New York, 1995.
- [23] A. M. Bloch, J. Bailieul, P. Crouch, J. Marsden, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics: Systems and Control, Springer-Verlag, New York, 2003.
- [24] M. I. El-Hawwary, M. Maggiore, Case studies on passivity-based stabilisation of closed sets, International Journal of Control 84 (2) (2011) 336–350.
- [25] H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, Upper Saddle River, New Jersey, 2002.
- [26] M. I. El-Hawwary, M. Maggiore, Reduction principles and the stabilization of closed sets for passive systems, http://arxiv.org/abs/0907.0686v1 (2009).
- [27] P. de Leenheer, D. Aeyels, Stabilization of positive systems with first integrals, Automatica 38 (2002) 1583 1589.