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Abstract

This paper investigates the problem of designing distributed control laws making a group of dynamic
unicycles converge to a common circle of prespecified radius, whose centre is stationary but dependent
on the initial conditions, and travel around the circle in a desired direction. The vehicles are required to
converge to a formation on the circle, expressed by desired separations and ordering of the unicycles.
The information exchange between unicycles is modelled by a directed graph which is assumed to have
a spanning tree. A hierarchical approach is proposed which simplifies the control design by decoupling
the problem of making the unicycles converge to a common circle from the problem of stabilizing the
formation.

I. Introduction

The formation control problem entails designing distributed feedback laws making a group of vehicles

move in an ordered manner along a desired reference trajectory or along a geometric path. By distributed

feedback it is meant a feedback that only requires each vehicle to sense relative information with respect

to neighboring vehicles, for instance its relative displacement. The notion of formation can be expressed

in a variety of ways. One common description is in terms of geometric relations to be satisfied by the

vehicles, such as desired inter-vehicle distances or angles. An alternative description, called behavioral,

does not prescribe precise geometric relationships between vehicles, but it simply aims at maintaining

cohesion of the group while avoiding collisions.

Interest in the subject of formation control can be traced back to the 1987 work of Craig Reynolds [1]

in which an algorithm is presented to simulate the behavior of a flock of birds. The key feature of the

algorithm in [1] is its distributed nature. The flight strategy of each bird is based on rules that require

sensing of relative displacement and heading of other birds. These simple strategies give rise to interesting

group dynamics emulating the behaviors observed by Biologists in nature. This avenue of investigation

has given rise to a rich literature on behavioral formations with the objective of understanding the flocking

and swarming behavior.

On the Engineering side, interest in formation control exploded in the past decade due, in part, to

the increased availability of land and aerial mobile robot platforms. Some influential papers in the area

of formation control are [2], [3], [4], [5], [6], [7]. In [8], Gazi-Passino use artificial potential functions

to stabilize behavioral formations for kinematic point-mass systems. This approach has become very

popular and has been taken by many other researchers, see the recent book [9]. In [10], [11], Marshsall-

Broucke-Francis study formations of unicycles in cyclic pursuit. They postulate a control law and show

that the resulting equilibrium formations are generalized regular polygons. Using Jacobian linearization

and eigenvalue analysis, they characterize the stability type of each equilibrium formation. In [12], Krick-

Broucke-Francis use the notion of graph rigidity to formulate a control law stabilizing rigid formations

for kinematic point-mass systems. In [13], Lin-Francis-Maggiore prove that distributed stabilization of n

unicycles to a common location can be performed if and only if the sensor graph has a spanning tree.
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They also develop feedbacks for formation stabilization to a line and other geometric patterns. Geometric

conditions for feasibility of formations of nonholonomic vehicles were investigated in [14]. In [15],

Sepulchre-Paley-Leonard investigate problems of synchronization for systems of particles modeled as

kinematic unicycles. Potential functions are defined for various tasks and used to generate gradient control

laws. In particular, the authors use space potentials to stabilize circular formations, and phase potentials

to regulate the spacing of the formations. They show how using different types of phase potentials one

obtains different symmetric formations. The results are based on an all-to-all communication assumption.

In [16], the same authors generalize their results to different communication topologies using dynamic

feedback. This generalization relies on so-called consensus estimators developed by Scardovi-Sarlette-

Sepulchre in [17].

In this paper we study a formation control problem similar to that analyzed in [15], [16]. We design

distributed feedback laws making a group of dynamic unicycles converge to a common circle, and travel

around the circle in formation. In our setting, the formation has a precise geometric description in terms

of desired ordering and spacing between vehicles (in [15], [16], one has no direct control over the ordering

and spacing). We model the flow of information flow through the formation by a directed graph which

is assumed to be static and to have a spanning tree. Our control laws are static and time-invariant

(in [16], general graph topologies require dynamic control laws). The solution we propose relies on the

observation that the circular formation stabilization problem can be formulated as one of stabilization

of a closed set Γ. In order to stabilize Γ, we break down the problem into three decoupled design steps.

First, we stabilize a set Γ1 on which the dynamic unicycles are purely kinematic. Then, on Γ1 we design

a distributed feedback making the kinematic unicycles converge to a common circle. This amounts to

stabilizing a set Γ2 ⊂ Γ1. Finally, on Γ2 we stabilize the desired formation, which amounts to stabilizing

a set Γ3 ⊂ Γ2. The set Γ3 coincides with the original goal set Γ. The principle enabling this decoupled

three-step design strategy is a reduction theorem for asymptotic stability of sets, reviewed in the sequel.

The main result of this paper, Theorem V.5, presents a solution to the circular formation stabilization

problem which makes Γ1 globally asymptotically stable, and it makes Γ2 and Γ3 asymptotically stable. In

practice, this means that for suitable initial conditions, the unicycles converge to a common circle and, if in

addition the initial condition is near Γ3, the unicycles also converge to the desired formation. In addition,

we show that when the sensor digraph is undirected then the stabilization of Γ2 is global, so that the

convergence of the unicycles to a common circle occurs for arbitrary initial conditions. There are practical

advantages in a solution which simultaneously stabilizes Γ1, Γ2, and Γ3. One of them is the fact that if the

unicycles are traveling in formation around a common circle, one may change the formation specification

on the fly by changing a parameter in the controller. The unicycles will reconfigure themselves without

leaving the circle. A technical challenge of the problem we investigate is the fact that the goal set Γ is not

compact. When using Lyapunov functions (or artificial potentials) whose zero level set is Γ, one cannot

perform a LaSalle analysis to prove stability, because there is no guarantee that solutions are bounded.

Our analysis in this paper is not based on Lyapunov theory or artificial potentials, and it rigorously

addresses the issue of boundedness of trajectories.

This paper is organized as follows. In Section II we pose the formation stabilization problem, and in

Section III we formulate it in the set stabilization framework. The three-step design methodology to solve

the problem is presented in Section IV. This section also presents stability definitions and reviews a so-

called reduction theorem for asymptotic stability of sets. In Section V we perform the three design steps

and derive distributed feedback laws solving the formation stabilization problem. Simulation results are

presented in Section VI. Finally, in Section VII we draw conclusions and discuss open problems.

Notation

If x is a real number, x mod 2π denotes its value modulo 2π. We will denote by S1 the set of real

numbers modulo 2π, diffeomorphic to the unit circle, and by Tn the n-torus, i.e., the Cartesian product

S1 × · · · × S1, n times. If θ, x ∈ R, then the expression x = θ mod 2π will be used to state that x ∈
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{θ + 2πk, k ∈ Z}. Similarly, if x = (x1, . . . , xn), θ = (θ1, . . . , θn) ∈ R
n, the expression x = θ mod 2π will

be used to state that xi = θi mod 2π, i = 1, . . . , n. We will denote by n the index set {1, . . . , n}.

If A and B are two matrices, blockdiag(A, B) denotes the block-diagonal matrix with blocks A and

B. If a1, . . . , an are scalars, diag(a1, . . . , an) is the diagonal matrix with diagonal entries ai. We denote by

A ⊗ B the Kronecker product of two matrices A and B, and by 1 the n-vector of ones.

We let Sat(R) denote the class of C1 functions φ : R → R such that for all y ∈ R, φ(y) > 0 and

|φ(y)y| < 1. We denote by Sat(Rn) the class of functions φ : R
n → R

n×n defined as φ([y1 · · · yn]⊤) :=
diag(φ1(y1), . . . , φn(yn)), with φi ∈ Sat(R). We let φ(2) := φ⊗ I2. The function φ(y)y is sometimes referred

to as a decentralized saturation.

By φ(t, x0) we denote the solution of ẋ = f (x) with initial condition x0. Given an interval I of the real

line and a set S ∈ X , denote by φ(I, S) the set φ(I, S) := {φ(t, x0) : t ∈ I, x0 ∈ S}. Throughout this paper,

unless otherwise stated, we use ‖v‖ for the two-norm of a vector v. Given a closed nonempty set S ⊂ R
n,

the point-to-set distance ‖x‖S is defined as ‖x‖S := inf{‖x − y‖ : y ∈ S}. We use Bα(x) to denote an

open ball of radius α centered at x, and Bα(S) the set of points with distance less than α to S. A generic

neighbourhood of a set S will be denoted N (S).

II. The circular formation stabilization problem (CFSP)

Consider a collection of n ≥ 2 identical dynamic unicycles modelled as vertical rolling disks as in [18],

ẋi
1 = xi

5 cos xi
3

ẋi
2 = xi

5 sin xi
3

ẋi
3 = xi

4

ẋi
4 =

1

J
wi

2

ẋi
5 =

R

(I + mR2)
wi

1, i ∈ n.

(1)

Referring to the i-th unicycle depicted in Figure 1, R is the radius of the disk and m is its mass; I and

xi
1

xi
2

xi
3

xi
5

a1

a2

I

J

R

Fig. 1. The i-th dynamic unicycle

J are, respectively the moments of inertia about axes a1 and a2 through the centre of mass of the disk.

The states (xi
1, xi

2) are the coordinates of the point of contact of the disk with the plane; xi
3 is the heading

angle; xi
4 is the angular speed around axis a2; finally, xi

5 is the linear speed of the point of contact of the

disk with the plane. The control inputs are the torques wi
1 and wi

2 about axes a1 and a2, respectively.

We will denote the state of the i-th unicycle by xi = (xi
1, . . . , xi

5) ∈ Xi := R
2 × S1 × R

2, and we will let

χ = (x1, . . . , xn) denote the collective state of the n unicycles. The collective state space of the n unicycles

is X := X1 × · · · × Xn. Finally, we will denote x3 = (x1
3, . . . , xn

3 ).
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We will assume that each unicycle has access to its own absolute heading angle xi
3, its own speeds xi

4, xi
5,

and that it can sense relative information of other unicycles. More precisely, the information exchange will

be modeled by a directed graph G = (V , E) called the sensor digraph. Each node of vi ∈ V of G represents

a unicycle. An edge in E from node i to node j of G signifies that unicycle i has access to its relative

displacement, relative heading, and relative linear and angular speeds with respect to unicycle j. We will

let L denote the Laplacian of the digraph of G. We will use the notation Li for the i-th row of L, and we

will denote L(2) := L ⊗ I2 (Kronecker product), Li
(2)

:= Li ⊗ I2, where I2 is the 2 × 2 identity matrix. A

node vi of G is said to be globally reachable [13] if for all j ∈ n, j 6= i, there exists a walk in G from node

vj to node vi. A graph G has a globally reachable node if and only if G has a spanning tree, i.e., if using

some of the edges of G one can form a tree containing all the nodes of G. An algebraic characterization

of this property, used in the sequel, was given in [13] and is repeated here for convenience.

Lemma II.1 (Lemma 2, [13]). A digraph G has a globally reachable node (or, equivalently, a spanning

tree) if and only if 0 is a simple eigenvalue of L.

In this paper we investigate the following
Circular Formation Stabilization Problem (CFSP). Consider the n unicycles in (1). For a given sensor

digraph G with a globally reachable node (or, equivalently, with a spanning tree), design a control law

meeting the following specifications:

(i) Circular path following. For a suitable set of initial conditions, the unicycles should converge to a

common circle of radius r > 0, whose centre is stationary but dependent on the initial conditions,

and move along the circle in a desired direction (clockwise or counter-clockwise). In steady-state,

all unicycles should have a linear speed xi
5 = v > 0, and angular speed xi

4 = v/r, for all i ∈ n.

(ii) Formation stabilization. On the circle in part (i) of the problem, the n-unicycles are required to locally

converge to a formation expressed by desired distances and ordering of unicycles.

(iii) Distributed feedback. The feedback law must be consistent with the sensor digraph, as follows. In

computing its own feedback law, unicycle i has only access to the following variables:

• The relative displacement of unicycles that are visible to unicycle i according to G, measured in

the local frame of unicycle i (see Figure 2).

• The relative heading of unicycles that are visible to unicycle i according to G (see Figure 2).

• The angular and linear speeds xi
4, xi

5.

• The relative angular speed of unicycles that are visible to unicycle i according to G.

i
i

j
j

x
j
3 − xi

3

xij
yij

Sensor digraph G

Fig. 2. Illustration of the relative kinematic variables sensed by unicycle i if there is an edge from node i to node j in the sensor
digraph.

One could pose CFSP for kinematic unicycles. In this case the state of each unicycle would be (xi
1, xi

2, xi
3),

and the control inputs would be ui
1 = xi

5 and ui
2 = xi

4. Moreover, unicycle i would have access to its

relative displacement (measured in its local frame) and relative heading angle with respect to neighboring

unicycles. A byproduct of the hierarchical approach to solving CFSP presented in Section IV is a solution

to the kinematic version of this problem.
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(xi
1, xi

2)

ci(xi)

r

Fig. 3. The centre of rotation ci(xi) of unicycle i if |xi
5| > 0 and xi

4 = xi
5/r.

j

i
xi

3 − x
j
3

r

r

d

2 sin−1 d
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Fig. 4. Formation on the circle

III. CFSP as a set stabilization problem

In this section we show that CFSP can be reformulated as a set stabilization problem. For each i ∈ n,

define the function ci(xi) as

ci(xi) =
[

xi
1 − r sin xi

3 xi
2 + r cos xi

3

]⊤, (2)

and denote c(χ) =
[

c1(x1)⊤ · · · cn(xn)⊤
]

⊤. As shown in Figure 3, the point ci(xi) lies at a distance r from

the point of contact (xi
1, xi

2) of unicycle i with the plane, and the vector
[

xi
1 xi

2

]

⊤ − ci(xi) is orthogonal

to the normalized velocity vector
[

cos xi
3 sin xi

3

]

⊤ of unicycle i. Therefore, the point ci(xi) is the centre

of the circle that the contact point of unicycle i would describe if its linear speed xi
5 and angular speed

xi
4 were chosen so that |xi

5| > 0 and xi
4 = xi

5/r. In light of the above, meeting specification (i) of CFSP is

equivalent to making the set

C = {χ ∈ X : c1(x1) = · · · = cn(xn), xi
4 = v/r, xi

5 = v,

i = 1, . . . , n}

attractive. The notions of stability and attractivity of sets used in this paper are defined precisely in

Section IV-B. We now turn our attention to specification (ii). Consider a formation where unicycles i

and j both travel along a common circle of radius r in the counter-clockwise direction, and unicycle j

travels at distance d ∈ [0, 2r] from unicycle i, as shown in Figure 4. This formation constraint can be

equivalently expressed as xi
3 − x

j
3 = 2 sin−1

(

d
2r

)

mod 2π, so to specify a formation on a circle with
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Fig. 5. Sample formations of three unicycles on a common circle.

given ordering and distances between unicycles one should specify angles θ1, . . . , θn−1 and enforce the

relations xi
3 − xi+1

3 = θi mod 2π, i = 1, . . . n− 1. Meeting specification (ii) in CFSP is equivalent to making

the set Γ = {χ ∈ C : xi
3 − xi+1

3 = θi mod 2π, i = 1, . . . , n − 1} attractive. Letting αn = 0, αi = ∑
n−1
j=i θj,

i = 1, . . . , n − 1, and α =
[

α1 · · · αn

]

⊤, the set Γ can be equivalently expressed as

Γ = {χ ∈ C : L(x3 − α) = 0 mod 2π}.

Notice, indeed, that since we are assuming that the sensor digraph G has a globally reachable node, by

Lemma II.1 the Laplacian matrix L has a simple eigenvalue at 0. The corresponding eigenvector is 1, and

so ker L = span 1. Therefore, using our definition of α above we have

{χ :L(x3 − α) = 0 mod 2π}

= {χ : x1
3 − α1 = · · · = xn

3 − αn mod 2π}

= {χ : xi
3 − xi+1

3 = αi − αi+1 mod 2π}

= {χ : xi
3 − xi+1

3 = θi mod 2π},

as required. The vector of n angles α will be called a formation vector. Note that any two formation vectors

α1 and α2 differing by a constant angle θ define the same formation because L(x3 − α1) = L(x3 − α2 −
θ1) = L(x3 − α2). In other words, the vector α defines a unique formation up to rotation on the circle.

From a practical viewpoint, it is desirable to require Γ to be asymptotically stable in addition to being

attractive. For instance, if a perturbation of finite duration steers the unicycles away from a circular

formation, it is desirable that during the ensuing transient the unicycles remain close to such formation.

Adding the stability requirement, specifications (i) and (ii) of CFSP become the problem of asymptotically

stabilizing the goal set

Γ = {χ ∈ X : c1(x1) = · · · = cn(xn), xi
4 = v/r, xi

5 = v, i ∈ n,

L(x3 − α) = 0 mod 2π}.
(3)

Example 1. Consider n = 3 unicycles and an arbitrary sensor digraph with a globally reachable node.

Suppose we want to stabilize a circular formation where the unicycles are equidistant on the circle and

such that 2 is behind 1, and 1 is behind 3, as shown in part (a) of Figure 5. Stabilizing this formation on

the circle corresponds to stabilizing the set Γ in (3) with formation vector α =
[

4π/3 2π/3 0
]

⊤.

Consider now the formation shown in part (b) of Figure 5, where the inter-agent distances are the

same, but now 2 is behind 3, and 3 is behind 1. This time we have α =
[

2π/3 4π/3 0
]

⊤. Note that the

formation vectors α1 =
[

0 2π/3 − 2π/3
]

⊤ and α2 =
[

0 − 4π/3 4π/3
]

⊤ define the same formation

since α and α1 differ by the constant angle 2π/3 and α1 = α2 mod 2π.
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Finally, suppose that we want unicycles 1 and 2 to coincide on the circle, and we want unicycle 3 to

be behind 1 and 2 on the antipodal point of the circle, as shown in part (c) of Figure 5. In this case, we

have α =
[

π π 0
]

⊤. To illustrate the significance of the Laplacian matrix in the definition of the goal set

Γ, suppose unicycle 1 can see unicycle 2, unicycle 2 can see unicycle 3, and unicycle 3 can see unicycle 1.

In this case the Laplacian is circulant,

L =





1 − 1 0

0 1 − 1

− 1 0 1



 .

Consider the formation in part (b) of Figure 5, where α =
[

2π/3 4π/3 0
]

⊤. Writing L(x3 − α) =
0 mod 2π we get

x1
3 − x3

3 = 2π/3 mod 2π

x2
3 − x3

3 = 4π/3 mod 2π

x2
3 − x1

3 = 2π/3 mod 2π.

These relations identify precisely the formation in part (b) of Figure 5. One can readily check that the

expressions L(x3 − α1) = 0 mod 2π and L(x3 − α2) = 0 mod 2π, with α1, α2 defined as above, give the

same result. △

IV. Methodology to solve CFSP

In the previous section we have seen that solving CFSP amounts to designing distributed feedback

laws for the n unicycles that stabilize the set Γ in (3). In this section we present the general methodology

we will follow in solving this problem. Our approach is hierarchical and rests upon a so-called reduction

theorem for asymptotic stability of sets.

A. Hierarchical control design approach

To manage the complexity of CFSP, we break down its solution into three simpler steps. Consider the

following hierarchy of control specifications encoded in three nested goal sets Γ1 ⊃ Γ2 ⊃ Γ3:

spec 1: Design feedbacks wi
1(χ), wi

2(χ), i ∈ n, stabilizing a desired “kinematic behavior.” In other words,

stabilize the set

Γ1 = {χ ∈ X : xi
4 = ui

2(χ), xi
5 = ui

1(χ), i ∈ n}, (4)

where ui
1(χ), ui

2(χ) are C1 functions defined later. On Γ1, the dynamic unicycles become purely

kinematic, with new inputs ui
1, ui

2.

spec 2: Considering the kinematic motion on Γ1, make the unicycles follow a common circle. This

corresponds to stabilizing the set Γ2 ⊂ Γ1 defined as

Γ2 = {χ ∈ Γ1 : c1(x1) = · · · = cn(xn), i ∈ n}, (5)

and making sure that, on it, ui
2(χ) = ui

1(χ)/r, for all i ∈ n.

spec 3: On Γ2, make the unicycles locally converge to the desired formation with the required speed

specifications. This corresponds to stabilizing the set Γ3 ⊂ Γ2 defined as

Γ3 = {χ ∈ Γ2 : L(x3 − α) = 0 mod 2π, xi
4 = v/r,

xi
5 = v, i ∈ n}.

(6)

Note that Γ3 is precisely the goal set Γ in (3).

The specifications above are hierarchical in the sense that, for i = 2, 3, specification i is met (i.e., χ ∈ Γi)

only if specification i− 1 is met. Our control design will reflect the hierarchical nature of the specifications,

and it will unfold in three steps:

step 1: Design feedbacks wi
1(χ), wi

2(χ), i ∈ n, that asymptotically stabilize Γ1 in (4).
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step 2: Set ui
2(χ) =

ui
1(χ)
r + ũi(χ), i ∈ n, and design ũi(χ) to stabilize Γ2 in (5) relative1 to Γ1.

step 3: Finally, design ui
1(χ), i ∈ n, to asymptotically stabilize Γ3 in (6) relative to Γ2.

The question arising in this context is whether the three properties of Γ1 being asymptotically stable,

Γ2 being asymptotically stable relative to Γ1, and Γ3 being asymptotically stable relative to Γ2 imply that

Γ1, Γ2, and Γ3 are asymptotically stable for the closed-loop system. The answer is yes, under certain

conditions. To make this precise, we will introduce basic notions of stability and boundedness, and we

will review a so-called reduction theorem addressing the question posed above. Then, in Section V, we

will follow the hierarchical design approach just outlined to solve CFSP.

B. Stability definitions and reduction theorems

Consider a dynamical system described by

Σ : ẋ = f (x) (7)

with state space a domain X ⊂ R
n. Assume that f is locally Lipschitz on X and let R

+ = [0,+∞). Let

Γ ⊂ X be a closed positively invariant set for Σ in (7).

Definition IV.1 (Set stability and attractivity). (i) Γ is stable for Σ if for all ε > 0 there exists a neigh-

bourhood N (Γ) such that φ(R+,N (Γ)) ⊂ Bε(Γ).
(ii) Γ is an attractor for Σ if there exists a neighbourhood N (Γ) such that limt→∞ ‖φ(t, x0)‖Γ = 0 for all

x0 ∈ N (Γ).
(iii) Γ is a global attractor for Σ if it is an attractor with N (Γ) = X .

(iv) Γ is [globally] asymptotically stable for Σ if it is stable and attractive [globally attractive] for Σ.

Definition IV.2 (Local stability and attractivity near a set). Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be closed

positively invariant sets. The set Γ2 is locally stable near Γ1 if for all x ∈ Γ1, for all c > 0, and all ε > 0,

there exists δ > 0 such that for all x0 ∈ Bδ(Γ1) and all t > 0, whenever φ([0, t], x0) ⊂ Bc(x) one has that

φ([0, t], x0) ⊂ Bε(Γ2). The set Γ2 is locally attractive near Γ1 if there exists a neighbourhood N (Γ1) such

that, for all x0 ∈ N (Γ1), φ(t, x0) → Γ2 at t → +∞.

The definition of local stability can be rephrased as follows. Given an arbitrary ball Bc(x) centred at

a point x in Γ1, trajectories originating in Bc(x) sufficiently close to Γ1 cannot travel far away from Γ2

before first exiting Bc(x). It is immediate to see that if Γ1 is stable, then Γ2 is locally stable near Γ1, and

therefore local stability of Γ2 near Γ1 is a necessary condition for the stability of Γ1.

Definition IV.3 (Relative set stability and attractivity). Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be closed positively

invariant sets. We say that Γ1 is stable relative to Γ2 for Σ if, for any ε > 0, there exists a neighbourhood

N (Γ1) such that φ(R+,N (Γ1)∩ Γ2) ⊂ Bε(Γ1). Similarly, one modifies all other notions in Definitions IV.1

and IV.2 by restricting initial conditions to lie in Γ2.

Definition IV.4 (Local uniform boundedness (LUB)). System Σ is locally uniformly bounded near Γ (LUB)

if for each x ∈ Γ there exist positive scalars λ and m such that φ(R+, Bλ(x)) ⊂ Bm(x).

We are now ready to state a result from [19], [20], [21] addressing the following question. Consider the

dynamical system Σ in (7), and suppose that two closed sets Γ2 ⊂ Γ1 ⊂ X are positively invariant, and

that Γ2 is asymptotically stable relative to Γ1. Under what conditions is Γ2 asymptotically stable relative

to the state space X ?

Theorem IV.5 (Reduction Principle for Asymptotic stability). Let Γ1 and Γ2, Γ2 ⊂ Γ1 ⊂ X , be two closed

positively invariant sets for Σ in (7). Then, Γ2 is [globally] asymptotically stable if the following conditions

hold:

1By asymptotic stability of Γ2 relative to Γ1 it is meant that Γ2 is asymptotically stable when the initial conditions are restricted
to lie on Γ1. This notion is defined precisely in Section IV-B.
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(i) Γ2 is [globally] asymptotically stable relative to Γ1,
(ii) Γ1 is locally stable near Γ2,

(iii) Γ1 is locally attractive near Γ2 [Γ1 is globally attractive],
(iv) if Γ2 is unbounded, then Σ is LUB near Γ2,
(v) [All trajectories of Σ are bounded]

Remark 1. Conditions (i), (ii), and (iii) in the theorem above are necessary. Additionally, one can show

that if in the theorem above one has that Γ2 ⊂ Γ1 ⊂ Ξ, where Ξ is a closed positively invariant subset of

X , and conditions (ii)-(v) are relaxed by assuming that they hold relative to Ξ, then the conclusions of

Theorem IV.5 hold relative to Ξ.

The reduction theorem above yields the following useful corollary, answering the question that was

posed at the end of Section IV-A. Its simple proof is omitted.

Corollary IV.6. Let Γ3 ⊂ Γ2 ⊂ Γ1 be closed subsets of X that are positively invariant for Σ in (7), and

consider the following conditions:

(i) Γ1 is asymptotically stable and, for i = 1, 2, Γi+1 is asymptotically stable relative to Γi.
(ii) Γ1 is globally asymptotically stable, Γ2 is globally asymptotically stable relative to Γ1, and Γ3 is

asymptotically stable relative to Γ2.
(iii) Σ is LUB near Γ3.
(iv) All trajectories of Σ are bounded.

Then, the following implications hold:

(a) (i) ∧ (iii) =⇒ Γ1, Γ2, Γ3 are asymptotically stable for Σ.
(b) (ii) ∧ (iii) ∧ (iv) =⇒ Γ1, Γ2 are globally asymptotically stable, and Γ3 is asymptotically stable for Σ.

V. Control design

In this section we solve CFSP by following the three-step hierarchical approach presented in Sec-

tion IV-A, and appealing to Corollary IV.6 to prove asymptotic stability of Γ1, Γ2, Γ3 for the closed-loop

system.

A. Specification 1: asymptotic stabilization of Γ1

Recall the set Γ1 in (4),

Γ1 = {χ ∈ X : xi
4 = ui

2(χ), xi
5 = ui

1(χ), i = 1 ∈ n},

where ui
1(χ), ui

2(χ), i ∈ n, are smooth functions to be assigned later. Let ei(χ) =
[

ei
1(χ) ei

2(χ))
]

⊤ =
[

xi
4 − ui

2(χ) xi
5 − ui

1(χ)
]

⊤, i ∈ n, and e(χ) =
[

e1(χ)⊤ · · · en(χ)⊤
]

⊤. Consider the following candidate

Lyapunov function

V1 =
1

2

n

∑
i=1

‖ei‖2.

Taking the time derivative of V along the dynamics (1) we get

V̇1 =
n

∑
i=1

(ei)⊤
[

ẋi
4 − u̇i

2(χ) ẋi
5 − u̇i

1(χ)
]⊤

=
n

∑
i=1

(ei)⊤
[

1

J
wi

2 − u̇i
2(χ)

R

I + mR2
wi

1 − u̇i
1(χ)

]
⊤

,

where u̇i
j(χ) :=

∂ui
j(χ)

∂χ χ̇, i ∈ n, j = 1, 2, and χ̇ is given by the dynamics in (1). By setting

wi
1 =

I + mR2

R

[

u̇i
1(χ)− Ki(xi

5 − ui
1(χ))

]

wi
2 = J

[

u̇i
2(χ)− Ki(xi

4 − ui
2(χ))

]

, i ∈ n,

(8)
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where Ki > 0 are design constants, we get V̇1 = −∑
n
i=1 Ki‖ei‖2, and Γ1 is globally asymptotically (in

fact, exponentially) stable for the closed-loop system (1), (8) provided that the latter has no finite escape

times. To this end, suppose that u1(χ), u2(χ) are chosen to be uniformly bounded on X . Our choice

of feedback wi
1(χ), wi

2(χ) guarantees that for any initial condition χ(0), ei(t), i ∈ n are bounded, and

thus that xi
4(t), xi

5(t) are bounded as well. In turn, referring to (1), this implies that ẋi
1(t), ẋi

2(t), ẋi
3(t) are

bounded, and therefore that xi
1(t), xi

2(t), xi
3(t) are well-defined for all t ≥ 0 and all i ∈ n, excluding the

possibility of finite escape times. These observations are summarized in the next proposition.

Proposition V.1. Consider system (1) and let u1(χ), u2(χ) be C1 functions that are uniformly bounded

on X . Then, the feedbacks wi
1(χ), wi

2(χ) in (8) guarantee that all solutions are globally defined, and the

set Γ1 is globally asymptotically stable for the closed-loop system (1), (8).

B. Specification 2: asymptotic stabilization of Γ2 relative to Γ1

The objective now is to design ui
1(χ), ui

2(χ), i ∈ n, so as to stabilize the set

Γ2 = {χ ∈ Γ1 : c1(x1) = · · · = cn(xn), i ∈ n},

relative to Γ1. To this end, note that the dynamics of (1) restricted to the set Γ1 are those of n kinematic

unicycles
ẋi

1 = ui
1 cos xi

3

ẋi
2 = ui

1 sin xi
3

ẋi
3 = ui

2, i ∈ n

(9)

where now ui
1, ui

2 are viewed as control inputs. For i ∈ n, let

ui
2(χ) =

ui
1(χ)

r
+ ũi(χ),

where ũi(χ) will be now designed to stabilize Γ2 for system (9), while ui
1(χ), i ∈ n, will be designed in

the next section to stabilize Γ3 relative to Γ2. We will begin by solving the problem in the special case

when the sensor digraph is undirected. Then we will generalize to the case of directed graphs.
When ũi(χ) = 0 for all i ∈ n, we have ui

2(χ) = ui
1(χ)/r, and thus the n unicycles rotate around circles

of radius r, so that their centres of rotation ci(xi) in (2) remain constant. This shows, in particular, that

the set Γ2 is invariant for any choice of ui
1(χ), i ∈ n, as long as ũi(χ) = 0 on Γ2 for all i ∈ n. In order to

stabilize Γ2, we write the dynamics of the centres of rotation ci(xi),

ċ = −rS(x3)
⊤ũ(χ),

where

S(x3) = blockdiag
{

[cos x1
3 sin x1

3], · · · , [cos xn
3 sin xn

3 ]
}

.

In order to design ũ(χ), we will begin by assuming that the sensor graph G is undirected, i.e., its Laplacian

matrix L is symmetric. In this case, letting V2(χ) = c(χ)⊤L(2)c(χ), we have

V̇2(χ) = −rc(χ)⊤L(2)S(x3)
⊤ũ(χ).

If we define ỹ = −rS(x3)L(2)c(χ), we see that V̇2 = ỹ⊤ũ, and so system (9) with input ũ and output ỹ is

passive with storage function V. Moreover, the set {χ ∈ Γ1 : V2(χ) = 0} is precisely Γ2, the set we wish

to stabilize. This observation suggests the definition of a passivity-based feedback ũ(χ) = Kφ(y)y, where

y = S(x3)L(2)c(χ), K > 0, and φ ∈ Sat(Rn). With this definition, we get

V̇2 = −rKy⊤φ(y)y ≤ 0.

Since

ẋi
3 = ui

2(χ) =
ui

1(χ)

r
+ Kφi(yi)yi,
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we have

ẋi
3 ≥

infχ∈Γ1
ui

1(χ)

r
− K.

If u1(χ) is chosen so that infχ∈Γ1
ui

1(χ) > v/2, supχ∈Γ1
ui

1(χ) < ∞ for all i ∈ n, and if K < v/(2r),

then there exist µ1, µ2 > 0 such that 0 < µ1 < ẋi
3 < µ2 for all i ∈ n. Moreover, the boundedness

of u1 and the fact that xi
3 belongs to a compact set imply that all solutions of (9) are defined for all

t ≥ 0. This fact and the fact that V̇2 ≤ 0 imply that the set {χ ∈ Γ1 : V2(χ) = 0} is stable for (9). Let

χ(0) ∈ Γ1 be arbitrary, and let χ(t) be the associated solution. One can easily see that the boundedness

of V2(χ(t)) and the fact that ẋi
3 < µ2 imply that V̈2(χ(t)) is bounded. By Barbalat’s lemma, y(t) =

S(x3(t))L(2)c(χ(t)) → 0 as t → ∞. In components, yi(t) =
[

cos xi
3(t) sin xi

3(t)
]

Li
(2)

c(χ(t)) → 0. Thus,

Li
(2)

c(χ(t)) → a(t)
[

− sin xi
3(t) cos xi

3(t)
]

⊤, where a(t) is a continuous scalar function. Since the function

t 7→ V2(χ(t)) is continuous, bounded from below, and nonincreasing, it has a finite limit, implying that

L(2)c
i(χ(t)) has a finite limit. Since ẋi

3 > µ1 > 0, the only way that a(t)
[

− sin xi
3(t) cos xi

3(t)
]

⊤ may

have a finite limit is that a(t) → 0 as t → ∞. This proves that for any χ(0) ∈ Γ1, L(2)c(χ(t)) → 0 as

t → ∞ or, what is the same, the set {χ ∈ Γ1 : V2(χ) = 0} is globally attractive for (9), and hence also

globally asymptotically stable. In conclusion, Γ2 is globally asymptotically stable relative to Γ1 for (1).

These considerations are summarized in the next proposition.

Proposition V.2. Consider the kinematic unicycles in (9) representing the motion of the dynamic unicycles

on the set Γ1, and assume that the sensor digraph G is undirected. For i ∈ n, let ui
1(χ) be a C1 function

such that infχ∈Γ1
ui

1(χ) > v/2 and supχ∈Γ1
ui

1(χ) < ∞, and let φ ∈ Sat(Rn). Then, for all K ∈
(

0, v/(2r)
)

,

the feedback law
u1 = u1(χ)

u2 =
u1(χ)

r
+ Kφ(y)y, y = S(x3)L(2)c(χ),

(10)

globally asymptotically stabilizes the set {χ : c1(χ) = · · · = cn(χ)} for (9). Therefore, the feedback laws

in (8), with u1(χ), u2(χ) as in (10), render Γ2 globally asymptotically stable relative to Γ1 for (1).

Remark 2. In (10), the feedback ui
2(χ) for unicycle i is given by

ui
2(χ) =

ui
1(χ)

r
+ Kφi(yi)yi, yi =

[

cos xi
3 sin xi

3

]

Li
(2)c(χ).

If, for each i ∈ n, we denote by N(i) the set of nodes in G connected to node i through an edge with tail

at i, then yi =
[

cos xi
3 sin xi

3

]

∑j∈N(i) ci(χ)− cj(χ). Using the definition of ci in (2), one has that

yi = ∑
j∈N(i)

−xij + r sin(x
j
3 − xi

3),

where xij and x
j
3 − xi

3 are depicted in Figure 2. We see that the computation of the term φi(yi)yi in ui
2(χ)

requires only the measurement of the relative heading angle of unicycles that are visible to unicycle i,

and of the projection of the relative displacement of said unicycles onto the heading axis of unicycle i.

When the sensor graph is directed, ũ(χ) defined earlier is no longer a passivity-based feedback and

one cannot use the foregoing analysis to generalize Proposition V.2. Indeed, the storage function becomes

V2(χ) =
1

2
c(χ)⊤(L(2) + L(2)

⊤)c(χ),

and it is no longer true, in general, that {χ ∈ Γ1 : V2(χ) = 0} = Γ2 because L⊤ may not be the Laplacian

of a graph. It turns out [22] that under our connectivity assumption, {χ ∈ Γ1 : V2(χ) = 0} = Γ2 if

and only if the sensor digraph is balanced, i.e, if the in-degree of each node is equal to its out-degree.

The second, more fundamental, issue is that the passive output corresponding to the storage above is

y = −rS(x3)(L(2) + L(2)
⊤)c(χ). The computation of this function would require information which is
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not compatible with the sensor digraph, and so a passivity-based feedback would not be distributed!

Nonetheless, we will now show that the feedback in (10) can still be used to asymptotically stabilize Γ2

relative to Γ1. Let again

ũ(χ) = Kφ(y)y, y = S(x3)L(2)c(χ), (11)

where K ∈
(

0, v/(2r)
)

and φ ∈ Sat(Rn). The dynamics of the centres of rotation read as

ċ = −rKφ(2)(S(x3)L(2)c)R(x3)L(2)c, (12)

where R(x3) = blockdiag(R1(x1
3), . . . , Rn(xn

3 )) and

Ri(xi
3) =

[

cos2 xi
3 sin xi

3 cos xi
3

sin xi
3 cos xi

3 sin2 xi
3

]

.

We will view (12) as a time-varying system, where the time dependence of the vector field is brought about

by the signal x3(t). We will use averaging theory [23], [24] to show that the subspace {c : c1 = · · · = cn}
is asymptotically stable for (12). To this end, for an arbitrary χ(0) ∈ Γ1 consider the averaged system

ċavg = −rKR̄(L(2)cavg)L(2)cavg, (13)

where

R̄(L(2)cavg) := blockdiag{R̄1(L1
(2)cavg), · · · , R̄n(Ln

(2)cavg)},

and

R̄i(Li
(2)cavg) := lim

T→∞

1

T

∫ T

0
φi([cos xi

3(τ) sin xi
3(τ)]L

i
(2)cavg)·

· Ri(xi
3(τ))dτ.

We will now show that for each fixed cavg and for all i ∈ n, R̄i(Li
(2)

cavg) is a positive definite ma-

trix. Fix cavg and consider the integral (1/T)
∫ T

0 φi(·) cos2(xi
3(τ))dτ in the expression of R̄i. Let φ

i
:=

minxi
3∈S1 φi([cos xi

3(τ) sin xi
3(τ)]L

i
(2)

cavg). Since φi > 0 and S1 is compact, it holds that φ
i
> 0. Since xi

3(t)

appears inside a cosine in the argument of the integral, we can take xi
3(t) to be a function R → R,

rather than a function R → S1. Then, the fact that ẋi
3 ≥ µ1 > 0 implies that the map t 7→ xi

3(t) is a

diffeomorphism, and so we can perform a change of variables s = xi
3(t), obtaining

lim
T→∞

1

T

∫ T

0
φi(·) cos2(xi

3(τ))dτ

≥ φ
i

lim
T→∞

1

T

∫ xi
3(T)

xi
3(0)

cos2 s

ẋi
3((xi

3)
−1(s))

ds.

Using the inequality ẋi
3 ≤ µ2 and the fact that xi

3(T) → ∞ as T → ∞, we conclude that, for all i ∈ n,

lim
T→∞

1

T

∫ T

0
φi(·) cos2(xi

3(τ))dτ ≥
1

2µ2
.

Now we show that det R̄i(·) > 0. Since φi(·) > 0, by the Cauchy-Schwarz inequality we have
(

∫ T

0
φi(·) sin xi

3(τ) cos xi
3(τ)dτ

)2

≤

(

∫ T

0
φi(·) sin2 xi

3(τ)dτ

)(

∫ T

0
φi(·) cos2 xi

3(τ)dτ

)

,

(14)

with equality holding if and only if sin xi
3(t) = cos xi

3(t) for all t. However, ẋi
3 > µ1 > 0 so the latter

identity cannot hold, proving that relation (14) holds with strict inequality. This implies that for each fixed

cavg ∈ R
2n, the 2 × 2 symmetric matrix R̄i(Li

(2)
cavg) is positive definite. Moreover, since ẋi

3 is uniformly

bounded away from zero for all χ(0) ∈ Γ1, so are the eigenvalues of R̄(L(2)cavg) for each fixed cavg.
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By Lemma II.1, the Laplacian matrix L has a simple eigenvalue at 0, and all its other eigenvalues

have positive real part, so − L(2) has 2 eigenvalues at 0 with geometric multiplicity 2, and its remaining

eigenvalues have negative real part. Since, as we have seen, for each fixed cavg ∈ R
2n the matrix R̄(L(2)cavg)

is positive definite, and since the digraph G has a globally reachable node, Lemma 4 in [13] implies that

for each fixed cavg the matrix − R̄(L(2)cavg)L(2) has the same spectral properties of − L(2), namely it has

two eigenvalues at 0 with geometric multiplicity 2 and all other eigenvalues with negative real part. We

now show that this fact implies the exponential stability of Γ2. Consider the coordinate transformations

z = P−1c, zavg = P−1cavg,

where P ∈ R
2n×2n is defined as P = [1 e2 · · · en]⊗ I2, where e2, . . . , en are the last n − 1 vectors in the

natural basis of R
n. System (12) after coordinate transformation becomes

ż = −rKP−1
(

φ(2)(S(x3)L(2)Pz)R(x3)L(2)

)

Pz, (15)

while the averaged system in (13) becomes

żavg = −rKP−1
(

R̄(L(2)cavg)L(2)

)

Pzavg.

The matrices P−1φ(2)(·)R(x3)L(2)P and P−1R̄(·)L(2)P have the following structure

P−1φ(2)(·)R(x3)L(2)P =

[

02×2 A12(x3(t), L(2)Pz)

02n−2×2 A22(x3(t), L(2)Pz)

]

,

P−1R̄(·)L(2)P =

[

02×2 Ā12(L(2)Pzavg)

02n−2×2 Ā22(L(2)Pzavg)

]

.

Partitioning z and zavg as z =
[

z̄⊤ z̃⊤
]

⊤, zavg =
[

z̄avg
⊤ z̃avg

⊤
]

⊤, with z̄, z̄avg ∈ R
2 and z̃, z̃avg ∈ R

2n−2,

and using the fact that the terms L(2)Pz and L(2)Pzavg are independent of z̄ and z̄avg, we have

˙̄z = −rKA12(x3(t), z̃)z̃ ˙̄zavg = −rKĀ12(z̃avg)z̃avg
˙̃z = −rKA22(x3(t), z̃)z̃ ˙̃zavg = −rKĀ22(z̃avg)z̃avg.

In light of the discussion above, for each fixed z̃avg the matrix − Ā22(z̃avg) is Hurwitz. For all K > 0, the

equilibrium z̃avg = 0 is exponentially stable for the z̃avg subsystem since its linearization is

˙̃zavg = −rKĀ22(0)z̃avg,

and the matrix − Ā22(0) is Hurwitz. By the averaging theorem [23], [24], there exists K⋆ ∈ (0, v/(2r)) such

that for all K ∈ (0, K⋆), the origin of the z̃ subsystem is exponentially stable, implying that the subspace

{(z̄, z̃) : z̃ = 0} is exponentially stable. Note that the matrix-valued function (x3, z̃) 7→ A12(x3, z̃) is

bounded because φ(2)(·) and R(x3) in (15) are bounded functions. Therefore, the exponential convergence

of z̃(t) to zero implies that z̄(t) has a finite limit, so that all solutions in a neighbourhood of the subspace

{(z̄, z̃) : z̃ = 0} converge to a point on the subspace. Returning to dynamics in c-coordinates, for all

K ∈ (0, K⋆), the subspace {c : c1 = · · · = cn} is exponentially stable for (12) and all solutions in a

neighbourhood of said subspace converge to a point on it. The boundedness of c(χ(t)) rules out finite

escape times for (9), and so the exponential stability of {c : c1 = · · · = cn} for (12) implies the exponential

asymptotic stability of {χ : c1(x1) = · · · = cn(xn)} for (9). In turn, this implies that Γ2 is exponentially

stable relative to Γ1 for (1). The considerations above are summarized in the next

Proposition V.3. Consider the kinematic unicycles in (9). For i ∈ n, let ui
1(χ) be a C1 function such that

infχ∈Γ1
ui

1(χ) > v/2 and supχ∈Γ1
ui

1(χ) < ∞, and let u1(χ), u2(χ) be defined as in (10). Then, there exists

K⋆ ∈
(

0, v/(2r)
)

such that for all K ∈ (0, K⋆) the set {χ : c1(x1) = · · · = cn(xn)} is asymptotically stable

for (9). Therefore, the feedback laws in (8), with u1(χ), u2(χ) as in (10), render Γ2 asymptotically stable

relative to Γ1 for (1).
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Remark 3. While the above proposition only asserts asymptotic stability of Γ2, we in fact conjecture that Γ2

is globally asymptotically stable. In the special case when the sensor graph G is undirected, Proposition V.2

shows that our conjecture is correct. For the general case of directed graphs, a proof is not known. We

envision two possible lines of attack to prove our conjecture. First, one could show that the equilibrium

z̃avg = 0 is globally asymptotically stable for the system ˙̃zavg = −rKĀ22(z̃avg)z̃avg. Alternatively, if one

could prove that the matrices R̄i are diagonal, i.e., that limT→∞(1/T)
∫ T

0 φi(·) sin xi
3(τ) cos xi

3(τ)dτ = 0,

then the averaged system (13) would satisfy the strict subtangentiality assumption of [25], and Theorem

3.8 in [25] would imply that the subspace {cavg : c1
avg = · · · = cn

avg} is globally asymptotically stable

for (13). From this, our existing analysis would allow one to conclude global asymptotic stability of Γ2.

C. Specification 3: asymptotic stabilization of Γ3 relative to Γ2

Given a formation vector α, we are now left with the objective of designing ui
1(χ), i ∈ n, so as to

stabilize the set

Γ3 = {χ ∈ Γ2 : L(x3 − α) = 0 mod 2π, xi
4 = v/r, xi

5 = v, i ∈ n},

relative to Γ2. To this end, note that on Γ2 all unicycles lie on a common circle of radius r with fixed

centre. Their motion, therefore, is completely characterized by their displacements along the circle or,

equivalently, by their heading angles xi
3. More precisely, note that if the functions ui

1(χ), ui
2(χ) do not

depend on (xi
4, xi

5), i ∈ n, then the map X → (R2 × S1 × R
2)× · · · × (R2 × S1 × R

2) defined as

χ = (x1, . . . , xn) 7→ (y1, . . . , yn)

yi = (ci(xi), xi
3, ei(χ)), ei(χ) = (xi

4 − ui
2(χ), xi

5 − ui
1(χ)),

is a diffeomorphism. In new coordinates, the motion of the unicycles on Γ2 is given by

ċi = 0

ẋi
3 =

ui
1(χ)

r

ėi = 0, i ∈ n.

Thus, to stabilize Γ3 relative to Γ2 we need to design u1(χ) to meet two objectives:

(a) Stabilize the set S = {x3 : L(x3 − α) = 0 mod 2π} for the system ẋ3 = u1/r. As we have seen in

Section III, this objective corresponds to making the relative heading angles xi
3 − xi+1

3 converge to

fixed constants. This is a consensus problem on the n-torus, a problem studied, for instance, in [17],

[26].

(b) On the set {χ ∈ Γ2 : x3 ∈ S} it must hold that ui
1(χ) = v for all i ∈ n. This implies that, on this set,

ui
2(χ) = v/r, and therefore that xi

4 = v/r, xi
5 = v. In other words, this ensures that the stabilization

of the set S for system ẋ3 = u1/r is equivalent to the stabilization of Γ3 relative to Γ2.

To meet the two objectives above we propose the control law

ui
1(χ) = v − ki sin(Li(x3 − α)), i ∈ n, (16)

where ki > 0 is a design parameter. It is obvious that this control law meets objective (b). Proposition V.4

below shows that it also meets objective (a).

Proposition V.4. For any ki > 0, the control law (16) stabilizes the set S = {x3 : L(x3 − α) = 0 mod 2π}
for the system ẋ3 = u1/r. Therefore, the feedback laws in (8), with u1(χ) as in (16) and u2(χ) as in (10),

render Γ3 asymptotically stable relative to Γ2 for the dynamic unicycles in (1).

Remark 4. When α = 0, the set Γ3 coincides with the consensus manifold {x3 ∈ Tn : x1
3 = · · · = xn

3}.

Therefore, in the consensus framework the result above can be restated as follows: for any ki > 0, the

control laws ui = −ki sin(Lix3), i ∈ n, asymptotically stabilize the set {x3 ∈ Tn : x1
3 = · · · = xn

3},

and hence achieve consensus, provided that the sensor digraph with Laplacian matrix L has a globally
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reachable node. Note that in place of (16), one could let ui
1(χ) = v − ki ∑j∈N(i) sin(xi

3 − x
j
3 − αi + αj) to

obtain the dynamics of the Kuramoto coupled oscillator model used in [17], [26], with an offset to control

the spacing of unicycles. The fact that such a control law asymptotically stabilizes Γ3 for general digraphs

with a globally reachable node was proved, e.g., in [25].

Remark 5. To compute the control law in (16), unicycle i need only measure its relative heading angle

with respect to unicycles that are visible to it.

Proof of Proposition V.4: Let s(x3) =
[

sin(L1(x3 − α)) · · · sin(Ln(x3 − α))
]

⊤. The derivative of this

function along solutions of ẋ4 = u1(χ)/r is given by

ṡ =
1

r







cos(L1(x3 − α)) · · · 0
...

. . .
...

0 · · · cos(Ln(x3 − α))






Lu1(χ).

Now we substitute in the control law in (16), which in vector form reads as u1(χ) = v1 − ks(x3), where

k = diag(k1, . . . , kn). Since 1 is an eigenvector of L associated to the eigenvalue at 0, we have

ṡ = −
k

r







cos(L1(x3 − α)) · · · 0
...

. . .
...

0 · · · cos(Ln(x3 − α))






Ls,

which can be rewritten by isolating the linear part of the vector field,

ṡ = −
k

r
Ls −

k

r
∆(x3)Ls,

where ∆(x3) = diag(cos(L1(x3 − α)) − 1, . . . , cos(Ln(x3 − α)) − 1) vanishes on S . Recall that by our

connectedness assumption on the sensor digraph and Lemma II.1, L has one eigenvalue at zero and

all its other eigenvalues have positive real part. Since k is diagonal and positive definite, Lemma 4

in [13] implies that kL has the same properties. As we did in Section V-B, we now define a coordinate

transformation to quotient out the dynamics associated to the zero eigenvalue of L. Let P = [1 e2 · · · en],
and define the transformation R

n → R × R
n−1, s 7→

[

s̄ s̃⊤
]

⊤ = P−1s which gives

˙̄s = A21 s̃ + ∆1(x3)s̃

˙̃s = A22 s̃ + ∆2(x3)s̃,

where
[

∆1(x3) ∆2(x3)
⊤
]

⊤ = −(k/r)P−1∆(x3)LP and the matrix A22 is Hurwitz. Since ∆1, ∆2 are

uniformly bounded functions, all solutions of the system above are defined for all t ≥ 0. The s̃ subsystem

is composed of two terms: an asymptotically stable LTI nominal part, A22s̃, and a perturbation, ∆2(x3)s̃,

with the property that ∆2(x3) = 0 when L(x3 − α) = 0. Letting

N = {x3 : cos(Li(x3 − α)) > 0, i = 1, . . . , n},

we claim that

S = {x3 : L(x3 − α) = 0 mod 2π} = {x3 ∈ N : s̃(x3) = 0}.

Obviously, {x3 : L(x3 − α) = 0 mod 2π} ⊂ {x3 ∈ N : s̃(x3) = 0}. Suppose that x3 ∈ N is such that

s̃(x3) = 0. Then, s(x3) = λ1, for some λ ∈ R or, since x3 ∈ N , L(x3 − α) = arcsin λ1. Let p denote the

left eigenvector of L corresponding to the zero eigenvalue, so that p⊤L = 0. Then, p has nonnegative

entries (for instance, see Lemma 4 in [27]) and therefore p⊤1 > 0, implying that arcsin λ = 0, so that

L(x3 − α) = 0 mod 2π. This proves the claim.

Since N is a neighborhood of the set S in the n-torus, the result we just proved implies that the

asymptotic stability of S for ẋ3 = u1(χ)/r is equivalent to the asymptotic stability of s̃ = 0 for the s̃
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subsystem. Let R be the positive definite solution of Lyapunov’s equation A22
⊤R + RA22 = −In−1, and

define W(x3) = s̃(x3)
⊤Rs̃(x3). We have

Ẇ = −‖s̃‖2 + 2s̃⊤R∆2(x3)s̃

≤ −
[

1 − M‖∆2(x3)‖∞

]

‖s̃‖2

for some positive scalar M. Since ∆2(x3) = 0 on S , and since we have shown that S = {x3 ∈ N : s̃(x3) =
0}, there exists a neighbourhood W of S , with S ⊂ W ⊂ N , such that ‖∆2(x3)‖∞ < 1/M on W , and

therefore the set {x3 ∈ N : s̃(x3) = 0} is asymptotically stable for the s̃ subsystem or, what is the same,

S is asymptotically stable for ẋ3 = u1(χ)/r.

D. Solution of CFSP

In the previous sections we have designed feedbacks inducing the following three properties on the

dynamic unicycles:

(a) The set Γ1 in (4) is globally asymptotically stable (Proposition V.1). Hence, for all initial conditions,

the dynamic unicycles converge to a desired “kinematic behavior.”

(b) When the sensor digraph is undirected, the set Γ2 in (5) is globally asymptotically stable relative

to Γ1 (Proposition V.2), and in particular for all initial conditions on Γ1 the unicycles converge to a

common circle whose centre depends on the initial condition. When the sensor digraph is directed,

Proposition V.3 proves that Γ2 is asymptotically stable relative to Γ1.

(c) The set Γ3 in (6) is asymptotically stable relative to Γ2 (Proposition V.4). Hence, for all initial conditions

in Γ2 near Γ3, the unicycles converge to a desired formation expressed by a desired ordering and

spacing on the circle. In so doing, the unicycles do not leave the circle.

Now, using Corollary IV.6, we are ready to solve CFSP.

Theorem V.5. Consider the dynamic unicycles in (1), and assume that the sensor digraph G has a globally

reachable node. Let φ ∈ Sat(Rn). Then, there exists K⋆ ∈
(

0, (v/2r)
)

such that for all K ∈ (0, K⋆) and all

ki ∈ (0, v/2), Ki > 0, i ∈ n, the feedback laws

wi
1 =

I + mR2

R

[

u̇i
1(χ)− Ki(xi

5 − ui
1(χ))

]

wi
2 = J

[

u̇i
2(χ)− Ki(xi

4 − ui
2(χ))

]

, i ∈ n,

where, for i ∈ n,
ui

1(χ) = v − ki sin(Li(x3 − α))

ui
2(χ) =

ui
1(χ)

r
+ Kφi(yi)yi, yi =

[

cos xi
3 sin xi

3

]

Li
(2)c(χ),

(17)

and c(χ) =
[

c1(x1)⊤ · · · cn(xn)⊤
]

⊤,

ci(xi) =
[

xi
1 − r sin xi

3 xi
2 + r cos xi

3

]⊤,

solve CFSP, yielding the following properties:

(a) The set Γ1 in (4) is globally asymptotically stable, and the sets Γ2, Γ3 in (5), (6) are asymptotically

stable for the closed-loop system. Additionally, if G is undirected, Γ2 is globally asymptotically stable.

(b) For any initial condition in a neighbourhood of Γ2, the unicycles converge to a common stationary

circle of radius r, whose centre depends on the initial condition. Their linear speed on the circle is

xi
5 = v, i ∈ n. If G is undirected, then this property holds for any initial condition.

Remark 6. The feedbacks in the theorem above are distributed in the sense described in part (iii) of the

statement of CFSP. As we pointed out in Remarks 2 and 5, in order to compute ui
1(χ) and ui

2(χ), unicycle

i needs its relative displacement (measured in its own local frame) and relative heading with respect to

unicycles that are visible to it. Then, in order to compute the control values wi
1, wi

2, unicycle i needs to
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measure its own angular and linear speeds xi
4, xi

5, and it must compute u̇i
1(χ), u̇i

2(χ). It is easy to see that

this latter computation requires the additional measurements of the relative angular speeds with respect

to unicycles that are visible to unicycle i according to G. In conclusion, the feedback in the theorem above

meets requirement (iii) of CFSP.

Remark 7. We conjecture that the proposed feedback globally asymptotically stabilizes Γ2 even when G
is a directed graph. In Remark 3 we have provided two avenues of investigation to generalize the result

of Proposition V.2 to the case of directed graphs. Such a generalization would automatically yield global

asymptotic stability of Γ2 in the above theorem.

Remark 8. The solution of CFSP presented in Theorem IV.5 has a simple intuitive explanation. An

inner velocity feedback loop, the feedbacks wi
1(χ) and wi

2(χ), makes the linear and angular speeds of

the unicycle track references ui
1(χ(t)), ui

2(χ(t)). An outer feedback loop computes the reference signals

ui
1(χ(t)), ui

2(χ(t)) as follows. The linear velocity feedback ui
1 is the sum of the desired steady-state

speed v plus a correction term that computes the average relative heading of unicycle i with respect

to its neighbours in the sensor digraph. This average is compared to the average of the desired angle

separations between the unicycle headings. Thus, ui
1 makes unicycle i speed up or slow down in such a

way that its average relative heading angle with respect to neighbouring unicycles in the sensor digraph

coincides with the desired average angle separation. On the circle, this guarantees that unicycle i meets

its own formation specification. The sin(·) function in ui
1 guarantees that the correction term is computed

up to angle differences of multiples of 2π. The angular speed feedback ui
2 has two terms. The first term,

ui
1(χ)/r, makes the unicycle move around a circle of radius r. The second term controls the centre of

rotation ci in such a way that it asymptotically approaches the centres of rotation of other unicycles. The

functions φi(·) ∈ Sat(R) guarantee that the angular speed of unicycle i is always positive, so the unicycle

is guaranteed to travel around the circle in the counter-clockwise direction. It also plays a role in the

global convergence of the centres of rotation. In conclusion, the linear speeds ui
1 are used to control the

formation spacings, while the angular speeds ui
2 are used to steer the unicycles to a common circle. All

of the above is done in a distributed fashion.

Remark 9. The proposed solution simultaneously stabilizes the three sets Γ1 ⊃ Γ2 ⊃ Γ3. One of the

consequences of this feature is this. Suppose that the unicycles are in steady-state, traveling in formation

around a common circle of radius r. If one changes the formation vector α on the fly to reconfigure the

formation, and if the unicycles are within the domain of attraction of the new set Γ3 resulting from the

change in α, one is guaranteed that the unicycles will converge to the new formation without leaving the

common circle. To make sure that the unicycles remain in the domain of attraction of Γ3 as α is changed,

it suffices to change α in small increments, or sufficiently slowly.

Remark 10. The work in [15] solves a circular formation stabilization problem for kinematic unicycles

which is similar to CFSP, with two differences: in [15], one cannot arbitrarily specify the ordering and

spacing of unicycles on the circle. Moreover, the computation of the control law in [15] requires all-to-all

communication between unicycles. The control law in [15] is derived using a potential function approach.

A spacing potential is used to make unicycles converge to a common circle. A phase potential is used to

induce a number of different symmetric formations on the circle. All of this is achieved by only controlling

the angular speed of the unicycles (their linear speed is assumed to be one). In contrast to the work in [15],

we use the linear speeds of the unicycles to stabilize the formation, controlling both the distances and

ordering of unicycles in a distributed manner. A consequence of the assumption, in [15], that the unicycles

have unit speed is that when using phase potentials, the set where the centres of the unicycles coincide

(Γ2 in this paper) is not invariant for the closed-loop system, and hence it is unstable. In [16], the all-to-all

communication requirement is relaxed through the introduction of so-called consensus filters (an idea

which originated in [17]). Such filters require each unicycle to broadcast the state of its own dynamic

controller to all of its neighbouring unicycles. In contrast, the control laws proposed in Theorem V.5 are
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static and do not require any communication between unicycles (besides the measurement of relative

variables).

Proof of Theorem V.5: By our choice of φ(·), the functions u1(χ), u2(χ) are uniformly bounded on

X , and therefore by Proposition V.1, all solutions are globally defined, and Γ1 is globally asymptotically

stable for the closed-loop system. Moreover, for all i ∈ n, infχ∈X ui
1(χ) > v/2, and so by Proposition V.3

there exists K⋆
> 0 such that for all K ∈ (0, K⋆) Γ2 is asymptotically stable relative to Γ1 for the closed-loop

system. Finally, by Proposition V.4, Γ3 is asymptotically stable relative to Γ2 for the closed-loop system.

Now we apply Corollary IV.6: if the closed-loop system is LUB near Γ3, then part (a) of the theorem

statement follows.

To prove that the closed-loop system is LUB near Γ3, it suffices to show that there exists M > 0 such

that for all χ(0) in a neighbourhood of Γ2 (and hence for all initial conditions in a neighbourhood of Γ3), it

holds that ‖χ(t)− χ(0)‖ < M. Consider the diffeomorphism we used in Section V-B, χ = (x1, . . . , xn) 7→
(y1, . . . , yn), yi =

[

ci(xi)⊤ xi
3 ei(χ)⊤

]

⊤. Since xi
3 ∈ S1, a compact set, to prove the property above it

is sufficient to show that ‖c(χ(t))− c(χ(0))‖ and ‖e(χ(t)))− e(χ(0))‖ have a bound which is uniform

for all χ(0) on a neighborhood of Γ2. The analysis in Section V-A readily implies that e(t) satisfies the

required property, so we only need to focus on the boundedness of c(χ). To this end, we write the centre

dynamics for the closed-loop system

ċi = −r

[

cos xi
3

sin xi
3

]

[1 − 1/r]

[

xi
4

xi
5

]

.

Using the fact that
[

xi
4 xi

5

]

⊤ = ei +
[

ui
2(χ) ui

1(χ)
]

⊤, and substituting ui
1(χ) and ui

2(χ) from (17), we

obtain

ċ = −rKφ(2)(S(x3)L(2)c)R(x3)L(2)c − rS(x3)
⊤βe, (18)

where β = blockdiag([1 − 1/r], · · · , [1 − 1/r]) and the matrices R(x3), S(x3) were defined in Section V-B.

As we did in Section V-B, we can view (18) as a time-varying system, where the time variation is brought

about by the signals x3(t) and e(t), and apply averaging theory. Recall that ẋ3 = xi
4 = ui

2 + ei
1, and that

ui
2 was chosen in such a way that there exists µ1 > 0 such that ui

2 > µ1 > 0. Since Γ1 is stable and,

on it, ei = 0, there exists a positively invariant neighbourhood U of Γ1 on which ẋ3 ≥ µ1/2. As shown

in Section V-B, this inequality implies that the matrix φ(·)R(x3(t)) has a well-defined positive definite

average R̄, whose eigenvalues are bounded away from zero uniformly over all x3(0) and all e(χ(0)).
Moreover, for the average of the second term in (18) we have that there exists m > 0 such that

∥

∥

∥

∥

−r lim
T→∞

1

T

∫ T

0
S(x3(τ))

⊤βe(τ)dτ

∥

∥

∥

∥

≤ r lim
T→∞

1

T

∫ T

0
‖S(x3(τ))‖‖βe(τ)‖dτ

≤ m lim
T→∞

1

T

∫ T

0
‖βe(τ)‖dτ = 0.

In the above, we have used the fact that the norm of S(x3(t)) is bounded because its entries are globally

bounded functions, and moreover the average of ‖βe(t)‖ is zero because e(t) → 0 exponentially, since Γ1

is exponentially stable and globally asymptotically stable. Putting everything together, we have that the

averaged system associated with (18) is

ċavg = −rKR̄(L(2)cavg)L(2)cavg,

where for each fixed cavg, R̄(L(2)cavg) is a positive definite matrix. This system coincides with the one

in (13), and therefore the analysis in Section V-B shows that, if K⋆
> 0 is chosen sufficiently small, then

for all initial conditions in U there exists c̄ ∈ R
2 such that for all i ∈ n, ci(xi(t)) → c̄ exponentially as

t → ∞. Since ker L = span{1}, we have ker{L(2)} = {c : c1 = · · · = cn}, and so we can equivalently
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Fig. 6. Desired unicycle formations in the simulations.
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Fig. 7. Sensor digraph used in the simulations. See Figure 2 for the relationship between this digraph and the sensor
measurements available to each unicycle.

say that L(2)c(χ(t)) → 0 exponentially as t → ∞. Recall also that for any initial condition, e(t) → 0

exponentially. Moreover, for both L(2)c(χ(t)) and e(t) the rate of exponential convergence is uniform

on neighborhoods {χ : ‖L(2)c(χ)‖ < k, ‖e(χ)‖ < k}, with k > 0. Such sets contain Γ2 in their interior.

Going back to the centre dynamics in (18), it holds that ‖ċ‖ ≤ k1‖L(2)c(χ(t))‖ + k2‖e(t)‖ for suitable

k1, k2 > 0, implying that the bound of the norm of ‖c(χ(t))− c(χ(0))‖ is uniform over neighborhoods of

Γ2 of the form {χ : ‖L(2)c(χ)‖ < k, ‖e(χ)‖ < k}, proving that the closed-loop system is LUB near Γ2, and

hence also near Γ3 ⊂ Γ2. By Corollary IV.6, Γ2 and Γ3 are asymptotically stable. When G is undirected,

a straightforward Lyapunov analysis based on the function W(χ) = V1(χ) + V2(χ), where V1(χ), V2(χ)
are defined in Sections V-A and V-B, can be used to show that all trajectories of the closed-loop system

enter U in finite time, so that the considerations above hold globally.

VI. Simulation results

Figure 8 presents simulation results for six dynamic unicycles for the two formations in Figure 6: (a)

The unicycles are uniformly distributed on the circle in a counter-clockwise cyclic order, with formation

vector α1 =
[

0 2π
6

4π
6

6π
6

8π
6

10π
6

]

⊤. (b) The unicycles are uniformly distributed on half of the circle

in a counter-clockwise cyclic order, with formation vector α1 =
[

0 2π
10

4π
10

6π
10

8π
10

10π
10

]

⊤.

In both cases, the sensor digraph is depicted in Figure 7. In the simulations we set r = 1, v = 1, R = 1,

J = 1, I = 1 and m = 1. The controller parameters are Ki = 1, ki = 0.14, φi(y) = 0.9/[(1 + ‖y‖)], for all

i ∈ {1, . . . , 6}, and K = 0.49. Empirically, we observed that increasing K by some amount gives better

convergence of the centres of rotation. However, beyond a threshold value of K, performance degrades

and solutions even become unbounded. To illustrate, the left-hand side of Figure 9 shows the simulation

results for formation (a) when K = 1.1. Notice how the transient performance improved with respect to

the left-hand side of Figure 8. An analogous result is obtained for formation (b). On the other hand, the

right-hand side of Figure 9 shows that for larger K (K = 5 in that case) solutions become unbounded. This

behavior applies to both formations (a) and (b), and it confirms the theoretical prediction of Theorem V.5.

VII. Conclusions

We have presented a solution to the distributed circular formation stabilization problem. We took

a hierarchical point of view, posing the problem as one of simultaneous stabilization of three nested
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Fig. 8. Simulation results for formations (a) and (b).
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Fig. 9. On the left-hand side, increasing K up to a point improves transient performance. On the right-hand side, larger K
causes solutions to grow unbounded.

sets Γ1 ⊃ Γ2 ⊃ Γ3, and we performed the stabilization in three decoupled steps of lower complexity.

The principle that allowed the decoupling in question is a reduction theorem for asymptotic stability of

closed sets. We believe that the same design philosophy can be applied to other formation stabilization

problems, and to different vehicle models, such as satellites and miniature flying vehicles.

Our analysis in this paper rests upon the assumption that the sensor digraph is static. The extension

of our results to the case when the digraph is time-varying and uniformly connected is straightforward,

but not particularly insightful. Indeed, from a practical viewpoint the case of interest is not when the

sensor digraph is time-varying, but rather when it is state-dependent. In this context, a question that

arises is this: suppose that each vehicle can only sense vehicles within a certain range. Does the control

law we have proposed guarantee that if the sensor digraph is initially connected, it will remain uniformly

connected for all time?

In this work we have assumed that the vehicles have identical dynamics. While this is a common

assumption in the literature, it limits the applicability of our results, and it would be worthwhile to

extend these results to handle the case of heterogeneous vehicle networks.
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