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Abstract— A high-precision, magnetically levitated, five
degree-of-freedom (5DOF) positioning stage is presented. Four
independently controlled iron-cored permanent magnet linear
synchronous motors are used to translate the stage and rotate
it about the two horizontal axes. Six optical encoders with
10 µm resolution, mounted on linear guides, are used to
measure displacements and rotations. A partially control-affine
model is presented, which is sufficient for the purposes of
control. Nonlinear tracking controllers are developed for the
5DOF system using feedback linearization and internal model
regulation for step and sinusoidal references.

I. INTRODUCTION

In recent years there has been an increased interest in the

development of magnetically levitated (maglev) contactless

positioning systems with many degrees-of-freedom (DOF)

as an alternative to mechanically-driven high-precision po-

sitioning systems. Traditional industrial positioning systems

are composed of multiple mechanically-driven stages, some

of which actuate large, low-resolution movements, while

others deliver small high-resolution motion. Such systems

have well-known drawbacks. Friction, stiction, backlash, and

hysteresis limit the positioning accuracy. Further, mechanical

wear introduces impurities in the form of dust particles into

the manufacturing environment. Lastly, mechanical coupling

transmits to the microstepper vibrations from the surround-

ing environment. For those fabrication tasks requiring sub-

micrometer accuracy (e.g., photolithography), such vibra-

tions are unacceptable because they significantly affect the

performance of the process, so vibration tables are required.

Maglev positioning stages have the potential to eliminate

the three problems mentioned above. Being contactless, their

positioning accuracy is only limited by the sensor resolution

and the control design. They are not subject to mechanical

wear and therefore they do not introduce dust particles in

the fabrication process. Finally, they are not mechanically

coupled to the surrounding environment and are capable, if

appropriately controlled, to reject vibrations.

A landmark contribution to the development of high-

precision magnetic levitation actuators was given by Kim
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and Trumper in [1], see also [2]. They developed a 6DOF

positioning system using air-cored permanent magnet linear

synchronous motors (PMLSMs) with a horizontal displace-

ment range of 50 × 50 mm2, a vertical displacement range of

400 µm, and rotations in the mrad range. The position noise

was of the order of 5 nm horizontal and 70 nm vertical. Since

then, other significant contributions were made to the de-

velopment of high-precision contactless positioning systems.

Kim and co-workers [3], [4], [5] developed a compact and

lightweight device which employs six Lorentz-type linear

air-cored actuators to control 6DOF with a displacement

range of 300 × 300 × 300 µm3, a rotation range of 3.5

× 3.5 × 3.5 mrad3, and a position noise of about 5 nm.

Menq and co-workers [6], [7], [8], [9] developed three

generations of 6DOF devices. The latest prototype, presented

in [9], employs three Lorentz-type two-axis linear actuators

to achieve a displacement range of 2 × 2 × 2 mm3, a rotation

range of 70 × 70 × 70 mrad3, and a position noise of about

4nm horizontal and 20 nm vertical. Other relevant research

on this topic is found in [10], [11], [12], [13].

Previous research on maglev systems at the University of

Toronto, in collaboration with Quanser, focused on using

combinations of iron-cored PMLSMs to control multiple

DOFs. In [14], a detailed mathematical model of the forces

produced by one PMLSM and a nonlinear control design

to regulate air-gap and displacement are presented. The

work in [15] presents the implementation of a 2DOF system

employing one PMLSM to control longitudinal and vertical

displacements, and a 3DOF system employing four PMLSMs

to control displacements. In both setups, linear guides are

used to constrain the motion to be purely translational. In this

paper we go one step forward and show that, with minimal

modifications, the four PMLSM device in [15] can be used

to control 5DOFs (three displacements and pitch and roll

angles) with a range of 100 × 100 mm2 horizontal, 13 mm

vertical, and rotation range of 6 × 28 mrad2. The accuracy

is 10 µm for displacements and 20 µrad for rotations. Our

device is not contactless because it employs linear guides to

sense the configuration of the platen, but it is a proof-of-

concept giving confidence that our approach can be used to

build a next-generation, contactless positioning system.

We present a partially control-affine model, which is an

accurate approximation of the detailed mathematical model

presented in [16]. Using this partially control-affine model,

we develop a nonlinear controller based on feedback lin-

earization and output regulation which accurately tracks step

and sinusoidal references.
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Fig. 1. Top view of the maglev system

II. HARDWARE AND MODELING

Our positioning system consists of a set of four sym-

metrically placed iron-cored PMLSMs, shown from the top

view in Figure 1, where each PMLSM is labeled Motor 1

to Motor 4. Each PMLSM consists of a stator and a mover.

The stators, housed in a heavy, stationary frame, are longitu-

dinally laminated and transversally slotted to accommodate

a single layer of 3-phase winding. Each mover, consisting

of a set of four type N35 permanent magnets, is positioned

beneath a corresponding stator and affixed to the aluminum

platen. The platen is positioned below the stationary frame

and rests on sets of linear guides that allow the platen to

move along two horizontal axes, one vertical axis, as well as

rotate about the two horizontal axes (pitch and roll). Figure 2

shows the maglev apparatus. Figure 3 illustrates more clearly

Fig. 2. Maglev apparatus viewed from the front

the system of linear guides with directional arrows showing

the allowable movement for each set of guides. Note that

the top of the vertical Y-axis guides are fixed to the bottom

of the platen. As seen in Figure 3, the sets of linear guides

are layered such that the Y-axis guides rest on the Z-axis

guides, which rest on the X-axis guides. The platen is able to

rotate about the X and Z axes since the four vertical guides,

although attached to a rigid platen, are independent and can

be positioned at different heights, allowing the platen to tilt.

While the vertical guides are symmetric with respect to each

horizontal axis, they are not symmetric with respect to the

center of mass of the platen (see Figure 3) because they have

a rectangular section. As a result, it is more difficult to rotate

about the X-axis than the Z-axis; for this reason, the device

can achieve a larger rotation angle about the Z-axis than

about the X-axis. Currently, the rigidity of the supporting

guides does not allow for rotations about the Y-axis.

Fig. 3. Linear guides with arrows indicating the direction of movement of
the guides

The linear guides do not provide any force to the platen

other than friction and are necessary at this stage to maintain

proper alignment of the platen and, most importantly, facili-

tate the placement of sensors used to measure displacements

of the platen. The 3DOF apparatus in [15] uses three optical

encoders mounted on the linear guides to measure X-axis,

Z-axis, and Y-axis displacement. For the 5DOF system there

are a total of six optical encoders mounted on the guides: two

sensors measuring horizontal displacements along the X-axis

and Z-axis, and four sensors mounted on the four vertical

guides that are used to measure vertical displacement and

also rotations about the X-axis and Z-axis. The linear guides

also allow us to insert stoppers to constrain the motion of

the platen, which is useful for parameter estimation purposes.

The system has a horizontal displacement range of ±50mm

along the X-axis and Z-axis, a vertical range of approxi-

mately 13mm, and rotations about the X-axis and Z-axis

of approximately ±3mrad and ±14mrad, respectively. Aside

from the limitations on the rotations imposed by the rigidity

of the linear guides, the maximum rotation angles are also

limited at small and large air-gaps where we risk hitting the

stoppers. The 5DOF apparatus has a translational resolution

of 10µm and a rotational resolution of approximately 20µrad.

The 5DOF system uses four custom-built power supplies

developed by Quanser, each capable of delivering approxi-

mately 5 A continuous and 10 A peak current. Each power

supply is connected to a single PMLSM so that the four

PMLSMs can be independently controlled. Conceptually, we

want to control the displacement of the movers/platen in

several directions by applying current to the stators. The

reader is referred to [14], [15] for the details of the iron-

cored PMLSM operation and modeling.

For a single stator/mover pair, the horizontal force (FH )

and vertical force (FV ) exerted on the mover by the stator

are given by

FH(g, iq) = −KhLh(g)iq (1)

FV (g, iq, id) = −Kv1Lv1(g) + Kv2Lv2(g)id−
Kv3Lv3(g)(i2d + i2q),

(2)
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In the force expressions (1), (2), id and iq represent the direct

and quadrature currents applied to the three-phase winding

of the stator, while g is the vertical air-gap, i.e., the distance

between the mover and stator. The physical parameters in the

above equations are given in [16]. Note that in the equation

for the vertical force (FV ) is not affine in the controls id and

iq.

In order to model the motion of the platen with the

configuration shown in Figure 1, we assume that its center of

mass (CM) coincides with its geometric center, and define

the state vector (x1, . . . , x10) as in Table I. Note that the

TABLE I

STATE VARIABLES AND THEIR PHYSICAL MEANING FOR THE 5DOF

MAGLEV SYSTEM

State variable Units Description

x1 m Vertical displacement of CM

x2 m/s Vertical velocity of CM

x3 m X-axis displacement of CM

x4 m/s X-axis velocity of CM

x5 m Z-axis displacement of CM

x6 m/s Z-axis velocity of CM

x7 rad Rot. angle about the X-axis (φ)

x8 rad/s Ang. vel. about the X-axis

x9 rad Rot. angle about the Z-axis (θ)

x10 rad/s Ang. vel. about the Z-axis

state x1, the vertical displacement of the center of mass of

the platen, corresponds to the average air-gap of the four

PMLSMs, which we denote g1, . . . , g4. Therefore, letting r
denote the distance from the center of the platen to the center

of the movers,

g1 = x1 − r sin x7

g2 = x1 + r sin x9

g3 = x1 + r sin x7

g4 = x1 − r sin x9.

(5)

We combine the horizontal forces as follows. We impose that

the quadrature currents for Motors 2 and 4 (lying along the

X-axis) be equal, and we denote ux the resulting quadrature

current. Similarly, we impose that the quadrature currents for

Motors 1 and 4 (lying along the Z-axis) be equal to a current

uz . We then let the direct currents id be redefined as inputs

uy1, . . . , uy4 for Motors 1 to 4, respectively. Thus, the forces

applied to the 5DOF system are as illustrated in Figure 4.
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Fig. 4. PMLSM forces for the 5-DOF system

We define control inputs v = (vy, vφ, vθ) by the input

transformation, (uy1, uy2, uy3, uy4) 7→ (vy , vφ, vθ) defined

as:
vy = uy2 + uy4

vy = uy1 + uy3

vφ = uy1 − uy3

vθ = uy4 − uy2,

(6)

where now vy controls the vertical translation, vφ controls

the X-axis rotation, and vθ controls the Z-axis rotation. Thus

using the controls u = (ux, uz) and v we have a total of

five inputs to control five DOFs. The (φ, θ) rotations are

controlled by exerting different normal forces at opposite

ends of the apparatus using Motor pairs 1/3 and 2/4, thus

applying a torque about the horizontal axes. Let Ix and Iz

denote the moments of inertia about the X-axis and Z-axis

(by symmetry, Ix = Iz), and define My, Mx, and Mz as the

mass on the Y-axis, X-axis, and Z-axis guides, respectively.

The partially control-affine 5DOF model reads as:
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y =
[

x1 x3 x5 x7 x9

]⊤
,

(7)

where y is the output of the system and the terms in the

above dynamics are given in [16]. Note that the model (7)

is affine in the control v.

III. NONLINEAR CONTROLLER DESIGN

In this section, we design a controller to track steps

and sinusoidal reference signals with a given frequency

ω0. Consider the model (7) and the following feedback

linearizing transformation:





vy

vφ

vθ



 = M−1





w1 − a1

w4 − b1

w5 − c1





[

ux

uz

]

=







w2

hx(x1, x9)
w3

hz(x1, x7)






, (8)

where

M =





a3 a2 a4

b3 b2 0
c3 0 c2



 , (9)

and w1, . . . , w5 are new control inputs. The state-dependent

matrix M can be numerically shown to be invertible in

the range of operation of the system and hx(x1, x9) and

hz(x1, x7) are non-zero within the operating range. The

closed-loop (CL) system reads as:

ẋ1 = x2

ẋ2 = w1

ẋ3 = x4

ẋ4 = w2

ẋ5 = x6

ẋ6 = w3

ẋ7 = x8

ẋ8 = w4

ẋ9 = x10

ẋ10 = w5

y = [ x1 x3 x5 x7 x9 ]T

(10)

Now we have a linear system composed of five double

integrators with input (w1, w2, w3, w4, w5) and output y.

A. Tracking Controller Design

We now apply the output regulation theory of [17], [18],

[19] to (10). The control objective is to stabilize set-point

references, track sinusoidal references with fixed frequency

ω0, or a combination of the two. Since (10) comprises five

decoupled linear systems, each with two poles at the origin,

it would be sufficient, in principle, to use internal models

with poles at ±iω0. In order to provide robustness against

constant input disturbances, we also include a pole at the

origin. In conclusion, the output regulator incorporates five

structurally identical internal models with poles at ±iω0 and

0

ξ̇y = Φξy + Ney, w1 = Γξy

ξ̇x = Φξx + Nex, w2 = Γξx

ξ̇z = Φξz + Nez, w3 = Γξz

ξ̇φ = Φξφ + Neφ, w4 = Γξφ

ξ̇θ = Φξθ + Neθ, w5 = Γξθ,

(11)

where

Φ =





0 1 0
0 0 1
0 −ω2

0 0



 , N =





0
0
1



 , Γ =
[

1 0 0
]

, (12)

and ey = x1 − xref
1 , ex = x3 − xref

3 , ez = x5 − xref
5 , eφ =

x7 − xref
7 , eθ = x9 − xref

9 denote the tracking errors. The

regulator design is completed by letting

w1 = Ky





ey

ėy

ξy



 + Γξy, w2 = Kx





ex

ėx

ξx



 + Γξx,

w3 = Kz





ez

ėz

ξz



 + Γξz , w4 = Kφ





eφ

ėφ

ξφ



 + Γξφ,

w5 = Kθ





eθ

ėθ

ξθ



 + Γξθ.

(13)

The state feedback controller gains Ky, Kx, Kz, Kφ, Kθ are

chosen to stabilize the system (10) augmented with the

regulator system (11) with the inputs w1, . . . , w5 are chosen

as in (13) and the references xref
1 , . . . , xref

9 set to zero.

We also include saturations and antiwindup compensators

for the horizontal X-axis and Z-axis regulators since large

step references for the horizontal translations result in large

translational accelerations and demand larger sustained cur-

rents, which pushes the limits of the current amplifiers.

Letting sat7(u) denote the saturation function with saturation

limits at ±7, the antiwindup compensators for the X and Z-

axes internal models are defined as

ξ̇x = Φξx + Nex + Ecx

(

sat7(ux) − ux

)

, w2 = Γξx

ξ̇z = Φξz + Nez + Ecz

(

sat7(uz) − uz

)

, w3 = Γξz,
(14)

where Ecx and Ecz are antiwindup compensator gains that

are manually tuned to give the desired antiwindup per-

formance (stability and minimal overshoot) for aggressive

internal model regulator design (fast transients, minimal

steady-state error). The final controller is given by (8), (11),

(13), and (14). A block diagram of the closed-loop system

is shown in Figure 5.
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Fig. 5. Block diagram of the 5DOF system with tracking controller

IV. EXPERIMENTAL RESULTS

As mentioned in Section II, the range of rotation about

the X-axis is smaller than that about the Z-axis due to

the asymmetry of the vertical guides. Therefore, we will

implement a regulator for the X-axis rotation to regulate

that angle to zero and only show experimental results for

set-point stabilization and sinusoidal tracking for the Z-axis

rotation, which has a much larger range of operation. We

stress that experimental results for the Z-axis rotation give

similar results to those associated with the X-axis rotation,

the main differences being a degradation in performance and

reduced range of rotation. We also stress that once the linear

guides are removed from the apparatus, the adverse effect of

linear guides on rotations will disappear and there should be

no difference between X-axis and Z-axis rotations.

A. Set-Point Stabilization

We begin by performing set-point stabilization for the

3DOF translational subsystem (states x1, . . . , x6). The ro-

tation controls are disabled (vφ = vθ = 0) to ensure that all

four motors produce equal normal forces to lift the platen

evenly. The values chosen for Ky, Kx, Kz, Kφ, Kθ are gen-

erated using LQR design with manual tuning of the weight

matrices. The resulting closed-loop poles of the (ey, ėy, ξy)
subsystem are [−173.2,−2.61± i 5.48,−2.16± i 1.77] and

the closed loop poles of the (ex, ėx, ξx) and (ez, ėz, ξz)
subsystems are [−38.73,−3.2± i 5.89,−2.69± i 2.23]. Sat-

urations and antiwindup compensators are included and the

manually tuned antiwindup compensator gains are Ecx =
Ecz = 7 × 10−5[1 1 1]⊤. The output x1 and absolute

position error |x1 − xref
1 | are shown in Figure 6.
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Fig. 6. Y-axis response and error for 3DOF set-point stabilization

It is noted that the controller gains can be tuned to reduce

the settling time at the expense of increased overshoot. To

reduce the overshoot for step references we can choose

to accept a longer settling time or reduce the step size.

This trade-off between overshoot and settling time was also

observed in [15].

Next, we control one rotation, the rotation about the Z-

axis. We restrict the horizontal motion of the platen in

hardware so that the platen can only move along the vertical

Y-axis and rotate. Since we cannot fix the center of mass

of the platen without also restricting rotations, we use the

Y-axis regulator to maintain a constant air-gap of 25mm.

Throughout these tests there is negligible deviation from the

desired air-gap. After tuning the rotation regulator gains us-

ing LQR, the closed-loop poles of the (eθ, ėθ, ξθ) subsystem

are [−200,−2.81± i 5.58,−2.19± i 1.82]. A series of step

commands are issued to the Z-axis rotation (angle θ), and

the results are shown in Figure 7.
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Fig. 7. Z-axis rotation response and error for 1DOF set-point stabilization

The set-point stabilization results for the three translations

and one rotation show overshoots less than 30%, settling

times under 3s for translations and under 5s for rotation,

and steady-state errors reaching encoder resolution in under

10s. Similar set-point stabilization experiments for the X-axis

rotation (results omitted) exhibit a degraded performance and

a smaller range of operation compared to the Z-axis rotation,

which is due to the effects of the vertical guides opposing

rotations.

B. Sinusoidal Tracking

We apply sinusoidal reference signals with a frequency

ω0 = 1.5πrad/s. Set ω0 = 1.5π in the internal models

(12) and (11). Using the same controller gains developed

for 4DOF set-point stabilization, the following reference

commands are used to actuate the Y/X/Z-axis translations

and the Z-axis rotation:

xref
1 (t) = 0.005 sin(1.5πt − π/2) + 0.025

xref
3 (t) = 0.03 sin(1.5πt − π/2)

xref
5 (t) = 0.03 sin(1.5πt)

xref
7 (t) = 0

xref
9 (t) = 0.01 sin(1.5πt).

(15)

Figure 8 shows the response of the Y-axis position and

tracking error. Figure 9 shows the response of the Z-axis

rotation angle and tracking error. The average position and

rotation tracking errors measured over 60 seconds are



xerr
1 = 47.03µm

xerr
3 = 77.98µm

xerr
5 = 76.85µm

xerr
9 = 123.9µrad.

(16)
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Fig. 8. Y-axis response and error for 4DOF sinusoidal tracking
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Fig. 9. Z-axis rotation response and error for 4DOF sinusoidal tracking

V. CONCLUSIONS

In this paper, the problem of controlling rotations (pitch

and roll) of a magnetically levitated positioning system

using iron-cored PMLSMs has been addressed. The internal

model regulator controller design successfully stabilizes set-

point references and tracks sinusoidal references of a given

frequency for XYZ translations and rotations about the X-

axis and Z-axis. The results indicate that it is possible

to remove the linear guide system supporting the platen

and achieve fully contactless levitation with 5 degrees-of-

freedom. It is noted that we have not addressed the issue of

controlling the yaw of the platen. Controlling the yaw (or

at least constraining this rotation) is necessary in order to

ensure the current apparatus can operate without supporting

linear guides. Control of the yaw rotation as well as the

implementation of contactless sensing equipment for output

measurement will be the subject of future research.
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