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Abstract-The feasibility problem is studied of achieving a speciffedmation among a group of
autonomous unicycles by local distributed control. Theectied graph defined by the information flow
plays a key role. It is proved that formation stabilizatianat point is feasible if and only if the sensor
digraph has a globally reachable node. A similar result ¥emjifor formation stabilization to a line and
to more general geometric arrangements.

Index TermsMulti-agent system, distributed control, nonholonomichite robots.

. INTRODUCTION

The problem of coordinated control of a group of autonomoheeled vehicles is of recent interest in
control and robotics. Over the past decade, many researbhee worked on formation control problems
with differences regarding the types of agent dynamics,viréeties of the control strategies, and the
types of tasks demanded. In 1990, Sugihara and Suzuki [Hogex a simple algorithm for a group of
point-mass type robots to form approximations to circless simple polygons. And in the years following,
distributed algorithms were presented in [2]-[4] with tHgextive of getting a group of such robots to
congregate at a common location: This is termechgreement problerf8] or rendezvous probler#].

In [5], Jadbabaie et al. studied a different agreement probbetting autonomous agents in the plane to
move in a common direction. In addition to the referencestimpead so far, mathematical analysis and
control synthesis for formation control of point-mass typbots were developed in [6]-[8] by different
approaches. With regard to a group of wheeled vehicles witthalonomic constraints, the formation
control problem with different objectives was investighia [9]-[13]. Other relevant recent references
are [14]-[21].
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As a natural extension of our previous work [7], [11] and matiéd by the proposed strategy in [12],
[13], in this paper the feasibility problem is studied of msting a specified formation among a group of
unicycles by distributed control. Each unicycle reliesyooh locally available information, namely, the
relative displacements to certain neighbors; in particwlee do not assume that the unicycles possess a
common reference frame.

Central to a discussion of formation control is the natureth@d information flow throughout the
formation. This information flow can be modeled by a direatgdph (digraph for short), where a link
from nodei to nodej indicates that vehiclé has access in some way to the position of vehjetebut
only with respect to the local coordinate frame of vehicl&uch a digraph is assumed in this paper to
be static—the dynamic case, where ad hoc links can be edtablior dropped, is a future topic. We
emphasize that modeling the information flow with a statigralph may not accurately model realistic
situations whereby sensors have a limited field of view. A& #ame time, investigating feasibility of
formations with static digraphs is a necessary step towdngsnore realistic dynamic setting. With this
in mind, in this paper we use the tersensor digraptto denote the digraph defined above. Our analysis
relies on several tools from algebraic graph theory, nayatige matrix theory, and averaging theory. We
introduce a new concept for our analysi${«, m) stability of the Laplacian of the digraph.

Our first main result is that formation stabilization to a coon point is feasible if and only if the
sensor digraph has a globally reachable node (a node to wich is a directed path from every other
node). That is, there exists at least one unicycle that isalie, perhaps indirectly by hopping from one
unicycle to another, by all other unicycles. This is prelgishe degree of connectedness required and is
much weaker than strong connectedness of the sensor di¢gagh cyclic pursuit [11], for example).
Our proof of sufficiency is constructive: We present an eipmooth periodic feedback controller, and
prove convergence using averaging theory.

Our second main result concerns formation stabilizatioa time. This turns out to be feasible if and
only if there are at most two disjoint closed sets of hodefiingensor digraph. In addition, we introduce
a special sensor digraph which guarantees that all vehiclegerge to a line segment, equally spaced.
This is an extension to unicycles of a line-formation sch&nh®/agner and Bruckstein [22].

Finally, we show how formation stabilization to a commonniatan be adapted to any geometric

pattern if a group of unicycles have a common sense of dinecti
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[I. PROBLEM STATEMENT AND MAIN RESULTS

Before treating unicycles, it is perhaps illuminating teega result for the much simpler case of point
masses. Consider “point-mass robots” whose positions are modeled by complaxbers,z1, ..., z,,
in the plane. Assume a kinematic model of velocity contfgl= u;. Assume each robot obtains the
relative positions of a subgroupy;, of the other robots. Lej; denote the vector whose components are
the relative positionsg,,, — z;, asm ranges ovetV;. Thusy;, a vector of dimension the cardinality of
N;, represents the information availabletg We allow controllers of the formu; = F;y;, or u; = 0 if
N; is empty. Thusy; = 0 = u; = 0 = z; = 0; that is, robot; does not move if all robots it senses
are collocated with it (or if there is no information avaikko it). The problem of convergence to a
common point is this:

Problem 0: Find, if possible,Fi, ..., F, such that
(V 2(0),i =1,...,m)(3 2z5)(V 7) tlim zi(t) = zss-

Now define the sensor digraghfor this setup: There is a directed edge from néde nodem if and
only if m € N,.

Before giving our results, we review some notions in grapoti. For a digraplg = (V,€), V =
{1,...,n}, if there is a path irG from one node to another nodg, then; is said to beeachablefrom
i, written ¢« — j. If not, thenj is said to be not reachable froinwritteni -~ ;. If a nodes is reachable
from every other node ii¢j, then we say it igylobally reachablelf ¢/ is a nonempty subset af and
i-»jforallield andj € V — U, thenl is said to beclosed More information can be found in [23],
[24].

Theorem 0: Problem 0 is solvable if and only § has a globally reachable node. Moreover, when
Problem 0 is solvable, one solution#s =[1 --- 1].

The easy proof is omitted.

Now we turn to the main topic of unicycles. We can identify tteal plane,R?, and the complex
plane,C, by identifying a column vector;, and a complex numbez;. Now consider a wheeled vehicle
with coordinategz;, y;, 0;) with respect to a global fram®&: (see Fig. 1). The location of the vehicle in
the plane isz; = [x; y;]7 or z; = x; + jy;. The vehicle has the nonholonomic constraint of pure rolling

and non-slipping and is described kinematically as

x; = v; cos(6;), _ "
) ) z; = v;el”,
¥; = v;sin(6;),  Or .
. 92 = W;.
t; = w;,
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Fig. 1. Wheeled vehicle.

Following [10], we construct a moving frani&, the Frenet-Serret frame, that is fixed on the vehicle
(see Fig. 2). Letr; be the unit vector tangent to the trajectory at the currecaition of the vehicler
is the normalized velocity vector) and let be r; rotated byr /2. Thus, 2; = v;r; since the vehicle is

moving at speed;.

T

Si

trajectory

9%

Fig. 2. Frenet-Serret frame.

Now considem wheeled vehicles, indexed hy We refer to the individual vehicles as nodes and the
information flows as links. Although the vehicles in the groare dynamically decoupled, meaning the
motion of one vehicle does not directly affect any of the otiehicles, they are coupled through the
information flow. LetN; denote the set of labels of those vehicles accessible byleehand define the
sensor digrapl§ = (V,€): There is a directed edge from nodéo nodem if and only if m € N;. We
refer to this as theensor digraph

In this paper, we assumg; is time-invariant, meaning the information flow topologysisitic. In the
control law that we study, no vehicle can access the absplositions of other vehicles or its own.

Specifically, vehiclei can only get the relative positions of a subgroup of vehigligh respect to its
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Fig. 3. Local information.

own Frenet-Serret frame (see Fig. 3),

Tim = (2m — 2i) * T4, me N,
Yim = (2m — 2) - 83,
where dot denotes dot product. This leads to the followinfindien.

Definition 1: A controller (v;, w;), i = 1,...n, is said to be docal information controllerif

vi = gi(t, Tim, Yim)|lmen,,
1=1,...,n
wi = hi(t, Tim, Yim) lmeN,
whereg; is such that{(¥ m € N;) z,, = z;} = {v; = 0}.
Notice that in our definition a vehicle does not translate {(boan rotate) when either it cannot obtain
local information from any other vehicle or its neighborsvéall converged to its position.
In what follows, we present the two main problems invesédan this paper, together with necessary
and sufficient conditions for their solutions.
Problem 1: (Formation Stabilization to a PoinBind, if possible, a local information controller such

that for all (z;(to), vi(to), 0i(to)) € R®, i =1,...n, and allty € R,

(3 25 € R?) (Y 4) tlim zi(t) = zs-

Theorem 1:(Section Ill) Problem 1 is solvable if and only if the sensmgrdph has a globally reachable
node.
Problem 2: (Formation Stabilization to a Lindjind, if possible, a local information controller such

that for all (x;(to), vi(to), 0i(to)) € R3, i =1,...n, and allt, € R, all vehicles converge to form a line.
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Theorem 2:(Section 1V) Problem 2 is solvable if and only if there are atsitwo disjoint closed
sets of nodes in the sensor digraph.

In Section IV we also introduce a special sensor digraph wiigcarantees that all vehicles converge
to a line segment, equally spaced. In Section V we show hovsaolution to Problem 1 can be employed

to achieve formation stabilization to any geometric patter

[1l. FORMATION STABILIZATION TO A POINT

In this section we prove Theorem 1. The proof requires thievidhg lemmas.

Lemma 1:1 A digraphG = (V, €) with [V| > 2 has no globally reachable node if and only if it has
two disjoint closed subsets 0f.

Proof: (Sufficiency Sufficiency follows directly.

(NecessityWe prove necessity by means of a constructive algorithmstlizi select any node, say,,
in V and partition) asV = {v;, } UV; UV;, where every node i, can reachy;, and no node in/;
can reachy;,. Then)] is closed. AlsoV; # ¢, sincev;, is not globally reachable.

Secondly, select any node, say in V]. Since)] is not empty, we can always find one. Check if the
nodew;, is globally reachable in the induced subgraptVy).

If so, then partitiony asV = W, UW; UV, where every node iV, can reach (some node iy
and no node iNV; can reachV]. ThenWj is closed. Also)V] # ¢, sincew;, is not globally reachable.
Thus V] andW; are two disjoint closed subsets for the digraph

If instead the condition above is false, partitidth asV] = {v;,} UV, UV}, where every node in
Vs, can reachy;, and no node in/, can reachw;,. Then), is closed and nonempty. Next, select any
node, sayv;,, in V) and check ifv;, is globally reachable in the induced subgraptiy). If so, then
the conclusion follows by the same argument as above. Ifésdwt, repeat this procedure again until
this condition holds. Since the digraph has a finite numbercofes and/;, is getting smaller each step,
eventually the condition must hold and two disjoint closetsets will have been constructed. W

The following is a useful algebraic characterization of greperty that a digrapy = (V,€) has a
globally reachable node, expressed in terms of the Lapiatialhe proof is omitted (see [26]).

Lemma 2:The digraph has a globally reachable node if and only if O im@ke eigenvalue of..

The information flow produces a kind of symmetry in the systmations with respect to theand

y coordinates. For this reason, the Laplaciafeads to the matrix. o) = L ® I (Kronecker product),

1This lemma is logically equivalent to Theorem 5 of [16]; wecame aware of this reference after the first submission of

our paper.
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which we now study. A definition from [25] will be modified in der to better suit our application.

Leta = {aq,a9,...,0a,} be a partition of{1,2,...,n}. A block diagonal matrix with diagonal blocks
indexed byai, as, ..., is said to bex-diagonal
Definition 2: Leta = {ay, as, ..., a,} be a partition of{1,2,...,n} andm > 0 an integer. Am x n

matrix A is said to beH («, m)-stable if

(@) 0Ois an eigenvalue o of algebraic and geometric multiplicity:, while all other eigenvalues have
negative real part,
(b) for everya-diagonal positive definite symmetric matrix, O is an eigenvalue oR A of algebraic
and geometric multiplicityn, while all other eigenvalues have negative real part.
Lemma 3:Let o = {{1,2},{3,4},...,{2n — 1,2n}}. If the digraphG is strongly connected, then
—Ly) is H(a,2) stable.
The proof is omitted due to space limitation (see [26]).
Lemma 4:Leta = {{1,2},{3,4},...,{2n —1,2n}}. The matrix—L ) is H(a,2) stable if and only
if the digraphgG has a globally reachable node.
Proof: (SufficiencyLet)”’ be the set of all the globally reachable nodes. It is not erbptgontains either
all n nodes orr (1 < r < n) nodes. In the former case, the digraplis strongly connected and therefore
—Ly) is H(«,2) stable by Lemma 3. In the latter case, we can expfgssithout loss of generality,
by L = b0 , where the associated digragtiL;) is strongly connected anfl; is nonsingular.

Ly Ls
Hence, by Lemma 3;- L, ,, is H(«, 2) stable. Furthermore, one can easily verify thatis a nonsingular

M-matrix. Then it follows that there exists a positive diagbmatrix P = diag(p1, p2, - - - ; P(n—r)) SUCh
that@ = LI P + PLs is positive definite. Thus for every-diagonal positive definite symmetric matrix
Ry, let P = P(Q)Rz‘l = Rz‘lP(z), which is positive definite. Applying properties of the Kemker
product yields(—RyLs, )" P + P(—RyLs,) = —Q), Which is negative definite. HenceLs, is
H(a,0) stable and therefore L, is H(a,2) stable.

(Necessity Since —Lp) = —L ® I is H(a,2) stable, it follows that-L, has a O eigenvalue of
algebraic multiplicity 2 and then, by a property of the Kroker product,—L has a simple eigenvalue
at 0. Using Lemma 2, the digraph has a globally reachable.node |
Proof of Theorem 1: (Sufficiency Define the time-varying feedback controller for each vihic (i =
1,...,n)

vilt) =k X xim(t) =k 3 (2m(t) — 2i(t)) - ri(t),

meEN; meEN; Q)
w;(t) = cos(t),
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wherek > 0.

We begin by noticing tha{(v¥ m € N;) z,, = z;} = {v; = 0}. Further, for anyt, € R, 0;(t) =
0i(to) + sin(t), « = 1,...,n, which is periodic with perio®z. Next, using the identityz - r)r =
(rrT)z, we gets; = viri = kY ey, [(2m — 2i) - ril i = k rrl >0, o, (2m — ). Define M (6;(t)) :=

rirl and H(0(t)) = diag(M (61(t)) - - - M (0,,(t))). Thus, the overall position dynamics become
2= —kH(0(t)) Lz, )

wherez € R?" is the position vector = [z{ --- 2117 and L5y = L ® I (L is the Laplacian of the

sensor digraph). And the corresponding averaged systei) af (

¢ =—kHayL2?z, ®3)

_ _ _ ml m2
where H,, = diag(My, ..., M,), M; = ; ; , and

m;

L= % f027r cos?(6;(7))dr,
2.1 f027r cos(6;(7)) sin(6;(7))dr,
3

o

b= [T sin?(6;(7))dr.

By the Cauchy-Schwarz inequalityp!m3 > (m?)z. Sincef;(t) is not constant, the inequality holds

strictly. SoM; is positive definite and therefoi,,, is positive definite. More exactlyi,, is a-diagonal

positive definite withee = {{1, 2}, {3,4},...,{2n—1,2n}}. By the condition that the sensor digraph has

a globally reachable node, it follows from Lemma 4 thak ;) is H(«,2) stable. So there is a similarity

transformationF' such that—F—lL(g)F = diag—L11, 02x2), where—Ly; is Hurwitz and the last two

column vectors of" are in the null space ak,). Without loss of generality, we can choose the last two
T T

column vectors ofF to be 1 ® Ix2. Applying the transformatior = [e] eI]7 = F~12 to the system

(2), wheree; € R?"72 ¢, € R?, we have

¢=—kF  H(O(t) Lo Fe =k ! Au(®) 0 ] ! “ ] :
Aga(t) Oy €2

And correspondingly, for the averaged system (3), we have

Now, the reduced averaged systém= kA; e, is exponentially stable since L(y) is H(a,2) stable.

Then, by Theorem 8.3 in [27], there exists a positive constdnsuch that, for all0 < k < k¥,
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global exponential stability of the reduced original systé; = kA;;(t)e; is established. Also, since
éo = kAja(t)e; and Ajo(t) is uniformly bounded, it follows that, — 0 exponentially whert — oc.
This implies thate; tends to some finite constant vector, say = [z yss]”. In conclusion%lirgoz(t) =
tligloFe(t) =1® zgs.

(Necessity Assume formation stabilization to a point by local infoina controller is feasible. By
way of contradiction, suppose the sensor digraph has nalyoleachable node. Then it follows from
Lemma 1 that there are two disjoint closed sets of nodes insémsor digraplg = (V,€&), say V;
and V. Given the initial conditions satisfying;(0) = zs,, ¢ € Vi and z;(0) = z,, j € Va2, then
for each vehiclei in Vy, (Vv m € N;) z,, = z and soz; = 0. Meanwhile, for each vehiclg in Vs,
(Vm € Nj) z, = z; and soz; = 0. Hence, ifzs,, # zs,,, they can not gather at the same point, a

contradiction. [ |

IV. FORMATION STABILIZATION TO A LINE

We begin this section with a proof of Theorem 2.
Proof of Theorem 2: (Sufficiency By the condition that there are at most two disjoint closet$ of
nodes in the sensor digraph, by Lemma 1, either the sensaptiidas a globally reachable node, or there
are exactly two disjoint closed sets of nodes in it. In the fiesse, by Theorem 1, formation stabilization
to a point is feasible, which is a special instance of linerfation. In the second case, we &, V>
be the two disjoint closed sets of nodes in the sensor digéagh(V,€), and letVs =V — V) — V.
Thus, the induced subgrapbs = (V1,€ N (V1 x V1)), Go = (V2,€ N (V2 x Va)) both have a globally
reachable node. (To see this point, suppose one of thesatluoad subgraphs has no globally reachable
set. Then by Lemma 1 there are two disjoint closed sets indttherefore there are three disjoint closed
sets ing, a contradiction.) IfV; is empty, then by Theorem 1 each group of vehicles whoseeésdice
in V;, i = 1,2, can converge to a point and therefore the whole group of weldeethicles form a line.

On the other hand, i¥’; is not empty, then every node ; can reach eithey; or V,. Without loss of

Ly O 0
generality, we assume the graph Laplacian hasthe form| 0 Lo, 0 , Where L1; and Los
L3y L3z Lss

are the Laplacian matrices corresponding to the inducedraphg, andgG,. One can easily verify that

L33 is a nonsingula\/-matrix.
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By using the controller (1), the overall position dynamics given by
it = —kH(0'(t))L11, 2",
22 = —kH(0%(t))Laa,, 22,
23 = —kH(63(t)) (L33 2® + L1 2" + Lazg, 2%)
wherez, 0%, i = 1,2,3 are the corresponding position vector and orientationoretspectively. From
the proof of Theorem 1, we have that there exist positive teortsk] andk; such that, for alb < k£ < k7,
tliglozl(t) =1 ® 24, Wherezy,, = |14, yss,])7, and for allo < k < k3, tlirgon(t) =1 ® zss,, Where

Zssy, = [Tss, Ysss)' - The change of variables= Lgs, 2® + Lsi, 2 + Laa,, 2° yields
¢ = —kLsg, H(0*(t))s — kLs1, H(0'(t)) L1, 2" — kLsa,, H(6(t))Laa,, 2. (4)

Since L33 is a nonsingulai\/-matrix, by the same argument as in the proof of Lemma- 633, and
—L3Tg(2) are bothH (a,0) stable. By Theorem 8.3 in [27], there exists a positive camist; such that,
for all 0 < k£ < k3, the origin of the nominal system= —kng(z)H(Q?’(t))g is globally exponentially
stable. Furthermore, notice that the other two terms in @th exponentially converge to zero. Hence
(4) can be viewed as an exponentially stable system with aoreatially vanishing input, and thus its

origin is exponentially stable. Lét" = min{k}, k5, k% }. Hence, for all0 < k& < k*,

tlirgoz?’(t) = —(Ls3) L31<2)t£12021(t) ~ (Lssn) " L32<2)t11{2022(t)

= — (L33 L1 1) ® g5, — (L33 - L3z - 1) ® 24s,.
Notice that[Ls; Lss Lss] -1 =0 and so— (L33 - Ls; - 1) — (L33 - Ls2 - 1) = 1. Hence, all(z;(t))ev,
approach a convex combination af;, and z,s,, which means the wheeled vehicles with indices/in
eventually move to the line formed by two points, and zs, in the plane.

(Necessity Suppose by way of contradiction that there are three disjdbsed sets of nodes in the
sensor digraph, say;, V» andVs. Then let the initial conditions of the vehicles Iy, j = 1,2,3 be
chosen such that;(0) = z,,, i € V;. Hence, for each vehiclein V;, (Vv m € N;)z, = z and so
Z; = 0. Then three groups of vehicles form a geometric patternipedy three points,s,, zss, and
2ss,- These three points can be arbitrarily set that may not folinea a contradiction. |

Theorem 2 has an interesting special case when the two rigjlised sets of nodes in the sensor
digraph both have only one member, say notlesdn. Vehicles1l andn are callededge leadersThe
edge leaders here are not necessarily wheeled vehicleg-edimebe virtual beacons or landmarks. But
the vehicles respond to these edge leaders much like thpgrrdgo real neighbor vehicles. The purpose

of the edge leaders is to introduce the mission: to directvétecle group behavior. We emphasize that
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the edge leaders are not central coordinators. They do patlbast instructions. They only play the role
of individual vehicles, but cannot sense other vehiclesamnmunicate with them. As for the remaining
vehicles,i, i = 2,...,n — 1, we assume that each agent can sense or communicate witts age

and: + 1. This gives the sensor digraph in Fig. 4. It is readily seext the digraph in Fig. 4 has exactly
2 disjoint closed sets of nodes. We now show that in this speaie all vehicles converge to a uniform

distribution on the line segment specified by the two edgddesa

1 2 3 n—2n—1n
@ : - == O=—>=0—>0

Fig. 4. The sensor digraph for agents with two edge leaders.

Theorem 3:Consider a group of wheeled vehicles with two stationary edge leaders labeladdn.
Then, there exists a positive constafitsuch that for alb < k£ < £*, the following smooth time-varying
feedback control law for each vehicle (i =2,...,n —1)

vit) =k > x(t), Ny={i—1,i+1}

7=Ni

wi(t) = cos(t)
guarantees that all the vehicles converge to a uniformiloligion on the line segment specified by the
two edge leaders.
Proof: Let L be the Laplacian of the sensor digraph in Fig. 4 anctlet [z --- zI]7. It follows from
Theorem 2 thatl.(;)z(co) = 0. Consider the following partition of1,2,...,n}, {m1,ma,...,ma,} =
{1,3,...,2n—1,2,4,...,2n}. Then the associated permutation maffbhas the unit coordinate vectors
€m, > €m,,- .-, em, forits columns. Now observe that the mat#xperforms the transformatioR” (L ®
L)P =1, ® L=diagL,L) and PTz = [z y]T, wherex = [z; - z,]T andy =[y1 --- y.]?. Thus,
Lx(co) = 0 and Ly(co) = 0. Also note that KefL) = span{¢;, &}, whereéy =[01 --- n—1]7, & =

2
[TL - 1n-2 .- O]T, SO ZL'(OO) = o1& + 06252 and y(OO) = 6151 + /8262. Sinceazl(oo) = LL’1(0),

z,(0)
n—1"

6 = Z@"—fol), ) = ?j;—fol) This shows that all vehicles asymptotically approach doumi distribution on

ay = 222 and

n—1

Zp(00) = x,(0) and y;(o00) = 31(0), yn(c0) = y,(0), SO we solve fora; =

the line. [ |

V. FORMATION STABILIZATION TO ANY GEOMETRIC PATTERN

In this section, we turn our attention to the problem of fotigra stabilization to any geometric pattern.

Following [3], we letII be a predicate describing a geometric pattern, such as § paiegular polygon,
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a line segment, etc. Such a predicate specifies a formatido tqanslation and rotation. Bformation
stabilization of a group of. vehicles toll, we mean that the vehicles (globally exponentially) cogeer
to a distribution satisfyingdlI.

We suppose that a group of wheeled vehicles hageramon sense of directiprepresented by the
angley in Fig. 5. For instance, each vehicle carries a navigatiaticdesuch as a compass. Alternatively,
all vehicles initially agree on their orientation and usastthe common direction. The common direction
may not coincide with the positive-axis of the global frame. Lep; = 6; — ¢ (see Fig. 5). We assume

that vehiclei can measure its owa,.

pd

k e 20 O1
aw o
X B C2 C1

o - j”ﬂ B

" c3 Ca
3
3 O O 4
%
Fig. 5. A group of vehicles have a common sense of direction. Fig. 6. An example for a square formation.

There are two ways to describe a geometric pattern in theeplane way is by inter-node distances,
d;j, as in the rigid formation framework of [8]. The other way ig &pecifying the position vector;,
of each node with respect to a common coordinate frame. Axamge, a square formation described
by ¢;, i = 1,2,3,4, is given in Fig. 6. It is worth noting that, for allR,b) € SE(2), the vectors
¢; = Rc; + b describe the same geometric formation as the one specified. 0 given a desired
geometric formation pictured by;, ¢ = 1,...,n, our objective is to stabilize the position stateof
each vehicle t&; = Rc; +b, i = 1,...,n, for someR andb. To achieve a desired geometric formation
characterized by = [¢I' --- ¢I|T, we can simply translate the formation vectointo a control offset
d = L(g)c so that the forward control velocity is 0 when the group ofiekts has achieved a formation.
We denote the offset for each vehicle By= [d,, d,,]T or d; = d,, + jd,,.

Next, we show that the time-varying control law for each e#&hi, (i =1,...,n)

meN;

’Uit:ki IOR—itdi :L'Z'mt
(t) {[ | R(=oi(t))di + 32 ()} )

wi(t) = cos(t)
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achieves formation stabilization b, whereR is a rotation matrix defined bi(¢) = {

cos(¢) —sin(@) |
sin(9)  cos(9)

Theorem 4:Let II be a desired geometric formation describedcby [c; --- ¢,]?. Suppose a group
of n wheeled vehicles have a common sense of direction and framstibilization to a point is feasible.
Then there exists a positive constdritsuch that for al0 < & < £*, the smooth time-varying feedback
control law (5) withd = L,)c guarantees global exponential formation stabilizatiotlto
Proof: Using the control law (5), one obtains the following clodedp system

z = kM(0:(1)) {R(l/})dz’ + Z (2m — Zi)} ;
meN;
or in vector form,z = kH(6(t)) { —L(2)z + (In ® R(1)) d} . By a property of the Kronecker product,
(In®@ RW))(L® ) = L® R(Y) = (L ® I2)(I, ® R()). Furthermore, since = Lc, we obtain
z = —kH(0(t)) L) {z — (In @ R(¢))c} . Under the coordinate transformatign= z — (I,, ® R(%))c,

we gets = —kH (0(t))L(2)s. By the proof of Theorem 1tlim ¢(t) = 1 ® z,5 for some constant position

Zss = [Tss Yss) - Hence,tlim zi(t) = R(¥)ci + 255, @ = 1,...,n, which means that the group of vehicles
form a geometric formation specified lay |

Remark 1:Notice thatd;(t) = 6;(to)+sin(t), so if a group of» wheeled vehicles achieve an agreement
on their initial orientatiord;(¢y) and choose it as their common direction, the control law ggadmes

’Uz'(t) =k {Re (e_j Sin(t)) d; + Z ZEzm(t)}

meN;
wi(t) = cos(t)
The agreement on their orientation can be implemented byligmngent strategy as shown in [5].
Fig. 7 shows the simulation for a circle formation of ten wiedevehicles with the sensor digraph in

2(i—1)m

Fig. 8. The circle formation is described by = 75¢V =1 )i =1,...,10.

V1. CONCLUSIONS

In this paper, the feasibility problem of achieving a spedifgeometric formation of a group of
unicycles was investigated. Necessary and sufficient graplconditions for the existence of local
information controller to assure the asymptotic convecgeof the closed system were derived. The
sufficiency proof also presented a constructive method datrol law synthesis.

Further research issues include: developing a better ledheantroller to solve this problem which
does not keep the unicycles wiggling and developing moreiggmesults for the dynamic sensor graph

case, where ad hoc links can be established and dropped.
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Fig.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
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8. The sensor digraph of a group of ten wheeled vehicles.
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