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Abstract–The feasibility problem is studied of achieving a specifiedformation among a group of

autonomous unicycles by local distributed control. The directed graph defined by the information flow

plays a key role. It is proved that formation stabilization to a point is feasible if and only if the sensor

digraph has a globally reachable node. A similar result is given for formation stabilization to a line and

to more general geometric arrangements.

Index Terms–Multi-agent system, distributed control, nonholonomic mobile robots.

I. INTRODUCTION

The problem of coordinated control of a group of autonomous wheeled vehicles is of recent interest in

control and robotics. Over the past decade, many researchers have worked on formation control problems

with differences regarding the types of agent dynamics, thevarieties of the control strategies, and the

types of tasks demanded. In 1990, Sugihara and Suzuki [1] proposed a simple algorithm for a group of

point-mass type robots to form approximations to circles and simple polygons. And in the years following,

distributed algorithms were presented in [2]–[4] with the objective of getting a group of such robots to

congregate at a common location: This is termed anagreement problem[3] or rendezvous problem[4].

In [5], Jadbabaie et al. studied a different agreement problem: getting autonomous agents in the plane to

move in a common direction. In addition to the references mentioned so far, mathematical analysis and

control synthesis for formation control of point-mass typerobots were developed in [6]–[8] by different

approaches. With regard to a group of wheeled vehicles with nonholonomic constraints, the formation

control problem with different objectives was investigated in [9]–[13]. Other relevant recent references

are [14]–[21].
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As a natural extension of our previous work [7], [11] and motivated by the proposed strategy in [12],

[13], in this paper the feasibility problem is studied of achieving a specified formation among a group of

unicycles by distributed control. Each unicycle relies only on locally available information, namely, the

relative displacements to certain neighbors; in particular, we do not assume that the unicycles possess a

common reference frame.

Central to a discussion of formation control is the nature ofthe information flow throughout the

formation. This information flow can be modeled by a directedgraph (digraph for short), where a link

from nodei to nodej indicates that vehiclei has access in some way to the position of vehiclej—but

only with respect to the local coordinate frame of vehiclei. Such a digraph is assumed in this paper to

be static—the dynamic case, where ad hoc links can be established or dropped, is a future topic. We

emphasize that modeling the information flow with a static digraph may not accurately model realistic

situations whereby sensors have a limited field of view. At the same time, investigating feasibility of

formations with static digraphs is a necessary step towardsthe more realistic dynamic setting. With this

in mind, in this paper we use the termsensor digraphto denote the digraph defined above. Our analysis

relies on several tools from algebraic graph theory, non-negative matrix theory, and averaging theory. We

introduce a new concept for our analysis:H(α,m) stability of the Laplacian of the digraph.

Our first main result is that formation stabilization to a common point is feasible if and only if the

sensor digraph has a globally reachable node (a node to whichthere is a directed path from every other

node). That is, there exists at least one unicycle that is viewable, perhaps indirectly by hopping from one

unicycle to another, by all other unicycles. This is precisely the degree of connectedness required and is

much weaker than strong connectedness of the sensor digraph(as in cyclic pursuit [11], for example).

Our proof of sufficiency is constructive: We present an explicit smooth periodic feedback controller, and

prove convergence using averaging theory.

Our second main result concerns formation stabilization toa line. This turns out to be feasible if and

only if there are at most two disjoint closed sets of nodes in the sensor digraph. In addition, we introduce

a special sensor digraph which guarantees that all vehiclesconverge to a line segment, equally spaced.

This is an extension to unicycles of a line-formation schemeof Wagner and Bruckstein [22].

Finally, we show how formation stabilization to a common point can be adapted to any geometric

pattern if a group of unicycles have a common sense of direction.
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II. PROBLEM STATEMENT AND MAIN RESULTS

Before treating unicycles, it is perhaps illuminating to give a result for the much simpler case of point

masses. Considern “point-mass robots” whose positions are modeled by complexnumbers,z1, . . . , zn,

in the plane. Assume a kinematic model of velocity control:żi = ui. Assume each robot obtains the

relative positions of a subgroup,Ni, of the other robots. Letyi denote the vector whose components are

the relative positionszm − zi, asm ranges overNi. Thusyi, a vector of dimension the cardinality of

Ni, represents the information available toui. We allow controllers of the formui = Fiyi, or ui = 0 if

Ni is empty. Thus,yi = 0 =⇒ ui = 0 =⇒ żi = 0; that is, roboti does not move if all robots it senses

are collocated with it (or if there is no information available to it). The problem of convergence to a

common point is this:

Problem 0: Find, if possible,F1, . . . , Fn such that

(∀ zi(0), i = 1, . . . , n)(∃ zss)(∀ i) lim
t→∞

zi(t) = zss.

Now define the sensor digraphG for this setup: There is a directed edge from nodei to nodem if and

only if m ∈ Ni.

Before giving our results, we review some notions in graph theory. For a digraphG = (V, E), V =

{1, . . . , n}, if there is a path inG from one nodei to another nodej, thenj is said to bereachablefrom

i, written i→ j. If not, thenj is said to be not reachable fromi, written i 9 j. If a nodei is reachable

from every other node inG, then we say it isglobally reachable. If U is a nonempty subset ofV and

i 9 j for all i ∈ U andj ∈ V − U , thenU is said to beclosed. More information can be found in [23],

[24].

Theorem 0: Problem 0 is solvable if and only ifG has a globally reachable node. Moreover, when

Problem 0 is solvable, one solution isFi = [1 · · · 1].

The easy proof is omitted.

Now we turn to the main topic of unicycles. We can identify thereal plane,R2, and the complex

plane,C, by identifying a column vector,zi, and a complex number,zi. Now consider a wheeled vehicle

with coordinates(xi, yi, θi) with respect to a global framegΣ (see Fig. 1). The location of the vehicle in

the plane iszi = [xi yi]
T or zi = xi + jyi. The vehicle has the nonholonomic constraint of pure rolling

and non-slipping and is described kinematically as


















ẋi = vi cos(θi),

ẏi = vi sin(θi),

θ̇i = ωi,

or







żi = vie
jθi ,

θ̇i = ωi.
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Fig. 1. Wheeled vehicle.

Following [10], we construct a moving frameiΣ, the Frenet-Serret frame, that is fixed on the vehicle

(see Fig. 2). Letri be the unit vector tangent to the trajectory at the current location of the vehicle (ri

is the normalized velocity vector) and letsi be ri rotated byπ/2. Thus, żi = viri since the vehicle is

moving at speedvi.

zi

ri

si

i
Σ

g
Σ

trajectory

Fig. 2. Frenet-Serret frame.

Now considern wheeled vehicles, indexed byi. We refer to the individual vehicles as nodes and the

information flows as links. Although the vehicles in the group are dynamically decoupled, meaning the

motion of one vehicle does not directly affect any of the other vehicles, they are coupled through the

information flow. LetNi denote the set of labels of those vehicles accessible by vehicle i and define the

sensor digraphG = (V, E): There is a directed edge from nodei to nodem if and only if m ∈ Ni. We

refer to this as thesensor digraph.

In this paper, we assumeNi is time-invariant, meaning the information flow topology isstatic. In the

control law that we study, no vehicle can access the absolutepositions of other vehicles or its own.

Specifically, vehiclei can only get the relative positions of a subgroup of vehicleswith respect to its
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Fig. 3. Local information.

own Frenet-Serret frame (see Fig. 3),






xim = (zm − zi) · ri,

yim = (zm − zi) · si,
m ∈ Ni,

where dot denotes dot product. This leads to the following definition.

Definition 1: A controller (vi, wi), i = 1, . . . n, is said to be alocal information controllerif






vi = gi(t, xim, yim)|m∈Ni
,

ωi = hi(t, xim, yim)|m∈Ni

i = 1, . . . , n

wheregi is such that{(∀ m ∈ Ni) zm = zi} ⇒ {vi = 0}.

Notice that in our definition a vehicle does not translate (but it can rotate) when either it cannot obtain

local information from any other vehicle or its neighbors have all converged to its position.

In what follows, we present the two main problems investigated in this paper, together with necessary

and sufficient conditions for their solutions.

Problem 1: (Formation Stabilization to a Point)Find, if possible, a local information controller such

that for all (xi(t0), yi(t0), θi(t0)) ∈ R
3, i = 1, . . . n, and allt0 ∈ R,

(∃ zss ∈ R
2) (∀ i) lim

t→∞
zi(t) = zss.

Theorem 1:(Section III) Problem 1 is solvable if and only if the sensor digraph has a globally reachable

node.

Problem 2: (Formation Stabilization to a Line)Find, if possible, a local information controller such

that for all (xi(t0), yi(t0), θi(t0)) ∈ R
3, i = 1, . . . n, and allt0 ∈ R, all vehicles converge to form a line.
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Theorem 2:(Section IV) Problem 2 is solvable if and only if there are at most two disjoint closed

sets of nodes in the sensor digraph.

In Section IV we also introduce a special sensor digraph which guarantees that all vehicles converge

to a line segment, equally spaced. In Section V we show how oursolution to Problem 1 can be employed

to achieve formation stabilization to any geometric pattern.

III. F ORMATION STABILIZATION TO A POINT

In this section we prove Theorem 1. The proof requires the following lemmas.

Lemma 1:1 A digraphG = (V, E) with |V| ≥ 2 has no globally reachable node if and only if it has

two disjoint closed subsets ofV.

Proof: (Sufficiency) Sufficiency follows directly.

(Necessity) We prove necessity by means of a constructive algorithm. Firstly, select any node, sayvi1 ,

in V and partitionV asV = {vi1} ∪ V1 ∪ V ′
1, where every node inV1 can reachvi1 and no node inV ′

1

can reachvi1 . ThenV ′
1 is closed. Also,V ′

1 6= φ, sincevi1 is not globally reachable.

Secondly, select any node, sayvi2 in V ′
1. SinceV ′

1 is not empty, we can always find one. Check if the

nodevi2 is globally reachable in the induced subgraphG(V ′
1).

If so, then partitionV asV = W1 ∪W ′
1 ∪ V ′

1, where every node inW1 can reach (some node in)V ′
1

and no node inW ′
1 can reachV ′

1. ThenW ′
1 is closed. Also,W ′

1 6= φ, sincevi2 is not globally reachable.

ThusV ′
1 andW ′

1 are two disjoint closed subsets for the digraphG.

If instead the condition above is false, partitionV ′
1 as V ′

1 = {vi2} ∪ V2 ∪ V ′
2, where every node in

V2 can reachvi2 and no node inV ′
2 can reachvi2 . ThenV ′

2 is closed and nonempty. Next, select any

node, sayvi3 , in V ′
2 and check ifvi3 is globally reachable in the induced subgraphG(V ′

2). If so, then

the conclusion follows by the same argument as above. If it does not, repeat this procedure again until

this condition holds. Since the digraph has a finite number ofnodes andV ′
k is getting smaller each step,

eventually the condition must hold and two disjoint closed subsets will have been constructed. �

The following is a useful algebraic characterization of theproperty that a digraphG = (V, E) has a

globally reachable node, expressed in terms of the Laplacian L. The proof is omitted (see [26]).

Lemma 2:The digraph has a globally reachable node if and only if 0 is a simple eigenvalue ofL.

The information flow produces a kind of symmetry in the systemequations with respect to thex and

y coordinates. For this reason, the LaplacianL leads to the matrixL(2) = L⊗ I2 (Kronecker product),

1This lemma is logically equivalent to Theorem 5 of [16]; we became aware of this reference after the first submission of

our paper.
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which we now study. A definition from [25] will be modified in order to better suit our application.

Let α = {α1, α2, . . . , αp} be a partition of{1, 2, . . . , n}. A block diagonal matrix with diagonal blocks

indexed byα1, α2, . . . , αp is said to beα-diagonal.

Definition 2: Let α = {α1, α2, . . . , αp} be a partition of{1, 2, . . . , n} andm ≥ 0 an integer. Ann×n

matrix A is said to beH(α,m)-stable if

(a) 0 is an eigenvalue ofA of algebraic and geometric multiplicitym, while all other eigenvalues have

negative real part,

(b) for everyα-diagonal positive definite symmetric matrixR, 0 is an eigenvalue ofRA of algebraic

and geometric multiplicitym, while all other eigenvalues have negative real part.

Lemma 3:Let α = {{1, 2}, {3, 4}, . . . , {2n − 1, 2n}}. If the digraphG is strongly connected, then

−L(2) is H(α, 2) stable.

The proof is omitted due to space limitation (see [26]).

Lemma 4:Let α = {{1, 2}, {3, 4}, . . . , {2n−1, 2n}}. The matrix−L(2) is H(α, 2) stable if and only

if the digraphG has a globally reachable node.

Proof: (Sufficiency) LetV ′ be the set of all the globally reachable nodes. It is not emptybut contains either

all n nodes orr (1 ≤ r < n) nodes. In the former case, the digraphG is strongly connected and therefore

−L(2) is H(α, 2) stable by Lemma 3. In the latter case, we can expressL, without loss of generality,

by L =





L1 0

L2 L3



, where the associated digraphG(L1) is strongly connected andL3 is nonsingular.

Hence, by Lemma 3,−L1(2)
isH(α, 2) stable. Furthermore, one can easily verify thatL3 is a nonsingular

M -matrix. Then it follows that there exists a positive diagonal matrixP = diag(p1, p2, . . . , p(n−r)) such

thatQ = LT
3 P + PL3 is positive definite. Thus for everyα-diagonal positive definite symmetric matrix

R2, let P̄ = P(2)R
−1
2 = R−1

2 P(2), which is positive definite. Applying properties of the Kronecker

product yields(−R2L3(2)
)T P̄ + P̄ (−R2L3(2)

) = −Q(2), which is negative definite. Hence−L3(2)
is

H(α, 0) stable and therefore−L(2) is H(α, 2) stable.

(Necessity) Since−L(2) = −L ⊗ I2 is H(α, 2) stable, it follows that−L(2) has a 0 eigenvalue of

algebraic multiplicity 2 and then, by a property of the Kronecker product,−L has a simple eigenvalue

at 0. Using Lemma 2, the digraph has a globally reachable node. �

Proof of Theorem 1: (Sufficiency) Define the time-varying feedback controller for each vehicle i, (i =

1, . . . , n)










vi(t) = k
∑

m∈Ni

xim(t) = k
∑

m∈Ni

(zm(t) − zi(t)) · ri(t),

ωi(t) = cos(t),

(1)
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wherek > 0.

We begin by noticing that{(∀ m ∈ Ni) zm = zi} ⇒ {vi = 0}. Further, for anyt0 ∈ R, θi(t) =

θi(t0) + sin(t), i = 1, . . . , n, which is periodic with period2π. Next, using the identity(z · r)r =

(rrT )z, we getżi = viri = k
∑

m∈Ni
[(zm − zi) · ri] ri = k rir

T
i

∑

m∈Ni
(zm − zi). DefineM(θi(t)) :=

rir
T
i andH(θ(t)) := diag(M(θ1(t)) · · ·M(θn(t))). Thus, the overall position dynamics become

ż = −kH(θ(t))L(2)z, (2)

wherez ∈ R
2n is the position vectorz = [zT

1 · · · zT
n ]T andL(2) = L ⊗ I2 (L is the Laplacian of the

sensor digraph). And the corresponding averaged system of (2) is

ż = −kHavL(2)z, (3)

whereHav = diag(M̄1, . . . , M̄n), M̄i :=





m1
i m2

i

m2
i m3

i



 , and

m1
i = 1

2π

∫ 2π

0 cos2(θi(τ))dτ,

m2
i = 1

2π

∫ 2π

0 cos(θi(τ)) sin(θi(τ))dτ,

m3
i = 1

2π

∫ 2π

0 sin2(θi(τ))dτ.

By the Cauchy-Schwarz inequality,m1
im

3
i ≥ (m2

i )
2. Sinceθi(t) is not constant, the inequality holds

strictly. SoM̄i is positive definite and thereforeHav is positive definite. More exactly,Hav is α-diagonal

positive definite withα = {{1, 2}, {3, 4}, . . . , {2n−1, 2n}}. By the condition that the sensor digraph has

a globally reachable node, it follows from Lemma 4 that−L(2) is H(α, 2) stable. So there is a similarity

transformationF such that−F−1L(2)F = diag(−L11, 02×2), where−L11 is Hurwitz and the last two

column vectors ofF are in the null space ofL(2). Without loss of generality, we can choose the last two

column vectors ofF to be1 ⊗ I2×2. Applying the transformatione = [eT1 eT2 ]T = F−1z to the system

(2), wheree1 ∈ R
2n−2, e2 ∈ R

2, we have

ė = −kF−1H(θ(t))L(2)Fe = k





A11(t) 0

A12(t) 02×2









e1

e2



 .

And correspondingly, for the averaged system (3), we have

ė = −kF−1HavL(2)Fe = k





Ā11 0

Ā12 02×2









e1

e2



 .

Now, the reduced averaged systemė1 = kĀ11e1 is exponentially stable since−L(2) is H(α, 2) stable.

Then, by Theorem 8.3 in [27], there exists a positive constant k∗ such that, for all0 < k < k∗,
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global exponential stability of the reduced original system ė1 = kA11(t)e1 is established. Also, since

ė2 = kA12(t)e1 andA12(t) is uniformly bounded, it follows thaṫe2 → 0 exponentially whent → ∞.

This implies thate2 tends to some finite constant vector, sayzss = [xss yss]
T . In conclusion,lim

t→∞
z(t) =

lim
t→∞

Fe(t) = 1⊗ zss.

(Necessity) Assume formation stabilization to a point by local information controller is feasible. By

way of contradiction, suppose the sensor digraph has no globally reachable node. Then it follows from

Lemma 1 that there are two disjoint closed sets of nodes in thesensor digraphG = (V, E), say V1

and V2. Given the initial conditions satisfyingzi(0) = zss1
, i ∈ V1 and zj(0) = zss2

, j ∈ V2, then

for each vehiclei in V1, (∀ m ∈ Ni) zm = zi and sożi = 0. Meanwhile, for each vehiclej in V2,

(∀ m ∈ Nj) zm = zj and sożj = 0. Hence, ifzss1
6= zss2

, they can not gather at the same point, a

contradiction. �

IV. FORMATION STABILIZATION TO A L INE

We begin this section with a proof of Theorem 2.

Proof of Theorem 2: (Sufficiency) By the condition that there are at most two disjoint closed sets of

nodes in the sensor digraph, by Lemma 1, either the sensor digraph has a globally reachable node, or there

are exactly two disjoint closed sets of nodes in it. In the first case, by Theorem 1, formation stabilization

to a point is feasible, which is a special instance of line formation. In the second case, we letV1, V2

be the two disjoint closed sets of nodes in the sensor digraphG = (V, E), and letV3 = V − V1 − V2.

Thus, the induced subgraphsG1 = (V1, E ∩ (V1 × V1)), G2 = (V2, E ∩ (V2 × V2)) both have a globally

reachable node. (To see this point, suppose one of these two induced subgraphs has no globally reachable

set. Then by Lemma 1 there are two disjoint closed sets in it and therefore there are three disjoint closed

sets inG, a contradiction.) IfV3 is empty, then by Theorem 1 each group of vehicles whose indices are

in Vi, i = 1, 2, can converge to a point and therefore the whole group of wheeled vehicles form a line.

On the other hand, ifV3 is not empty, then every node inV3 can reach eitherV1 or V2. Without loss of

generality, we assume the graph Laplacian has the formL =











L11 0 0

0 L22 0

L31 L32 L33











, whereL11 andL22

are the Laplacian matrices corresponding to the induced subgraphG1 andG2. One can easily verify that

L33 is a nonsingularM -matrix.
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By using the controller (1), the overall position dynamics are given by


















ż1 = −kH(θ1(t))L11(2)
z1,

ż2 = −kH(θ2(t))L22(2)
z2,

ż3 = −kH(θ3(t))
(

L33(2)
z3 + L31(2)

z1 + L32(2)
z2

)

,

wherezi, θi, i = 1, 2, 3 are the corresponding position vector and orientation vector respectively. From

the proof of Theorem 1, we have that there exist positive constantsk∗1 andk∗2 such that, for all0 < k < k∗1,

lim
t→∞

z1(t) = 1 ⊗ zss1
, wherezss1

= [xss1
yss1

]T , and for all0 < k < k∗2 , lim
t→∞

z2(t) = 1 ⊗ zss2
, where

zss2
= [xss2

yss2
]T . The change of variablesς = L33(2)

z3 + L31(2)
z1 + L32(2)

z2 yields

ς̇ = −kL33(2)
H(θ3(t))ς − kL31(2)

H(θ1(t))L11(2)
z1 − kL32(2)

H(θ2(t))L22(2)
z2. (4)

SinceL33 is a nonsingularM -matrix, by the same argument as in the proof of Lemma 6,−L33(2)
and

−LT
33(2)

are bothH(α, 0) stable. By Theorem 8.3 in [27], there exists a positive constant k∗3 such that,

for all 0 < k < k∗3 , the origin of the nominal systeṁς = −kL33(2)
H(θ3(t))ς is globally exponentially

stable. Furthermore, notice that the other two terms in (4) both exponentially converge to zero. Hence

(4) can be viewed as an exponentially stable system with an exponentially vanishing input, and thus its

origin is exponentially stable. Letk∗ = min{k∗1 , k
∗
2 , k

∗
3}. Hence, for all0 < k < k∗,

lim
t→∞

z3(t) = −
(

L33(2)

)−1
L31(2)

lim
t→∞

z1(t) −
(

L33(2)

)−1
L32(2)

lim
t→∞

z2(t)

= −
(

L−1
33 · L31 · 1

)

⊗ zss1
−

(

L−1
33 · L32 · 1

)

⊗ zss2
.

Notice that[L31 L32 L33] · 1 = 0 and so−
(

L−1
33 · L31 · 1

)

−
(

L−1
33 · L32 · 1

)

= 1. Hence, all(zi(t))i∈V3

approach a convex combination ofzss1
andzss2

, which means the wheeled vehicles with indices inV3

eventually move to the line formed by two pointszss1
andzss2

in the plane.

(Necessity) Suppose by way of contradiction that there are three disjoint closed sets of nodes in the

sensor digraph, sayV1, V2 andV3. Then let the initial conditions of the vehicles inVj , j = 1, 2, 3 be

chosen such thatzi(0) = zssj
, i ∈ Vj. Hence, for each vehiclei in Vj, (∀ m ∈ Ni)zm = zi and so

żi = 0. Then three groups of vehicles form a geometric pattern specified by three pointszss1
, zss2

and

zss3
. These three points can be arbitrarily set that may not form aline, a contradiction. �

Theorem 2 has an interesting special case when the two disjoint closed sets of nodes in the sensor

digraph both have only one member, say nodes1 andn. Vehicles1 andn are callededge leaders. The

edge leaders here are not necessarily wheeled vehicles—they can be virtual beacons or landmarks. But

the vehicles respond to these edge leaders much like they respond to real neighbor vehicles. The purpose

of the edge leaders is to introduce the mission: to direct thevehicle group behavior. We emphasize that
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the edge leaders are not central coordinators. They do not broadcast instructions. They only play the role

of individual vehicles, but cannot sense other vehicles or communicate with them. As for the remaining

vehicles,i, i = 2, . . . , n − 1, we assume that each agent can sense or communicate with agents i − 1

andi+1. This gives the sensor digraph in Fig. 4. It is readily seen that the digraph in Fig. 4 has exactly

2 disjoint closed sets of nodes. We now show that in this special case all vehicles converge to a uniform

distribution on the line segment specified by the two edge leaders.

1 2 3 nn − 2 n − 1

Fig. 4. The sensor digraph forn agents with two edge leaders.

Theorem 3:Consider a group ofn wheeled vehicles with two stationary edge leaders labeled1 andn.

Then, there exists a positive constantk∗ such that for all0 < k < k∗, the following smooth time-varying

feedback control law for each vehiclei, (i = 2, . . . , n − 1)










vi(t) = k
∑

j=Ni

xij(t), Ni = {i− 1, i+ 1}

ωi(t) = cos(t)

guarantees that all the vehicles converge to a uniform distribution on the line segment specified by the

two edge leaders.

Proof: Let L be the Laplacian of the sensor digraph in Fig. 4 and letz = [zT
1 · · · zT

n ]T . It follows from

Theorem 2 thatL(2)z(∞) = 0. Consider the following partition of{1, 2, . . . , n}, {m1,m2, . . . ,m2n} =

{1, 3, . . . , 2n−1, 2, 4, . . . , 2n}. Then the associated permutation matrixP has the unit coordinate vectors

em1
, em2

, . . . , em2n
for its columns. Now observe that the matrixP performs the transformationP T (L⊗

I2)P = I2 ⊗ L = diag(L,L) andP T z = [x y]T , wherex = [x1 · · · xn]T andy = [y1 · · · yn]T . Thus,

Lx(∞) = 0 andLy(∞) = 0. Also note that Ker(L) = span{ξ1, ξ2} , whereξ1 = [0 1 · · · n−1]T , ξ2 =

[n − 1 n − 2 · · · 0]T , so x(∞) = α1ξ1 + α2ξ2 and y(∞) = β1ξ1 + β2ξ2. Sincex1(∞) = x1(0),

xn(∞) = xn(0) and y1(∞) = y1(0), yn(∞) = yn(0), so we solve forα1 = xn(0)
n−1 , α2 = x1(0)

n−1 and

β1 = yn(0)
n−1 , β2 = y1(0)

n−1 . This shows that all vehicles asymptotically approach a uniform distribution on

the line. �

V. FORMATION STABILIZATION TO ANY GEOMETRIC PATTERN

In this section, we turn our attention to the problem of formation stabilization to any geometric pattern.

Following [3], we letΠ be a predicate describing a geometric pattern, such as a point, a regular polygon,
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a line segment, etc. Such a predicate specifies a formation upto translation and rotation. Byformation

stabilization of a group ofn vehicles toΠ, we mean that the vehicles (globally exponentially) converge

to a distribution satisfyingΠ.

We suppose that a group of wheeled vehicles have acommon sense of direction, represented by the

angleψ in Fig. 5. For instance, each vehicle carries a navigation device such as a compass. Alternatively,

all vehicles initially agree on their orientation and use itas the common direction. The common direction

may not coincide with the positivex-axis of the global frame. Letφi = θi − ψ (see Fig. 5). We assume

that vehiclei can measure its ownφi.

i

j

k

ψ

ψ

ψ

φi

φj

φk

g
Σ

Fig. 5. A group of vehicles have a common sense of direction.

12

3 4

c1c2

c3 c4

Fig. 6. An example for a square formation.

There are two ways to describe a geometric pattern in the plane. One way is by inter-node distances,

dij , as in the rigid formation framework of [8]. The other way is by specifying the position vector,ci,

of each node with respect to a common coordinate frame. As an example, a square formation described

by ci, i = 1, 2, 3, 4, is given in Fig. 6. It is worth noting that, for all(R, b) ∈ SE(2), the vectors

ĉi = Rci + b describe the same geometric formation as the one specified byci. So given a desired

geometric formation pictured byci, i = 1, . . . , n, our objective is to stabilize the position statezi of

each vehicle tôci = Rci + b, i = 1, . . . , n, for someR andb. To achieve a desired geometric formation

characterized byc = [cT1 · · · cTn ]T , we can simply translate the formation vectorc into a control offset

d = L(2)c so that the forward control velocity is 0 when the group of vehicles has achieved a formation.

We denote the offset for each vehicle bydi = [dxi
dyi

]T or di = dxi
+ jdyi

.

Next, we show that the time-varying control law for each vehicle i, (i = 1, . . . , n)














vi(t) = k

{

[1 0]R(−φi(t))di +
∑

m∈Ni

xim(t)

}

ωi(t) = cos(t)

(5)
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achieves formation stabilization toΠ, whereR is a rotation matrix defined byR(φ) =





cos(φ) − sin(φ)

sin(φ) cos(φ)



 .

Theorem 4:Let Π be a desired geometric formation described byc = [c1 · · · cn]T . Suppose a group

of n wheeled vehicles have a common sense of direction and formation stabilization to a point is feasible.

Then there exists a positive constantk∗ such that for all0 < k < k∗, the smooth time-varying feedback

control law (5) withd = L(2)c guarantees global exponential formation stabilization toΠ.

Proof: Using the control law (5), one obtains the following closed-loop system

żi = kM(θi(t))

{

R(ψ)di +
∑

m∈Ni

(zm − zi)

}

,

or in vector form,ż = kH(θ(t))
{

−L(2)z + (In ⊗R(ψ)) d
}

. By a property of the Kronecker product,

(In ⊗ R(ψ))(L ⊗ I2) = L ⊗ R(ψ) = (L ⊗ I2)(In ⊗ R(ψ)). Furthermore, sinced = L(2)c, we obtain

ż = −kH(θ(t))L(2) {z − (In ⊗R(ψ))c} . Under the coordinate transformationς = z − (In ⊗ R(ψ))c,

we getς̇ = −kH(θ(t))L(2)ς. By the proof of Theorem 1,lim
t→∞

ς(t) = 1⊗ zss for some constant position

zss = [xss yss]
T . Hence, lim

t→∞
zi(t) = R(ψ)ci +zss, i = 1, . . . , n, which means that the group of vehicles

form a geometric formation specified byc. �

Remark 1:Notice thatθi(t) = θi(t0)+sin(t), so if a group ofn wheeled vehicles achieve an agreement

on their initial orientationθi(t0) and choose it as their common direction, the control law (5) becomes














vi(t) = k

{

Re
(

e−j sin(t)
)

di +
∑

m∈Ni

xim(t)

}

ωi(t) = cos(t)

The agreement on their orientation can be implemented by an alignment strategy as shown in [5].

Fig. 7 shows the simulation for a circle formation of ten wheeled vehicles with the sensor digraph in

Fig. 8. The circle formation is described byci = 75e(j
2(i−1)π

10
), i = 1, . . . , 10.

VI. CONCLUSIONS

In this paper, the feasibility problem of achieving a specified geometric formation of a group of

unicycles was investigated. Necessary and sufficient graphical conditions for the existence of local

information controller to assure the asymptotic convergence of the closed system were derived. The

sufficiency proof also presented a constructive method for control law synthesis.

Further research issues include: developing a better behaved controller to solve this problem which

does not keep the unicycles wiggling and developing more general results for the dynamic sensor graph

case, where ad hoc links can be established and dropped.
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Fig. 7. Ten wheeled vehicles form a circle formation.

1

2

3

4

5

6

7

8

9

10

Fig. 8. The sensor digraph of a group of ten wheeled vehicles.
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