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Abstract— The state agreement problem is studied for non-
linear continuous-time systems. A general interconnection of
nonlinear subsystems is treated, where the vector fields can
switch within a finite family. Associated to each vector fieldis
a directed graph based in a natural way on the interaction
structure of the subsystems. With the assumption that the
vector fields satisfy a certain sub-tangentiality condition, it is
proved that asymptotic state agreement is achieved if and only
if the dynamic interaction digraph has the property of being
sufficiently connected over time. Applications of the main result
are then made to the synchronization of coupled Kuramoto
oscillators with time-varying interaction and to the analysis of
a biochemical reaction network.

I. I NTRODUCTION

This paper studies the state agreement problem for coupled
dynamic systems. State agreement means that the states of
the subsystems are all equal. The problem arises naturally in
biology, physics, engineering, ecology, and social science:
e.g., synchronization [9], [20], consensus seeking [3], [5],
[18], and rendezvous [2], [4], [10], [11]. Recent relevant
work on this problem can be found in [7], [8], [12], [13],
[16], [17].

Inspired by [17], our goal in this paper is to solve
the state agreement problem for nonlinear continuous-time
subsystems with time-varying interaction. Our setup is a
general interconnection of nonlinear subsystems, where the
vector fields can switch within a finite family. We associate
to each vector field a directed graph based in a natural way
on the interaction structure of the subsystems; this is called
an interaction digraphin the present paper. Assuming that
the vector fields satisfy a certain sub-tangentiality condition,
we show that asymptotic state agreement is achieved if and
only if the dynamic interaction digraph has the property of
being sufficiently connected over time, in a certain technical
sense.

As applications, we apply our main result to the synchro-
nization of coupled Kuramoto oscillators with time-varying
interaction and to the analysis of a biochemical reaction
network.

All proofs are omitted due to pagelength requirements,
which are available in [15].

II. PRELIMINARIES

We first assemble some known and some novel concepts
related to tangent cones and directed graphs.
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A. Tangent Cones

The convex hull of a finite set of pointsx1, . . . , xn ∈ R
m

is a polytope, denoted co{x1, . . . , xn}. Given a convex set
S ⊂ R

m, its relative interior, denoted ri(S), is its interior in
the smallest affine subspace containingS (which might be
of dimension strictly less thanm).

Fix any norm‖·‖ in R
m. For each nonempty setS ⊂ R

m

and eachy ∈ R
m, we denote the distance ofy from S by

‖y‖S := infz∈S ‖z − y‖.
A nonempty setK ⊂ R

m is called aconeif λy ∈ K when
y ∈ K andλ > 0. Let S ⊂ R

m be a closed convex set and
y ∈ S. The tangent cone(often referred to ascontingent
cone) to S at y is the set

T (y,S) =

{

z ∈ R
m : lim inf

λ→0

‖y + λz‖S
λ

= 0

}

.

Note that if y is in the interior ofS, thenT (y,S) = R
m.

Thus the setT (y,S) is non-trivial only on the boundary
of S. In particular, if S contains only one point,y, then
T (y,S) = {0}. In geometric terms (see Fig. 1), the tangent

x1

x2

“T (x1,S)”

“T (x2,S)”

S

Fig. 1. Tangent conesT (x1,S) andT (x2,S) are obtained by translation
of “T (x1,S)” and “T (x2,S)” to the origin.

cone fory in the boundary ofS is a cone having center in
the origin which contains all vectors whose directions point
from y ‘inside’ (or they are ‘tangent to’) the setS.

B. Directed Graphs

For a directed graph (digraph for short)G = (V , E), where
V = {v1, . . . , vn} is the set of nodes andE is the set of arcs,
if there is a path inG from one nodevi to another nodevj ,
then vj is said to bereachablefrom vi, written vi → vj .
Note that every node of a digraph is reachable from itself.

A digraph is said to bequasi strongly connected(QSC)
(called arbitrated in [6]) if for every two nodesvi and vj

there is a nodev from which vi andvj are reachable.

III. D EFINITIONS AND MAIN RESULTS

To formalize the notion of a switched interconnected
system, suppose that we are given a family of systems



represented by the equations

ẋ1 = f1
p (x1, . . . , xn)

...
ẋn = fn

p (x1, . . . , xn),

wherexi ∈ R
m is the state of subsystemi and where the

index p lives in a finite setP . Notice that the subsystems
share a common state space,R

m.
Introducing theaggregate statex ∈ R

mn, we have the
concise form

ẋ = fp(x), p ∈ P , (1)

where for eachp ∈ P , fp : R
mn → R

mn.
We now associate to each vector fieldfp an interaction

digraph Gp capturing the interaction structure of then
subsystems (agents).

Definition 1: An interaction digraphGp consists of

• a finite setV of n nodes, each nodei modeling agenti;
• an arc setEp representing the links between agents. An

arc from nodej to nodei indicates that agentj is a
neighbor of agenti in the sense thatf i

p depends onxj ,
i.e., there existx1

j , x
2
j ∈ R

m such that

f i
p(x1, . . . , x

1
j , . . . , xn) 6= f i

p(x1, . . . , x
2
j , . . . , xn).

The set of neighbors of agenti is denotedNi(p).
Let Ci

p = co{xi, xj : j ∈ Ni(p)} denote the polytope in
R

m formed by the states of agenti and its neighbors. Also,
it’s convenient to introduce a subsetS ⊂ R

m of the common
state space that plays the role of a region of focus. In our
state agreement problem, initial states of the agents will be in
S and agreement will occur inS. Let I0 denote the index set
{1, . . . , n} and assume that, for eachi ∈ I0 and eachp ∈ P ,
the vector fieldsf i

p : R
mn → R

m satisfy the following two
assumptions:
A1: f i

p is locally Lipschitz onSn;
A2: For all x ∈ Sn, f i

p(x) ∈ ri
(

T (xi, Ci
p)
)

.
Assumption A2 is sometimes referred to as astrict sub-

tangentiality condition. Fig. 2 illustrates two example situa-
tions of A2. In the left-hand example, agent 1 has only one
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Fig. 2. Some examples of vector fieldsf i
p satisfying assumption A2.

neighbor, agent 2; the convex hullC1
p is the line segment

joining x1 andx2; the tangent coneT (x1, C
1
p) is the closed

ray {λ(x2−x1) : λ ≥ 0} (in the picture it’s shown translated
to x1); the relative interior ri

(

T (x1, C1
p)
)

is the open ray
{λ(x2 −x1) : λ > 0}; and A2 means thatf1

p is nonzero and
points in the direction ofx2−x1. In the right-hand example,
agent 1 has two neighbors, agents 2 and 3; the convex hull

C1
p is the triangle with verticesx1, x2, x3; the tangent cone

T (x1, C1
p) is

{λ1(x2 − x1) + λ2(x3 − x1) : λ1, λ2 ≥ 0}

(again, it’s shown translated tox1); the relative interior
ri
(

T (x1, C1
p)
)

is

{λ1(x2 − x1) + λ2(x3 − x1) : λ1, λ2 > 0};

and A2 means thatf1
p points into this open cone. In general,

A2 requires thatf i
p(x) have the form
∑

j∈Ni(p)

αj(x)(xj − xi),

where αj(x) are non-negative scalar functions, and that
f i

p(x), now viewed as a vector applied at the vertexxi, not
be tangent to the relative boundary of the convex setCi

p.
When the indexp in (1) is replaced by a piecewise

constant functionσ : [0, ∞) → P , we obtain aswitched
interconnected system

ẋ(t) = fσ(t)(x(t)). (2)

The functionσ is called aswitching signal. The case of
infinitely fast switching (chattering), which would call for a
concept of generalized solution, is not considered here. As
a matter of fact, we shall show in the next section by means
of a counterexample that even piecewise constant switching
signalsσ(t) do not have sufficient regularity for asymptotic
agreement of the switched interconnected system (2). Let
Sdwell denote the class of piecewise constant switching sig-
nals such that any consecutive discontinuities are separated
by no less than some fixed positive constantτD, the dwell
time. We make the following assumption:
A3: σ(t) ∈ Sdwell.

Having replacedp by a switching signalσ(t), we similarly
replace the interaction digraphGp by a dynamic interaction
digraphGσ(t).

Definition 2: Given a switching signalσ(t), σ : [0,∞) →
P , the dynamic interaction digraphGσ(t) is the pair
(

V , Eσ(t)

)

. Given two real numberst1 ≤ t2, the union
digraph G ([t1, t2]) is the digraph whose arcs are obtained
from the union of the arcs inGσ(t) over the time interval

[t1, t2], that is,G ([t1, t2]) =

(

V ,
⋃

t∈[t1,t2]

Eσ(t)

)

.

Definition 3: A dynamic interaction digraphGσ(t) is uni-
formly quasi strongly connected (UQSC)if there existsT >
0 such that for allt ≥ 0, the union digraphG([t, t + T ]) is
QSC.

We show in the following that if, and only if, the dynamic
interaction digraphGσ(t) is UQSC, then the switched inter-
connected system achieves asymptotic state agreement onS.

Now comes the precise meaning of state agreement.
Definition 4: The switched interconnected system (2) has

the property of
1) state agreement (SA) onS if ∀ζ ∈ S, ∀ε > 0, ∃δ > 0

such that∀t0 ≥ 0

(∀i) (‖xi(t0) − ζ‖ ≤ δ) ∧ (xi(t0) ∈ S)



=⇒ (∀t ≥ t0)(∀i) ‖xi(t) − ζ‖ ≤ ε;

2) asymptotic state agreement (ASA) onS if it has the
property of state agreement onS and in addition∀ε >
0, ∀c > 0, ∃T > 0 such that∀t0 ≥ 0

(∀i) (‖xi(t0)‖ ≤ c) ∧ (xi(t0) ∈ S)

=⇒ (∃ζ ∈ S)(∀t ≥ t0 + T )(∀i) ‖xi(t) − ζ‖ ≤ ε;

3) global asymptotic state agreement (GASA)if it has the
property of ASA onR

m.

S S

Fig. 3. Asymptotic state agreement onS.

These definitions are illustrated in Fig. 3 and can be
said roughly speaking as follows. State agreement (the left-
hand figure) means, for every pointζ in S, the agents stay
arbitrarily close toζ if they start sufficiently close toζ,
uniformly with respect to the starting time. Asymptotic state
agreement (the two figures together) means, in addition, the
agents converge to a common location inS.

These state agreement definitions are related to stability
with respect to a set. LetΩ denote the set of aggregate states
such that the subsystem states are all equal and inS, i.e.,

Ω = {x ∈ R
nm : x1 = · · · = xn ∈ S}.

Then state agreement is equivalent to uniform stability with
respect toΩ.

Finally, a new definition of positive invariance specially
for interconnected systems:

Definition 5: A set A ⊂ R
m is said to bepositively

invariant for the switched interconnected system (2) if

(∀t0 ≥ 0)(∀i) xi(t0) ∈ A =⇒ (∀t ≥ t0)(∀i) xi(t) ∈ A.
Our first result establishes the positive invariance property

of any compact convex set inS without needing any property
of the interaction digraph. This result can perhaps be under-
stood intuitively as follows. Form = 2, all agents move in
the plane. LetA be a compact convex set inS and assume
all agents start inA. Let C(t) denote the convex hull of
the agents’ locations at timet. BecauseA is convex, clearly
C(0) ⊂ A. Now invoke assumption A2. An agent that is
initially in the interior ofC(0) can head off in any direction
at t = 0, but an agent that is initially on the boundary of
C(0) is constrained to head into its interior. In this way,C(t)
is non-increasing (ift2 > t1, thenC(t2) ⊂ C(t1)), andA is
therefore positively invariant for the switched interconnected
system (2).

Theorem 1:Let A ⊂ S be a compact convex set. ThenA
is positively invariant for the switched interconnected system
(2).

The second result establishes state agreement of the sys-
tem, again without needing any property of the interaction
digraph.

Theorem 2:Suppose S is closed and convex. The
switched interconnected system (2) has the property of state
agreement onS.

Now comes our main result.
Theorem 3:Suppose S is closed and convex. The

switched interconnected system (2) has the property of
asymptotic state agreement onS if and only if the dynamic
interaction digraphGσ(t) is UQSC.

Remark.WhenS = R
m in assumptions A1 and A2, the

switched interconnected system (2) has the global asymptotic
state agreement property if and only ifGσ(t) is UQSC.

In the special case whenσ(t) is a constant signal, that is,
σ(t) ≡ p for somep ∈ P , then the switched interconnected
system becomes time-invariant andGσ(t) is just a fixed
interaction digraphGp. In this case, the property of UQSC is
equivalent to QSC. Thus, we arrive at the following special
result.

Corollary 4: Supposeσ(t) = p andS = R
m. Then, the

interconnected system (2) has the globally asymptotic state
agreement property if and only ifGp is QSC.

Remark.For this special case we can actually relax the
assumptions on the vector fieldsf i

p : R
mn → R

m as follows:
A1′: f i

p is continuous onRmn;
A2′: For all x ∈ R

mn, f i
p(x) ∈ T

(

xi, Ci
p

)

, but f i
p(x) 6= 0 if

Ci
p is not a singleton andxi is its vertex.
The sketch of the proof can be found in [14]. Unlike the

proof of Theorem 3, the proof in [14] relies on LaSalle’s
invariance principle. As shown in the next section by means
of a counterexample, when the interaction digraph is dynamic
assumption A1′ is too weak for sufficiency in Theorem 3 to
hold.

IV. SOME EXAMPLES AND FURTHER REMARKS

In this section we present some examples to better illus-
trate the nature of our assumptions.

A. Concerning Assumption A1

We now present an example showing that Theorem 3 may
fail to hold when the vector fields are just continuous instead
of locally Lipschitz.

Example 4.1.Consider three agents, 1, 2, and 3, with state
spaceR. There are three possible vector fields:

p = 1 : p = 2 :






ẋ1 = g(x3 − x1)
ẋ2 = 0
ẋ3 = 0







,







ẋ1 = g(x2 − x1)
ẋ2 = 0
ẋ3 = 0







,

p = 3 :







ẋ1 = 0
ẋ2 = g(x1 − x2)
ẋ3 = 0







,

whereg(y) := sign(y) · |y|
1

2 , y ∈ R. The functiong has the
property that each solution of the differential equationẏ =
g(y) reaches the origin (asymptotically stable equilibrium)
in finite time.



For eachp ∈ P = {1, 2, 3}, the associated interaction
digraphs are depicted in Fig. 4. LetS = R. Obviously, the
function g(·) is only continuous (not locally Lipschitz on
R), so assumption A1 does not hold, but it can be easily
checked that A2 holds. Let us set a switching signalσ(t) to
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Fig. 4. The interaction digraphsGp, p = 1, 2, 3.

be periodic with period of 12 seconds, that is,

σ(t) =







1, t ∈ [12k, 12k + 4),
2, t ∈ [12k + 4, 12k + 8),
3, t ∈ [12k + 8, 12k + 12),

k = 0, 1, . . . .

Thus, assumption A3 holds.
For the switched interconnected system corresponding to

the switching signal above, the dynamic interaction digraph
Gσ(t) is UQSC. To see that, simply letT = 12 and notice
that for anyt > 0, G([t, t + T ]) = G1 ∪ G2 ∪ G3 is QSC.
However, this switched interconnected system does not have
the property of asymptotic state agreement onS as shown
by a simulation in Fig. 5. Intuitively, for the period of
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Fig. 5. Time evolution of three coordinates not tending to a common value.

σ(t) = 1, agent 1 moves toward agent 3 and the others
remain stationary, whereas for the period ofσ(t) = 2, agent
1 moves toward agent 2 and the others remain stationary.
However, agent 1 reaches the location of agent 2 and stays
there during this period. Then, when the system switches to
p = 3, agent 2 starts to move toward agent 1, but since agents
1 and 2 are already collocated, agent 2 keeps stationary.
Hence, only agent 1 moves forward and backward between
the locations of agent 2 and 3 while the others are stationary.

B. Concerning Assumption A2

Our next example is concerned with the necessity of the
strictness in assumption A2. This cannot be relaxed to just
f i

p(x) ∈ T (xi, Ci
p), as shown next.

Example 4.2.Consider two agents, 1 and 2, with state
spaceR. There is only one vector field:

p = 1 :

{

ẋ1 = f1
1 (x1, x2) = 0

ẋ2 = f2
1 (x1, x2) = g(x1 − x2)

}

where the smooth functiong : R → R is given in Fig. 6.

1

−1
y

g(y)

Fig. 6. A smooth functiong(y).

The interconnected system above has fixed coupling struc-
ture, that is,σ(t) ≡ 1. So assumption A3 is trivially satisfied.
Let S = R. Assumption A1 holds, but A2 does not hold
sincef2

1 (x1, x2) = g(x1 − x2) = 0 /∈ ri
(

T (x2, C2
1)
)

when
x1 = x2 + 1 by noticing thatC2

1 = co{x1, x2} is the
line segment joiningx1 and x2. However,f1

1 (x1, x2) and
f2
1 (x1, x2) are in T (x1, C1

1) andT (x2, C2
1) respectively for

all (x1, x2) ∈ S × S.
In the associated interaction digraph of the unique vector

field (p = 1), there is an arc from node 1 to 2. So it is
QSC. Recalling that the property of UQSC is equivalent to
QSC for fixed digraph, the dynamic interaction digraphGσ(t)

is UQSC. But this interconnected system fails to achieve
asymptotic state agreement onS = R when, for example,
initially x1(0) = x2(0) + 1.

However, if we chooseS = [a, b], where a, b are real
numbers such thatb− a < 1, then assumptions A1, A2, and
A3 hold. Thus, it follows that this interconnected system
achieves asymptotic state agreement onS since the dynamic
interaction digraphGσ(t) is UQSC as shown before.

C. Concerning Assumption A3

Although the switched interconnected system (2) has the
property of state agreement under piecewise constant switch-
ing signals, additional regularity conditions on the switching
signalσ(·) are needed in order to guarantee asymptotic state
agreement. This is illustrated by the following very simple
linear example.

Example 4.3.Consider just two agents, 1 and 2, with state
spaceR. There are two possible vector fields:

p = 1 :

{

ẋ1 = x2 − x1

ẋ2 = 0

}

, p = 2 :

{

ẋ1 = 0
ẋ2 = 0

}

Thus agent 2 has no neighbor and never moves. Forp = 1
agent 1 moves toward agent 2, whereas forp = 2 agent
1 has no neighbor and therefore doesn’t move. Assumptions
A1 and A2 hold forS = R. Let us define switching timesτk

by settingτ0 = 0 and defining the intervalsδk = τk+1 − τk

as follows:

k 0 1 2 3 4 5 6 · · ·
δk 1 1 1/2 1 1/22 1 1/23 · · ·



Then we define σ(t) to be the alternating sequence
1, 2, 1, 2, . . . over the time intervals, respectively,

[τ0, τ1), [τ1, τ2), [τ2, τ3), [τ3, τ4), . . .

This switching signal is piecewise constant and the dynamic
interaction digraph is UQSC. However, ifx1(0) 6= x2(0),
x1(t) does not converge tox2(t)—asymptotic state agree-
ment does not occur.

The example suggests that in order to obtain asymptotic
state agreement, one needs to impose some restrictions on
the admissible switching signals. One way to address this
problem is to make sure that the switching signal has a dwell
time, that is, there existsτD > 0 such that

(∀k) (τk+1 − τk) ≥ τD.

This is precisely the assumption A3, and is ubiquitous in the
switching control literature.

V. SOME APPLICATIONS

In this section we discuss some applications of our main
results.

A. Synchronization of Coupled Oscillators

The Kuramoto model describes the dynamics of a set ofn
phase oscillatorsθi with natural frequenciesωi. More details
can be found in [9], [20]. The time evolution of thei-th
oscillator is given by

θ̇i = ωi + ki

∑

j∈Ni(t)

sin(θj − θi),

whereki > 0 is the coupling strength andNi(t) is the set of
neighbors of oscillatori at time t. The interaction structure
can be general so far, that is,Ni(t) can be an arbitrary set
of other nodes and can be dynamic.

The neighbor setsNi(t) define Gσ(t) and the switched
interconnected system

θ̇ = fσ(t)(θ),

where θ = [θ1 · · · θn]T and σ(t) is a suitable switching
signal. For identical coupled oscillators (i.e.,ωi = ω, ∀i),
the transformationxi = θi − ωt yields

ẋi = ki

∑

j∈Ni(t)

sin(xj − xi), i = 1, . . . , n. (3)

Let a, b be any real numbers such that0 ≤ b − a < π,
and defineS = [a, b]. It is easily seen that A1 and A2 are
satisfied. Supposeσ(t) here is regular enough satisfying A3.
Then from Theorem 3 it follows that if, and only if,Gσ(t)

is UQSC, the switched interconnected system (3) has the
property of asymptotic state agreement onS. This implies
that there exists̄x ∈ R such that

θi(t) → x̄ + ωt, θ̇i(t) → ω,

and the oscillators synchronize. This is an extension of
Theorem 1 in [9], which assumes the interaction graph is
undirected and static and the initial stateθi(0) ∈

(

−π
2 , π

2

)

for all i.

As an example, three Kuramoto oscillators with dynamic
interaction structure are simulated. The initial conditions are
θ1 = 0, θ2 = 1, θ3 = −1. The natural frequencyωi

equals 1, and the coupling strengthki is set to 1 for all
i. The interaction structure switches among three possible
interaction structures periodically, shown in Fig. 7. It can
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Fig. 7. Three interaction digraphsGp, p = 1, 2, 3.

be checked thatGσ(t) is UQSC. So these three oscillators
achieve asymptotical synchronization as we conclude by our
main theorem. Fig. 8 shows the plots ofsin(θi), i = 1, 2, 3
and of the switching signalσ(t). Synchronization is evident.
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Fig. 8. Synchronization of three interacting oscillators.

B. Biochemical Reaction Network Analysis

A biochemical reaction network is a finite set of reactions
among a finite set of species. Consider, for example, two
reversible reactions among three compoundsC1, C2, and
C3, in which C1 is transformed intoC2, C2 is transformed
into C3, and vice versa:

C1

k1




k2

C2

k3




k4

C3

The constantsk1 > 0, k2 > 0 are the forward and reverse
rate constants of the reactionC1 
 C2; similarly for k3 > 0,
k4 > 0. Denote the concentrations ofC1, C2, andC3, respec-
tively, by x1, x2, andx3. Only nonnegative concentrations
are physically possible. Such a reaction network gives rise
to a dynamical system, which describes how the state of the
network changes over time.

Suppose the dynamics of both reactions are dictated by
the mass action principle. This leads to the model

ẋ1 = −k1x
α
1 + k2x

α
2 ,

ẋ2 = k1x
α
1 − k2x

α
2 − k3x

α
2 + k4x

α
3 ,

ẋ3 = k3x
α
2 − k4x

α
3 ,

(4)



where α ≥ 1 is an integer. For more on modeling and
analysis of biochemical reaction networks, we refer to [1],
[21].

The linear transformation

y1 =

(

k1

k2

)
1

α

x1, y2 = x2, y3 =

(

k4

k3

)
1

α

x3,

leads to

ẏ1 = h1(y1, y2)(y2 − y1),
ẏ2 = h2(y1, y2)(y1 − y2) + h3(y2, y3)(y3 − y2),
ẏ3 = h4(y2, y3)(y2 − y3),

(5)

whereh1(y1, y2), h2(y1, y2), h3(y2, y3), andh4(y2, y3) are
suitable terms; for example

h1(y1, y2) =
k

1/α
1 k2

k
1/α
2

yα
2 − yα

1

y2 − y1
.

It can be easily verified thath1(y1, y2) ≥ 0 andh1(y1, y2) =
0 if and only if y1 = y2 = 0. The same observations hold
for h2(y1, y2), h3(y2, y3), andh4(y2, y3). It thus follows that
each point in the setΩ = {y : y1 = y2 = y3 ≥ 0} is an
equilibrium. Physically, wheny ∈ Ω, the reaction network
is at a chemical equilibrium.

Consider now the interaction digraph associated with (5).
Physically, each node represents a compound and each arc
connecting two nodes represents a reaction between two
compounds. This digraph is QSC (actually, it is strongly
connected). Since there is no switching in the system (i.e.,
σ(t) is constant), assumption A3 is obviously satisfied and
the dynamic interaction digraph is UQSC. In addition, it can
be easily checked that, forS = [0,∞), the vector field in
the above system satisfies assumptions A1 and A2. Hence,
Theorem 3 can be applied to conclude that system (5) has
the property of asymptotic state agreement onS. This result
coincides with the analysis using Theorem 5.2 in [1]. Our
analysis can be extended to more complicated biochemical
reaction networks containing a set of compounds and a set
of reversible reactions. Their asymptotic state agreement
property is captured by the interaction digraph.

VI. CONCLUSIONS

In this paper, we have studied the state agreement problem
for a class of switched interconnected large-scale systems
with a family of admissible vector fields. Necessary and
sufficient conditions, in terms of the interaction graph, are
obtained to assure that the system achieves asymptotic
state agreement. On the other hand, our results can be
understood as connective stability, as in the framework of
[19]. Achieving asymptotic state agreement of a large-scale
interconnected system is robust with respect to either the
coupling structure or parameter values.

The notion of state agreement in this paper is that the
states of the subsystems are all equal and constant. This
notion can potentially be generalized in the following two
directions. First, state agreement could mean equality of all
the trajectories of the subsystems. This would be of interest
in formation control of multi-agent systems. Second, state

agreement could mean equality of all the states after suitable
state transformations. An example is the biochemical reaction
network studied in this paper.
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