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Abstract— The state agreement problem is studied for non- A. Tangent Cones
linear continuous-time systems. A general interconnectio of _ . m
nonlinear subsystems is treated, where the vector fields can  1h€ convex hull of a finite set of points;, ..., z, € R
switch within a finite family. Associated to each vector fieldis IS & polytope denoted cfz1,...,z,}. Given a convex set
a directed graph based in a natural way on the interaction S C R™, its relative interior, denoted 1iS), is its interior in

structure of the subsystems. With the assumption that the the smallest affine subspace containifigwhich might be
vector fields satisfy a certain sub-tangentiality conditio, it is of dimension strictly less tham)

proved that asymptotic state agreement is achieved if and dy . g
if the dynamic interaction digraph has the property of being Fix any norm||- || in R™. For each nonempty s&tC R™
sufficiently connected over time. Applications of the main esult ~ and eachy € R™, we denote the distance gffrom S by
are then made to the synchronization of coupled Kuramoto ||y||s := inf.cs ||z — ||

oscjllators yvith time.-varying interaction and to the analysis of A nonempty sefC c R™ is called aconeif \y € K when

a biochemical reaction network. y € K andX > 0. LetS ¢ R™ be a closed convex set and
y € S. The tangent conegloften referred to agontingent
conég to S aty is the set

This paper studies the state agreement problem for coupled {

I. INTRODUCTION

z € R™ : liminf

—0

dynamic systems. State agreement means that the states of 7 (y,S) =
the subsystems are all equal. The problem arises natunally i

biology, physics, engineering, ecology, and social s@encNote that if y is in the interior ofS, then7 (y,S) = R™.
e.g., synchronization [9], [20], consensus seeking [3], [5Thus the set7 (y,S) is non-trivial only on the boundary
[18], and rendezvous [2], [4], [10], [11]. Recent relevanbf S. In particular, if S contains only one pointy, then
work on this problem can be found in [7], [8], [12], [13], 7 (y,S) = {0}. In geometric terms (see Fig. 1), the tangent
[16], [17].

Inspired by [17], our goal in this paper is to solve
the state agreement problem for nonlinear continuous-time
subsystems with time-varying interaction. Our setup is a
general interconnection of nonlinear subsystems, whexe th
vector fields can switch within a finite family. We associate Lo S
to each vector field a directed graph based in a natural way ‘
on the interaction structure of the subsystems; this isdall Fig. 1. Tangent cone® (z1,S) and 7 (z2,S) are obtained by translation
an interaction digraphin the present paper. Assuming thatof “7(z1,S)” and “T (x2, S)" to the origin.
the vector fields satisfy a certain sub-tangentiality cbadj
we show that asymptotic state agreement is achieved if and . . . .
only if the dynamic interaction digraph has the property ofone fo_ry n _the bounglary of5 s a cone havmg c_enter n
being sufficiently connected over time, in a certain techhic the 0“9.'” Wh',Ch contains aI‘I vectors V\{hose directions poin
sense. from y ‘inside’ (or they are ‘tangent to’) the s&.

_As. applications, we apply our m_ain resuIF to j[he synchroB_ Directed Graphs
nization of coupled Kuramoto oscillators with time-vargin
interaction and to the analysis of a biochemical reaction For a directed graph (digraph for sho@t)= (V,€), where

ly + Azlls
— =0,.
A

network. V = {vy,...,v,} is the set of nodes ardlis the set of arcs,
All proofs are omitted due to pagelength requirementd§ there is a path ing from one node; to another node;,
which are available in [15]. thenv; is said to bereachablefrom v;, written v; — wv;.
Note that every node of a digraph is reachable from itself.
Il. PRELIMINARIES A digraph is said to bejuasi strongly connecte(QSC)

(called arbitrated in [6]) if for every two nodesv; and v,
We first assemble some known and some novel concepteere is a node from whichv; andv; are reachable.
related to tangent cones and directed graphs.
I11. DEFINITIONS AND MAIN RESULTS

The authors are with the Department of Electrical and Coep#in- To f i h . f itched i d
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represented by the equations Czl, is the triangle with vertices, z2, x3; the tangent cone

i T 1) is
iy = fa(r,. .., mn) (z1,C,)
: {)‘1(‘@2_551)4')\2(1'3—;51);)\1’/\220}
n = fp (@1, 2n), (again, it's shown translated ta;); the relative interior

wherex; € R™ is the state of subsysteinand where the fl (T(Il’clm IS
index p lives in a finite setP. Notice that the subsystems {A(ze —x1) + Aa(x3 — 1) : A1, A2 > 0}
share a common state spate?.

Introducing theaggregate statec € R™", we have the
concise form

and A2 means tha;g} points into this open cone. In general,
A2 requires thatf;(z) have the form

&= fp(z), peP, 1) > o)z — ),
where for eaclp € P, f, : R™" — R™™, JEN(p)

We now associate to each vector fiefgl an interaction where a;(z) are non-negative scalar functions, and that
digraph G, capturing the interaction structure of the f;(x), now viewed as a vector applied at the vertgx not
subsystems (agents). be tangent to the relative boundary of the convexC%et

Definition 1: An interaction digraphg, consists of When the indexp in (1) is replaced by a piecewise

« afinite setV of n nodes, each nodemodeling agent;  constant functioro : [0, co) — P, we obtain aswitched

. an arc set, representing the links between agents. Arnterconnected system

arc from nodej to node: indicates that agent is a CoN
neighbor of agent in the sense that depends on;, () = fow (2(2)). )
i.e., there exism;,x? € R™ such that The functiono is called aswitching signal The case of
; L ; ) infinitely fast switching (chattering), which would callrfa
fpen, sy, omn) # [, g, ). concept of generalized solution, is not considered here. As
The set of neighbors of agents denoted\;(p). a matter of fact, we shall show in the next section by means

Let C}z‘) = co{w;,x; : j € Ni(p)} denote the polytope in o_f a counterexample that even piecewise_ constant switching
R™ formed by the states of agenand its neighbors. Also, signalsc(t) do not have sufficient regularity for asymptotic
it's convenient to introduce a subsetc R™ of the common adreement of the switched interconnected system (2). Let
state space that plays the role of a region of focus. In ogtiweu denote the class of piecewise constant switching sig-
state agreement problem, initial states of the agents wilhb Nals such that any consecutive discontinuities are segghrat
S and agreement will occur i. Let Z, denote the index set Py no less than some fixed positive constapi the dwell

{1,...,n} and assume that, for eaéle Z, and eactp ¢ P, {ime We make the following assumption:
the vector fieldsf} : R™" — R™ satisfy the following two A3: o(t) € Sawelr- S o
assumptions: Having replaceqb t_)y a s_wnchlng signab (), we S|m|lar_ly
Al: f;; is locally Lipschitz onS™; re_place the interaction digrag, by a dynamic interaction
A2: For allz € 8", fi(z) € ri (T (2:,C3)). digraphg, . o

Assumption A2 is sometimes referred to astdct sub- __ Definition 2: Given a switching signak(t), o : [0, 00) —

tangentiality conditionFig. 2 illustrates two example situa- 7+ the dynamic interaction digraphG,(;) is the pair

tions of A2. In the left-hand example, agent 1 has only on V’ga(t))' Given two real numbers, < ¢, the union
digraph G ([t1,t2]) is the digraph whose arcs are obtained

from the union of the arcs i, over the time interval

. 3. fl [tl, tQ], that is,G ([tl,tQ]) =V, . [yt ]gg(t) .
Elt1,t2
J% 4 Definition 3: A dynamic interaction digrapty, ) is uni-
N 1 oy formly quasi strongly connected (UQSi€}here existsT >
C, 2 0 such that for allt > 0, the union digraptG([¢,t + T7) is
QsScC.
Fig. 2. Some examples of vector fielg§ satisfying assumption A2. We show in the following that if, and only if, the dynamic

interaction digraplg, ;) is UQSC, then the switched inter-
connected system achieves asymptotic state agreemeht on
Now comes the precise meaning of state agreement.
Definition 4: The switched interconnected system (2) has
the property of
1) state agreement (SA) &hif V(€ S, Ve >0, 36 >0
such thatvty > 0

neighbor, agent 2; the convex huﬂg is the line segment
joining 1 andzs; the tangent conér(xl,cg) is the closed
ray {A\(zz —x1) : A > 0} (in the picture it's shown translated
to z,); the relative interior r{7(z1,C})) is the open ray
{A(x2 —21) : A > 0}; and A2 means thaf) is nonzero and
points in the direction ofs — x1. In the right-hand example,
agent 1 has two neighbors, agents 2 and 3; the convex hull (V8) (Jlzi(to) = ¢l <) A(mi(to) € S)



= (Yt > ) (Vi) |lzi(t) — (]| < & The second result establishes state agreement of the sys-
tem, again without needing any property of the interaction

2) asymptotic state agreement (ASA) 8nif it has the digraph.

property of state agreement hand in additiorvs > Theorem 2:Suppose S is closed and convex. The

0, Ve >0, 31> 0 such thatvty > 0 switched interconnected system (2) has the property of stat
(Vi) (|lxi(to)|] < ) A (zi(to) € S) agreement orf.
. Now comes our main result.

= (3 )(vt 2 1o+ T)(¥) [lzi(t) = Cll < & Theorem 3:Suppose § is closed and convex. The

3) global asymptotic state agreement (GASA) has the switched interconnected system (2) has the property of
property of ASA onR™. asymptotic state agreement 6nif and only if the dynamic

interaction digraptg, ;) is UQSC.

Remark.WhenS = R™ in assumptions A1 and A2, the
switched interconnected system (2) has the global asyimptot

@ state agreement property if and onlydf ;) is UQSC.
In the special case when(t) is a constant signal, that is,

o(t) = p for somep € P, then the switched interconnected
system becomes time-invariant agt},, is just a fixed
interaction digrapl@,. In this case, the property of UQSC is
equivalent to QSC. Thus, we arrive at the following special
result.
o ) o Corollary 4: Supposer(t) = p andS = R™. Then, the
These definitions are illustrated in Fig. 3 and can bgerconnected system (2) has the globally asymptotie stat
said roughly speaking as follows. State agreement (the Iefégreement property if and only &, is QSC.
hand figure) means, for every poigtin S, the agents stay Remark.For this special case we can actually relax the
arbitrarily close to¢ if they start sufficiently close ta, assumptions on the vector fiel¢§: R™" _, R™ as follows:
uniformly with respect to the starting time. Asymptotictsta a4’ 1 is continuous orR™":
agreement (the two figures together) means, in addition, the. F%r allz € R™, fi(z) € T (2;,CL), but fi(x) # 0 if
agents converge to a common locationdn Ci i not a singleton arz;dl- is its vertex. P
These state agreement definitions are related to stabilits’/’-rhe sketch of the proof can be found in [14]. Unlike the
with respect to a set. Lé? denote the set of aggrega_\te state%roof of Theorem 3, the proof in [14] relies on LaSalle’s
such that the subsystem states are all equal aftl ire.,  jpyariance principle. As shown in the next section by means
Q={zeR"™ 2= =z, S} of a counterexample, when the interaction digraph is dynami

. . . . _assumption Alis too weak for sufficiency in Theorem 3 to
Then state agreement is equivalent to uniform stabilithhwity, ;|4

Fig. 3. Asymptotic state agreement 6h

respect to).
Finally, a new definition of positive invariance specially IV. SOME EXAMPLES AND FURTHER REMARKS
for interconnected systems: In this section we present some examples to better illus-

Definition 5: A set A C R™ is said to bepositively trate the nature of our assumptions.
invariant for the switched interconnected system (2) if

A. Concerning Assumption Al
(Vto > 0)(VZ) ,Ti(to) ceA = (Vt > to)(Vl) :vi(t) e A

our first It establishes th itive | : We now present an example showing that Theorem 3 may
urfirst resutt establishes the positive invariance pnyperfa" to hold when the vector fields are just continuous indtea

of any compact convex set $ without needing any property of locally Lipschitz

of the interaction digraph. This result can perhaps be under Example 4.1Consider three agents, 1, 2, and 3, with state

stood intuitively as follows. Forn = 2, all agents move in spaceR. There are three possible vector fields:
the plane. Letd be a compact convex set & and assume

all agents start ind. Let C(t) denote the convex hull of p=1: p=2:

the agents’ locations at time BecauseA is convex, clearly i1 = g(xs — 1) i1 = g(x2 — 1)
C(0) c A. Now invoke assumption A2. An agent that is &2 =0 : &2 =0 ;
initially in the interior of C(0) can head off in any direction &3 =0 3 =0

att = 0, but an agent that is initially on the boundary of i1 =0

C(0) is constrained to head into its interior. In this wayt) p=3: q d2=g(x1—x2) o,

is non-increasing (ity > t1, thenC(t2) C C(t1)), and A is 5 =0

therefore positively invariant for the switched intercented

system (2). whereg(y) := sign(y) - |y|z, y € R. The functiong has the
Theorem 1:Let A C S be a compact convex set. Theh property that each solution of the differential equatipe-

is positively invariant for the switched interconnectedteyn  ¢g(y) reaches the origin (asymptotically stable equilibrium)

(2). in finite time.



For eachp € P = {1,2,3}, the associated interaction Example 4.2.Consider two agents, 1 and 2, with state
digraphs are depicted in Fig. 4. L&t= R. Obviously, the spaceR. There is only one vector field:
function g(-) is only continuous (not locally Lipschitz on . 1
R), so assumption Al does not hold, but it can be easily p=1 { = flg(xl’xz’) =0 }
checked that A2 holds. Let us set a switching sign@) to B2 = fi(@1,2) = g(21 — 22)
where the smooth function: R — R is given in Fig. 6.

VAR S g

[ ]
1 2 1 2 1 2
G1 Go gs —1
1 Y
Fig. 4. The interaction digraph§,, p = 1,2, 3.
be periodic with period of 12 seconds, that is, Fig. 6. A smooth functiory(y).
1, te[l12k, 12k +4),
o(t) =< 2, te[12k+4,12k+8), k=0,1,.... The interconnected system above has fixed coupling struc-
3, te[12k+ 8,12k + 12), ture, that isg(¢) = 1. So assumption A3 is trivially satisfied.
] Let S = R. Assumption Al holds, but A2 does not hold
Thus, assumption A3 holds. since f2(z1,22) = g(z1 — 22) = 0 ¢ i (T(:cg,cf)) when

For the switched interconnected system corresponding 19 — 5, + 1 by noticing thatC? = cof{zy,z2} is the

the switching signal above, the dynamic interaction dibrapjipe segment joiningz; and x,. However, f!(zy, z,) and
Go(t) Is UQSC. To see that, simply l&f = 12 and notice f2(21,22) are inT (z1,CL) and T (z2,C2) respectively for
that for anyt > 0, G([t,t +T]) = G1 U G2 UG5 is QSC. gl (21,25) € S x S.

However, this switched interconnected system does not have) the associated interaction digraph of the unique vector
the property of asymptotic state agreementd®@s shown fie|d (» = 1), there is an arc from node 1 to 2. So it is
by a simulation in Fig. 5. Intuitively, for the period of QSC. Recalling that the property of UQSC is equivalent to
QSC for fixed digraph, the dynamic interaction digrajh

is UQSC. But this interconnected system fails to achieve
asymptotic state agreement sh= R when, for example,
initially 1 (0) = x2(0) + 1.

However, if we chooseS = [a,b], wherea,b are real
numbers such thdt— a < 1, then assumptions Al, A2, and
A3 hold. Thus, it follows that this interconnected system
achieves asymptotic state agreementSosince the dynamic
interaction digrapty, ;) is UQSC as shown before.

C. Concerning Assumption A3

sl Although the switched interconnected system (2) has the
property of state agreement under piecewise constanttswitc
Fig. 5. Time evolution of three coordinates not tending t@amon value. ing signals, additional regularity conditions on the sWihg
signalo(-) are needed in order to guarantee asymptotic state
agreement. This is illustrated by the following very simple
o(t) = 1, agent 1 moves toward agent 3 and the othelgear example.
remain stationary, whereas for the periodsdt) = 2, agent Example 4.3Consider just two agents, 1 and 2, with state
1 moves toward agent 2 and the others remain stationagpaceR. There are two possible vector fields:
However, agent 1 reaches the location of agent 2 and stays . .
r1 = X2 — X1 —9. ry = 0
e At )

there during this period. Then, when the system switches jo=1 :

p = 3, agent 2 starts to move toward agent 1, but since agents

1 and 2 are already collocated, agent 2 keeps stationafjhus agent 2 has no neighbor and never moves.pFerl
Hence, only agent 1 moves forward and backward betweagent 1 moves toward agent 2, whereas foe= 2 agent

the locations of agent 2 and 3 while the others are stationarly has no neighbor and therefore doesn’t move. Assumptions

Al and A2 hold forS = R. Let us define switching times;
B. Concerning Assumption A2 by settingry = 0 and defining the interval§, = 7.1 — 7%

Our next example is concerned with the necessity of thS follows:
strictness in assumption A2. This cannot be relaxed to just k | 0 1
fi(z) € T(x,CL), as shown next. or |11

3 4 5 6
1

2
1/2 1/22 1 1/23



Then we defineos(t) to be the alternating sequence As an example, three Kuramoto oscillators with dynamic
1,2,1,2,... over the time intervals, respectively, interaction structure are simulated. The initial condii@re

#, = 0, 6o = 1, 3 = —1. The natural frequencw;
equals 1, and the coupling strength is set to 1 for all
This switching signal is piecewise constant and the dynamic The interaction structure switches among three possible
interaction digraph is UQSC. However, if, (0) # z2(0), interaction structures periodically, shown in Fig. 7. Iinca
x1(t) does not converge ta,(t)—asymptotic state agree-

[ ]
ment does not occur. 3 g\ %
[ ] l ] [ ] [ ]
1 2 1 2

[7—017-1)1 [7—117_2)1 [7—217_3)7 [T31T4)7 cee

The example suggests that in order to obtain asymptotic oo
state agreement, one needs to impose some restrictions on 1 2
the admissible switching signals. One way to address this G1 G2 Gs
problem is to make sure that the switching signal has a dwell Fig. 7. Three interaction digrapt@,, p = 1,2, 3.
time, that is, there existsp > 0 such that
(Vk) (Thy1 — k) > TD. be checked thag, ), is UQSC. So these three oscillators

L . . _ o . achieve asymptotical synchronization as we conclude by our
This is precisely the assumption A3, and is ubiquitous in thg,5in theorem. Fig. 8 shows the plotssafi(6;), i = 1,2,3

switching control literature. and of the switching signat(¢). Synchronization is evident.
V. SOME APPLICATIONS

1
In this section we discuss some applications of our main __ l
results. =
‘B ool
A. Synchronization of Coupled Oscillators
The Kuramoto model describes the dynamics of a set of *
phase oscillatorg; with natural frequencies;. More details -1 2
can be found in [9], [20]. The time evolution of theth
oscillator is given by 4
9.1' = w; + kl Z sin(Gj - 91), (;\37
JEN(t) b 2f
wherek; > 0 is the coupling strength antf;(¢) is the set of 1
neighbors of oscillato§ at time¢. The interaction structure ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
can be general so far, that i4/;(¢) can be an arbitrary set S
of other nodes and can be dynamic.
The neighbor Setg\/i(t) define gg(t) and the switched Fig. 8. Synchronization of three interacting oscillators.
interconnected system
6= fo(0), B. Biochemical Reaction Network Analysis

A biochemical reaction network is a finite set of reactions
among a finite set of species. Consider, for example, two
reversible reactions among three compoundds C,, and
C3, in which C; is transformed intaCy, Cy is transformed
i =k Z sin(z; — ), i=1,...,n. (3) into C3, and vice versa:

= k k
JEN:() a2 0 2oy
ko k

4

whered = [0; --- 6,]7 ando(t) is a suitable switching
signal. For identical coupled oscillators (i.es; = w, Vi),
the transformatiorr; = 0; — wt yields

Let a,b be any real numbers such that< b — a < ,
and defineS = [a, b]. It is easily seen that A1 and A2 are The constants, > 0, k2 > 0 are the forward and reverse
satisfied. Suppose(t) here is regular enough satisfying A3.rate constants of the reactiéh = C>; similarly for k3 > 0,
Then from Theorem 3 it follows that if, and only i, k4 > 0. Denote the concentrations6f, C>, andCs, respec-

is UQSC, the switched interconnected system (3) has tfi&ely, by z1, z2, andz3. Only nonnegative concentrations
property of asymptotic state agreement &nThis implies are physically possible. Such a reaction network gives rise

that there existg < R such that to a dynamical system, which describes how the state of the
. network changes over time.
0:i(t) = z+wt, 6i(t) - w, Suppose the dynamics of both reactions are dictated by
and the oscillators synchronize. This is an extension ¢R€ mass action principle. This leads to the model
Theorem 1 in [9], which assumes the interaction graph is 1 = —k1x§ + kox§,
undirected and static and the initial sta#tg0) € (-2, %) To = k1xy — kox§ — ksx§ + kaz§, (4)

for all 1. I3 = /{3563 — k4$§,



where o« > 1 is an integer. For more on modeling andagreement could mean equality of all the states after daitab

analysis of biochemical reaction networks, we refer to [l]state transformations. An example is the biochemical i@act

[21].
The linear transformation

Y1 = T 1, Y2 =22, Ys= ks 3,

leads to

y:1 = hi(y1,92)(y2 — 1),
Y2 = ha(y1. y2)(y1 = y2) + ha(y2,y3)(ys —y2), ()
U3 = ha(y2,y3)(y2 — ¥3),

whereh (y1,y2), ha(y1,92), ha(y2,y3), andhy(y2,ys) are
suitable terms; for example

kY %k ys — y

ky® y2—uy

hi(y1,y2) =

It can be easily verified that; (y1,y2) > 0 andhq (y1,y2) =

0 if and only if y; = y» = 0. The same observations hold

for ha(y1,y2), ha(y2,ys), andhy(ys, ys). It thus follows that
each point in the se® = {y : y1 = y2 = y3 > 0} is an

equilibrium. Physically, wheny € , the reaction network

is at a chemical equilibrium.

Consider now the interaction digraph associated with (5).

network studied in this paper.
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The notion of state agreement in this paper is that the
states of the subsystems are all equal and constant. This

notion can potentially be generalized in the following two
directions. First, state agreement could mean equalitylof a

the trajectories of the subsystems. This would be of interes
in formation control of multi-agent systems. Second, state



