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Abstract

We study the tracking problem in the presence of
smooth, bounded uncertainty and show that, if the un-
certainty satisfies a suitable matching condition, one
can design a partial information controller (i.e., an
output feedback controller) achieving arbitrarily small
steady-state tracking error without employing high-
gain feedback. We illustrate a preliminary application
of these results to the control of the (simplified) model
of a VTOL aircraft affected by uncertainty.

1 Introduction

In [1] and [2] the notion of a practical internal model
was introduced as a paradigm to solve the output feed-
back (or partial information) tracking problem for non-
linear systems. The word practical internal model was
chosen to indicate the fact that this paradigm allows
to solve the tracking problem practically (i.e., to an
arbitrary degree of accuracy), rather than asymptoti-
cally, and that its solution relies on the existence of a
compensator (the practical internal model) which has a
conceptually similar role to a nonlinear internal model
in output regulation theory (see, e.g., [3] for an in-
troduction to the output regulation problem and the
definition of nonlinear internal model). In [2] it was
also showed that, when the tracking problem is posed
within an output regulation framework with appropri-
ate restrictions, the practical internal model can be re-
placed by an internal model and the paradigm can still
be employed. As pointed out in [1] and [2], this theory
is still far from being self-contained and leaves several
open questions. One of them is the extension of the re-
sults in [1, 2] to the case when the system is affected by
uncertainty. The present paper represents a first step
in this direction.

Consider the VTOL (vertical take-off and landing) air-
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craft model introduced in [4]

χ̈ = −u1 sin θ + εu2 cos θ

z̈ = u1 cos θ + εu2 sin θ − g

θ̈ = λu2

(1)

In this model χ and z are the coordinates of the center
of mass of the aircraft on a fixed inertial frame, and θ
is its inclination with respect to the vertical axis. Let
x = [χ, χ̇, z, ż, θ, θ̇]> and rewrite (1) in state-variable
form

ẋ1 = x2

ẋ2 = −u1 sin x5 + εu2 cosx5

ẋ3 = x4

ẋ4 = u1 cosx5 + εu2 sin x5 − g

ẋ5 = x6

ẋ6 = λu2.

(2)

As shown in [5], system (2) is dynamic feedback lin-
earizable (differentially flat) with respect to the out-
put given by the Huygens center of oscillation y =
(x1 −

ε
λ

sinx5, x3 + ε
λ

cosx5). The linearizing compen-
sator for (2) was found in [5] to be

ξ̇1 = ξ2

ξ̇2 = −v1 sin x5 + v2 cosx5 + ξ1x6

u1 = ξ1 +
ε

λ
x2

6

u2 =
1

λξ1
(−v1 cosx5 − v2 sin x5 − 2ξ2x

2
6).

(3)

It is easily verified, indeed, that the composite system

(2), (3) is equivalent to the trivial system y
(4)
1 = v1,

y
(4)
2 = v2. The linearizing transformation is well-

defined on the set {[x>, ξ>]> ∈ R
8 | ξ1 6= 0}.

Now, as in [6], we consider the case when (2) is affected
by additive uncertainties as follows

ẋ1 = x2

ẋ2 = −u1 sin x5 + εu2 cosx5 + ∆1(t)

ẋ3 = x4

ẋ4 = u1 cosx5 + εu2 sin x5 − g + ∆2(t)

ẋ5 = x6

ẋ6 = λu2,

(4)



where ∆1(t) and ∆2(t) are unknown smooth, bounded
functions of time. Assuming that the output y is mea-
surable, the problem we want to solve in this paper
entails designing a controller making y track a desired
smooth reference trajectory r(t). More specifically, we
seek to find a partial information controller, i.e., a con-
troller using only the information given by y and r,
without assuming the state x or any other signal to
be available for feedback. To do that, we employ the
idea of practical internal models introduced in [1] for
systems without uncertainties, and we introduce an ex-
tension allowing us to deal with the uncertainty in (4).

2 Robust Tracking

Here, we present a preliminary extension to the theory
developed in [1], [2] which handles the presence of cer-
tain types of uncertainties. Given the nonlinear system

ẋ = f(x, u, ∆(t))

y = h(x),
(5)

where x ∈ R
n denotes the state of the system, u ∈ R

m

is the control input, y ∈ R
p is the measurable output,

and ∆(t) : R
+ → R

d is an unknown smooth function of
its arguments belonging to1 Cl ∩L∞, we seek to find a
tracking controller solving the following problem

Problem 1 (Output Feedback Practical Track-
ing): Given the dynamical system (5) and a suffi-
ciently smooth reference trajectory r(t) = [r1(t), . . . ,
rp(t)]

>, design a dynamic output feedback controller

ẋc = fc(xc, y, r)

u = hc(xc, y)
(6)

where fc and hc are sufficiently smooth, such that
the closed-loop system (5)-(6) has the property that
there exists a T > 0 such that ‖e(t)‖ ≤ e0 for all
t ≥ T , and such that the internal states x and xc are
bounded for all t ≥ 0, and for all initial conditions
[x(0)>, xc(0)>]> ∈ A, for some closed set A.

In [1], we have showed that, when no uncertainty af-
fects the system, if there exists a practical internal
model then Problem 1 has a solution. We start by
introducing some basic assumptions.

Assumption A1 (Stable Inverse): Given r(t), for
all ∆ ∈ Cl ∩ L∞ there exist sufficiently smooth and
bounded functions xr(t) and cr(t) such that

ẋr(t) = f(xr(t), cr(t), ∆(t))

r(t) = h(xr(t))
(7)

1The degree of continuity l is assumed to be “sufficiently
large,” in other words we assume the disturbance ∆(t) to be
sufficiently smooth and bounded.

for some initial condition xr(0), cr(0), and all t ≥ 0.

Next, consider the change of coordinates x̃ = x−xr(t),
rewrite (5) in new coordinates as

˙̃x = f̃(t, x̃, u, ∆(t)), (8)

and notice that the asymptotic stability of the origin of
(8) is equivalent to the stability of the trajectory xr(t).
Next, we assume that in the ideal case when the x, xr,
cr, and ∆ are available for feedback, one can find a
smooth controller stabilizing the x̃ dynamics.

Assumption A2 (Stabilizability of the Tra-
jectory xr(t)): There exists a smooth function
ū(x, xr , cr, ∆(t)) such that ū(xr , xr, cr, ∆) = cr and
the origin is a uniformly asymptotically stable equi-
librium point of ˙̃x = f̃(t, x̃, ū(x, xr , cr), ∆(t)), with do-
main of attraction a closed set D̃ ⊂ R

n, i.e., there exists
(see [7]) a function V (x̃, t), defined for x̃ ∈ D̃, which
is continuous with continuous partial derivatives, and
continuous positive definite functions α1(‖x̃‖D̃) ∈ K∞,
α2(‖x̃‖D̃) ∈ K, and α3(‖x̃‖D̃) ∈ K such that

(i) α1(‖x̃‖D̃) ≤ V (x̃, t) ≤ α2(‖x̃‖D̃) (9)

(ii)
∂V

∂x̃
f̃(t, x̃, ū(x, xr, cr)) +

∂V

∂t
≤ −α3(‖x̃‖D̃),

(10)

for x̃ ∈ D̃, x̃ 6= 0, for all ∆ and all t ≥ 0, where

‖x̃‖
D̃

4
= max

{

‖x̃‖,
1

ρ(x̃, D̃o)
−

2

ρ(0, D̃o)

}

,

D̃o is the complement of D̃ in R
n, and ρ(x̃, D̃o) de-

notes the distance of x̃ from the set D̃o (i.e., ρ(x̃, D̃o) =
infz∈D̃o ‖x̃ − z‖).

Now extend the dynamics of (8) with m integrators -
one for every input channel,

˙̃x = f̃(t, x̃, s, ∆(t)),

ṡ = u′.
(11)

The m × 1 vector u′ is the new control input after dy-
namic extension. Using integrator backstepping, we
can find a smooth controller ū′(x, s, xr , cr, ∆(t)) such
that setting u′ = ū′(x, s, xr , cr, ∆(t)) the origin of (11)
is uniformly asymptotically stable. Let D̃′ be the do-
main of attraction of the origin of (11) when u′ = ū′

and V ′(x̃, s, t) be the Lyapunov function resulting from
V when applying integrator backstepping. Note that
V ′ has properties analogous to those in V in (9) and
(10).

Remark 1: The dynamic extension in (11) is used
in the proof of Theorem 1 to eliminate the presence
of an algebraic loop in the controller solving Problem



1. When the stabilizer in Assumption A2’ rather than
being static is dynamic, the dynamic extension (11) is
not needed.

Next, we assume that the uncertainty ∆(t) satisfies a
matching condition

Assumption A3 (Matching Condition): There
exists a smooth function m(x, u, ∆(t)) : R

n × R
nu ×

R
d → R

m such that, setting ũ = m(x, u, ∆(t)), (5) can
be rewritten as

ẋ = f(x, ũ, 0)

y = h(x),
(12)

and the function m(x, u, ∆) is a diffeomorphism with
respect to its second and third argument, i.e., there
exist smooth functions m−1

∆ (x, u, ũ) and m−1
u (x, ũ, ∆)

such that

∆ = m−1
∆ (x, u, ũ), u = m−1

u (x, ũ, ∆). (13)

We now introduce a condition to estimate the functions
xr(t) and cr(t) on-line. Before stating the assumption,
let c̃r(t) = m(xr, cr, ∆(t)) and us A3 to rewrite (7) as

ẋr = f(xr, c̃r, 0)

r(t) = h(xr).
(14)

It is useful to think of (14) as a copy of the plant with
unknown state xr, unknown input c̃r, but a known out-
put which is the reference trajectory r(t). Consider a
compensator of the type

ζ̇r = a(ζr, xr, vr)

c̃r = b(ζr, xr),
(15)

where ζr ∈ R
q (q ≥ m), vr ∈ R

m, a and b are suffi-
ciently smooth, and vr is the new input of the compos-
ite system (14)-(15). Let X1 = [xr

>, ζr
>]> and rewrite

(14)-(15) as

Ẋ1 = fX(X1, vr)

r = hX(X1)
(16)

(with obvious definition of fX and hX). Define the
observability mapping associated with X1 in (16) as

yX1

4
= [r1, . . . , r

(k̄1−1)
1 , . . . , rp, . . . , r

(k̄p−1)
p ]>

4
= HX

(

X1, vr, . . . , vr
(n̄u−1)

)

,

where
∑p

i=1 k̄i = n+q, 0 ≤ n̄u ≤ max{k̄1, . . . , k̄p}−1.

Assumption A4 (Practical Internal Model):
There exists a compensator of the form (15), which we
call a practical internal model, which is regular (i.e., for
each x(0) and u(t) there exist ζ(0) and v(t) such that
b(ζ, x) = u, for all t ≥ 0) and such that the following

two properties hold for the composite system (14)-(15).
(i) HX does not depend on vr and its derivatives, i.e.,
HX = HX(X1).
(ii) There exists a set of indices {k̄1, . . . , k̄p} such that
the mapping yX1

= HX(X1) is invertible with respect
to X1, and its inverse is sufficiently smooth, for all
X1 ∈ Xa ⊂ R

n+q.

Notice that, by replacing xr, ζr, c̃r, and vr in (14), (15)
by x, ζ, ũ = m(x, u, ∆(t)), and v, we get an observabil-
ity assumption for a copy of the plant with state x and
input u, augmented by a practical internal model with
state ζ and input v. Thus, letting X2 = [x>, ζ>]>, the
dynamics associated with X2 have identical structure
to (16),

Ẋ2 = fX(X2, v)

y = hX(X2),
(17)

and A4 guarantees that from y and its time deriva-

tives (i.e., the vector yX2
= [y1, . . . , y

(k̄1−1)
1 , . . . , yp, . . .,

y
(k̄p−1)
p ]>) one can get X2, i.e., x and ζ, and thus also

ũ = b(ζ, x). We will use this fact, together with A3,
to estimate x and ∆(t). Next, we need to guarantee
that the reference trajectory is contained in within an
observable region.

Assumption A5 (Reference Trajectory): The ref-
erence trajectory r(t) is such that, for all t ≥ 0,

yX1
∈ Cr ⊂ HX(Xa),

for some convex compact set Cr with C1 boundary.

Finally, we need to make sure that the state and input
trajectories of the closed-loop system travel within the
observable domain of the plant (at least in the ideal
case when the state feedback controller is employed).
To this end, in the following assumption we character-
ize a subset of the domain of attraction D̃′ which is
contained within an observable region of (17). Given
any scalar c > 0 let

Ωc
4
= {[x>, s>]> ∈ R

n+m |V ′(x − xr , s, t) ≤ c, ∀t ≥ 0}

and note that, by the properness of V ′ and the defini-
tion of D̃′, given any set Π ⊂ D̃′, there exists a suffi-
ciently large scalar c∗ > 0 such that Π ⊂ Ωc∗ ⊂ D̃′.
From A2, when u′ = ū′ in (11), the set Ωc is positively
invariant, for any c > 0. In other words,

[x(0)>, s(0)>]> ∈ Ωc ⇒ [x(t)>, s(t)>]> ∈ Ωc, ∀t ≥ 0,

From A3 we can rewrite (5) as (12) where, from
the previous discussion and the boundedness of ∆(t),
ũ(t) = m(x(t), s(t), ∆(t)) is a uniformly bounded time
signal with bound depending on c. Consider now (17),
i.e., (12) augmented with a practical internal model.



From the regularity property of the practical inter-
nal model, for all x(t) there exists an initial condi-
tion ζ(0) and a bounded control input v(t) such that
b(ζ(t), x(t)) = ũ(t). In particular, the uniform bound-
edness of ũ(t) and x(t) implies the existence of a com-
pact set Ωζ

c such that ζ(t) ∈ Ωζ
c for all t ≥ 0 whenever

[x(t)>, s(t)>]> ∈ Ωc. Let Ωx
c be the projection of Ωc on

the x coordinates, i.e., Ωx
c = {x ∈ R

n | [x>, s>]> ∈ Ωc}
and consider the following assumption.

Assumption A6 (Topology of O): There exists a
positive scalar c̄ such that

HX(Ωx
c̄ × Ωζ

c̄) ⊂ C ⊂ HX(Xa),

for some convex compact C with C1 boundary.

Theorem 1 Suppose that A1-A6 hold. Then, for any
∆(t) ∈ Cl ∩ L∞, Problem 1 has a solution on a set A
whose size depends on the size of the sets C, Cr, and
D. If A2 and A4 hold globally (i.e., D̃′ = R

n+m and
Xa = R

n+q) and HX(Rn+q) is convex, then the solution
of Problem 1 is semiglobal and A can be chosen to be
an arbitrarily large compact set.

Sketch of the proof. Recall the definition of X1 and
X2, and let v1 = vr, v2 = v, y1 = r = hX(X1), y2 =
y = hX(X2), C

1 = C, C2 = Cr, so that (16), (17) can
be rewritten as

Ẋi = fX(Xi, vi)

yi = hX(Xi), i = 1, 2.
(18)

For i = 1, 2, consider the estimator in (19), (20).
The (n + q) × (n + q) matrix E i is defined as E i =

block-diag[E i
1, . . . , E

i
p], where E i

j = diag[ρi, ρ
2
i , . . . , ρ

k̄j

i ],
j = 1, . . . , p, and ρi is a positive design parameter.
The (n + q) × 1 vector N i(ŷP

Xi
) represents the nor-

mal to ∂Ci at ŷP
Xi

. The (n + q) × p matrix Li is de-

fined as Li = block-diag[Li
1, . . . , L

i
p], where each Li

j,

j = 1, . . . , p, is a k̄j × 1 Hurwitz vector. Finally, Γi =
(SiĒ i)−1(SiĒ i)−1, where Ē i = block-diag[Ē i

1, . . . , E
i
p],

with Ē i
j = diag[1/ρ

k̄j−1
i , . . . , 1], j = 1, . . . , p, and Si is

the symmetric matrix square root of P i, the solution of
the Lyapunov equation Ai>P i+P iAi = −I(n+q)×(n+q),
with

Ai =

[

0(n+q−1)×1 I(n+q−1)×(n+q−1)

01×(n+q)

]

− Li[1, 01×n+q−1].

The estimator (19) incorporates a high-gain component
to guarantee convergence, and a dynamic projection to
avoid peaking and confine the estimator state to within
the observable region Xa. Its properties are summa-
rized in the following result, which is essentially iden-
tical to a result found in [8] and is reported without
proof.

Lemma 1 Consider (18) and (19), and assume that
A4 and A5 (i = 1) or A6 (i = 2) hold. Then the
estimates X̂P

i enjoy the following properties

(i) Boundedness: if X̂P
i (0) ∈ H−1

X (Ci), then X̂P
i (t) ∈

H−1
X (Ci) for all t.

(ii) Uniform Ultimate Boundedness of the Estimation
Error: For all δ > 0, there exist ρ̄i, ρ̄i ∈ (0, 1], and
T (ρi) > 0 such that X̂P

i (t)−Xi(t) ≤ δ for all t ≥ T (ρi),
whenever ρi ∈ (0, ρ̄i).
(iii) Arbitrarily fast rate of convergence: T (ρi) in part
(ii) has the property that T (ρi) → 0 as ρi → 0.

For the estimator obtained setting i = 2, parts (ii) and

(iii) hold provided that X2(t) ∈ Ωx
c̄ × Ωζ

c̄ , for all t ≥ 0.

The idea used to solve Problem 1 in the presence of un-
certainties is illustrated in Figure 1. We start by defin-
ing a full information controller which, if x, ζ, xr , ζr

were known, would yield asymptotic tracking. Then,
using A6 and the existence of a practical internal model
for (5), we utilize a separation principle to find a par-
tial information controller using y and r to recover the
performance of the full information controller.

Consider the plant (5) and its copy (7), and use A3 to
rewrite them as

ẋ = f(x, ũ, 0) ẋr = f(xr, c̃r, 0)
y = h(x) r = h(xr).

(21)

Now use A4 and augment both systems with two prac-
tical internal models with states ζ and ζr , respec-
tively, so that, recalling that X1 = [xr

>, ζr
>]> and

X2 = [x>, ζ>]>, the augmented systems can be writ-
ten as (18). Assume that X1 and X2 (i.e., xr , ζr,
x, and ζ) are available for feedback. Then, from

A3, we have that ∆ = m−1
∆ (x, u, b(ζ, x))

4
= γ1(X2, u),

cr = m−1
u (xr, b(ζr, xr), ∆)

4
= γ2(X1, X2). In conclu-

sion, back to (5) and (7), the knowledge of X1 and
X2 allows to specify the following full information con-
troller

u = s

ṡ = ū′(x, s, xr , γ2(X1, X2), γ1(X2, s))
(22)

which, by A2, achieves asymptotic stability of (11) for
all [x(0)>, s(0)>]> ∈ D̃′ and, thus, asymptotic track-
ing. Note here the role of the m integrators with state
s introduced in A2 and appearing in (22): without s
the full information controller

u = ū(x, xr, γ2(X1, X2), γ1(X2, u))

would be implicitly defined or even not defined at all.
The integrators with state s eliminate this problem.

Consider now the partial information controller derived
by replacing X1 and X2 in (22) by their estimates gen-



˙̂
Xi

P =



















[

∂HX

∂X̂P
i

]−1 {

˙̂yXi
|
X̂P

i
− Γi

N i(ŷP
Xi

)N i(ŷP
Xi

)> ˙̂yXi
|
X̂P

i

N i(ŷP
Xi

)>ΓiN i(ŷP
Xi

)

}

if N i(ŷP
Xi

)> ˙̂yXi
|
X̂P

i
≥ 0 and ŷP

Xi
∈ ∂Ci

f̂X(X̂i, yi) = fX(X̂i, 0) +

[

∂HX(X̂i)

∂X̂i

]−1

(E i)−1Li
(

yi − hX(X̂i)
)

otherwise

(19)

˙̂yXi
|
X̂P

i
=

∂HX

∂X̂P
i

fX(X̂P
i , yi), ŷP

Xi
= HX(X̂P

i ). (20)

r PIM-based

observer

yStabilizer

PIM-based

observer

u

System

ĉr

x̂P , ζ̂P

m−1
∆ (x̂P , u, b(ζ̂P , x̂P ))

ṡ = ū′(x̂P , s, x̂P
r , ĉr, ∆̂)

∆̂

m−1
u (x̂P

r , b(ζ̂P
r , x̂P

r ), ∆̂)x̂P
r , ζ̂P

r

Figure 1: Robust tracking scheme.

erated by (19).

û = s

ṡ = ū′(x̂P , s, x̂P
r , ĉr, ∆̂),

(23)

where

ĉr = m−1
u (x̂P

r , b(ζ̂P
r , x̂P

r ), ∆̂)

∆̂ = m−1
∆ (x̂P , s, b(ζ̂P , x̂P )),

and [x̂P
r
>, ζ̂P

r
>]> = X̂P

1 , [x̂P >, ζ̂P >]> = X̂P
2 are

the states of the estimators (19), with i = 1, 2.
From the convergence properties of the estimators
(19), listed in Lemma 1, we can apply the separa-
tion principle developed in [8] and conclude that, for
any c̄ ∈ (0, c̄), there exist sufficient small values of
ρ1 and ρ2 such that the controller (23) with state

xc = [s>, x̂P >, ζ̂P >, x̂P
r
>, ζ̂P

r
>]> solves Problem 1 on

the set

A = Ωc ×H−1
X (C) ×H−1

X (Cr).

If A2 and A4 hold globally, then we have that D̃ = R
n

and Xa = R
n+q. From the integrator backstepping

lemma, the global stabilizability of the origin of (8)
implies the global stabilizability of the origin of (11) or,
in other words, D̃′ = R

n+m. From the fact that Xa =
R

n+q and that HX(Rn+q is convex we have that for any
bounded reference trajectory with bounded derivatives
(i.e., yX1

is bounded), there exists a sufficiently large
set Cr satisfying A5. Further, since V ′ is proper on D̃′,
A6 is satisfied for any c̄ > 0 by an arbitrarily large set
C. From these observations and the first part of this
theorem we conclude that there exist sufficiently small
values of ρ1 and ρ2 such that (23) solves Problem 1 on

an arbitrarily large compact set A. �

3 Application to the VTOL Model
Go back to the uncertain VTOL aircraft model (4), let
∆(t) = [∆1(t), ∆2(t)]

>, and notice that, setting

ũ =









u1 + ∆>

(

− sinx5

cosx5

)

u2 +
1

ε
∆>

(

cosx5

sinx5

)









= m(x, u, ∆), (24)

we can rewrite (4) as

ẋ1 = x2

ẋ2 = −ũ1 sin x5 + εu2 cosx5

ẋ3 = x4

ẋ4 = ũ1 cosx5 + εu2 sin x5 − g

ẋ5 = x6

ẋ6 = λu2

y =
(

x1 −
ε

λ
sin x5, x3 +

ε

λ
cosx5

)

,

(25)

which is in the form (12). Note further that, from (24),
we can write

∆ =

[

− sin x5 cosx5
1

ε
cosx5

1

ε
sinx5

]>

(ũ − u) = m−1
∆ (x, u, ũ)

u = ũ −

[

− sinx5 cosx5
1

ε
cosx5

1

ε
sin x5

]

∆ = m−1
u (x, ũ, ∆),

thus showing that A3 is satisfied.

Since (25) is dynamic feedback linearizable (differen-
tially flat), it was shown in [2] that a practical internal



model is given by the linearizing compensator (3) aug-
mented with m (in this case m = 2) integrators at the
input side

ζ̇1 = ζ2

ζ̇2 = −ζ3 sin x5 + ζ3 cosx5 + ζ1x6

ζ̇3 = v′1

ζ̇4 = v′2

u1 = ζ1 +
ε

λ
x2

6

u2 =
1

λζ
(−ζ3 cosx5 − ζ4 sin x5 − 2ζ2x

2
6).

(26)

Thus, it is readily seen that A4’ is satisfied on the set
Xa = {[x>, ζ>]> ∈ R

10 | ζ1 6= 0}.

Using the fact that (4) is dynamic feedback linearizable
with linearizing compensator (3), the stabilizer in A2 is
simply given by the feedback linearizing controller for
the augmented system (4), (3), parameterized by ∆(t).
From Remark 1, since the stabilizer is dynamic, there
is no need to add m integrators at the input side of the
system to avoid the presence of an algebraic loop in the
final tracking controller.

4 Simulation Results

Consider the problem of making the Huygens center
of oscillation of the aircraft follow a circle, r(t) =
[cos t, sin t]>. The uncertainty ∆(t) = [∆1(t), ∆2(t)]

>

is chosen to be a sinusoid with frequency 5Hz (the two
components of ∆ are not in phase) with ‖∆‖ ≤ 8 ·10−3.
In Figure 2 we plot the reference trajectory and the
output of the VTOL aircraft using the partial infor-
mation controller introduced in the proof of Theorem
1 and depicted in Figure 1, with the practical internal
model (26) and a stabilizer given by the feedback lin-
earizing controller for the extended dynamics (4),(3).
Figure 3 depicts the norm of the tracking error as a
function of time. The asymptotic tracking error can be
made arbitrarily small (thus rejecting the disturbance
∆) without using high-gain control.
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Figure 2: Output and reference trajectories.
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