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Abstract

This paper investigates virtual holonomic constraints for Euler-Lagrange systems with n degrees-
of-freedom and n − 1 controls. In our framework, a virtual holonomic constraint is a relation
specifying n − 1 configuration variables in terms of a single angular configuration variable.
The enforcement by feedback of such a constraint induces a desired repetitive behavior in the
system. We give conditions under which a virtual holonomic constraint is feasible, i.e, it can be
made invariant by feedback, and it is stabilizable. We provide sufficient conditions under which
the dynamics on the constraint manifold correspond to an Euler-Lagrange system. These ideas
are applied to the problem of swinging up an underactuated pendulum while guaranteeing
that the second link does not fall over.

I. Introduction

A virtual holonomic constraint (VHC) for a mechanical system with configuration vector q

is a relation of the form h(q) = 0 that can be made invariant via feedback. In the past decade,
VHC’s have emerged as a valuable tool to solve motion control problems, among them the
stabilization of walking motion for biped robots pioneered by J. Grizzle and collaborators (see,
e.g., [1]–[4]). VHC’s can be used to make a haptic interface emulate the presence of an obstacle
in a virtual environment or, more generally, to constrain the operator hand to move along
preferred directions and to sense the virtual environment [5]. In mobile robotics, VHC’s can
be enforced to make a group of vehicles move in formation. Camless combustion engines use
actuated valves in place of the camshaft to regulate valve phasing, thus allowing valve phasing
to be reprogrammed on-the-fly in order to optimize the operation of the engine [6]. Controlling
valve phasing corresponds to replacing the mechanical constraint imposed by the camshaft with
a VHC enforced by control. The use of VHC’s in place of physical constraints allows greater
flexibility in the design and operation of mechanical devices.

The concept of virtual holonomic constraint can be traced back to work by Paul Appell
in 1911 (see [7]) and was introduced more explicitly in 1922 by Henri Beghin (see [8]) as a
constraint that can be enforced through the application of external forces. The reader is referred
to the work in [9], [10]. In [11], the authors investigate controlled mechanical systems for which
a feedback is to enforce a holonomic constraint. They show that constrained solutions obey
a differential-algebraic equation, and propose a technique to solve such equation. Recently,
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Shiriaev and collaborators in [12]–[16] initiated a study of VHC’s for underactuated mechanical
systems. In [12], the object of study is a system with n degrees-of-freedom and n − 1 controls. It
is shown that the constrained motion is described by an unforced second-order system which
possesses an integral of motion. Assuming that this system has a closed orbit γ, a methodology
is developed to stabilize γ based on the so-called transverse linearization of the system. The
resulting linear time-varying controller yields exponential stability of the closed orbit. In [13], a
detailed investigation of the integrals of motion is presented. In [15], the transverse linearization
technique is generalized to the case when the degree of underactuation is greater than one.
In [14], [17], VHC’s are used to select and stabilize desired oscillations of the Furuta pendulum
and the pendubot.

A number of key questions pertaining to VHC’s remain open. First and foremost, an explicit
definition of VHC is missing in the control literature. A proper definition should contain the
requirement that the constraint be feasible for the dynamics of the control system. For instance,
for a point-mass with coordinates (x, y, z) subject to gravity and accelerated by a horizontal
control force, the constraint z = 0 is not feasible since the control force cannot keep the mass
on a horizontal plane. Second, conditions for feasibility of VHC’s have not been investigated in
the literature. For feasible VHC’s, the constrained dynamics have been shown in [12] to have
an integral of motion when the degree of underactuation is one. However, as we will show,
the presence of this integral of motion does not imply that the constrained dynamics are Euler-
Lagrange. This phenomenon, whose existence has not been recognized in the literature, requires
investigation.

This paper provides answers to the two questions above. In Section II, we give a definition of
VHC which embodies the feasibility requirement, and in Section III we provide conditions under
which a VHC is feasible and stabilizable. In Section IV, we first show that the constrained motion
of an Euler-Lagrange system with a VHC is generally not Euler-Lagrange. We then present
sufficient conditions on the system data guaranteeing that the constrained dynamics are Euler-
Lagrange. Finally, in Section V we use VHC’s to design a controller that swings up the pendubot
from the low-high to the high-high equilibrium while simultaneously guaranteeing that during
the transient phase the unactuated link does not fall over. In this example, we enforce a VHC to
prevent the unactuated link from falling over. We then stabilize a closed orbit on the constraint
manifold to meet the swing-up requirement. The technique we present to stabilize the closed
orbit has independent interest and it can be generalized, but it is not the main focus of the
paper and will be developed elsewhere.

We use the following notation. If x ∈ R and T > 0, then x modulo T is denoted by [x]T, and
the set {[x]T : x ∈ R} is denoted by [R]T. This set can be given a manifold structure which
makes it diffeomorphic to the unit circle. If a and b are vectors, then col(a, b) := [a⊤ b⊤]⊤. If
h : M → N is a smooth map between manifolds, and q ∈ M, we denote by dhq : Tq M → Th(q)N

the derivative of h at q. Given a function h : Q → R
k, then h−1(0) := {q ∈ Q : h(q) = 0}.

II. Problem formulation

In this paper we investigate underactuated Euler-Lagrange systems with an n-dimensional
configuration space Q and n − 1 controls τ ∈ R

n−1. The model is given by

d

dt

∂L

∂q̇
− ∂L

∂q
= B(q)τ.
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In the above, B : Q → R
n×n−1 is smooth and it has full rank n − 1. The Lagrangian function

L(q, q̇) is smooth, and we assume that it has the form L(q, q̇) = (1/2)q̇⊤D(q)q̇ − P(q), where
D(q), the inertia matrix, is positive definite for all q, and P(q), the potential energy function, is
smooth. The system can be rewritten in the standard form

D(q)q̈ + C(q, q̇)q̇ +∇P(q) = B(q)τ. (1)

We assume that q1, . . . , qp, p ≤ n − 1, are linear displacements in R and qp+1, . . . , qn are angular
variables, with qi ∈ [R]Ti

(typically, Ti = 2π). The configuration space of the system is Q =
R

p × [R]Tp+1 × · · · × [R]Tn . We assume throughout that B(q) has a left-annihilator B⊥(q); that
is, there is a smooth function B⊥ : Q → R

1×n\{0} such that B⊥(q)B(q) = 0 for all q.
As the adjective “virtual” suggests, a VHC is a holonomic constraint that is not physically

existing, but it can be made by control to appear to do so. In control theoretic terms, the property
of the holonomic constraint being “virtual” is embodied by the notion of controlled invariance,
as in the next definition.

Definition 2.1: A virtual holonomic constraint (VHC) of order k for system (1) is a relation
h(q) = 0, where h : Q → R

k is smooth, rank(dhq) = k for all q ∈ h−1(0), and the set

Γ = {(q, q̇) : h(q) = 0, dhqq̇ = 0} (2)

is controlled invariant. That is, there exists a smooth feedback τ(q, q̇) such that Γ is positively
invariant for the closed-loop system. The set Γ is called the constraint manifold associated
with the VHC h(q) = 0. A VHC is stabilizable if there exists a smooth feedback τ(q, q̇) that
asymptotically stabilizes1 Γ. In this case, the feedback τ(q, q̇) is said to enforce the VHC h(q) =
0. △

In the definition above, the condition that dhq has full rank on h−1(0) guarantees that the set
h−1(0) is an n − k-dimensional submanifold of Q. As mentioned earlier, the requirement that
Γ is controlled invariant embodies the notion that although the holonomic constraint h(q) = 0
does not physically exist, it can be made by control to appear to do so. Specifically, whenever
the configuration vector q(0) is initialized on the constraint set h−1(0), and its initial velocity
q̇(0) is tangent to h−1(0), then the resulting configuration trajectory q(t) can be made, through
appropriate control, to satisfy the constraint for all t ≥ 0. This matter will be further illustrated
in Example 3.4. Another reason for requiring controlled invariance of Γ in Definition 2.1 is that
this property is a necessary condition for Γ to be stabilizable2.

In this paper we investigate VHC’s of order n − 1. In this case each connected component of
h−1(0) is a smooth curve without self-intersections. We will consider VHC’s with the property
that h−1(0) is a closed curve, with the interpretation that the constraint corresponds to a desired
repetitive behavior. It is convenient to adopt a parametric description of the VHC, in which
n − 1 configuration variables are expressed as smooth functions of the remaining configuration
variable:

q1 = φ1(qn), · · · , qn−1 = φn−1(qn). (3)

1We say that Γ is asymptotically stable for the closed-loop system if for all ε > 0 there exists δ > 0 such that for
all (q(0), q̇(0)) ∈ {(q, q̇) : ‖(q, q̇)‖Γ < δ} the solution of the closed-loop system remains in {(q, q̇) : ‖(q, q̇)‖Γ < ε} and
asymptotically converges to Γ, where ‖ · ‖Γ denotes the point-to-set distance to Γ.

2A necessary condition for a closed set Γ to be asymptotically stable for a dynamical system ẋ = f (x) is that Γ is
positively invariant (see [18]). This readily implies that given a control system ẋ = f (x, u), a necessary condition for
a closed set Γ to be stabilizable is that Γ is controlled invariant.
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Here, h(q) = col(q1 − φ1(qn), . . . , qn−1 − φn−1(qn)), and h−1(0) is a closed curve because φi(qn +
Tn) = φi(qn), since qn ∈ [R]Tn . The parametric representation (3) of a VHC is used in the litera-
ture to describe a vast array of repetitive behaviors, such as the walking motion in biped robots
(see e.g., [1], [12], [16]). We let φ(qn) = col(φ1(qn), . . . , φn−1(qn)) and φ̂(qn) = col(φ(qn), qn), so
that we can express the constraint in (3) as q = φ̂(qn).

Our investigation of virtual holonomic constraints focuses on two basic problems:
P1 (Section III) Find conditions ensuring that a given relation h(q) = 0 or q = φ̂(qn) is a VHC

which is stabilizable, and design a feedback that enforces the VHC.
P2 (Section IV) Find conditions ensuring that the reduced dynamics are Euler-Lagrange; char-

acterize the qualitative properties of the reduced motion.
In addition to the investigation of the problems above, in Section V we outline through a design
example a technique to stabilize closed orbits on the constraint manifold.

III. Regular VHC’s and stabilizability of Γ

In this section we address problem P1 by presenting conditions for a given relation h(q) = 0
or q = φ̂(qn) to be a VHC. At the same time, we want to characterize the stabilizability of the
VHC in question. We begin with a definition.

Definition 3.1: A relation h(q) = 0 is a regular VHC if the output function e = h(q) yields
vector relative degree {2, · · · , 2} everywhere on the set Γ = {(q, q̇) : h(q) = 0, dhqq̇ = 0}. △

This definition implies that any output function e = h(q) yielding a vector relative degree
{2, · · · , 2} on Γ is a VHC. Indeed, in this case system (1) with output e = h(q) is input-output
feedback linearizable, and the associated zero dynamics manifold is precisely Γ (see [19]). Thus,
Γ is controlled invariant, and h(q) = 0 is a VHC.

Under mild hypotheses, regular VHC’s are stabilizable. If there exist strictly increasing func-
tions α, β : [0, r) → [0,+∞), with r > 0, such that the map H : (q, q̇) 7→ col(h(q), dhqq̇) is
bounded as α(‖(q, q̇)‖Γ) ≤ ‖H(q, q̇)‖ ≤ β(‖(q, q̇)‖Γ), then an input-output linearizing feedback
asymptotically stabilizes Γ, provided that the closed-loop system does not have finite escape
times. For parametric VHC’s of the form q = φ̂(qn), the inequality above is always satisfied,
and therefore regular VHC’s in parametric form q = φ̂(qn) are always stabilizable, and they are
enforced by the input-output feedback linearizing feedback

τ(q, q̇) =
{

[In−1 − φ′(qn)]D
−1(q)B(q)

}−1
[−k1e − k2ė

+ φ′′(qn)q̇
2
n + [In−1 − φ′(qn)]D

−1(q)(C(q, q̇)q̇ +∇P(q))
]

,
(4)

where k1, k2 > 0 are design parameters and e = col(q1, . . . , qn−1)− φ(qn), ė = col(q̇1, . . . , q̇n−1)−
φ′(qn)q̇n. Note that, with the definition of e given above, the linearizing feedback (4) yields
ë = −k1e − k2ė, so that e(t) → 0 exponentially. The next proposition provides necessary and
sufficient conditions for relations h(q) = 0 or q = φ̂(qn) to be regular VHC’s.

Proposition 3.2: Let h : Q → R
k be smooth and such that rank dhq = k for all q ∈ h−1(0).

Then, h(q) = 0 is a regular VHC of order k if and only if
(i) (∀q ∈ h−1(0)) dim

[

Im(D−1(q)B(q)) ∩ Ker(dhq)
]

= n − 1 − k.
A parametric relation q = φ̂(qn) is a regular VHC of order n − 1 if and only if either one of the
following holds
(ii) (∀qn ∈ [R]Tn) Im(B(φ̂(qn))) ∩ Im(D(φ̂(qn))φ̂′(qn)) = {0}.
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(iii) (∀qn ∈ [R]Tn) B⊥(φ̂(qn))D(φ̂(qn))φ̂′(qn) 6= 0,
where B⊥(q) is a left-annihilator of B(q).

Proof: Consider a smooth relation h(q) = 0. Letting e = h(q), we have ë|{e=0,ė=0} = (⋆) +

dhqD−1(q)B(q)τ, where the term (⋆) is a suitable smooth function of (q, q̇) which is independent
of τ. Then, h(q) = 0 is a regular VHC if and only if the matrix dhqD−1(q)B(q) is nonsingular
for all q ∈ h−1(0). This condition is equivalent to (i). Now consider a parametric relation q =
φ̂(qn). In this case, k = n − 1, h(q) = col(q1, . . . , qn−1) − φ(qn), dhq = [In−1 − φ′(qn)], and
Ker(dhq) = Im(col(φ′(qn), 1)) = Im(φ̂′(qn)). Condition (i) becomes Im(D−1(q)B(q))|q=φ̂(qn)

∩
Im(φ̂′(qn)) = {0}. This condition is equivalent to (ii). Finally, if B⊥(q) is a left-annihilator of B(q),
then Im(B(q)) = Ker(B⊥(q)), and therefore condition (ii) can be rewritten as Ker(B⊥(φ̂′(qn)))∩
Im(D(φ̂(qn)φ̂′(qn))) = {0}, which is equivalent to condition (iii).

Remark 3.3: The mechanical interpretation of the regularity property is this. In order for
h(q) = 0 to be a regular VHC of order k, for each q ∈ h−1(0), n − 1 − k of the acceleration
directions that can be imparted by the control input must be transversal to the tangent space
of h−1(0) at q.

θ1

θ2

τ

Fig. 1. The pendubot, an underactuated double-pendulum.

Example 3.4: Consider the pendubot system in Figure 1. This is a double-pendulum in which
the shoulder is actuated while the elbow is not. The configuration variables (θ1, θ2) are in
[R]2π × [R]2π. Assuming that the masses and lengths of the two links are equal and unitary,
and neglecting mechanical friction, we have for this system

D(q) =

[

2 cos(θ1 − θ2)
cos(θ1 − θ2) 1

]

,

C(q, q̇) =

[

0 sin(θ1 − θ2)θ̇2
− sin(θ1 − θ2)θ̇1 0

]

P(q) = 2g cos θ1 + g cos θ2, B = col(1, 0).

(5)

Consider the relation θ2 = φ(θ1) = 2θ1. To check whether such a relation is a regular VHC,
we set φ̂(θ1) = col(θ1, φ(θ1)) = col(θ1, 2θ1). Letting B⊥ = [0 1], we have B⊥D(φ̂(θ1))φ̂

′(θ1) =
2 + cos(θ1) 6= 0 for all θ1 ∈ [R]2π, proving that the relation θ2 = 2θ1 is a regular VHC. Being
regular, this VHC is also stabilizable. On other hand, the relation θ2 = θ1/2 is not a regular VHC,
since B⊥D(φ̂(θ1))φ̂

′(θ1) = 1/2+ cos(θ1/2) is not bounded away from zero. Actually, the relation
θ2 = θ1/2 is not even a VHC. To illustrate, let e = θ2 − θ1/2. For any value of the variable θ̇1,
the state (θ1, θ2, θ̇1, θ̇2) = (8π/3, 4π/3, θ̇1, θ̇1/2) belongs to the set Γ = {θ2 = θ1/2, θ̇2 = θ̇1/2},
but one can check that ë|(θ1,θ2,θ̇1,θ̇2)=(8π/3,4π/3,θ̇1,θ̇1/2) = −(

√
3/2)(g + θ̇2

1) 6= 0. Therefore, there is

May 14, 2013 DRAFT
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no feedback making ë = 0 everywhere on Γ, and Γ is not controlled invariant. In other words,
no matter how one initializes the joint velocities of the pendulum, when the joint angles are
initialized as (θ1(0), θ2(0)) = (8π/3, 4π/3), no choice of τ can make the pendulum satisfy the
constraint θ2 = θ1/2. This example illustrates the importance of requiring controlled invariance
of Γ in the definition of VHC. △

IV. Motion on the constraint manifold

In this section we investigate problem P2. Given a regular VHC in parametric form q =
φ̂(qn), we determine the reduced dynamics of system (1) on the virtual constraint manifold
Γ = {(q, q̇) : q = φ̂(qn), q̇ = φ̂′(qn)q̇n}. In Section IV-A, we present conditions under which
the reduced motion on Γ is Euler-Lagrange. In Section IV-B, we characterize the qualitative
properties of the reduced motion on Γ: equilibria, their stability type, and closed orbits.

By left-multiplying both sides of (1) by B⊥(q), evaluating the result on Γ, and using the
identity B⊥(φ̂)D(φ̂)φ̂′ = δ 6= 0 (which follows from part (iii) of Proposition 3.2), we get

q̈n = −B⊥(φ̂(qn))

δ(qn)

[

D φ̂′′(qn)q̇
2
n + C q̇ +∇P(q)

]

q = φ̂(qn),
q̇ = φ̂′(qn)q̇n

.

The product B⊥(q)C(q, q̇)q̇ is given by B⊥(q)C(q, q̇)q̇ = ∑
n
i=1 B⊥

i (q)q̇⊤Qi(q)q̇, where B⊥
i is the i-th

element of B⊥ and Qi(q) is a symmetric matrix whose (j, k) entry is the Christoffel coefficient
(Qi)jk = (1/2)

{

∂Dij/∂qk + ∂Dik/∂qj − ∂Dkj/∂qi

}

. If q = φ̂(qn) and q̇ = φ̂′(qn)q̇n, we have

q̇⊤Qi(q)q̇ = φ̂′(qn)⊤Qi(φ̂(qn))φ̂′(qn)q̇2
n, and so letting

Ψ1(qn) = −B⊥(φ̂(qn))

δ(qn)
∇P(φ̂(qn))

Ψ2(qn) = − 1
δ(qn)

[

B⊥(φ̂(qn))D(φ̂(qn))φ̂
′′(qn)

+
n

∑
i=1

B⊥
i (φ̂(qn))φ̂

′(qn)
⊤Qi(φ̂(qn))φ̂

′(qn)

]

(6)

we have
q̈n = Ψ1(qn) + Ψ2(qn)q̇

2
n. (7)

System (7) represents the dynamics of system (1) on the constraint manifold subject to a feedback
τ(q, q̇) making Γ invariant3. We call system (7) the reduced dynamics induced by the VHC
q = φ̂(qn). Note that the reduced dynamics have no control input. This is not surprising, since
the set {q : q = φ̂(qn)} is a one-dimensional submanifold of Q, and all n − 1 control directions
are used to enforce the VHC. Letting

M(qn) = exp
{

−2
∫ qn

0
Ψ2(τ)dτ

}

,

V(qn) = −
∫ qn

0
Ψ1(µ)M(µ)dµ,

(8)

3On Γ, such a feedback is unique, and it is given by (4) with e = ė = 0.
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q2

q̇2

Fig. 2. Phase portrait of the reduced system (10). Since q2 ∈ [R]2π , the axes q2 = 0, q2 = 2π are identified. The solid
highlighted trajectory is an isolated closed orbit. Two sample solutions approaching the closed orbit are depicted by
dashed lines.

it can be easily verified that the function E(qn, q̇n) =
1
2 M(qn)q̇2

n +V(qn), is an integral of motion4

for system (7) in that, along solutions (qn(t), q̇n(t)) of (7), we have that (d/dt)E(qn(t), q̇n(t)) = 0.
This fact may seem to imply that the reduced dynamics are Euler-Lagrange. Note, however, that
since qn is an angular variable in [R]Tn , and since M(qn) and V(qn) in (8) are not necessarily
Tn-periodic functions, the function E(qn, q̇n) is generally multivalued. Therefore, the integral of
motion E(qn, q̇n) cannot be used to deduce that the reduced dynamics are Euler-Lagrange. As
a matter of fact, generally they are not, as we show in the next example.

Example 4.1: Consider the Euler-Lagrange control system of the form (1) with q = (q1, q2) ∈
R × [R]2π, and

D(q) =

[

1 0
0 1 − (sin q2)/2

]

, C(q, q̇) =

[

0 0
0 − (1/4) cos q2q̇2

]

,

P(q) =
1
2

q2
1, B = col(1, 1).

(9)

Let B⊥ = [1 − 1]. The relation q1 = φ(q2) = 1 + (sin q2)/2 is a regular VHC because B⊥Dφ̂′ =
[cos(q2) + sin(q2)]/2 − 1, which is bounded away from zero. The reduced dynamics are given
by

q̈2 =
4 + 2 sin q2

4 − 2 sin q2 − 2 cos q2
+

cos q2 − 2 sin q2

4 − 2 sin q2 − 2 cos q2
q̇2

2. (10)

The phase portrait of this system, shown in Figure 2, reveals the existence of an isolated closed
orbit which is attractive. By the Poincarè-Lyapunov theorem (see [20]), nontrivial periodic orbits
of Euler-Lagrange systems cannot be isolated. Therefore, the reduced system (10) is not Euler-
Lagrange. The existence of the isolated closed orbit is rigorously proved in [21, Proposition 3.1].

△

4This result is not new. In [12], [13], [15], the authors use an integral of motion which depends on initial conditions,
but appears to be equivalent to the one presented here.
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The source of the problem in the example above is the fact that the functions M(qn), V(qn)
are multivalued. If qn were a displacement in R rather than an angle in [R]Tn , then E(qn, q̇n)
would be a single-valued function, and the reduced system (7) would always be Euler-Lagrange.
Although the reduced dynamics are generally not Euler-Lagrange when qn ∈ [R]Tn , it is possible
that in a neighborhood of an equilibrium (q⋆n, 0) of (7), the reduced dynamics are locally Euler-
Lagrange. This occurs when one of the branches of the multi-valued function V(qn) has a local
minimum at q⋆n. In this case, in a neighborhood (q⋆n, 0) there are closed-orbits (qn(t), q̇n(t)) along
which qn(t) does not perform complete revolutions and therefore (qn(t), q̇n(t)) remains on one
branch of E(qn, q̇n).

A. Conditions for the reduced dynamics to be Euler-Lagrange

Motivated by the discussion above, we now present conditions under which the functions
M(qn) and V(qn) in (8) are Tn-periodic, so that the reduced system (7) is Euler-Lagrange. To
this end, we make the following symmetry assumption on the inertia matrix, potential function,
and input matrix of system (1).

Assumption 4.2: For some q̄ ∈ Q, it holds that D(q), P(q), and B(q) in (1) are even with respect
to q̄, i.e., for all q ∈ Q, D(q̄ + q) = D(q̄ − q), P(q̄ + q) = P(q̄ − q), B(q̄ + q) = B(q̄ − q).

Remark 4.3: (i) Henceforth, for notational simplicity we will assume that q̄ = 0 so that
D(q) = D(−q), P(q) = P(−q), and B(q) = B(−q). There is no loss of generality in
this assumption, for by defining D̃(q) := D(q + q̄), one gets D̃(q) = D̃(−q). The same
observation holds for P and B.

(ii) The double pendulum in Example 3.4, the Furuta pendulum in [17], and the 5-DOF swing
phase model of a biped robot in [1] (when the centre of mass of the torso is on-axis) satisfy
Assumption 4.2.

Proposition 4.4: If Assumption 4.2 holds, and if q = φ̂(qn) is a regular and odd VHC, i.e., such
that

(∀qn ∈ [R]Tn)(∀i ∈ {1, . . . , n − 1}) φi(qn) = −φi(−qn),

then the reduced system (7) is Euler-Lagrange with Lagrangian L(qn, q̇n) = (1/2)M(qn)q̇2
n −

V(qn), where M and V are defined in (8).
Proof: If M(qn) and V(qn) are Tn-periodic functions, then (7) is Euler-Lagrange with La-

grangian L(qn, q̇n) = (1/2)M(qn)q̇2
n −V(qn). To prove that M(qn) and V(qn) are Tn-periodic, we

will show that, besides being Tn-periodic, the functions Ψ1(qn) and Ψ2(qn) in (6) are also odd.
Suppose for a moment that this is the case (i.e., Ψ1, Ψ2 are odd). Since the antiderivative of an
odd Tn-periodic function is an even Tn-periodic function, M(qn) is even and Tn-periodic. This
fact implies that the product Ψ1(qn)M(qn) is odd and Tn-periodic, and therefore V(qn) is even
and Tn-periodic. These considerations show that in order to prove that the reduced system (7) is
Euler-Lagrange it suffices to show that, besides being Tn-periodic, the functions Ψ1(qn), Ψ2(qn)
in (6) are odd. To this end, note that φ̂(qn) is odd and Tn-periodic and therefore in light of
Assumption 4.2 the functions D(φ̂(qn)), P(φ̂(qn)), and B(φ̂(qn)) are even and Tn-periodic (for
instance D(φ̂(−qn)) = D(−φ̂(qn)) = D(φ̂(qn))). Moreover, since B(q) is even, B⊥(φ̂(qn)) is
even as well. The derivative of an even function is odd, while the derivative of an odd function
is even. These facts imply that ∇P(φ̂(qn)), φ̂′′(qn), and Qi(φ̂(qn)) are odd functions and that
δ(qn) = B⊥(φ̂(qn))D(φ̂(qn))φ̂′(qn) is even. Therefore, the functions Ψ1(qn), Ψ2(qn) in (6) are
odd.
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Example 4.5: Consider the pendubot system of Example 3.4. We have shown that the relation
θ2 = 2θ1 is a regular VHC. Since the function φ(θ1) = 2θ1 is odd, it follows from Proposition 4.4
that the reduced dynamics are Euler-Lagrange. As a matter of fact, one can check that the
reduced dynamics are given by

θ̈1 =
1

2 + cos θ1

[

g sin(2θ1)− sin θ1θ̇2
1

]

, (11)

and the functions M(θ1), V(θ1) are given by M(θ1) = 9
(cos θ1+2)2 , V(θ1) = 4g − 18g(cos θ1+1)

(cos θ1+2)2 .

Since M and V are 2π-periodic, the Lagrangian L(q1, q̇1) =
1
2 M(θ1)θ̇

2
1 − V(θ1) is a well-defined

single-valued function, and therefore system (11) is Euler-Lagrange.
Next, consider system (9) in Example 4.1, which was shown not to be Euler-Lagrange. The

VHC in that example, q1 = φ(q2) = 1 + (sin q2)/2 is not odd. △
B. Qualitative properties of Euler-Lagrange reduced motion

Suppose that we have found a regular VHC which is odd, so that (7) is a one degree-of-
freedom Euler-Lagrange system with energy function

E(qn, q̇n) =
1
2

M(qn)q̇
2
n + V(qn), (12)

where M(qn) and V(qn) are defined in (8). As is well-known, the properties of solutions of such
a system can be completely characterized in terms of the potential function V(qn).

Definition 4.6: A closed orbit γ of the reduced dynamics (7) is said to be a rotation of qn if
γ is homeomorphic to a circle {(qn, q̇n) ∈ [R]Tn × R : q̇n = constant} via a homeomorphism
of the form (qn, q̇n) 7→ (qn, T(qn)q̇n); γ is an oscillation of qn if it is homeomorphic to a circle
{(qn, q̇n) ∈ [R]Tn × R : q2

n + q̇2
n = constant} via a homeomorphism of the form (qn, q̇n) 7→

(qn, T(qn)q̇n). △
In other words, rotations of qn are closed orbits of (7) along which qn performs complete

revolutions. On the other hand, oscillations of qn are closed orbits along which qn exhibits a
rocking motion without performing complete revolutions.

Proposition 4.7: Suppose that q = φ̂(qn) is a regular and odd VHC, and that Assumption 4.2
holds. Consider the dynamics (7) on the constraint manifold Γ. The equilibrium configurations
are the points (q⋆n, 0) such that Ψ1(q

⋆

n) = 0, or equivalently ∇P(φ̂(q⋆n)) ∈ Im(B(φ̂(q⋆n))), where
P(q) is the potential of the original system (1). There are at least two equilibria at q⋆n = [0]Tn

and q⋆n = [Tn/2]Tn . The stability type of an equilibrium (q⋆n, 0) is determined by the sign
of the expression δ(q⋆n)(d/dqn)

[

B⊥(φ̂(qn))∇P(φ̂(qn))
]
∣

∣

qn=q⋆n
(positive =⇒ stable, negative =⇒

unstable, 0 =⇒ no conclusion). Let V = minqn∈[R]Tn
V(qn) and V̄ = maxqn∈[R]Tn

V(qn). Then, all
phase curves of (7) in the set {(qn, q̇n) ∈ [R]Tn × R : 1/2M(qn)q̇2

n + V(qn) > V̄} are rotations
of qn. Almost all (in the Lebesgue sense) phase curves in the set {(qn, q̇n) ∈ [R]Tn × R : V <

1/2M(qn)q̇2
n + V(qn) < V̄} are oscillations of qn.

Proof Sketch: We only prove the first part of the proposition concerning equilibria of (7).
The second part of the proof, concerning the types of closed orbits, is identical to the proof
of Lemma 3.12 in [22]. The equilibria of (7) are the critical points of the potential V(qn). Since
M(qn) > 0, we have that V′(qn) = −Ψ1(qn)M(qn) is equal to zero when Ψ1(qn) = 0, or
B⊥(φ̂(qn))∇P(φ̂(qn)) = 0, which can only happen if ∇P(φ̂(qn)) ∈ Im(B(φ̂(qn))). Using the fact
that Ψ1(qn) is odd, we have Ψ1(0) = −Ψ1(0), or Ψ1(0) = 0. Moreover, [Tn/2]Tn = [−Tn/2]Tn , and
so Ψ1([Tn/2]Tn) = Ψ1([−Tn/2]Tn) = −Ψ1([Tn/2]Tn), where the last identity follows from the fact
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that Ψ1 is an odd function. Thus, Ψ1([Tn/2]Tn) = 0, and so there are at least two equilibria of (7)
at (q⋆n, 0), q⋆n = [0]Tn , q⋆n = [Tn/2]Tn . The stability type of equilibria is determined by the sign of
V′′(q⋆n). We have V′′(q⋆n) = −Ψ′

1(q
⋆

n)M(q⋆n)− Ψ1(q
⋆

n)M′(q⋆n). Since Ψ1(q
⋆

n) = 0 and M(q⋆n) > 0,
we have sgn(V′′(q⋆n)) = sgn(−Ψ′

1(q
⋆

n)) = sgn
{

δ(q⋆n)(d/dqn)
[

B⊥(φ̂(qn))∇P(φ̂(qn))
]}∣

∣

qn=q⋆n
. The

latter equality follows from the fact that the term B⊥(φ̂(qn))∇P(φ̂(qn)) in the expression of
Ψ′

1(qn) is zero at all equilibria of (7).
Example 4.8: Consider again the pendubot of Example 3.4 with regular and odd VHC θ2 = 2θ1.

We now apply Proposition 4.7 to characterize the qualitative properties of the reduced mo-
tion. The condition ∇P(φ̂(θ1)) ∈ Im(B) gives col(−2g sin θ1,−g sin(2θ1)) ∈ span{col(1, 0)},
or sin(2θ1) = 0, from which we get that the reduced motion has four equilibria, (θ1, θ̇1) =
([kπ/2]2π, 0), k = 0, . . . , 3. To determine their stability type, recall that δ(θ1) = B⊥D(φ̂(θ1))φ̂

′(θ1) =

2 + cos θ1. We have sgn
(

δ(θ1)B⊥ d
dθ1

[B⊥∇P(φ̂(θ1))]
)

= sgn(− cos(2θ1)), from which it follows

that the equilibria (θ1, θ̇1) = ([kπ/2]2π, 0), k = 1, 3 are stable, while the equilibria (θ1, θ̇1) =
([kπ/2]2π, 0), k = 0, 2 are unstable. Recall from Example 4.5 that the reduced dynamics have
a potential function V(θ1) = 4g − 18g(cos θ1 + 1)/(cos θ1 + 2)2. We have V = min V(θ1) =
−g/2 and V̄ = max V(θ1) = 4g. The energy function of the reduced dynamics is E(θ1, θ̇1) =
(

9/2(cos θ1 + 2)2)θ̇2
1 + 4g − 18g(cos θ1 + 1)/(cos θ1 + 2)2. All level sets of E = c with c ∈ (V, V̄)

are oscillations of θ1, while for c > V̄ they are rotations of θ1. △

V. Application: Swing-up of the pendubot

In this section we apply the technique developed in the previous section to a swing-up
problem for the pendubot. We wish to design a feedback law yielding the following two
properties:

1) Low-high to high-high swing-up: For any neighborhood U of the high-high equilibrium
(θ1, θ2, θ̇1, θ̇2) = (0, 0, 0, 0), there exists a punctured neighborhood V of the low-high equi-
librium (θ1, θ2, θ̇1, θ̇2) = (π, 0, 0, 0) such that for each initial condition in V, the solution
enters U in finite time.

2) Boundedness: For any initial condition in V, the solution has the property that θ2(t) ∈
(−π/2, π/2) for all t ≥ 0. In other words, the unactuated link does not fall over during
transient.

Owing to space limitations, we will only sketch the methodology of solution of the swing-up
problem. The ideas outlined in this section will be presented in a general form elsewhere.

To meet the boundedness requirement, we will enforce a VHC that constrains the second
link of the pendulum to remain in a neighborhood of the vertical configuration. The swing-
up requirement can then be met by stabilizing a closed orbit on the constraint manifold. The
challenge with this approach is that the reduced dynamics in (7) have no control input, so it may
seem impossible to stabilize a closed orbit while simultaneously enforcing the VHC. To obviate
this problem, we dynamically change the geometry of the VHC while preserving its invariance.
The idea is to make the VHC depend on a parameter s. Variations of s affect the dynamics on the
constraint manifold, so by controlling s it is possible to stabilize a desired closed orbit. Define
the dynamic compensator s̈ = v, where v is a scalar control input, and denote by q̄ := col(q, s)
the configuration vector of the augmented system. Consider the relation

θ2 = φs(θ1) = θ1 + 2 arctan[tan(s − θ1/2)(1 +
√

2)]. (13)
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Let φ̂s(θ1) = col(θ1, φs(θ1)). One can readily check that B⊥D(φ̂s(θ1))∂qn φ̂s(θ1) = 1 −
√

2, from
which it follows that for any piecewise continuous signal v(t), the relation θ2 = φs(θ1) is a
regular VHC for the pendubot augmented with s̈ = v(t). Moreover, when s = 0 the VHC is
odd, i.e., the function φ0(θ1) is odd, so by Proposition 4.4 the reduced dynamics when s = ṡ = 0
and v = 0 are Euler-Lagrange with energy function E(θ1, θ̇1) as in (12). The configurations of
the pendubot satisfying the constraint θ2 = φ0(θ1) are depicted in Figure 3, together with the
phase portrait of the reduced dynamics on the plane s = ṡ = 0. Note that the VHC prevents
the second link from falling over.

−20
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5

10

15

20

θ1

θ̇1

0 π/2 π 3π/2 2π

Fig. 3. The left-hand side figure shows configurations of the pendubot satisfying the VHC in (13) with s = 0.
Constrained configurations are shown for values of θ1 ∈ [0, π]. The configurations for θ1 ∈ [π, 2π] are symmetric.
The right-hand figure shows the phase portrait of the reduced motion on the constraint manifold when s = ṡ = 0.
The shaded area is filled with oscillations of θ1, while the unshaded area is filled with rotations of θ1.
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Fig. 4. Phase portrait of (θ1, θ̇1) for the pendubot.

As a matter of fact, the VHC (13) has the property that φ0(0) = φ0(π) = 0, and |φ0(·)| < π/2.
Since the map (s, θ1) 7→ φs(θ1) is continuous, and θ1 is in a compact set, there exists ǫ > 0 such
that φs(·) < π/2 for all |s| < ǫ. Therefore, VHC (13) is a suitable candidate to meet the bound-
edness requirement, provided that s is kept in a neighborhood of zero. Accordingly, referring to
the pendubot system with compensator s̈ = v, control input τ, and output e = θ2 − φs(θ1), we
will let τ(q, q̇, s, ṡ, v) be an input-output feedback linearizing controller parametrized by v. This
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Fig. 5. On the left-hand side, angle θ2(t) of the pendubot. On the right-hand side, plots of θ2(t) (solid) and φs(t)(θ1(t))
(dashed).

controller asymptotically stabilizes the manifold Γ̄ = {θ2 = φs(θ1), θ̇2 = (∂θ1 φs)θ̇1 + (∂sφs)ṡ}.
In order to meet the swing-up requirement, we will design a smooth feedback v(q̄, ˙̄q) so as to
stabilize the set γ̄ = {(q̄, ˙̄q) ∈ Γ̄ : E(θ1, θ̇1) = 0, s = ṡ = 0}. This set is the homoclinic orbit on the
plane s = ṡ = 0 bounding the shaded region in Figure 3. Pick v(q̄, ˙̄q) = K1E(θ1, θ̇1)θ̇1 +K2s+K3ṡ,
with K1 = −0.01, K2 = −0.5, K3 = −3. With this choice, we find that the characteristic
multipliers of the linearization of the reduced dynamics along γ̄ are {0.4884, 0.3704, 2.57 · 10−4},
so that γ̄ is asymptotically stable for the reduced dynamics on Γ̄. Figure 4 shows the curve
(θ1(t), θ̇1(t)) when the pendulum is initialized in a neighborhood of the low-high equilibrium,
illustrating that (θ1(t), θ̇1(t)) approaches the homoclinic orbit of Figure 3, so that the swing-up
requirement is met. The left-hand side of Figure 5 illustrates that during transient the angle
θ2(t) is bounded inside the interval (−π/2, π/2), so that the boundedness requirement is met.
This latter property is a consequence of the enforcement of the VHC θ2 = φs(θ1), shown on
the right-hand side of Figure 5. Our simulations suggest that the domain of attraction of γ̄

contains a neighborhood of the low-high equilibrium. The simulations also illustrate the benefit
of enforcing the virtual constraint θ2 = φs(θ1) while simultaneously stabilizing the closed orbit
γ̄ ⊂ Γ̄. Namely, that if the pendulum state is initialized in a neighborhood of the low-high
equilibrium, and thus near Γ̄, and if s(0), ṡ(0) are small, then θ2(t) − φs(t)(θ1(t)) and s(t)
remain small and converge to zero. This in particular implies that θ2(t) remains bounded in
(−π/2, π/2), i.e., the second link of the pendulum does not fall over during swing-up. This
property would not be guaranteed by an approach that purely stabilizes γ̄ without enforcing
the virtual constraint.

VI. Conclusions

We have investigated virtual holonomic constraints for Euler-Lagrange systems with n degrees-
of-freedom and n − 1 controls. We have given conditions under which a virtual holonomic
constraint is feasible. We have provided sufficient conditions under which the dynamics on the
constraint manifold correspond to an Euler-Lagrange system.
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