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Jet engines are nonlinear dynamical systems for which an exact mathematical model cannot be used for esti-
mator design, because it is either not available or so complex that it does not fit the necessary assumptions. Thus,
classical analytical tools for studying standard system properties like observability, which is very important in es-
timator design, cannot be directly applied. Generally, for practical jet engine applications, the designer faces two
closely related problems: first, given a non-measurable parameter, find the minimal set of estimator inputs that
facilitates achieving a satisfactory estimation performance (input selection); second, given a predetermined set of
inputs, derive an “observability” measure that characterizes the estimation feasibility of a specific non-measurable
parameter. In this paper, techniques for solving these two problems are developed and applied to estimator design
for jet engine thrust, stall margins, and an unmeasurable state.

1. Introduction

Thrust regulation is often the primary objec-
tive in jet engine control; this quantity, however,
cannot be measured, so the designer is forced to
regulate closely related measurable variables such
as the rotor speeds or pressure ratios. The re-
sulting control designs must be conservative to
ensure delivery of guaranteed thrust levels in the
presence of engine-to-engine manufacturing dif-
ferences and engine deterioration. The conserva-
tive nature of the control design results in oper-
ating the engine in a less efficient manner (e.g., at
higher temperatures using more fuel) that short-
ens its life. A high quality thrust estimator can
serve as a “virtual sensor” for thrust, allowing for
more direct control over its value and resulting
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in less conservative designs that could lengthen
engine life and improve its operating efficiency.

Another problem faced in jet engine control is
how to avoid rotating stall [1]. Rotating stall is
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Figure 1. Propagation of stall cells in rotor
blades.

described in Figure 1, where a row of axial com-
pressor blades is shown: a non-uniformity in the
inlet flow causes an increase in the angle of attack
of blade 1, creating a stall, i.e., a flow-blockage
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between blade 1 and 2. This blockage causes the
inlet flow to be diverted and directed away from
blade 1 and towards blades 2 and 3. Now, the
angle of attack of the inlet flow on blade 2 is
increased, generating a new stall. This process
continues and propagates the stall to the blades
of the entire blade row, causing a significant loss
of thrust, undesired vibrations in the blading
[2,3], and reduced pressure rise of the compressor.
To avoid such phenomena, several unmeasurable
“stall margin” variables are generally introduced
to characterize how close the system is to a stall
condition. Then, the designer constructs control
laws so that these variables stay within certain in-
tervals, even if there are engine-to-engine manu-
facturing differences and engine deterioration. In
an analogous manner to the case for thrust dis-
cussed above, if good estimates of stall margins
were available, one could reduce the design safety
margins, increasing the overall efficiency and life
of the engine.

In addition to thrust and stall margins, there
are other engine parameters that to estimate. For
instance, there are internal variables that can-
not be measured (e.g., the temperature at the
combustor inlet) and can be viewed as unknown
states, or actuators whose commanded input is
often different from the actual one (e.g., the fuel
flow actuator). Estimates of such variables can
be useful in designing new control schemes or im-
proving the performance of existing ones. Clearly,
estimating engine thrust, stall margins, and other
engine parameters (which we will later refer to as
“engine states”) is a very important problem.

The particular engine we study here is the
General Electric Aircraft Engine (GEAE) XTE46
which is a scaled unclassified version of GEAE’s
variable cycle engine. It is a “component level
model” implemented as a complex Fortran-based
simulation of the nonlinear partial-differential
equations that represent the engine. Effects of the
engine-to-engine manufacturing differences and
engine deterioration can be accounted for in the
simulation. Due to the engine simulator complex-
ity there is no simple explicit mathematical model
(e.g., an analytical nonlinear model) that is avail-
able for use in applying standard parameter esti-
mation methods. The simulator can, however, be

used to evaluate estimation schemes, and it can
generate engine input-output data that can be
used in estimator construction.

The particular type of estimation problem we
study in this paper is how to estimate thrust, stall
margin, and an unmeasurable state while the en-
gine is in steady-state operation. It is assumed
that a suitable steady-state detection method is
implemented and once steady-state is achieved,
the estimator is given the engine data and it pro-
vides an estimate. Hence, the estimation prob-
lem is transformed into that of approximating an
unknown function which maps the steady state
engine measurements into the variables to be es-
timated. Here, we will use a standard neural net-
work approach, with data generated by the en-
gine simulator, to solve this problem. Our focus
is not on how to pick the best engine training
data, training method, or neural network struc-
ture. That is, our focus is not on the parame-
ter estimation method, but on issues encountered
when designing such estimators. Our neural net-
work estimator will simply serve to help us illus-
trate our technique for estimator input selection
and to show how our method of estimation feasi-
bility analysis can be useful in estimator design.

Why is estimator input selection a difficult
problem? Why not simply use all the available
sensed variables as the inputs to an estimator?
First, if we could achieve a good estimation per-
formance using a subset of the full set of sen-
sors, the number of on-board sensors could be
decreased thereby reducing the production costs.
Second, using too many inputs to the estimators
would unnecessarily increase their complexity and
hence could create problems with implementa-
tion. Third, there are typically dependencies be-
tween various sensed values so that adding more
estimator inputs does not necessarily add more
information to help the estimator solve its prob-
lem. In fact, as we will explain in Section 2, the
additional inputs can degrade estimation perfor-
mance. It is clear that it is useful to prune the
size of the set of inputs, and the normal approach
to do this is to use intuition to pick a smaller
set of what one considers to be the most useful
inputs. This is in fact how earlier work on this
problem proceeded. In this paper we will show,
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however, that a better choice is possible using a
correlation analysis approach. It is important to
note that estimator input selection methods have
already been used in the system identification lit-
erature (e.g., [4,5]) to validate the regressor vector
of identification models. These ideas, however,
do not apply to our problem, since we work in
a static framework where all the engine variables
are assumed to be in steady state. Furthermore,
we do not look for a regressor vector that is de-
pendent on the choice of the identification model.
Rather, we need to find the set of inputs of an
unknown function independent of the choice of
the approximator structure. Moreover, methods
found in the system identification literature of-
ten deal with “input dimension reduction” (see,
for example, [6] for a description of OLS, and [7]
for a description of PLS, which can be used in a
similar fashion), which is achieved by applying a
transformation on the inputs in a suitable way,
so that unnecessary variables in the transformed
space can be easily discarded. These methods,
therefore, by performing input selection in the
transformed space, do not eliminate the need of
all the original input variables, and hence cannot
be applied to the solution of our problem.

Why is it important to study estimation feasi-
bility before designing an estimator? First, it is
important to know if, for a given set of estimator
inputs, a variable can be estimated, or if addi-
tional inputs are needed. Especially important is
the case where an estimation feasibility analysis
indicates that for the given sensor set it is not
feasible to estimate some engine parameter, since
in this case there may be the need to invest in an
additional sensor (here, of course, input selection
would indicate that an unmeasurable variable is
essential to the estimation of the engine param-
eter, confirming the need of an additional sensor
to measure it). In addition, estimator feasibility
analysis may show regions of the engine operat-
ing space where a variable is particularly easy (or
difficult) to estimate. If the analysis shows a re-
gion where a parameter is easy to estimate then
it may be possible to use a local linear estima-
tion scheme there. On the other hand, if in a
certain region the estimation feasibility analysis
indicates that estimation will be difficult, then

nonlinear estimators may be needed in that re-
gion to get adequate estimation performance. In
this paper we study two estimation feasibility ap-
proaches and give an example to show how es-
timation feasibility analysis can identify a region
where a parameter is difficult to estimate by a lin-
ear estimator but its estimation feasibility turns
out to be high, and, indeed, a nonlinear estima-
tor can significantly improve performance. From
this discussion, it should be clear that input selec-
tion and estimation feasibility analysis are closely
related, even though we split them into two prob-
lems.

Furthermore, it should be clear that estimation
feasibility is related to the standard concept of ob-
servability which is well studied for certain classes
of finite dimensional systems (linear [8], feedback
linearizable [9,10]); unfortunately no existing an-
alytical observability test can be applied to com-
plex dynamical systems like jet engines (unless, of
course, a simplified mathematical model is used
to represent it, introducing the unavoidable risk
of misrepresenting certain dynamics and nonlin-
earities in the real system and hence leading to
erroneous conclusions about observability). For
practical purposes, one needs to have some kind
of “observability index” that can be calculated
directly from the engine data or a very accurate
simulation model such as the one we use for the
XTE46.

The paper is organized as follows: Section
2 briefly discusses our estimator construction
method and its application to the XTE46 estima-
tion problems when only intuitive ideas are used
for estimator input selection. A correlation anal-
ysis approach to input selection is introduced in
Section 3, applied to estimator design, and com-
pared to the results of Section 2. In Section 4 two
procedures to perform estimation feasibility anal-
ysis are introduced, together with a global linear
estimator which is used as a base-line compari-
son to show the effectiveness of these techniques
in nonlinear estimator design. Finally, some con-
clusions are drawn in Section 5.
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2. Engine Parameter Estimation

2.1. Estimator Construction Methods
As it was pointed out in the introduction, gen-

erally the mathematical model of a jet engine is
either unavailable or too complex to be exploited
by standard estimation methods. Rather, a more
likely situation is that a numerical simulator that
approximates the physical engine with high accu-
racy is available. In this case, the designer faces
two options:

(i) Develop, using the simulator, a simplified
linear or nonlinear dynamical model that
could be used in conjunction with available
estimation techniques in order to recover
the unknown parameters.

(ii) From a finite number of simulator data,
directly extrapolate an approximation of
the static relationship2 between measurable
variables and unknown parameters.

Both these options have some drawbacks: a linear
or nonlinear model may be suitable for applica-
tion of a standard estimator design approach, but
not accurate enough to express the physical prop-
erties of the engine over its operating space, ren-
dering the estimate inherently unreliable. On the
other hand, method (ii) may fail in extrapolat-
ing the relationship between sensor measures and
unknown parameters, providing unreliable results
as well. Notice that case (i) exploits dynamical
estimation, whereas (ii) performs a steady-state
static estimation.

Here, we investigate case (ii) deriving the re-
lationship described above by means of nonlin-
ear approximators. Among various approximator
structures that can be employed, we choose mul-
tilayer feedforward neural networks [11], which
will be described in detail in Section 2.1.2. We
recognize that other approximators may be more
suitable for this application (e.g., fuzzy systems,

2We use the word relationship intentionally, to keep the
idea as general as possible. Such a relationship might be
represented, among others, by a continuous function, a
logic function, or a probabilistic distribution, and it can
be approximated by a tunable function (approximator), a
lookup table, and a Bayesian belief network, respectively.

polynomials, or wavelets), providing same or bet-
ter estimation results with less computational
complexity. Nevertheless, since our goal is to il-
lustrate the estimation technique and the need
of input selection methods and estimation feasi-
bility analysis, we intentionally do not focus on
this issue; the arguments and the ideas that we
introduce in this paper do not depend on such a
choice.

2.1.1. Assumptions
For the problem to be well-posed, the following

assumptions are needed:

(i) In steady state, there exists a diffeomor-
phism (i.e., a continuously differentiable,
invertible map) between the set of sensor
measurements and the unknown parameter
we wish to estimate. In particular,

y = F(S), S ∈ US ⊂ <n (1)

where S is a vector of n sensor measure-
ments, y is the unknown parameter to be
estimated, and US is a compact set of <n.

(ii) S is known or, in other words, we know the
set of sensor measurements which is needed
to estimate y.

(iii) F is not known analytically but, using an
accurate simulator, it is possible to calcu-
late the value of F at a finite number of
points,

yi = F(Si), i = 1, . . . , M. (2)

If assumptions (i)-(iii) are satisfied, F can be ap-
proximated by a tunable function (or approxima-
tor) F̂(S, θ), were θ ∈ <p is a vector of parameters
to be optimized, provided that the candidate ap-
proximator possesses the universal approximation
property or, in other words, F̂ can approximate
any continuous function F with arbitrary accu-
racy over a compact set. It has been proven [12]
that feedforward neural networks enjoy this prop-
erty and, since US is assumed to be a compact
set, we conclude that there exists θ∗ such that
ŷ = F̂(S, θ∗) can be used to estimate y, and can
be made arbitrarily close to y by increasing the
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number of parameters p. Finding θ∗ is, in gen-
eral, a difficult task, particularly when the para-
metric dependence of the approximator is nonlin-
ear. Next, we will describe a training technique
to tune this vector of parameters in feedforward
neural networks.

2.1.2. Multilayer Feedforward Neural Net-
works

The basic structure of a neural network, in the
case of one hidden layer, is showed in Figure 2,
and the input to the jth node in the ith layer is
the weighted sum

si,j = w
i,j
0

+
∑

k,l

w
i,j
k,lok,l

where w
i,j
0

is the “bias” for node i, j, and ok,l

is the output of the lth node in the kth layer
(ok,l = g(sk,l) where g(·) is a sigmoid activation

function, e.g., g(x) = (1 + exp(−x))
−1

). There-
fore, given a neural network with n inputs, one
hidden layer with h neurons, and one output, the
total number of parameters to tune is (n+2)h+1.
Now, assume we stack these in a parameter vector
that we denote with θ.

y1

x1

x2

x3

xn

Input layer Hidden layer Ouput layer

Figure 2. Diagram of a multilayer neural network.

Given a finite set of data pairs (also called a
training set) (Si, yi), i = 1, . . . , M , training an

approximator involves tuning the parameters vec-
tor θ in order to achieve a desired approxima-
tion error over this set. The problem of the re-
liability of this estimate outside of the set will
be discussed in Section 2.1.3. The standard
training method for neural networks is “back-
propagation” [11] and its various modifications.
Basically, back-propagation is a gradient method
applied to the minimization of a nonlinear least
squares problem. While back-propagation has the
advantage of being a robust, parallel, and dis-
tributed algorithm, it suffers from several draw-
backs, which include the slowness of convergence
in high-dimensional problems and the sensitivity
to local minima. Many methods have been de-
veloped to overcome the slowness of backpropa-
gation. Among them, the Levenberg-Marquardt
optimization technique (which is a modification
of the Gauss-Newton method providing, in many
cases, better convergence properties) has gained
increasing popularity as a neural networks train-
ing algorithm, and will be used to train our ap-
proximators by employing the Matlab neural net-
works toolbox.

2.1.3. Relationship Between Approxima-
tion and Estimation

In this section, we provide a brief explanation
of the role of approximation in the estimation
of engine parameters. As mentioned before, the
training set used to train our approximators is
generated using M values of the engine variables
in steady state. By assumption (i), there exists a
static continuous mapping F which maps S to y,
where y can be thrust, stall margin, an unmeasur-
able state, or an actuator. For example, it is as-
sumed that in steady state, thrust is a static func-
tion of pressures, temperatures, actuators values,
and other variables, measured at different loca-
tions of the engine. In general, each variable is a
function of a subset of the variables that charac-
terize the behavior of the engine. If assumption
(ii) is satisfied, the variables needed for the es-
timation of y are known. In general, however,
assumption (ii) is not satisfied, and the subset S
is largely unknown. Physical intuition might sug-
gest a reasonable set of variables, leading to the
choice of a set Ŝ, but a discrepancy between S and
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Ŝ is likely, leading to a functional error, which is
due to the approximation of a function of a set S
of variables by a function of a different set of vari-
ables Ŝ. Input selection is a procedure aimed at
eliminating (or minimizing) the functional error,
by choosing as inputs to the estimator the set of
variables which is most correlated to y.

When using approximators to recover the un-
known variables, we try to approximate the un-
known static function which maps the subset of
variables into the unknown parameter by another
function, our approximator, which is tuned in
order to approximate the input-output mapping
represented in the training set. As we already
pointed out in Section 2.1.2, this raises the is-
sue of reliability of the estimate for points not
in the training set, introducing the generalization
error, the approximation error outside the train-
ing set. Generally, to reduce the generalization
error the designer has to make a careful choice of
the number of parameters of the approximator,
which must be small compared to the number M

of data points since, when there are too many de-
grees of freedom as compared to the number of
constraints, the problem becomes ill-posed.

Finally, even when using the ideal set of inputs
and training our approximator on an infinite size
training set, there exists an approximation error,
which is due to the finite number of parameters
of the approximator used to approximate the un-
known function F . Approximation error might
be reduced by increasing the number of parame-
ters of the approximator with the risk, however,
of increasing the generalization error (this will be
illustrated with an example below).

We can summarize the previous considerations
with the expression for the total estimation error

e(S) = efunctional(S)+egeneral(S)+eapprox(S)

This formalization explains two phenomena en-
countered during our simulations:

• An increase of the number of parameters
above a certain threshold does not improve
the estimation performance. This behav-
ior has to do with efunctional which is inde-
pendent of the number of parameters and
of the approximator structure itself. There-

fore, when the number of parameters is high
enough, eapprox is generally negligible (if the
network is trained properly) with respect to
efunctional, and an increase of the number of
parameters does not normally significantly
affect the performance. Moreover, when us-
ing too many parameters, the estimation
performance may be even degraded, since
egeneral may increase giving rise to overfit-
ting, as shown in Figure 3, where 20 sam-
ples of the function y = sin(x) are approx-
imated by means of a neural network with
40 or 25 neurons in the hidden layer. The
approximator with 25 neurons (76 tunable
parameters) performs, outside of the train-
ing points, significantly better than the one
with 40 neurons (121 tunable parameters).

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

1.5

x

si
n(

x)

40 hidden neurons
25 hidden neurons
y=sin(x)         
training set     

Figure 3. An example of overfitting when too
many parameters are used in the approximator.

• Inclusion of any measurable variables in the
set of estimator inputs does not necessar-
ily improve the estimation performance. If
the included variable does not belong to
the ideal set of inputs, it may be the case
that eapprox(S) increases, as observed in the
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course of our simulations. Therefore, it is
not necessarily true that the use of every
possible measurable variable improves esti-
mation performance.

These considerations lead to the conclusion that
there exists a trade-off between estimation accu-
racy and computational complexity, since increas-
ing the number of parameters of the approxima-
tors or the number of inputs to them does not
necessarily lead to an improvement of the esti-
mation accuracy. Rather, as observed during our
simulations, better results may be obtained with
less parameters and a smaller set of inputs.

2.2. Application to XTE46 Engine
In this section neural networks are applied to

the estimation of thrust, compressor stall mar-
gin, and an unmeasurable state for the XTE46
engine. We stress that, at this point, assumption
(ii) is not satisfied, in that we do not know which
variables are needed to estimate the unknown pa-
rameters, therefore S will be chosen according to
intuition. In Section 3 we will introduce a method
for choosing S, showing its effectiveness as com-
pared to the results presented here.

In order to build estimators, it is first necessary
to generate a training set. We define the engine
operating condition at fixed environmental tem-
perature as the triple (altitude, mach number,

power code)3. This triple, together with the set
of unmeasurable states4, specifies exhaustively
the simulation parameters of the engine when the
environmental temperature is constant.

Figure 4 shows a block diagram of our simula-
tor setup: the inputs to thrust and stall margin
estimators come from sensed parameters of the
engine in steady state and actuators values; for

3Altitude is in the interval [0, 50000] feet, mach number
is in [0, 1.7], and power code denotes the throttle angle
which ranges between 20 and 50 degrees. Variations in
day temperature are not taken in account in this study,
but the techniques introduced here can as well be applied
to the case when the environmental temperature is allowed
to vary.
4We generically refer to “unmeasurable states” of XTE46
without describing them in detail, since the real scope of
this paper is introducing input selection and estimation
feasibility analysis for jet engines, without restricting our-
selves to XTE46. Rather, this engine is used as a testbed
for our techniques.

Sensed

values
actuator

Stall Margin
Eng. Stateerror

Estimator

Estimator
Thrust

Stall Marg.
Estimator

Thrust

Parameters

Engine
op.

condition

Embedded model
outputs

Figure 4. Block diagram of the simula-
tor/estimator setup.

the engine state, we use the error between the
engine sensed parameters and the equivalent out-
puts of an embedded model representing a nom-
inal engine. The embedded model is currently
used by GEAE for control purposes; refer to [13]
for a more detailed description.

We perform “regional” estimation, i.e., the va-
lidity of our estimator will be confined to a spe-
cific region of the operating space, which we
choose to be “takeoff” (i.e., altitude in [0, 5000],
mach number in [0.2, 0.4], power code in [45,
50]). This choice allows for a good estimation
performance, which can be difficult to obtain on
the whole operating space. On the other hand,
this restriction is not conservative, since the ma-
jority of the real flight conditions can be covered
by three or more regions of the same size, e.g.,
“takeoff,” “climb,” and “cruise.”

We choose the training set size M to be big
enough to capture the characteristics of the en-
gine in the region of the operating space we
are considering, and to minimize the effects of
egeneral(S) and eapprox(S), described in Section
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2.1.3. These effects can be evaluated by testing
the approximator on test data, which is differ-
ent from that used for training. Following these
guidelines, we chose M = 1000, and Mtest = 2000
as the testing set size.

The inputs for the three estimators, shown in
Table 1, were chosen according to physical consid-
erations and the intuition derived by experience.
Generally, this is the approach that a designer
would first follow when dealing with a complex
dynamical system.

The estimation results are shown in Table 2,
where the neural networks used to estimate stall
margin and engine state have 5 neurons, while
the one used to estimate thrust has 13 neu-
rons. The indices shown in the table refer to
the estimation error on 2000 points of the test-
ing set, with the exception of thrust, for which
the indices refer to the percentage estimation er-
ror: 100·(thrust - estimated thrust)/ thrust. The
symbol σ denotes the error standard deviation,
and the weighted mean error W (e), not used for
the engine state, is defined as

W (e) =
1

M

M
∑

i=1

∣

∣

∣

∣

ei

(

PCi

50

)∣

∣

∣

∣

where ei and PCi denote the estimation error
and power code values for the i-th data point.
These results are adequate for practical applica-
tions, with the drawback that too many sensor
measurements are needed for the estimation. An
input selection technique is needed in order to
pick the minimal set of inputs for our estimators,
and is explained in next section.

3. Estimator Input Selection

3.1. Correlation Analysis Approach
In a correlation analysis approach, we view the

engine as a stochastic system that generates some
output variables as statistical functions of other
variables. These variables may or may not be
measurable, and the goal of the estimator design
is to characterize the measurable variables that
are most highly correlated to the parameters that
we would like to estimate. The correlation can be
viewed as an indicator of the quantity of informa-

tion that two random variables carry on together,
and is defined as follows:

ρxy =
E[(X − X̄)(Y − Ȳ )]

σXσY

(3)

where X̄, Ȳ denote the expected values of X, Y ,
respectively; E(·) denotes is expectation opera-
tor, and σX , σY are the standard deviations of X ,
Y , respectively. Note that 0 ≤ |ρxy| ≤ 1. Given
M points, we will approximate ρXY by means of
the following unbiased estimator [14]

ρ̂xy =
1

M

∑M

i=1
(Xi − X̄)(Yi − Ȳ )

√

1

M

∑M

i=1
(Xi − X̄)2 1

M

∑M

i=1
(Yi − Ȳ )2

(4)

Below, we outline a method for the selection of
reasonable sets of inputs to be used in the esti-
mation of an engine parameter.
Data Set Generation: Generate a large num-
ber of data points (generally, a large data set will
provide more information) in a way analogous to
what has been done in Section 2.2: for each data
point, engine states and operating conditions are
chosen randomly within their range of validity
(this implies that for each data point a random
engine is specified), and all the engine variables
are stored. The resulting data will be stored in
an n×M matrix, where n is the total number of
engine variables. The i-th row of this matrix will
contain M steady state values of the i-th vari-
able of the engine, each of them corresponding to
a random choice of engine states and operating
conditions.
Form Correlation Coefficient Matrix: Gen-
erate, by using (4), an n × n correlation coeffi-
cient matrix and take its element-wise absolute
value and call it C. The correlation matrix will
be symmetric, therefore row i is equal to column
i for all i = 1, . . . , n. The (i, j)-th element of C

will be the correlation coefficient between the i-
th and j-th variables of the engine. The k-th row
of C will contain the correlation coefficients be-
tween variable k and all the other variables of the
engine. Some entries of this matrix correspond-
ing to actuator values will be undefined because
of the on-off nature of these variables.
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Table 1
Variables selected as inputs to the estimators.

Thrust and Stall Margin Engine State

bypass duct static pressure bypass duct static pressure error

compressor inlet total pressure combustor inlet total pressure error

combustor fuel flow combustor fuel flow

exhaust nozzle area exhaust nozzle area

rear variable area bypass injector rear variable area bypass injector

fan inlet guide vanes fan inlet guide vanes

compressor inlet hub temperature combustor inlet total temperature error

compressor inlet tip temperature core engine pressure ratio error

core engine pressure ratio fan rotor speed error

fan rotor speed 3 operating conditions

core rotor speed engine pressure ratio error

3 operating conditions HP turbine inlet temperature error

- specific fuel consumption estimated error

- thrust estimated error

- temperature at combustor inlet error

- combustor inlet static pressure

- LP turbine blade temperature

Table 2
Estimation results.
Error Index % Thrust Stall margin Flow eff. scalar

MAX(e) 0.103 0.95 4.64·10−3

MEAN(e) 0.020 0.27 6.43·10−4

MEDIAN(e) 0.016 0.24 5.08·10−4

2σ(e) 0.032 0.39 1.09·10−3

W (e) 0.019 0.26 -

Eliminate Input Variables with Low Cor-
relation: Take the row of C corresponding to
the variable to be estimated, say the l-th one.
Fix a threshold δ between 0 and 1 and eliminate
all the variables that have correlation coefficient
less than δ and the ones that are not measurable5

(in particular, use the sensed outputs of the mea-
surable variables). The choice of δ can be made
in many ways; a very simple one is to plot the
l-th row of C and decide heuristically a reason-
able value for δ that keeps a sufficiently large set
of variables, while discarding the ones with very
low correlation coefficients.
Study Cross-Correlation: For every element
of this subset with correlation coefficient greater

5One could decide to exclude unmeasurable variables from
the data set. As pointed out in the introduction, though, it
could be interesting to perform input selection including
some unmeasurable variables which could be sensed by
additional sensors. Hence, in general, we assume that the
data set contains some unmeasurable variables.

than δ, look at its correlation coefficient with all
the other elements of the subset, form a matrix
(which is a sub-matrix of C) containing all these
cross-dependencies, and call it C′. A direct exam-
ination of this matrix will show the variables that
are highly cross-correlated, and therefore carry
redundant information. For example, if it is found
that thrust is highly correlated to combustor in-
let static pressure and compressor inlet total pres-
sure, and the analysis above shows that these two
pressures are correlated with correlation coeffi-
cient 0.96, then they carry nearly the same sta-
tistical information. This observation leads to the
following step.
Eliminate Redundant Input Variables:
Looking at C′, discard the variables with cross-
correlation greater than δ̄, (a typical value for δ̄

is 0.95) keeping the one with highest correlation
with the l-th variable of the engine. For example,
in the case above, if the correlation coefficient be-
tween combustor inlet static pressure and thrust
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is higher than the one between compressor inlet
total pressure and thrust, discard the latter mea-
surement.
Construct Estimator: Train the estimator
with the set of inputs given by the above cor-
relation analysis procedure, using the procedure
outlined in Sections 2.1.2 and 2.2, and testing it
on the test set. Store the error vector. Find
Correlation Between Inputs and Estima-
tion Errors: Calculate and plot the correlation
coefficients of this error vector with respect to the
engine variables.
Add Input Variables that Affect Estima-
tion Error: If some measurable variable is sig-
nificantly correlated to the estimation error, this
means which we are not exploiting the statistical
information contained in this variable. The ideal
situation is when the error is uncorrelated to all
the variables of the engine, meaning that all the
possible information has been used. Form a sub-
set made up of those variables which are measur-
able, significantly correlated with the estimation
error, and that are not already included in our
set of inputs.
Eliminate Redundant Variables: Discard
from this subset all the variables that are redun-
dant, similarly to how this is done above, and in-
clude the remaining variables in the set of inputs
S.

In our experience with the XTE46 engine, the
resulting set of variables tends to be a good candi-
date for being inputs to the estimator for the l-th
variable. The procedure above can be iterated un-
til the error is uncorrelated to all the measurable
variables. The choice of the two thresholds δ and
δ̄ determines the size of the final set of inputs. In
our experience, however, it has always been very
easy to come up with a good choice, as will be
evident in the examples that follow which we use
to show the effectiveness of the above procedures
for estimator input selection.

3.2. Case Study: Estimation of Thrust and
Stall Margin

Let us now apply the correlation analysis to
input selection for thrust and stall margin es-
timators. The estimation is performed during
“takeoff” using multilayer feedforward neural net-

works, and the results will be compared to the
ones obtained in Section 2.2. Our data set is
formed of 4000 data points generated in the man-
ner explained before; this is enough points to ren-
der the samples statistically representative. The
total number of variables contained in this data
set is 73, therefore n = 73, M = 4000. We num-
ber the variables from 1 to 73. Thrust is variable
number 2, therefore l = 2. A plot of the correla-
tion coefficients versus the variable index number
is found in Figure 5. Clearly the variable thrust
(l = 2) has correlation coefficient one with itself.
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Figure 5. Correlation coefficients of all the vari-
ables with respect to thrust.

Looking at this graph, a good choice of the first
threshold δ appears to be δ = 0.7, which, after the
exclusion of the non-measurable variables, gives
the following subset of variables:
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bypass duct stat.press

compressor inlet tot.press.

compressor inlet tot.temp.

compressor inlet tip temp.

combustor inlet stat.press.

LP turbine blade temp.

LP turbine frame stat.press.

LP turbine exit temp.

temperature at combustor inlet

fan rotor speed

core rotor speed

combustor fuel flow

altitude

power code

The next step involves studying the cross-
correlation among the variables of this subset. We
choose a threshold δ̄ = 0.95, and we group to-
gether the variables with high cross-correlation.
Proceeding in this way we obtain the 2 groups

1.

2

6

6

6

6

6

6

6

4

bypass duct stat.press.

compressor inlet tot.press.

compressor inlet tot.temp.

compressor inlet tip temp.

combustor inlet stat.press.

LP turbine frame stat.press.

combustor fuel flow

2.

2

6

6

4

LP turbine blade temp.

LP turbine exit temp.

temp. at combustor inlet

fan rotor speed

and three isolated variables which are not highly
correlated with any other variable: core rotor

speed, altitude, power code. Next, we
choose the variables within each group that
are most highly correlated to thrust, and we
get the following set of inputs for the es-
timator: combustor fuel flow, fan rotor

speed, core rotor speed, altitude, power

code.

Using our set of inputs6 to train a neural net-
work with five neurons on a training set of 1000
data, and testing it on a test set of 2000 points,
we get the results in Table 3 when testing the
estimation performance.

Comparing these results to the ones shown in
Table 2, it appears quite evident that in order to
have a significant computational reduction (only
5 inputs and 36 parameters in the approximator,

6Notice that this is a subset of the variables chosen via
intuition in Table 1.

versus 14 inputs and 209 parameters used pre-
viously), we apparently pay the price of a less
accurate estimation.

Following the correlation analysis procedure,
however, we easily overcome this problem: cal-
culating the testing error after training the neu-
ral network, and estimating the correlation coef-
ficient between this error and all the other vari-
ables, we get the results of Figure 6, which shows
the correlation coefficient between the estimation
error and the engine variables.
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Figure 6. Correlation coefficients of all the vari-
ables with respect to the estimation error for
thrust.

Here, it is observed that the error is signifi-
cantly correlated with the measurable variables
(we do not consider variables that we cannot mea-
sure) with indexes 39, 56, 727, corresponding to

exhaust nozzle area

fan inlet tot.temp.

mach number

7From Figure 6, it is noticed that the variables to take into
consideration are the ones with indices 8, 31, 36, 54, 56,
72, but variable 8 is non measurable (therefore we cannot
include it in our set of estimator inputs), and variables
39 and 56 are the measured values of variables 31 and
54, respectively. We then pick the sensed values of these
two variables which, since our system is assumed to be
noiseless, are identical to their nominal values.
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Table 3
Estimation results for thrust: 5 variables chosen as inputs.

% MAX % MEAN % MEDIAN % 2σ % W (e)
0.063 0.087 0.056 0.181 0.082

Noticing that there is no redundant variable in
this subset, and therefore including these vari-
ables in our set of inputs, we get the following set
S

combustor fuel flow fan rotor speed

core rotor speed altitude

power code mach number

exhaust nozzle area fan inlet tot.temp.

and the estimation performance results in Table
4, which are better than the ones shown in Table
2, with a significant reduction in the number of
inputs (8 versus 14) and of the parameters (51
versus 209).

Now let us apply correlation analysis to the es-
timation of compressor stall margin, which is the
variable with index l = 4. A plot of the correla-
tion coefficients versus the variable index number
is found in Figure 7.
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Figure 7. Correlation coefficients of all the vari-
ables with respect to stall margin.

Repeating the correlation analysis as before, we
get S to be the following set of seven inputs:

compressor inlet tot.temp.

fan inlet tot.press.

combustor inlet stat.press.

combustor fuel flow

exhaust nozzle area

rear VABI

power code

with estimation results shown in Table 5. The re-
sults are almost indistinguishable from the ones
of Table 2, but the computational complexity has
been reduced significantly (7 inputs and 46 pa-
rameters versus 14 inputs and 81 parameters).

The two cases illustrated above are quite rep-
resentative, and they illustrate the principles of
the correlation analysis approach. The applica-
tion of this technique to engine state estimator
design would provide similar results that, due to
space constraints, we do not include.

3.3. Results: Discussion
The proposed procedure relies on the calcula-

tion of the correlation coefficient, defined in (4).
Intuitively, the reason why the correlation anal-
ysis approach is successful in solving the estima-
tor input selection problem is that the correlation
coefficient provides an indication of the quantity
of information shared by two random variables.
This statement is rigorously true for random vari-
ables that are related to each other by means of
a linear function. In the nonlinear case, however,
conditions may be found for which this statement
is false8. Thus, if the system is nonlinear, two
variables with a low correlation coefficient are not
necessarily unrelated, leading to the possible er-
roneous elimination of input variables in the first
few steps of correlation analysis. The last three

8Let X be a Gaussian random variable with zero mean
and unit variance, and Y = X2. Then ρxy = 0, but X

and Y are clearly strongly related to each other.
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Table 4
Estimation results for thrust: 8 variables chosen as inputs using correlation analysis.

% MAX % MEAN % MEDIAN % 2σ % W (e)
0.088 0.017 0.014 0.027 0.016

Table 5
Estimation results for stall margin: 7 variables chosen as inputs after correlation analysis.

MAX MEAN MEDIAN 2σ W (e)
1.05 0.29 0.25 0.41 0.27

steps, however, are designed to avoid this prob-
lem, since input variables that have not been in-
cluded in the first instance because of the wrong
indication provided by a low correlation coeffi-
cient, should have a higher correlation coefficient
with the estimation error. Of course, the analysis
for the input-to-error correlation may suffer from
the same nonlinearity problem, but the chances
to include all the significant variables are signif-
icantly higher; in fact, the effectiveness of this
technique has been confirmed by its successful ap-
plication to other engines, providing a tool for the
solution of the input selection problem.

4. Estimation Feasibility Analysis (EFA)

In EFA we include a set of techniques aimed
at providing some measure of “observability” of
the unknown engine parameters with respect to
a given sensor set. Our final objective is to de-
velop a method to predict the estimation perfor-
mance for a specific parameter and a particular
sensor set, as a function of the operating con-
dition, i.e., the triple (altitude, mach number,

power code). If we were able to predict the esti-
mation performance accurately enough, we could
explore the advantages and disadvantages of a
given sensor set without needing to build estima-
tors. Note the difference between EFA and input
selection: given an unknown variable and a set
of inputs, input selection discards the unneces-
sary inputs for the estimation, whereas EFA in-
dicates the feasibility of estimating the variable
using that set of inputs, as is.

In the next section we introduce two different
approaches for estimation feasibility analysis; in
our description, without loss of generality, we will

refer to the “operating space” as the 3 dimen-
sional space for altitude, mach number, and
power code defined for the XTE46 engine de-
scribed earlier.

4.1. Data Based Approach
Inspired by the correlation analysis introduced

in Section 3, we introduce here a method that
does not use any direct information about the
nominal model, relying totally on the available
input-output engine data9.
Operating Space Partitioning: Partition the
operating space into local regions. The size of
these regions should be small enough so that cor-
relation analysis would capture the “observabil-
ity” properties of the engine in a neighborhood
of the operating point located at the center of a
specific region. In practice, one can choose to par-
tition the operating space into cubes whose size
is chosen according to physical intuition. We will
denote each of the cubes by Calt,mach,pc, where
alt, mach, pc are integers determining the posi-
tion of the cube in the operating space.
Data Matrix Generation: In a way completely
analogous to the standard correlation analysis,
given a local cube Calt,mach,pc and a sensor
set S, form a data matrix Dalt,mach,pc of size
Nalt,mach,pc×n, where n is the number of measur-
able outputs associated with the sensor set, and
Nalt,mach,pc is the number of data points available
for a specific region Calt,mach,pc. Next, create the
matrix Ealt,mach,pc =

[

Dalt,mach,pc, Y alt,mach,pc
]

,
where each row of the Nalt,mach,pc × ny matrix
Y alt,mach,pc contains ny unmeasurable parame-
ters associated with one data point. The i-th

9The input-output engine data, however, are generated by
a simulator, as pointed out by assumption (iii).
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row of Ealt,mach,pc contains the i-th data point
consisting of n measurable outputs, and ny un-
measurable parameters.
Correlation Vectors Generation: Using (4)
generate a (n + ny) × (n + ny) correlation coeffi-
cient matrix. Each row (or column) of this matrix
contains the correlation coefficients between the
corresponding variable and the remaining ones.
Define calt,mach,pc as the sub-matrix formed by
the first n rows and the last ny columns of such
matrix. This guarantees that each column of
calt,mach,pc is a vector representing the correla-
tion between the corresponding unknown param-
eter and the measurable outputs of the engine
associated to sensor set S. Therefore, calt,mach,pc

contains ny correlation vectors, each of size n.
Correlation Measure: Choose a function µ :
<n → < to map each of the columns of calt,mach,pc

into a number ρalt,mach,pc representative of the
total correlation between the specific unmeasur-
able parameter and the measurable outputs. Let
v be a generic column of calt,mach,pc, then good
candidates for µ are mean(v), ‖v‖, and max (v).
The procedure described above, given a region
Calt,mach,pc and a sensor set S, will generate
ρalt,mach,pc for all the non-measurable parame-
ters.

4.2. Simulation Model Based Approach
As opposed to the data based approach, which

assumes the availability of a sufficient amount of
engine data, this technique exploits the availabil-
ity of a simulation model of the engine, and pro-
vides an “observability” measure without using
any measurements from the engine. The sim-
ulation model can be used to approximate the
partial derivative of each element of S with re-
spect to each non-measurable parameter. The re-
sulting Jacobian matrix is manipulated to gen-
erate the “observability index.” The partial
derivative, however, can be calculated only if the
non-measurable variable parameterizes the engine
model, i.e., if a variation of this variable generates
a variation in the engine outputs. Thrust and
stall margins, being unmeasurable outputs of the
engine, do not parameterize it and, therefore, the
model based approach cannot be used to perform
estimation feasibility analysis on these parame-

ters. On the other hand the technique is par-
ticularly suitable for variables such as the engine
states or unreliable actuators.

4.2.1. Proposed Method
Operating Space Partitioning: same as for
the data based approach above.
Partials Generation: Given a sensor set S, for
each cube Calt,mach,pc calculate N Jacobians of
the non-measurable variables with respect to S
corresponding to N different engines each in a
different operating condition within Calt,mach,pc.
Each Jacobian will be a matrix J i, i = 1, . . . , N

of dimension n × n̄y, where n̄y is the number of
non-measurable variables for which the partials
can be generated. Set J̄alt,mach,pc = 1

N

∑N

i=1
(J i),

to be the averaged Jacobian corresponding to re-
gion Calt,mach,pc.
Observability Index Calculation: Given the
matrix J̄alt,mach,pc calculate the following observ-
ability index, associated with the sensor set S and
the k-th non-measurable variable:

ok
alt,mach,pc =

∥

∥J̄ k
∥

∥

1

n̄y
∑

l=1

∥

∥J̄ l
∥

∥

1

cond
(

J̄alt,mach,pc

)−1

k = 1, . . . , n̄y (5)

∥

∥J̄ k
∥

∥

1
,

n
∑

i=1

∣

∣J̄ k
∣

∣

i
(6)

cond(J̄alt,mach,pc) =

√

λmax(J̄T J̄)

λmin(J̄T J̄)

where J k, k = 1, . . . , n̄y, is the k-th column of
J̄alt,mach,pc and

∣

∣J k
∣

∣

i
, i = 1, . . . , n, is the abso-

lute value of the i-th element in the above column.
Notice that cond(J̄alt,mach,pc), as defined here, is
the condition number of the matrix J̄alt,mach,pc.

The procedure described above, given a re-
gion Calt,mach,pc and a sensor set S, will gen-
erate ok

alt,mach,pc, k = 1, . . . , n̄y for each non-
measurable parameter.

4.2.2. Motivations for the Choice of the
“Observability” Index

The choice of the observability index ok de-
fined above is motivated by the following mathe-
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matical considerations. Without loss of general-
ity, let us drop the indices and consider a matrix

J =
∂S

∂Y
, where Y and S are vectors containing

non-measurable variables and measures belonging
to the sensor set, respectively; J can be estimated
by means of finite differences from the simulation
model. For small enough increments dS, the fol-
lowing identity holds:

dS =
∂S

∂Y

∣

∣

∣

∣

Y=Y0

· dY = J · dY (7)

in particular, this identity holds in a neighbor-
hood of Y0. If J (n × n̄y) had full column rank,
and n ≥ n̄y, then J would be an “immersion” and
the map J : Y → span(Y) would be injective10.
Injectivity of this map would imply that dY can
be recovered from dS, i.e., from a variation in
the output measurements one would be able to
estimate the correspondent variation in Y. Since
our objective is to study the “observability”11 of
each element of the vector Y, we need to find a
measure of the degree of invertibility of the linear
map represented by J . Such a measure is nat-
urally provided by the inverse of the condition
number of the matrix J , i.e., the ratio between
its minimum and maximum singular values. Tak-
ing the inverse guarantees that the smaller the
measure is, the less the map is invertible. In the
worst case, when cond(J)−1 is zero, J is not full
rank, and the map is not invertible. In this situ-
ation, we say that Y is not “observable.” On the
other hand, if cond(J)−1 is high, then the ma-
trix is well conditioned, which implies that it is
far away from loosing rank and the inverse of the
map can be calculated without numerical prob-
lems. In this situation, we say that Y is quite
“observable.” So far we showed that cond(J)−1

is a good candidate for the “observability” of Y
as a whole, now we have to provide an estima-
tion feasibility index for each component of this
vector, independently.

10
Y denotes the space of the non-measurable variables, a

subspace of <n̄y

11In this analysis, we cannot refer to observability in the
classical way since we are working with an engine in steady
state. Therefore, by using “observability” of an engine
variable, we refer to the possibility of estimating that vari-
able using the available measurements from the sensors.

Let us express J in terms of its columns: J =
[J 1 , J 2 , . . . , J n̄y ]; then, (7) can be written as

dS = J 1(dY)1 + . . . + J n̄y(dY)n̄y
(8)

where (dY)i indicates the i-th component of the
increment dY. From (8) we see that any varia-
tion of the sensor measurements is the sum of the
columns of J , each weighted by the variation of
the corresponding component of Y. Thus, if the
absolute values of the elements of the column J k

are bigger than that of other columns, a variation
of the scalar (Y)k will be more “observable” from
the output. Following this idea, an indication of
the relative importance of the i-th component of
Y is given by

∥

∥J i
∥

∥

1

n̄y
∑

k=1

∥

∥J k
∥

∥

1

In conclusion, we have that the “observability”
index of (Y)i is given by the overall observability
index weighted by the relative importance frac-
tion described above, which gives the index in
(5).

Remark 1: All the above discussion holds in
an open neighborhood of the vector Y0, around
which the linearization is performed. To take into
account the fact that Y0 varies in Y, the observ-
ability index is applied to a matrix J̄ which is the
result of averaging over N linearizations around
N different points. This, together with the fact
that each region Calt,mach,pc has been chosen
small enough to try to get “uniform” observabil-
ity properties, should guarantee that ok

alt,mach,pc

captures the inherent nonlinearity of the system.

Remark 2: The uniform rank theorem states
that a necessary condition for the nonlinear map-
ping between Y and S to be invertible on the com-
pact set US , and therefore Y be “observable,” is
that the Jacobians J be full rank for every Y0 in
US . Hence, strictly speaking, the observability in-
dex in (5) does not provide a sufficient condition
to guarantee injectivity of this mapping. Never-
theless, ok

alt,mach,pc should provide a reasonable
indication of the degree of invertibility.
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4.3. Relationship Between Data Based and
Model Based Approaches

Estimation feasibility analysis, by means of the
two proposed techniques, is intended to be easily
applied to any engine. The two approaches, al-
though different in nature, present some similar-
ity. In the data based approach the “observability
index” is calculated by means of the correlation
coefficient between each measurements and un-
known parameters. Given two random variables
X and Y , the correlation coefficient between X

and Y is calculated by means of (3). Further-
more, the optimal linear mean square estimator
(LMSE) of Y is given by Y = RX + B (see [14]
for the proof), where

R = KxyKxx

, E
[

(X − X̄)(Y − Ȳ )]E[(X − X̄)2
]

= ρxy

σY

σX

(9)

and B = Ȳ − RX̄. Therefore, using the corre-
lation coefficient between X and Y as a measure
of the estimation feasibility for Y is somewhat
equivalent to linearizing Y with respect to X and
measuring the slope of the line. If X and Y are
vectors, the idea is generalized straightforwardly:
Kxy = E[(X − X̄)(Y − Ȳ )T ], and the first iden-
tity in equation (9) still holds. Now R represents
a matrix, and looking at variations of X and Y ,
we have

dY = RdX (10)

which is of the same form as (7), where R is sub-
stituted by a partial derivative, which is a lin-
earization of S around Y = Y0. In the data based
approach the “observability” index is, roughly, a
function of the rows of R, whereas in the simula-
tion model based technique the index depends on
the condition number of the matrix. In conclu-
sion, the two approaches, although conceptually
very similar, differ in that the model based tech-
nique is applied after an averaging process carried
on N partials, and the estimation feasibility index
derived in the two cases is different.

4.4. Global Linear Estimation
In order to evaluate the results of estimation

feasibility analysis and show the effectiveness of

the techniques that have been introduced, we de-
velop, for each region Calt,mach,pc, a linear least
squares estimator. The data points employed in
the data based approach (see Section 4.1) can be
used to calculate the linear model Y ≈ RS, where

R = Y alt,mach,pcT
Dalt,mach,pc

(

Dalt,mach,pcT

Dalt,mach,pc
)−1

, for all engines in Calt,mach,pc.
Switching between the linear estimators, we can
build a global linear estimator over the operating
space. It is expected that the resulting estima-
tor performs well in the regions of the operating
space with a high “observability” and low nonlin-
earity. On the other hand, if the “observability”
is low and the nonlinearity significant, the esti-
mation performance should be poor.

The global linear estimator is used to demon-
strate the effectiveness of estimation feasibility
analysis, by showing that in regions with high
estimation feasibility index where the linear es-
timator performs poorly, the nonlinear estimator
introduced in Section 2.1 produces a very accu-
rate estimate, because it takes advantage of the
good “observability” properties of the engine that
otherwise, due to nonlinearity of the mapping F ,
cannot be exploited.

4.5. Case Study: Stall Margin and Engine
State Estimator Redesign

EFA might be useful in identifying operating
space regions in which linear estimation cannot
exploit the available observability. In these re-
gions a nonlinear estimator should improve esti-
mation performance significantly. Here, we val-
idate this idea by applying estimation feasibil-
ity analysis to compressor stall margin (using the
data based approach) and an engine state (using
the simulation model based approach) for the fol-
lowing set of sensors of the XTE46 engine:
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bypass duct stat.press.

compressor inlet tot.press.

compressor inlet tot.temp.

compressor inlet tip temp.

combustor inlet stat.press.

LP turbine blade temp.

LP turbine frame stat.press.

LP turbine frame exit temp.

fan rotor speed

core rotor speed

LP exit tot.press.

compressor discharge temp.

bypass duct tot.press.

core bypass stage inlet stat.press.

CDFS-tip inlet press.

bypass duct pressure

inter-turbine temp.

inter-turbine press.

where CDFS stands for Core-Driven Fan Stage.
This set represents the totality of the speed,

pressure, and temperature sensors that may be
available in a typical engine. Any other set of
sensors would therefore be a subset of this one.

We start by dividing the operating space
altitude, mach number, power code into 12×
12×12 cubes, collecting input-output engine data
(150-300 points for each region) that can be used
to perform data based EFA and to build a global
linear estimator as discussed in Section 4.4. As for
the model based approach, for each cubic region,
we approximate N = 30 Jacobians and we calcu-
late the “observability” index in (5). The results
can be plotted using 3 dimensional “slice plots”
in which each axis represents the corresponding
operating condition, and the plot color represents
the degree of “observability” calculated by means
of EFA. The same representation is used to show
the estimation error of the global linear estimator
as a function of the operating condition. Hence,
estimation error and EFA results can be com-
pared and similarities or discrepancies can be eas-
ily found, as shown in Figures 8 and 9, where es-
timation performance and EFA results are com-
pared for compressor stall margin and an engine
state. Notice that dark gray is assigned to high
estimation error and low “observability,” while
white indicates good estimation performance and
high “observability.”

As for the compressor stall margin, the figure
indicates a sharp difference between EFA and lin-
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Figure 8. Comparison between EFA and estima-
tion performance: stall margin

ear estimator in region C8,10,6, where the corre-
lation measure is high but the estimation perfor-
mance is poor. This discrepancy leads us to be-
lieve that the global linear estimator can be re-
designed by training, in those regions, a nonlinear
estimator that can hopefully exploit the observ-
ability properties shown by estimation feasibility
analysis. Using W (e) as error performance in-
dex in testing (see Section 2.2 for a definition of
W (e)), a neural network trained over this region
achieves W (e) = 5.45 · 10−2, whereas the corre-
sponding performance index for the linear estima-
tor is W (e) = 2.38 · 10−1. Hence, a nonlinear es-
timator improves the estimation performance by
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Figure 9. Comparison between EFA and estima-
tion performance: engine state

a factor of four.
The model based analysis for the engine state

shows a discrepancy in region C2,8,3. Here,
however, the difference between actual estima-
tion error and “observability” index is less re-
markable. Using the mean as an error perfor-
mance index, a neural network trained over C2,8,3

achieves mean(e) = 1.68 · 10−4 which, compared
to mean(e) = 1.27 · 10−3 obtained by the global
linear estimator, shows an improvement in the
estimation by a factor of seven. These two exam-
ples show the advantage of nonlinear over linear
estimation, confirming the information provided
by EFA.

5. Conclusions

This paper highlights the importance of in-
put selection and estimation feasibility analysis as
tools for estimator design in complex dynamical
systems. In these concluding remarks we would
like to highlight some possible drawbacks of the
methods proposed here. A set of techniques has
been proposed to solve this problem; however, the
complexity of the systems we are dealing with, to-
gether with the lack of mathematical models, do
not allow for an analytical study of the properties
of these methods.

Correlation analysis, though easy to implement
and successful in its application, cannot be guar-
anteed to pick the optimal set of inputs to the
estimators. The same holds for data based and
simulation model based approaches to estimation
feasibility analysis, where the available informa-
tion from the engine is used to construct indices
aimed at providing an indication of observability.

Variations and future improvements to these
methods may be developed: the objective of this
paper is to formulate the problem and devise
practical alternatives that a designer could em-
ploy for its solution.

Thrust and stall margin estimation results, to-
gether with the estimator redesign examples pro-
vided in Section 4.5, show the promising features
of these techniques. Whether these results can be
fully generalized to other applications is an open
question.

Finally, these techniques are introduced in
a static framework (i.e., we study the engine
in steady state), and future research directions
might include their extension to the dynamic
case.
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