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Abstract

Jet engines are nonlinear dynamical systems for which
an exact mathematical model cannot be used for esti-
mator design, because it is either not available or so
complex that it does not fit the necessary assumptions.
Thus, classical analytical tools for studying standard
system properties like observability, which is very im-
portant in estimator design, cannot be directly applied.
Generally, for practical jet engine applications, the de-
signer faces two closely related problems: first, given
a non-measurable parameter, find the minimal set of
estimator inputs that facilitates achieving a satisfac-
tory estimation performance (input selection); second,
given a predetermined set of inputs, derive an “observ-
ability” measure that characterizes the estimation fea-
sibility of a specific non-measurable parameter. In this
paper, techniques for solving these two problems are
developed and applied to estimator design for jet en-
gine thrust, stall margins, and an unmeasurable state.

1 Introduction

Thrust regulation is often the primary objective in jet
engine control; this quantity, however, cannot be mea-
sured, so the designer is forced to regulate closely re-
lated measurable variables such as the rotor speeds or
pressure ratios. The resulting control designs must be
conservative to ensure delivery of guaranteed thrust
levels in the presence of engine-to-engine manufactur-
ing differences and engine deterioration. The conser-
vative nature of the control design results in operating
the engine in a less efficient manner (e.g., at higher
temperatures using more fuel) that shortens its life.
A high quality thrust estimator can serve as a “virtual
sensor” for thrust, allowing for more direct control over
its value and resulting in less conservative designs that
could lengthen engine life and improve its operating
efficiency.

Another problem faced in jet engine control is how to
avoid rotating stall [1]. Several unmeasurable “stall
margin” variables are generally introduced to charac-
terize how close the system is to a stall condition.
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Then, the designer constructs control laws so that these
variables stay within certain intervals, even if there are
engine-to-engine manufacturing differences and engine
deterioration. In an analogous manner to the case for
thrust discussed above, if good estimates of stall mar-
gins were available, one could reduce the design safety
margins, increasing the overall efficiency and life of the
engine.

In addition to thrust and stall margins, there are other
engine parameters that one may want to estimate. For
instance, there are internal variables that cannot be
measured (e.g., the temperature at the combustor in-
let) and can be viewed as unknown states, or actua-
tors whose commanded input is often different from
the actual one (e.g., the fuel flow actuator). Estimates
of such variables can be useful in designing new con-
trol schemes or improving the performance of existing
ones. Clearly, estimating engine thrust, stall margins,
and other engine parameters (which we will later refer
to as “engine states”) is a very important problem.

The particular engine we study here is the General
Electric Aircraft Engine (GEAE) XTE46 which is a
scaled unclassified version of GEAE’s variable cycle en-
gine. It is a “component level model” implemented as
a complex Fortran-based simulation of the nonlinear
partial-differential equations that represent the engine.

The particular type of estimation problem we study
in this paper is how to estimate thrust, stall mar-
gin, and an unmeasurable state while the engine is
in steady-state operation. It is assumed that a suit-
able steady-state detection method is implemented and
once steady-state is achieved, the estimator is given the
engine data and it provides an estimate. Hence, the
estimation problem is transformed into that of approx-
imating an unknown function which maps the steady
state engine measurements into the variables to be esti-
mated. To perform this task we illustrate a systematic
input selection scheme and estimation feasibility analy-
sis, which turn out to be useful tools for computational
complexity reduction and estimator redesign.

2 Engine Parameter Estimation

2.1 Estimator Construction Methods
As it was pointed out in the introduction, generally
the mathematical model of a jet engine is either un-



available or too complex to be exploited by standard
estimation methods. Rather, a more likely situation
is that a numerical simulator that approximates the
physical engine with high accuracy is available. In this
case, the designer faces two options:

(i) Develop, using the simulator, a simplified linear
or nonlinear dynamical model that could be used
in conjunction with available estimation tech-
niques in order to recover the unknown param-
eters.

(ii) From a finite number of simulator data, directly
extrapolate an approximation of the static rela-
tionship∗ between measurable variables and un-
known parameters.

Here, we investigate case (ii) deriving the relationship
described above by means of nonlinear approximators.
Among various approximator structures that can be
employed, we choose multilayer feedforward neural net-
works [2]. We recognize that other approximators may
be more suitable for this application (e.g., fuzzy sys-
tems, polynomials, or wavelets), providing same or bet-
ter estimation results with less computational complex-
ity. Nevertheless, since our goal is to illustrate the esti-
mation technique and the need of input selection meth-
ods and estimation feasibility analysis, we intentionally
do not focus on this issue; the arguments and the ideas
that we introduce in this paper do not depend on such
a choice.

2.1.1 Assumptions: For the problem to be
well-posed, the following assumptions are needed:

(i) In steady state, there exists a diffeomorphism
(i.e., a continuously differentiable, invertible
map) between the set of sensor measurements and
the unknown parameter we wish to estimate. In
particular, y = F(S), S ∈ US ⊂ <n, where S is
a vector of n sensor measurements, y is the un-
known parameter to be estimated, and US is a
compact set of <n.

(ii) S is known or, in other words, we know the set of
sensor measurements which is needed to estimate
y.

(iii) F is not known analytically but, using an accu-
rate simulator, it is possible to calculate the value
of F at a finite number of points, yi = F(Si), i =
1, . . . , M.

If assumptions (i)-(iii) are satisfied, F can be approxi-
mated by a tunable function (or approximator) F̂(S, θ),

∗We use the word relationship intentionally, to keep the idea
as general as possible. Such a relationship might be represented,
among others, by a continuous function, a logic function, or a
probabilistic distribution, and it can be approximated by a tun-
able function (approximator), a lookup table, and a Bayesian
belief network, respectively.

were θ ∈ <p is a vector of parameters to be opti-
mized, provided that the candidate approximator pos-
sesses the universal approximation property or, in other
words, F̂ can approximate any continuous function F
with arbitrary accuracy over a compact set. It has been
proven [3] that feedforward neural networks enjoy this
property and, since US is assumed to be a compact set,
we conclude that there exists θ∗ such that ŷ = F̂(S, θ∗)
can be used to estimate y, and can be made arbitrarily
close to y by increasing the number of parameters p.
Finding θ∗ is, in general, a difficult task, particularly
when the parametric dependence of the approximator
is nonlinear.

2.2 Application to XTE46 Engine
In this section neural networks are applied to the esti-
mation of thrust, compressor stall margin, and an un-
measurable state for the XTE46 engine. We stress that,
at this point, assumption (ii) is not satisfied, in that
we do not know which variables are needed to estimate
the unknown parameters, therefore S will be chosen
according to intuition. In Section 3 we will introduce
a systematic method for choosing S, showing its effec-
tiveness as compared to the results presented here.

In order to build estimators, it is first necessary to
generate a training set. We define the engine oper-
ating condition at fixed environmental temperature as
the triple (altitude, mach number, power code)†.
This triple, together with the set of unmeasurable
states‡, completely specifies the simulation parameters
of the engine when the environmental temperature is
constant. The inputs to thrust and stall margin esti-
mators come from sensed parameters of the engine in
steady state and actuators values; for the engine state,
we use the error between the engine sensed parameters
and the equivalent outputs of an embedded model rep-
resenting a nominal engine. The embedded model is
currently used by GEAE for control purposes; refer to
[4] for a more detailed description.

We perform “regional” estimation, i.e., the validity of
our estimator will be confined to a specific region of
the operating space, which we choose to be “takeoff”
(i.e., altitude in [0, 5000], mach number in [0.2, 0.4],
power code in [45, 50]). This choice allows for a good
estimation performance, which can be difficult to ob-
tain on the whole operating space. On the other hand,

†Altitude is in the interval [0, 50000] feet, mach number is in
[0, 1.7], and power code denotes the throttle angle which ranges
between 20 and 50 degrees. Variations in day temperature are
not taken in account in this study, but the techniques introduced
here can as well be applied to the case when the environmental
temperature is allowed to vary.

‡We generically refer to “unmeasurable states” of XTE46
without describing them in detail, since the real scope of this
paper is introducing input selection and estimation feasibility
analysis for jet engines, without restricting ourselves to XTE46.
Rather, this engine is used as a testbed for our techniques.



this restriction is not conservative, since the majority
of the real flight conditions can be covered by three or
more regions of the same size, e.g., “takeoff,” “climb,”
and “cruise.”

The training and testing sets are formed by M = 1000
and Mtest = 2000 data pairs, respectively. The inputs
for the three estimators were chosen according to phys-
ical considerations and the intuition derived by expe-
rience. Generally, this is the approach that a designer
would first follow when dealing with a complex dynam-
ical system. Due to space limitations we do not include
the list of these inputs, it suffices to say that 14 sen-
sor values were used for the estimation of thrust and
stall margin, and 21 for the engine state. The esti-
mation results are shown in Table 1, where the neu-
ral networks used to estimate stall margin and engine
state have 5 neurons, while the one used to estimate
thrust has 13 neurons. The indices shown in the ta-
ble refer to the estimation error on 2000 points of the
testing set, with the exception of thrust, for which
the indices refer to the percentage estimation error:
100·(thrust - estimated thrust)/ thrust. The symbol σ

denotes the error standard deviation, and the weighted
mean error W (e), not used for the engine state, is de-

fined as W (e) = 1

M

∑M

i=1

∣

∣ ei

(

PCi

50

)
∣

∣, where ei and PCi

denote the estimation error and power code values for
the i-th data point.

Table 1: Estimation results.

% Thrust Stall marg. Flow eff.sc.

MAX(e) 0.103 0.95 4.64·10−3

MEAN(e) 0.020 0.27 6.43·10−4

MED.(e) 0.016 0.24 5.08·10−4

2σ(e) 0.032 0.39 1.09·10−3

W (e) 0.019 0.26 -

These results are adequate for practical applications,
with the drawback that too many sensor measurements
are needed for the estimation. A systematic input se-
lection technique is needed in order to pick the minimal
set of inputs for our estimators, and is explained in next
section.

3 Estimator Input Selection

3.1 Correlation Analysis Approach
In a correlation analysis approach, we view the engine
as a stochastic system that generates some output vari-
ables as statistical functions of other variables. These
variables may or may not be measurable, and the goal
of the estimator design is to characterize the measurable
variables that are most highly correlated to the param-
eters that we would like to estimate. The correlation
can be viewed as an indicator of the quantity of infor-
mation that two random variables carry on together,
and is defined as follows:

ρxy =
E[(X − X̄)(Y − Ȳ )]

σXσY

(1)

where X̄, Ȳ denote the expected values of X, Y , re-
spectively; E(·) denotes is expectation operator, and
σX , σY are the standard deviations of X , Y , respec-
tively. Note that 0 ≤ |ρxy| ≤ 1. Given M points, we
will approximate ρXY by means of the following unbi-
ased estimator [5]

ρ̂xy =
1

M

∑M

i=1
(Xi − X̄)(Yi − Ȳ )

√

1

M

∑M

i=1
(Xi − X̄)2 1

M

∑M

i=1
(Yi − Ȳ )2

(2)

Below, we outline a systematic method for the selection
of reasonable sets of inputs to be used in the estimation
of an engine parameter.

Data Set Generation: Generate a large number of
data points (generally, a large data set will provide
more information) in a way analogous to what has been
done in Section 2.2. The resulting data will be stored
in an n × M matrix, where n is the total number of
engine variables.
Form Correlation Coefficient Matrix: Generate,
by using (2), an n×n correlation coefficient matrix and
take its element-wise absolute value and call it C. The
correlation matrix will be symmetric, therefore row i

is equal to column i for all i = 1, . . . , n. The (i, j)-th
element of C will be the correlation coefficient between
the i-th and j-th variables of the engine.
Eliminate Input Variables with Low Correla-
tion: Take the row of C corresponding to the variable
to be estimated, say the l-th one. Fix a threshold δ be-
tween 0 and 1 and eliminate all the variables that have
correlation coefficient less than δ and the ones that are
not measurable (in particular, use the sensed outputs of
the measurable variables). The choice of δ can be made
in many ways; a very simple one is to plot the l-th row
of C and decide heuristically a reasonable value for δ

that keeps a sufficiently large set of variables, while dis-
carding the ones with very low correlation coefficients.
Study Cross-Correlation: For every element of this
subset with correlation coefficient greater than δ, look
at its correlation coefficient with all the other elements
of the subset, form a matrix (which is a sub-matrix of
C) containing all these cross-dependencies, and call it
C′. A direct examination of this matrix will show the
variables that are highly cross-correlated, and therefore
carry redundant information.
Eliminate Redundant Input Variables: Look-
ing at C′, discard the variables with cross-correlation
greater than δ̄, (a typical value for δ̄ is 0.95) keeping
the one with highest correlation with the l-th variable
of the engine.
Construct Estimator: Train the estimator with the
set of inputs given by the above correlation analysis
procedure, and testing it on the test set. Store the er-
ror vector.
Find Correlation Between Inputs and Estima-
tion Errors: Calculate and plot the correlation coef-
ficients of this error vector with respect to the engine



variables.
Add Input Variables that Affect Estimation Er-
ror: If some measurable variable is significantly corre-
lated to the estimation error, this means which we are
not exploiting the statistical information contained in
this variable. The ideal situation is when the error is
uncorrelated to all the variables of the engine, meaning
that all the possible information has been used. Form
a subset made up of those variables which are measur-
able, significantly correlated with the estimation error,
and that are not already included in our set of inputs.
Eliminate Redundant Variables: Discard from this
subset all the variables that are redundant, similarly to
how this is done above, and include the remaining vari-
ables in the set of inputs S.

3.2 Case Study: Estimation of Thrust and Stall
Margin
Let us now apply the correlation analysis to input
selection for thrust and stall margin estimators. The
estimation is performed during “takeoff” using multi-
layer feedforward neural networks, and the results will
be compared to the ones obtained in Section 2.2. Our
data set is formed from 4000 data points generated in
the manner explained before; this is enough points to
render the samples statistically representative. The
total number of variables contained in this data set
is 73, therefore n = 73, M = 4000. We number the
variables from 1 to 73. Thrust is variable number 2,
therefore l = 2. By plotting the correlation coefficients
versus the variable index number we found that a
good choice of the first threshold δ appears to be
δ = 0.7. The application of the successive steps
of correlation analysis leads to the choice of the
following set of inputs for the estimator: combustor

fuel flow, fan rotor speed, core rotor speed,

altitude, power code. Calculating the testing
error after training the neural network, and estimating
the correlation coefficient between this error and all
the other variables, it is observed that the error is
significantly correlated with the measurable variables
(we do not consider variables that we cannot measure)
with indexes 39, 56, 72, corresponding to exhaust

nozzle area, fan inlet total temperature,

mach number. Noticing that there is no redundant
variable in this subset, and therefore including
these variables in our set of inputs, we get the set
S = {combustor fuel flow, fan rotor speed,

core rotor speed, altitude, power code, mach

number, exhaust nozzle area, fan inlet total

temperature} and the estimation performance results
in Table 2, which are better than the ones shown in
Table 1, with a significant reduction in the number of
inputs (8 versus 14) and of the parameters (51 versus
209).

By applying correlation analysis to the estimation
of compressor stall margin we get S to be the

Table 2: Estimation results for thrust: 8 variables chosen

as inputs using correlation analysis.

% MAX % MEAN % MED. % 2σ % W (e)

0.088 0.017 0.014 0.027 0.016

following set of seven inputs: {compressor inlet

total temperature, fan inlet total pressure,

combustor inlet static pressure, combustor

fuel flow, exhaust nozzle area, rear VABI,

power code}, with estimation results shown in Table
3. The results are almost indistinguishable from the

Table 3: Estimation results for stall margin: 7 variables

chosen as inputs after correlation analysis.

MAX MEAN MEDIAN 2σ W (e)

1.05 0.29 0.25 0.41 0.27

ones of Table 1, but the computational complexity has
been reduced significantly (7 inputs and 46 parameters
versus 14 inputs and 81 parameters).

The two cases illustrated above are quite representa-
tive, and they illustrate the principles of the correlation
analysis approach. The application of this technique to
engine state estimator design would provide similar re-
sults that, due to space constraints, we do not include.

4 Estimation Feasibility Analysis (EFA)

In EFA we include a set of techniques aimed at pro-
viding some measure of “observability” of the unknown
engine parameters with respect to a given sensor set. If
we were able to predict the estimation performance ac-
curately enough, we could explore the advantages and
disadvantages of a given sensor set without needing to
build estimators. Note the difference between EFA and
input selection: given an unknown variable and a set of
inputs, input selection discards the unnecessary inputs
for the estimation, whereas EFA indicates the feasibil-
ity of estimating the variable using that set of inputs,
as is. In the next section we introduce two different
approaches for estimation feasibility analysis; in our
description, without loss of generality, we will refer to
the “operating space” as the 3 dimensional space for
altitude, mach number, and power code defined for
the XTE46 engine described earlier.

4.1 Data Based Approach
Inspired by the correlation analysis introduced in Sec-
tion 3, we introduce here a method that does not use
any direct information about the nominal model, rely-
ing totally on the available input-output engine data§.

§The input-output engine data, however, are generated by a
simulator, as pointed out by assumption (iii).



Operating Space Partitioning: Partition the op-
erating space into local regions. In practice, one can
choose to partition the operating space into cubes
whose size is chosen according to physical intuition.
We will denote each of the cubes by Calt,mach,pc, where
alt, mach, pc are integers determining the position of
the cube in the operating space.
Data Matrix Generation: In a way completely
analogous to the standard correlation analysis, given
a local cube Calt,mach,pc and a sensor set S, form
a data matrix Dalt,mach,pc of size Nalt,mach,pc × n,
where n is the number of measurable outputs asso-
ciated with the sensor set, and Nalt,mach,pc is the
number of data points available for a specific region
Calt,mach,pc. Next, create the matrix Ealt,mach,pc =
[

Dalt,mach,pc, Y alt,mach,pc
]

, where each row of the
Nalt,mach,pc × ny matrix Y alt,mach,pc contains ny un-
measurable parameters associated with one data point.
The i-th row of Ealt,mach,pc contains the i-th data point
consisting of n measurable outputs, and ny unmeasur-
able parameters.
Correlation Vectors Generation: Using (2) gener-
ate a (n + ny) × (n + ny) correlation coefficient ma-
trix. Each row (or column) of this matrix contains the
correlation coefficients between the corresponding vari-
able and the remaining ones. Define calt,mach,pc as the
sub-matrix formed by the first n rows and the last ny

columns of such matrix.
Correlation Measure: Choose a function µ : <n →
< to map each of the columns of calt,mach,pc into a
number ρalt,mach,pc representative of the total correla-
tion between the specific unmeasurable parameter and
the measurable outputs. Let v be a generic column of
calt,mach,pc, then good candidates for µ are mean(v),
‖v‖, and max (v).

The procedure described above, given a region
Calt,mach,pc and a sensor set S, will generate ρalt,mach,pc

for all the non-measurable parameters.

4.2 Simulation Model Based Approach
This technique exploits the availability of a simulation
model of the engine, and provides an “observability”
measure without using any measurements from the en-
gine. The simulation model can be used to approxi-
mate the partial derivative of each element¶ of S with
respect to each non-measurable parameter. The re-
sulting Jacobian matrix is manipulated to generate the
“observability index.”

¶The partial derivative, however, can be calculated only if the
non-measurable variable parameterizes the engine model, i.e., if
a variation of this variable generates a variation in the engine
outputs. Thrust and stall margins, being unmeasurable outputs
of the engine, do not parameterize it and, therefore, the model
based approach cannot be used to perform estimation feasibility
analysis on these parameters. On the other hand the technique
is particularly suitable for variables such as the engine states or
unreliable actuators.

Operating Space Partitioning: same as for the data
based approach above.
Partials Generation: Given a sensor set S, for each
cube Calt,mach,pc calculate N Jacobians of the non-
measurable variables with respect to S correspond-
ing to N different engines each in a different operat-
ing condition within Calt,mach,pc. Each Jacobian will
be a matrix J i, i = 1, . . . , N of dimension n × n̄y,
where n̄y is the number of non-measurable variables for
which the partials can be generated. Set J̄alt,mach,pc =
1

N

∑N

i=1
(J i), to be the averaged Jacobian correspond-

ing to region Calt,mach,pc.
Observability Index Calculation: Given the ma-
trix J̄alt,mach,pc calculate the following observability in-
dex, associated with the sensor set S and the k-th non-
measurable variable:

ok
alt,mach,pc =

∥

∥J̄ k
∥

∥

1
∑n̄y

l=1

∥

∥J̄ l
∥

∥

1

cond
(

J̄alt,mach,pc

)−1

(3)

∥

∥J̄ k
∥

∥

1
,

n
∑

i=1

∣

∣J̄ k
∣

∣

i
, k = 1, . . . , n̄y (4)

cond(J̄alt,mach,pc) =

√

λmax(J̄T J̄)

λmin(J̄T J̄)
(5)

where J k, k = 1, . . . , n̄y, is the k-th column of
J̄alt,mach,pc and

∣

∣J k
∣

∣

i
, i = 1, . . . , n, is the absolute

value of the i-th element in the above column. Notice
that cond(J̄alt,mach,pc), as defined here, is the condi-
tion number of the matrix J̄alt,mach,pc. The procedure
described above, given a region Calt,mach,pc and a sen-
sor set S, will generate ok

alt,mach,pc, k = 1, . . . , n̄y for
each non-measurable parameter. Due to space con-
straints we do not include the mathematical consid-
erations leading to the choice of ok.

4.3 Global Linear Estimation
In order to evaluate the results of estimation fea-
sibility analysis and show the effectiveness of the
techniques that have been introduced, we develop,
for each region Calt,mach,pc, a linear least squares
estimator. The data points employed in the data
based approach (see Section 4.1) can be used
to calculate the linear model Y ≈ RS, where R =

Y alt,mach,pcT
Dalt,mach,pc

(

Dalt,mach,pcT
Dalt,mach,pc

)−1

,

for all engines in Calt,mach,pc. Switching between the
linear estimators, we can build a global linear esti-
mator over the operating space. It is expected that
the resulting estimator performs well in the regions
of the operating space with a high “observability”
and low nonlinearity. On the other hand, if the
“observability” is low and the nonlinearity significant,
the estimation performance should be poor. The
global linear estimator is used to demonstrate the
effectiveness of estimation feasibility analysis, by
showing that in regions with high estimation feasibility
index where the linear estimator performs poorly, the



nonlinear estimator introduced in Section 2.1 produces
a very accurate estimate, because it takes advantage
of the good “observability” properties of the engine
that otherwise, due to nonlinearity of the mapping F ,
cannot be exploited.

4.4 Case Study: Stall Margin and Engine State
Estimator Redesign
EFA might be useful in identifying operating space
regions in which linear estimation cannot exploit the
available observability. In these regions a nonlinear es-
timator should improve estimation performance signif-
icantly. Here, we validate this idea by applying esti-
mation feasibility analysis to compressor stall margin
(using the data based approach) and an engine state
(using the simulation model based approach) for all the
speed, pressure, and temperature sensors that may be
available in a typical engine. Any other set of sensors
would therefore be a subset of this one.

We start by dividing the operating space altitude,

mach number, power code into 12 × 12 × 12 cubes,
collecting input-output engine data (150-300 points for
each region) that can be used to perform data based
EFA and to build a global linear estimator as discussed
in Section 4.3. As for the model based approach, for
each cubic region, we approximate N = 30 Jacobians
and we calculate the “observability” index in (4). The
results can be plotted using 3 dimensional “slice plots”
in which each axis represents the corresponding operat-
ing condition, and the plot color represents the degree
of “observability” calculated by means of EFA. The
same representation is used to show the estimation er-
ror of the global linear estimator as a function of the
operating condition. Hence, estimation error and EFA
results can be compared and similarities or discrepan-
cies can be easily found, as shown in Figure 1, where
estimation performance and EFA results are compared
for compressor stall margin and an engine state. Notice
that dark gray is assigned to high estimation error and
low “observability,” while white indicates good estima-
tion performance and high “observability.” As for the
compressor stall margin, the figure indicates a sharp
difference between EFA and linear estimator in region
C8,10,6, where the correlation measure is high but the
estimation performance is poor. This discrepancy leads
us to believe that the global linear estimator can be
redesigned by training, in those regions, a nonlinear
estimator that can hopefully exploit the observability
properties shown by estimation feasibility analysis. Us-
ing W (e) as error performance index in testing (see
Section 2.2 for a definition of W (e)), a neural network
trained over this region achieves W (e) = 5.45 · 10−2,
whereas the corresponding performance index for the
linear estimator is W (e) = 2.38 · 10−1. Hence, a non-
linear estimator improves the estimation performance
by a factor of four.

The model based analysis for the engine state shows a
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Figure 1: Comparison between EFA and estimation per-

formance.

discrepancy in region C2,8,3. Here, however, the differ-
ence between actual estimation error and “observabil-
ity” index is less remarkable. Using the mean as an
error performance index, a neural network trained over
C2,8,3 achieves mean(e) = 1.68 · 10−4 which, compared
to mean(e) = 1.27 · 10−3 obtained by the global linear
estimator, shows an improvement in the estimation by
a factor of seven. These two examples show the advan-
tage of nonlinear over linear estimation, confirming the
information provided by EFA.
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