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Abstract

This paper introduces a new approach for output feed-
back stabilization of SISO systems which, unlike most
of the techniques found in the literature, does not
use high-gain observers and control input saturation
to achieve separation between the state feedback and
observer designs. Rather, we show that by using non-
linear observers, together with a projection algorithm,
the same kind of separation principle is achieved for
a larger class of systems, namely stabilizable and in-
completely observable plants. Furthermore, this new
approach avoids using knowledge of the inverse of the
observability mapping, which is needed by most tech-
niques in the literature when controlling general stabi-
lizable systems.

1 Introduction

The area of nonlinear output feedback control has re-
ceived much attention after the publication of the work
[1], in which the authors developed a systematic strat-
egy for the output feedback control of input-output lin-
earizable systems with full relative degree, which em-
ployed two basic tools: an high-gain observer to es-
timate the derivatives of the outputs (and hence the
system states in transformed coordinates), and control
input saturation to isolate the peaking phenomenon of
the observer from the system states. Essentially the
same approach has later been applied in a number of
papers by various researchers (see, e.g., [2, 3, 4, 5]) to
solve different problems in output feedback control. In
most of the papers found in the literature, (see, e.g.,
[1, 2, 3, 4]) the authors consider input-output feedback
linearizable systems with either full relative degree or
minimum phase zero dynamics. The work in [6] showed
that for nonminimum phase systems the problem can
be solved by extending the system with a chain of in-
tegrators at the input side. However, the results con-
tained there are local. In [7], by putting together this
idea with the approach found in [1], the authors were
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able to show how to solve the output feedback stabi-
lization problem for general stabilizable and uniformly
completely observable systems, provided that the in-
verse of the observability mapping is explicitly known.
The recent work in [5] unifies all these approaches to
prove a separation principle for a very general class of
nonlinear systems. It appears that the largest class of
nonlinear SISO systems for which the output feedback
stabilization problem has been solved is that of locally
stabilizable and completely observable systems. More-
over, when dealing with systems which are not feed-
back linearizable, the works [6, 7, 5] require the explicit
knowledge of the inverse of the observability mapping,
thus somewhat restricting the variety of problems to
which their algorithm can be applied.

The objective of this paper is to relax the two restric-
tions above, by developing a new output feedback strat-
egy for nonlinear SISO locally or globally stabilizable
systems which are only observable on regions of the
state space. Furthermore, for the implementation of
our controller, the inverse of the observability map-
ping is not needed. These two features are achieved
by means of a nonlinear observer instead of the stan-
dard high-gain observer found in the literature, and of
a new projection algorithm which eliminates the peak-
ing phenomenon in the observer states, thus avoiding
the need to use control input saturation. To the best
of our knowledge, this work, besides introducing a new
methodology for output feedback control design, en-
larges the class of SISO systems considered in the lit-
erature of the field so far. Owing to space limitations,
the results presented in this paper are stated without
proof.

2 Problem Formulation and Assumptions

Consider the following dynamical system,

ẋ = f(x, u)

y = h(x, u)
(1)

where x ∈ R
n, u, y ∈ R, f and h are known smooth

functions, and f(0, 0) = 0. Our control objective is



to construct a stabilizing controller for (1) without the
availability of the system states x. In order to do so,
we need an observability assumption. Define
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ϕ1(x, u, u(1)) =
∂h

∂x
f(x, u) +

∂h

∂u
u(1)

...

ϕn−1

(

x, u, . . . , u(nu−1)
)

=
∂ϕn−2

∂x
f(x, u)+

+
∂ϕn−2

∂u
u(1) + . . . +

∂ϕn−2

∂u(nu−2)
u(nu−1)

where 0 ≤ nu ≤ n (nu = 0 indicates that there
is no dependence on u). In the most general case,
ϕi = ϕi(x, u, . . . , u(i)), i = 1, 2, . . . , n − 1. In some
cases, however, we may have that ϕi = ϕi(x, u) for all
i = 1, . . . , r − 1 and some integer r > 1. This hap-
pens in particular when system (1) has a well-defined
relative degree r. Here, we do not require the system
to be input-output feedback linearizable, and hence to
possess a well-defined relative degree. In the case of
systems with well-defined relative degree, nu = 0 cor-
responds to having r ≥ n, while nu = n corresponds
to having r = 0. Now, we are ready to state our first
assumption.

Assumption A1. System (1) is observable over the
set X × U ⊂ R

n × R
nu containing the origin, i.e., the

mapping

ye = H
(

x, u, . . . , u(nu−1)
)

(3)

is invertible with respect to x and its inverse is smooth,
for all x ∈ X , [u, u(1), . . . , u(nu−1)]> ∈ U .

Remark 1: In the existing literature, an assumption
similar to A1 can be found in [6] and [7]. It is worth
stressing, however, that in that work the authors adopt
a global observability assumption, i.e., the set X ×U is
taken to be R

n × R
nu . In many practical applications

the system under consideration may be observable in
some subset of R

n ×R
nu only, thus preventing the use

of most of the output feedback techniques found in the
literature, including the ones found in [6], [7], and [5].

Next, augment the system with nu integrators on the
input side, which corresponds to using a compensator

of order nu. System (1) can be rewritten as follows,

ẋ = f(x, z1)

ż1 = z2, . . . , żnu
= v

(4)

Define the extended state variable χ = [x>, z>]> ∈
R

n+nu , and the associated extended system

χ̇ = fe(χ) + gev

y = he(χ)
(5)

where fe(χ) = [f>(x, z1), z2 , . . . , znu
, 0]>, ge =

[0, . . . , 1]>, and he(χ) = h(x, z1).

Assumption A2. The origin of (1) is locally stabiliz-
able (stabilizable) by a static function of x, i.e., there
exists a smooth function ū(x) such that the origin is an
asymptotically stable (globally asymptotically stable)
equilibrium point of ẋ = f(x, ū(x)).

Remark 2: Assumption A2 implies that the origin of
the extended system (5) is locally stabilizable (stabiliz-
able) by a function of χ as well. A proof of the local
stabilizability property for (5) may be found, e.g., in
[8], while its global counterpart is a well known conse-
quence of the integrator backstepping lemma (see, e.g.,
Theorem 9.2.3 in [9]). Therefore we conclude that for
the extended system (5) there exists a smooth control
v̄(χ) such that its origin is asymptotically stable under
closed loop control. Let D be the domain of attraction
of the origin of (5), and notice that, when A2 holds
globally, D = R

n × R
(nu).

3 Nonlinear Observer: Its Need and Stability

Analysis

Assumption A2 allows us to design a stabilizing state
feedback control v = φ(x, z). In order to perform out-
put feedback control x should be replaced by its esti-
mate. Researchers who have addressed this problem
(e.g., [6], [7]) relied on the explicit knowledge of the
inverse of the mapping H in (3)

x = H−1 (ye, z1, . . . , znu
)

so that estimation of the first n−1 derivatives of y (the
vector ye) provides an estimate of x

x̂ = H−1 (ŷe, z1, . . . , znu
)

since the vector z, being the state of the controller, is
known. Next, to estimate the derivatives of y, they em-
ployed an high-gain observer. Both the works [6] and
[7] (the latter dealing with the larger class of stabiliz-
able systems) rely on the knowledge of H−1 to prove
closed loop stability. In addition to this, the recent
work [5] proves that a separation principle holds for a



quite general class of nonlinear systems which includes
(1) provided that H−1 is explicitly known and that the
system is uniformly completely observable. In order
to develop a practical output feedback control algo-
rithm, however, H−1 cannot be assumed to be explic-
itly known. Hence, rather than designing an high-gain
observer to estimate ye and using H−1(·, ·) to get x,
the approach adopted here is to estimate x directly us-
ing a nonlinear observer for system (1) and using the
fact that the z-states are known. In other words, we
can regard our problem as that of building a reduced
order observer for the closed loop system states1. The
observer has the form

˙̂x = f(x̂, z1)+

[

∂H(x̂, z)

∂x̂

]−1

E−1L [y(t) − ŷ(t)]

ŷ(t) = h(x̂, z1)

(6)

where L is a n× 1 vector, E = diag
[

ρ, ρ2, . . . , ρn
]

, and
ρ ∈ (0, 1] is a fixed design constant.

Notice that (6) does not require any knowledge of H−1

and has the advantage of operating in x-coordinates.
The observability assumption A1 implies that the Ja-
cobian of the mapping H with respect to x is invertible,
and hence the inverse of ∂H(x̂, z)/∂x̂ in (6) is well de-
fined.

Theorem 1 Consider system (4) and assume A1 is
satisfied for X = R

n and U = R
nu , the state χ belongs

to a compact invariant set Ω, and that |v(t)| ≤ M
for all t ≥ 0, with M a positive constant. Choose L
such that Ac − LCc, where (Ac, Bc, Cc) is the control-
lable/observable canonical realization, is Hurwitz.

Under these conditions and using observer (6), the fol-
lowing two properties hold

(i) Asymptotic stability of the estimation error:
There exists ρ̄, 0 < ρ̄ ≤ 1, such that for all
ρ ∈ (0, ρ̄), x̂ → x as t → +∞.

(ii) Arbitrarily fast rate of convergence: For each pos-
itive T, ε, there exists ρ∗, 0 < ρ∗ ≤ 1, such that
for all ρ ∈ (0, ρ∗], ‖x̂ − x‖ ≤ ε ∀t ≥ T .

Remark 3: It can be proved that ξ̃(t) may ex-
hibit peaking, and the size of the peak grows larger
as ρ decreases and the convergence rate is made faster.
This phenomenon and its implications on output feed-
back control has been studied in the seminal work [1].
The analysis in that paper shows that a way to isolate
the peaking of the observer estimates from the system

1Throughout this section we assume A1 to hold globally, since
we are interested in the ideal convergence properties of the state
estimates. In the next section we will show how to modify the
observer equation in order to achieve the same convergence prop-
erties when A1 holds over the set X × U ⊂ R

n × R
nu .

states is to saturate the control input outside of the
compact set of interest. The same idea has then been
adopted in several other works in the output feedback
control literature (see, e.g., [1, 2, 7, 3, 4, 5]). Rather
than following this approach, in the next section we
will present a new technique for isolating the peaking
phenomenon which allows for the use of the weaker As-
sumption A1.

Remark 4: It is interesting to note that in ye-
coordinates the nonlinear observer (6) is identical to
the standard high-gain observer found in the non-
linear output feedback control literature (see, e.g.,
[6, 1, 2, 7, 3, 4, 5]). Our observer, however, has the
advantage of avoiding the knowledge of the inverse of
the mapping H, as well as working in x coordinates,
directly.

4 Output Feedback Stabilizing Control

Consider system (5), by using assumption A2 and Re-
mark 2 we conclude that there exists a smooth stabiliz-
ing control v = φ(x, z) = φ(χ) which makes the origin
of (5) an asymptotically stable equilibrium point with
domain of attraction D. By the converse Lyapunov
theorem found in [10], there exists a continuously dif-
ferentiable function V defined on D satisfying, for all
χ ∈ D,

α1(‖χ‖) ≤ V (χ) ≤ α2(‖χ‖) (7)

lim
χ → ∂D

α1(‖χ‖) = ∞ (8)

∂V

∂χ
(fe(χ) + ge v) ≤ −α3(‖χ‖) (9)

where αi, i = 1, 2, 3 are class K functions (see [11]
for a definition), and ∂D stands for the boundary of

the set D. Define compact sets Ωc1

4
= {χ |V ≤ c1},

Ωc2

4
= {χ |V ≤ c2}, Ωx

c2

4
= {x ∈ R

n |χ ∈ Ωc2
}, Ωz

c2

4
=

{z ∈ R
nu |χ ∈ Ωc2

} where c2 > c1 > 0. Next, the
following assumption is needed.

Assumption A3. Assume c2 can be selected so that
the following conditions are satisfied:

1. H(Ωx
c2

, z) ⊂ Cξ(z) ⊂ H(X , z), for all z ∈ Ωz
c2

,
for some convex compact Cξ(z)

2. Ωz
c2

⊂ U

Remark 5: This assumption represents a basic re-
quirement for output feedback control. It is satisfied
when there exists a sphere of dimension n + nu, cen-
tered at the origin, which is contained in X × U ; this
requirement is satisfied in most practical examples. On
the other hand, Assumption A3 fails when, for exam-
ple, the origin belongs to the boundary of X × U , and
thus there is no neighborhood centered at the origin
and contained in X × U .



4.1 Observer Estimates Projection

As we already pointed out in Remark 4, in order to iso-
late the peaking phenomenon from the system states,
the approach generally adopted in several papers is to
saturate the control input to prevent it from grow-
ing above a given threshold. This technique, how-
ever, does not eliminate the peak in the observer es-
timate and, hence, cannot be used to control general
systems like the ones satisfying assumption A1, since
even when the system state lies in the observable re-
gion X × U ⊂ R

n × R
nu , the observer estimates may

enter the unobservable domain where (6) is not well
defined. It appears that in order to deal with systems
that are not completely observable, one has to elimi-
nate the peaking from the observer by guaranteeing its
estimates to be confined in a prespecified compact set
contained in X .

A very common procedure used in the adaptive con-
trol literature (see [12]) to confine vectors of parameter
estimates within a desired convex set is gradient pro-
jection. This idea cannot be directly applied to our
problem, mainly because ˙̂x is not proportional to the
gradient of the observer Lyapunov function and, thus,
the projection cannot be guaranteed to preserve the
convergence properties of the estimate. Inspired by this
idea, however, we propose a way to modify the ˙̂x equa-
tion which confines x̂ to within a prespecified compact
set while preserving its convergence properties. Let

ξ = H(x, z), ξ̂ = H(x̂, z), ξ̃ = ξ̂ − ξ (10)

Next, project 2 the observer estimate as follows

˙̂xP =

[

∂H

∂x̂

]−1 {

P
(

ξ̂,
˙̂
ξ, z, ż

)

−
∂H

∂z
ż

}

P(ξ̂,
˙̂
ξ, z, ż) =



































˙̂
ξ − Γ

N(ξ̂)
(

N(ξ̂, z)>
˙̂
ξ + Nz(ξ̂, z)>ż

)

N(ξ̂, z)>ΓN(ξ̂, z)

if N(ξ̂, z)>
˙̂
ξ + Nz(ξ̂, z)>ż ≥ 0

and ξ̂ ∈ ∂Cξ(z)
˙̂
ξ otherwise

(11)
where Γ = (SE ′)−1(SE ′)−1, S = S> denotes the ma-
trix square root of P , solution of the Lyapunov equa-
tion P (Ac −LCc) + (Ac −LCc)

>P = −I, and N(ξ̂, z),

Nz(ξ̂, z) are the normal vectors to the boundary of
Cξ(z) with respect to ξ and z, respectively. The fol-
lowing lemma shows that (11) guarantees boundedness
and preserves convergence for x̂.

Lemma 1 : If A3 holds and (11) is used:

2The projection defined in (11) is discontinuous in the variable

ξ̂, therefore raising the issue of the existence and uniqueness of
its solutions. We refer the reader to Remark 6, were this issue is
addressed and a solution is proposed.

(i) Boundedness: x̂P (t) ∈ H−1(Cξ(z), z) ⊂ X for all
t, and for all z ∈ Ωz

c2
.

If, in addition, x ∈ Ωx
c2

and the assumptions of Theo-
rem 1 are satisfied, then the following is also true

(ii) Preservation of original convergence characteris-
tics: properties (i) and (ii) established by Theo-
rem 1 remain valid for x̂P .

Remark 6: In order to avoid the discontinuity in
the right hand side of (11) introduced by P , one can
define P to be the smooth projection introduced in
[13]. In this case, part (i) of Lemma 1 would have
to be modified to x̂P (t) ∈ H−1(C̄ξ(z), z), ∀z ∈ R

nu ,
where C̄ξ(z) ⊃ Cξ(z) is a convex set which can be made
arbitrarily close to Cξ(z), and condition 1of A3 would
have to be replaced by the following

1′. H(Ωx
c2

, z) ⊂ Cξ(z) ⊂ C̄ξ(z) ⊂ H(X , z), ∀z ∈ Ωz
c2

,

where Cξ(z) and C̄ξ(z) convex and compact
Remark 7: From Lemma 1 we conclude that (11)
performs a projection for x̂ over the compact set
H−1(Cξ(z), z) which, in general, is unknown since we
do not know H−1, and is generally not convex. It is
interesting to note that applying a standard gradient
projection for x̂ over an arbitrary convex domain does
not necessarily preserve the convergence result (ii) in
Theorem 1.

4.2 Closed Loop Stability

To perform output feedback control we replace the
state feedback law v = φ(x, z) with v̂ = φ(x̂P , z) which,
by the smoothness of φ and the fact that x̂P is guar-
anteed to belong to the compact set H−1(Cξ(z), z), is
bounded provided that z is confined to within a com-
pact set. Furthermore, the limit (8) guarantees that
for any compact set D′ contained in the region of at-
traction D, one can choose a large enough c1 so that
D′ ⊂ Ωc1

⊂ Ωc2
⊂ D. When the observability as-

sumption A1 is satisfied globally, one can choose any
compact D′ ⊂ D; hence, if A1 and A2 hold globally,
D′ can be any compact set in R

n ×R
nu . Taking in ac-

count the restriction on c2 imposed by Assumption A3,
choose D′ to be an arbitrary compact set contained in
Ωc1

.

Let x̃
4
= x̂ − x, and x̃P 4

= x̂P − x, and note that part
(ii) of Lemma 1 applies and x̃P → 0 as t → ∞ with
arbitrarily fast rate, as long as χ ∈ Ωc2

. Moreover, the
smoothness of the control law implies that

‖φ(x̂, z) − φ(x, z)‖ ≤ γ̄‖x̃‖ (12)

for all x, x̂ ∈ H−1(Cξ(z), z), for all z ∈ Ωz
c2

and some
γ̄ > 0. Assume that x̂(0) ∈ Ωx

c2
, and let A be a positive

constant satisfying ‖∂V/∂χ‖ ≤ A for all χ in Ωc2
(its

existence is guaranteed by V being continuously differ-
entiable). Now, we can state the following lemma.



Lemma 2 Suppose that the initial condition χ(0) is

contained in D′ ⊂ Ωc1
, define the set Ωε

4
= {χ : V (χ) ≤

dε}, where dε = α2◦α−1
3 (µ A γ̄ ε), and choose ε > 0 and

µ > 1 such that dε < c1. Then, there exists a positive
scalar ρ∗, 0 < ρ∗ ≤ 1, such that, for all ρ ∈ (0, ρ∗], the
closed loop system trajectories remain confined in Ωc2

,
the set Ωε ⊂ Ωc1

is positively invariant, and is reached
in finite time.

Lemma 2 proves that the all the trajectories starting
in Ωc1

will remain confined within Ωc2
and converge to

an arbitrarily small neighborhood of the origin in finite
time. Now, in order to complete the stability analy-
sis, it remains to show that the origin of the output
feedback closed loop system is asymptotically stable,
so that if Ωε is small enough all the closed loop system
trajectories converge to it.

Lemma 3 There exists a positive scalar ε∗ such that
for all ε ∈ (0, ε∗] all the trajectories starting inside the

compact set ∆ε
4
= {[χ>, x̃>]> |V ≤ dε and ‖x̃‖ ≤ ε}

converge asymptotically to the origin.

We are now ready to state the following closed loop
stability theorem.

Theorem 2 For the closed loop system (5), (6), (11),
satisfying assumptions A1, A2, and A3, the control
law v̂ = φ(x̂P , z), guarantees that there exists a scalar
ρ∗, 0 < ρ∗ ≤ 1, such that, for all ρ ∈ (0, ρ∗], the set
D′ × Ωx

c2
is contained in the region of attraction of the

origin (x = 0, z = 0, x̂ = 0).

Remark 8: Theorem 2 proves regional stability of the
closed-loop system, since given an observability sub-
space X × U , and provided condition 1 of A3 is sat-
isfied, the control law v̂, together with (6) and (11),
make the compact set D′ × Ωx

c2
a basin of attraction

for the origin of the closed loop system. The size of
the region of attraction D′ × Ωx

c2
depends on the size

of the set X × U (see condition (4)). If A1 is satisfied
globally (as in [6, 7, 5]), or X ×U is large enough, then
Theorem 2 guarantees that the domain of attraction D
of the closed loop system under state feedback is recov-
ered by the output feedback controller, in that D′ can
be chosen to be any arbitrary compact set contained
in D. If, besides being completely uniformly observ-
able, system (1) is also stabilizable (and, therefore, A2
holds globally), then D = R

n × R
nu and the result of

Theorem 2 becomes semi-global, in that Ωc1
and Ωc2

can be chosen arbitrarily large, thus achieving the same
property of the controller found in [7].

Remark 9: Analogous to the result in [1, 5], Theorem
2 proves a separation principle for nonlinear systems:
given a stabilizing state feedback controller, the perfor-
mance of the output feedback controller recovers the

one under state feedback provided that the parameter
ρ is chosen small enough.
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