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Abstract: In a recent work we have introduced the notion of a practical internal
model, i.e., a compensator yielding suitable observability properties in a nonlinear
system, and we have shown that its existence implies the existence of an output
feedback controller achieving arbitrarily small asymptotic tracking error. In this
paper we show that a sufficient condition for a practical internal model to exist is that
the plant is differentially flat with respect to the measurable output. We apply this
technique to the output regulation problem and we provide sufficient conditions for
its semiglobal solution when no disturbances act on the plant. Copyright @ 2001 IFAC
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1. INTRODUCTION

Consider the nonlinear system

ẋ = f(x, u)

y = h(x, u)
(1)

where x ∈ Rn denotes the state of the system,
u ∈ Rm is the control input, y ∈ Rp is the
measurable output, and the vector fields f and
h are assumed to be sufficiently smooth in their
arguments. Our objective is to solve the following
problems.

Problem 1 (Output Feedback Asymptotic Track-
ing): Given the dynamical system (1) and a suffi-
ciently smooth reference trajectory r(t) = [r1(t),
. . . , rp(t)]

>, design a dynamic output feedback
controller

ẋc = fc(xc, y, r)

u = hc(xc, y)
(2)
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where fc and hc are sufficiently smooth, such that
the closed-loop system (1)-(2) has the property
that e(t) = y(t) − r(t) → 0 as t → ∞, and the
internal states x and xc are bounded for all t ≥ 0,
and for all initial conditions [x(0)>, xc(0)>]> ∈
A, for some closed set A.

Problem 2 (Output Feedback Practical Track-
ing): Given the dynamical system (1), a suffi-
ciently smooth reference trajectory r(t) = [r1(t),
. . . , rp(t)]

>, and a small scalar e0 > 0, design
a dynamic output feedback controller of the form
(2) such that the closed-loop system (1)-(2) has
the property that there exists a T > 0 such that
‖e(t)‖ ≤ e0 for all t ≥ T , and such that the inter-
nal states x and xc are bounded for all t ≥ 0, and
for all initial conditions [x(0)>, xc(0)>]> ∈ A, for
some closed set A.

In (Maggiore and Passino 2001), we have showed
that if there exists a practical internal model then
Problem 2 has a solution. The aim of this paper
is to find sufficient conditions for the existence of
the practical internal model and conditions for the



solvability of Problem 1. For convenience of the
reader, in what follows we briefly summarize the
results in (Maggiore and Passino 2001), together
with the definition of a practical internal model.
First we need to introduce some basic assump-
tions.

Assumption A1 (Stable Inverse): For the ref-
erence trajectory r(t), there exist sufficiently
smooth and bounded functions xr(t) and cr(t)
such that

ẋr = f(xr, cr)

r(t) = h(xr, cr)
(3)

for some initial condition xr(0), cr(0), and for all
t ≥ 0.

Next, consider the change of coordinates x̃ = x−
xr, rewrite (1) in new coordinates as

˙̃x = f̃(t, x̃, u), (4)

and notice that the asymptotic stability of the
origin of (4) is equivalent to the attractivity of
the tracking manifold of (1).

Assumption A2 (Stabilizability of the Tracking
Manifold): There exists a smooth function
ū(x̃, cr) such that ū(0, cr) = cr and the origin
is a uniformly asymptotically stable equilibrium
point of ˙̃x = f̃(t, x̃, ū(x̃, cr)), with domain of at-
traction a closed set D̃ ⊂ Rn, i.e., there exists
(see (Kurzweil 1956)) a function V (x̃, t), defined
for x̃ ∈ D̃, which is continuous with continuous
partial derivatives, and continuous positive defi-
nite functions α1(‖x̃‖D̃) ∈ K∞, α2(‖x̃‖D̃) ∈ K,
and α3(‖x̃‖D̃) ∈ K such that

(i) α1(‖x̃‖D̃) ≤ V (x̃, t) ≤ α2(‖x̃‖D̃) (5)

(ii)
∂V

∂x̃
f̃(t, x̃, ū(x̃, cr)) +

∂V

∂t
≤ −α3(‖x̃‖D̃),

(6)

for x̃ ∈ D̃, x̃ 6= 0, and all t ≥ 0, where

‖x̃‖D̃
4
= max

{
‖x̃‖, 1

ρ(x̃,D̃o)
− 2

ρ(0,D̃o)

}
, D̃o is the

complement of D̃ in Rn, and ρ(x̃, D̃o) denotes the
distance of x̃ from the set D̃o (i.e., ρ(x̃, D̃o) =
infz∈D̃o ‖x̃− z‖).

We now assume x in (1) to be observable from the
output y. In order to characterize the observability
properties of (1), consider the observability map-

ping yx
4
= [y1, . . . , y

(k1−1)
1 , . . . , yp, . . . , y

(kp−1)
p ]>

4
= Hx(x, z), where z

4
= [u1, . . . , u

(n1−1)
1 , . . . , um,

. . . , u
(nm−1)
m ]> ∈ Rnu ,

∑p
i=1 ki = n, nu

4
= n1 +

. . . + nm, 0 ≤ ni ≤ max{k1, . . . , kp} (when Hx
does not depend on ui, then we set ni = 0). Note
that the vector z contains only the derivatives of
u that end up appearing in the mapping Hx for
the application at hand.

Assumption A3 (Observability): System (1) is ob-
servable over the set X ×U ⊂ Rn×Rnu , i.e., there
exists a set of indices {k1, . . . , kp} such that the
mapping ye = Hx(x, z) is invertible with respect
to x and its inverse is smooth, for all x ∈ X ,
z ∈ U .

Notice that A3 does not require (1) to be uni-
formly completely observable (UCO), i.e., X ×
U = Rn × Rnu , and thus it relaxes analogous
conditions commonly found in the literature (see,
e.g., (Tornambè 1992, Teel and Praly 1995)).

Next, we introduce a condition to estimate the
functions xr(t) and cr(t) on-line. Before stating
the assumption, note that it is useful to think
of (3) as a copy of the plant with unknown
state xr, unknown input cr, but a known output
which is the reference trajectory r(t). Consider a
compensator of the type

ζ̇r = a(ζr, xr, vr)

cr = b(ζr, xr),
(7)

where ζr ∈ Rq (q ≥ m), vr ∈ Rm, a
and b are sufficiently smooth, and vr is the
new input of the composite system (3)-(7). De-
fine the observability mapping associated with
xr and ζr in the composite system (3)-(7) as

yxr,ζr
4
= [y1, . . . , y

(k̄1−1)
1 , . . . , yp, . . . , y

(k̄p−1)
p ]>

4
=

Hx,ζ
(
xr, ζr, vr, . . . , vr

(n̄u−1)
)
, where

∑p
i=1 k̄i =

n+ q, 0 ≤ n̄u ≤ max{k̄1, . . . , k̄p} − 1.

Assumption A4 (Practical Internal Model): There
exists a compensator of the form (7), which we
call a practical internal model, which is regular
(i.e., for each x(0) and u(t) there exist ζ(0) and
v(t) such that b(ζ, x) = u, for all t ≥ 0) and
such that the following two properties hold for the
composite system (3)-(7).
(i)Hx,ζ does not depend on vr and its derivatives,
i.e., Hx,ζ = Hx,ζ(xr, ζr).
(ii) There exists a set of indices {k̄1, . . . , k̄p}
such that the mapping yxr,ζr = Hx,ζ(xr, ζr) is
invertible with respect to xr and ζr, and its inverse
is sufficiently smooth, for all [xr

>, ζr
>]> ∈ Xa.

Next, we need to guarantee that the reference
trajectory is contained in within an observable
region.

Assumption A5 (Reference Trajectory): The ref-
erence trajectory r(t) is such that, for all t ≥ 0,[
r1(t), . . . , r

(k̄1−1)
1 (t), . . . , rp(t), . . . , r

(k̄p−1)
p (t)

]>
∈

Cr ⊂ Hx,ζ(Xa), for some convex compact Cr.

Finally, we need to make sure that the state
and input trajectories of the closed-loop system
travel within the observable domain of the plant
(at least in the ideal case when the state feedback
controller is employed). To this end, in the fol-



lowing assumption we characterize a subset of the
domain of attraction D which is contained within
an observable region of (1). Given any scalar c > 0

let Ωc
4
= {x ∈ Rn |V (x− xr, t) ≤ c, for all t ≥ 0},

where V (x̃, t) is defined in A2, and note that for all
c > 0 we have that, by the properness of V and the
definition ofD, Ωc ⊂ D. Let Ωz be the compact set
which is invariant with respect to the z trajecto-
ries (its existence follows from the smoothness of ū
and the boundedness of x(t), xr(t), and cr(t)), and
consider the mapping F : Rn×Rnu −→ Rn×Rnu ,

F(x, z)
4
= [Hx(x, z)>, z>]> which, clearly, is a

diffeomorphism on X×U ⊂ Rn×Rnu , and assume
that the set X × U satisfies the following.

Assumption A6 (Topology of X×U): There exists
a positive scalar c̄ such that F (Ωc̄,Ω

z) ⊂ Cξ ⊂
F (X ,U), for some convex compact Cξ.

Figure 1 shows the structure of the output feed-
back controller solving Problem 2. The scheme
employs two observers, the first one is used to esti-
mate the functions xr and ζr (and hence also cr),
while the second one estimates the state of system
(1). Projection algorithms are employed to keep
the observer estimates in within the observable
regions while preserving their convergence proper-
ties. Next, the projected estimates are employed
by the stabilizer ū to drive the closed-loop tra-
jectories inside an arbitrarily small neighborhood
of the tracking manifold. Refer to (Maggiore and
Passino 2001) for more details on the structure of
the output tracking controller.

Theorem 1. (Theorem 3 in (Maggiore and Passino
June 2000)). Suppose that A1-A6 hold. Then, the
controller structure depicted in Figure 1 solves
Problem 2 on a set A whose size depends on the
size of the sets X × U , Xa, and D. If A2, A3, and
A4 hold globally (i.e., Cξ and Cr can be chosen
arbitrarily large), then the solution of Problem
2 is semiglobal and A can be chosen to be an
arbitrarily large compact set.

The main obstacle to the solution of Problem
1 is the fact that vr in (7) is unknown. This
represents a severe limitation because the tracking
manifold is not an equilibrium point of the closed-
loop system in Theorem 1, and hence cannot be
asymptotically stabilized.

2. A SUFFICIENT CONDITION FOR THE
SOLUTION OF PROBLEM 2

A class of systems which has drawn increasing
attention in the past decade is the class of dif-
ferentially flat systems. In what follows we will
briefly recall the properties of differentially flat

systems and relate them to the theory introduced
in this paper. Keeping in mind that (3) and (1)
share identical properties (provided A1 holds),
for notational convenience we apply the following
definition to the copy of the plant (3) assuming, for
the moment, that A1 does not hold and thus r(t)
is not the prespecified reference trajectory, but
rather the generic output of the copy of the plant.
We will later show that differential flatness of the
plant implies that A1 holds and thus r(t) actually
is the prespecified reference trajectory and that
all the assumptions required by Theorem 1 are
indeed satisfied.

System (3) is differentially flat (see (Fliess et
al. 1995)) with respect to the flat output r (or,
equivalently, the plant (1) is differentially flat with
respect to the flat output y) if there exists a
compensator

˙̄ζr = ā(ζ̄r, xr, vr)

cr = b̄(ζ̄r, xr, vr)
(8)

such that the augmented system (3)-(8) is feed-
back linearizable with respect to the output func-
tion r and there exists a function γ such that
ζ̄r(t) = γ(xr, cr, ċr, . . . , cr

(nζ)) for some positive
nζ . This means that, if p = m and (3) is globally
differentially flat with flat output r, the change of
coordinates ξr = H(xr, ζ̄r), where

ξr = [r1, . . . , r
(l1−1)
1 , . . . , rp, . . . , r

(lm−1)
m ]>

H(xr, ζ̄r) =
[
h1, . . . , ϕ̄

(l1−1)
1 , . . . , hm, . . . , ϕ̄

(lm−1)
m

]>
,

for some set of indices {l1, . . . , lm}, is a diffeomor-
phism independent of vr and, in new coordinates,
(3)-(8) reads as

ξ̇r = Acξr +Bc [α(ξr) + β(ξr) vr]

r = Ccξr
(9)

where (Ac, Bc, Cc) is in controllable/observable
canonical form and β is an invertible m × m
matrix. Note that (8) differs from the practical
internal model in that the function b̄ is allowed
to depend on vr, and hence estimating xr(t) and
ζr(t) is not sufficient to calculate cr(t). This ob-
stacle is removed by using the dynamic feedback
transformation

vr = −β−1(ξr)(α(ξr)− ζr ′)

ζ̇r
′

= vr
′,

(10)

and letting vr
′ be the control input of the

new compensator (8)-(10). By setting ζr =

[ζ̄r
>
, ζr
′>]>, a(ζr, xr, vr

′) = [ā>( ζ̄r, xr,−β−1(ξr)
(α(ξr)− ζr ′) ), vr

′>]>, b(ζr, xr) = b̄(ζ̄r, xr, ζr
′), we

get a compensator of the type (7). The observabil-
ity mapping of the composite system (3)-(8)-(10)

is given by [r1, . . . , r
(l1)
1 , . . . , rm, . . . , r

(lm)
m ]> =

Hx,ζ(xr, ζr) = [h1, . . . , ϕ̄
(l1−1)
1 , ζr

′
1, . . . , hm, . . . ,

ϕ̄
(lm−1)
m , ζr

′
m]>. Clearly, the properties of the map-

ping H, namely its invertibility and independence
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Fig. 1. Block diagram of the output feedback controller solving Problem 2.

of vr, are still valid for Hx,ζ , and therefore A4
is satisfied on Rn × Rq with k̄i = li + 1, i =
1, . . . ,m. Furthermore, the observability of the
augmented system, together with the fact that
ζ̄r(t) = γ(xr, cr, ċr, . . . , cr

(nζ)), implies that (1)
is also observable with respect to y and hence
A3 holds on Rn × Rnu . Next, given a smooth
reference trajectory r(t), the tracking manifold for
the composite system is given by[
xr
>(t), ζr

>(t)
]>

= H−1
x,ζ

([
r1(t), . . . , r

(l1)
1 (t), . . . ,

. . . , rm(t), . . . , r(lm)
m (t)

]>)
,

vr
′ =

[
r

(l1+1)
1 , . . . , r(lm+1)

m

]
,

from which one obtains cr(t) = b(ζr(t), xr(t)), and
thus A1 is satisfied. As for Assumption A2, from
(9) we have that a copy of the compensator (8)
can be also employed to (globally) dynamically
stabilize the tracking manifold as follows

˙̄ζ = ā(ζ̄, x, v)

v = vr +K
(
H(x, ζ̄)−H(xr, ζ̄r)

)
,

u = b̄(ζ̄, x, v).

Clearly, if the tracking manifold of (1) is stabi-
lizable by static feedback then there is no need
to include (8) in the state feedback tracking con-
troller. Finally, we conclude this discussion by not-
ing that since A1-A4 hold globally, Problem 2 is
semiglobally solvable. The previous considerations
are summarized in the following proposition.

Proposition 1: If system (1) is globally differen-
tially flat with respect to the flat output y, then
the output feedback practical tracking problem is
solvable semiglobally.

3. SOLUTION OF PROBLEM 1 USING THE
INTERNAL MODEL PRINCIPLE

In this section we will attempt to build a bridge
between some well-known results in nonlinear
regulator theory and the methodology adopted
here: this will help us in solving Problem 1.
Consider the system

ẋ = f(x, u, w)

e = h(x)− q(w)
(11)

where x ∈ X ⊂ Rn, u ∈ Rm, e ∈ Rm, and
w ∈ W ⊂ Rr. The variable e represents the
measurable error between the output h(x) and
the reference q(w). Assume that w is an unknown
disturbance input generated by the exosystem

ẇ = s(w), (12)

that f(x, u, w), h(x), q(w), and s(w) are suf-
ficiently smooth functions and, moreover, that
f(0, 0, 0) = 0, h(0) = 0, q(0) = 0, and s(0) = 0.

Problem 3 (Semiglobal Output Feedback Output
Regulation): Given a system of the form (11)
with an exosystem of the type (12), and arbitrary
compact sets Kx ⊂ Rn and Kw ⊂ Rr, find a
controller of the type (2) (where r = q(w)) and
a compact set Kxc ⊂ Rnc , such that the trajectory
(x(t), xc(t)) of the closed-loop system

ẇ = s(w), ẋ = f(x, hc(xc, y), w),

ẋc = fc(xc, h(x), q(w))
(13)

with initial conditions (x(0), xc(0), w(0)) ∈ Kx ×
Kxc × Kw is well-defined for all t ≥ 0, bounded
and such that e(t) = h(x)− q(w)→ 0 as t→∞.

The formulation of Problem 3 is slightly more
general than the standard formulation of the
semiglobal output regulation problem, in that the
origin of the unforced system is not required to
be exponentially stable, and the feedback vari-
ables of the controller are given by the system
output h(x) and the reference trajectory q(w),
and thus the controller is not restricted to use
the error feedback e. The solution to this problem
presently not known. In recent works researchers
have concentrated in devising classes of nonlinear
systems for which the global robust output reg-
ulation problem (see (Serrani and Isidori 2000))
or its semiglobal version (see (Mahmoud and
Khalil 1997), (Isidori 1997),(Khalil 2000), (Serrani
et al. 2000)) may be solved. In most of the works
(11) is required to have a well-defined relative
degree and to be minimum phase with input to
state stable zero dynamics (see (Mahmoud and



Khalil 1997), (Isidori 1997),(Khalil 2000)), or sim-
ply minimum phase (see (Serrani et al. 2000)). Re-
turn now to the output feedback tracking problem
and notice that in Problem 1 f does not depend on
the disturbance input w and r(t) is not restricted
to be the output q(w(t)) of the exosystem (12).
Furthermore, the controller (2) uses input h(x, u)
and r(t) separately, rather than their difference
e(t). In order to establish a foundation for a com-
parison between Problem 1 and Problem 3 assume
that r(t) is generated by the exosystem (12), i.e.,
r = q(w), and notice that imposing the existence
of a tracking manifold in A1 is equivalent to the
existence of a solution to the regulator equations

∂π

∂w
s(w) = f(π(w), c(w), w), 0 = h(π(w))− q(w)

(14)
with xr(t) = π(w(t)), and cr(t) = c(w(t)). In
this framework Assumption A4, regarding the
existence of an appropriate compensator, can be
replaced by the internal model principle, where
the compensator (7) takes the form of an internal
model

ζ̇r = a(ζr), cr = b(ζr). (15)

Noting that the internal model (15) is an un-
forced system, the obstacle to asymptotic tracking
caused by the presence of the unknown input vr
in (7) is removed. In the general case when an
internal model is not available (or does not exist)
a practical internal model (7) may exist and could
be employed to solve the practical tracking prob-
lem (see Theorem 1). Notice that the requirement,
in A4, that the augmented system (1)-(15) be
observable on Xa, together with the stabilizability
assumption A2, forms a set of conditions concep-
tually similar to stabilizability/detectability con-
ditions on the plant augmented with the internal
model used, e.g., in (Isidori 1995).

In conclusion, our framework can be employed
for the solution of Problem 1 when an exogenous
system generates the reference trajectories. In this
case, Problem 1 can be interpreted as an output
regulation problem for systems of the form (1),
where the state equation does not depend on the
exogenous disturbance input w(t). To this end, we
need to modify the theory developed in (Maggiore
and Passino June 2000). Consider the dynamic
extension

żi,j = zi,j+1, j = 1, . . . , ni − 1
żi,ni = u′i, i = 1, . . . ,m

ui = zi,1,

(16)

and redesign a state feedback stabilizing control
law ū′ for the augmented system (4)-(16), so
that z is available for feedback and does not
need to be estimated. Assume x, xr and ζr are
available for feedback and define the change of
coordinates z∆ = z − zu(x̃, ζr) where zu(x̃, ζr) =

[ū1, . . . , ū
(n1−1)
1 , . . . , ūm, . . . , ū

(nm−1)
m ]>, and let

U ′(x̃, ζr)
4
= [ū

(n1)
1 , . . . , ū

(nm)
m ]>. Note that, since

cr = b(ζr), in the definition of zu above the time
derivatives of cr can be expressed as functions
of ζr. In (x̃, z∆)-coordinates the extended system
reads as

˙̃x = f̃(t, x̃, Cz∆ + ū)

ż∆ = Az∆ +B[u′ − U ′(x̃, ζr)]
(17)

where (A,B,C) is in controllable/observable canon-
ical form and u′ is the new control input. By
construction, when u′ − U ′(x̃, ζr) is zero, the ori-
gin is an equilibrium point of (17) and, when
z∆ = 0, we have that, by A2, the x̃ subsystem is
asymptotically stable with domain of attraction
D (in x coordinates). A slight variation of Lemma
9.2.1 in (Isidori 1995) proves that there exists a
smooth function ū′(t, x̃, z, ζr) which makes (17)
asymptotically stable with domain of attraction
D̃′ = D × Rnu , and a corresponding Lyapunov
function V ′(x̃, z, t) enjoying properties similar to
(i) and (ii) in A2. Next, given any scalar c > 0,

let Ω′c
4
= {x ∈ Rn, z ∈ Rnu |V ′(x − xr, z, t) ≤

c for all t ≥ 0}. Recalling that now z is available
for feedback, we can employ this knowledge to
define an asymptotic observer for x

˙̂x = f(x̂, Cz) +

[
∂Hx(x̂, z)

∂x̂

]−1

(Ex)
−1
L (y − ŷ)

ŷ = h(x̂, Cz),
(18)

which, by Theorem 1 in (Maggiore and Passino
June 2000), is such that the equilibrium point x−
x̂ = 0 is exponentially stable and asymptotically
stable with basin of attraction a suitable region.
Moreover, the rate of convergence of x̂ to x can
be made arbitrarily fast. Next, since now z is the
state of the compensator (16) and is available for
feedback, A6 has to be modified as follows.

Assumption A7 (Topology of X × U): Assume
there exists a positive scalar c̄ such that F (Ω′c̄) ⊂
Cξ ⊂ F (X ,U) , for some convex compact Cξ.

Then, the projection for x̂ introduced in (Maggiore
and Passino June 2000) becomes

˙̂xP =

[
∂Hx
∂x̂

]−1{
P1

(
ξ̂,

˙̂
ξ, z, ż

)
− ∂Hx

∂z
ż

}

P1 =


˙̂
ξ − Γ1

Nξ

(
N>ξ

˙̂
ξ +N>z ż

)
N>ξ Γ1Nξ +N>z Γ2Nz

if N>ξ
˙̂
ξ +N>z ż ≥ 0 and [ξ̂>, z>]> ∈ ∂Cξ

˙̂
ξ otherwise

(19)
Choose a scalar c such that 0 < c < c̄. The
solution of Problem 1 if given by the following.

Theorem 2. Consider system (1) with the ex-
osystem (12) generating the reference trajectory
r(t) = q(w). Suppose A1-A5, and A7 are satisfied



and the compensator (7) in A4 is replaced by the
internal model

ζ̇r = a(ζr), cr = b(ζr). (20)

Then, the output feedback tracking problem is
solvable on A′ = {x ∈ Rn, xc ∈ R2n+nu+q | [x>(0),
z>(0)]> ∈ Ω′c, x̂

P
a (0) ∈ H−1

x,ζ(Cr), x̂
P>(0) ∈

H−1
x (Cξ)}, for any 0 < c < c̄, by letting

u′ = ū′(t, x̂P − x̂Pr , z, ζ̂Pr ) (21)

(refer to (Maggiore and Passino June 2000) or see
Figure 1 for the meaning of the variables x̂Pr and

ζ̂Pr ) be the output of the dynamic output feedback

controller with state xc
4
= [z>, x̂Pa

>, x̂P>]> ∈
R2n+nu+q, and choosing large enough gains in the
observers.

Theorem 2, besides providing a set of sufficient
conditions for the solvability of Problem 1, al-
lows us to apply the methodology introduced in
(Maggiore and Passino June 2000) to the output
regulation problem.

4. CONCLUSIONS

We have shown that the output feedback (prac-
tical) tracking problem can be solved if one can
find a compensator (the practical internal model)
yielding suitable observability properties in the
closed-loop system. We have established a con-
nection between different existing techniques (dif-
ferential flatness, stable inversion, and output
regulation theory) and the approach followed in
this paper. It must be stressed that, contrary to
current results in output regulation theory (see,
e.g., (Isidori 1997), (Mahmoud and Khalil 1997),
(Serrani and Isidori 2000)), the methodology pre-
sented here does not handle the presence of uncer-
tainties or disturbances: more research is needed
to address this concern. On the other hand, how-
ever, the class of systems considered in this paper
is not restricted to be in lower triangular form,
nor are the reference trajectories restricted to be
the outputs of a known exosystem. In this respect,
the practical internal model may be viewed as a
robust counterpart of the standard internal model,
in that it can be used when the information about
the exosystem is not accurate, or even when the
exosystem is not present at all. Finding necessary
and sufficient conditions for the existence of a
practical internal model, as well as a constructive
methodology to find it, represent open research
topics.
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