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Abstract

The problem of controlling surge and stall in jet engine coespors is of fundamental importance in preventing damadeengthening the
life of these components. In this theoretical study, westliate the application of a novel output feedback contrchnéue to the Moore-Greitzer
mathematical model for these two instabilities assumirag the plenum pressure rise is measurable. This problenrtisyarly challenging since
the system is notiniformly completely observablnd, hence, none of the output feedback control techniquesdfin the literature can be applied
to recover the performance of a full state feedback coeiroll

Index Terms

Surge and stall, nonlinear control, output feedback, sjoar principle, nonlinear observer.

I. INTRODUCTION AND PROBLEM DESCRIPTION

We consider the problem of controlling two instabilities iefih occur in jet engine compressors, namely rotating stadl surge. In [8]
Moore and Greitzer developed a three-state finite dimeatiGalerkin approximation of a nonlinear PDE model desnglthe compression
system. Since its development, several researchers hadetlus Moore-Greitzer three state model (MG3) to designiliizlg controllers
for stall and surge, see for instance the works [3], [5], Mpst existing results focus on the development of statelfaekl controllers
which may not be implementable because the state is noebntireasurable. In [3] a partial state feedback controliepsfies practical
implementation by only requiring measurements of the mass éind plenum pressure rise.

To the best of our knowledge, available solutions to the wtufpedback control problem using only plenum pressure ($se [1] and
Sections 12.6, 12.7 in [2]) do not rely on the estimation &f &ntire state of the system, and it seems that no attemptdeas rhade to
design a stabilizing output feedback controller (usingygienum pressure rise feedback) based on a full-state &k&dtontrol law. In this
paper we introduce a new globally stabilizing full statediegck control law for MG3, and we employ the theory develojpefl’] for the
output feedback control of non-UCO systems (i.e., systaahdte not globally observable) to regulate stall and suygesing only pressure
measurements. We stress that the details of a practicajrdasid implementation are not within the scope of this note.

The MG3 model is described by (see [3] for an analogous etpo¥i

b =—U+ Vo(d) —30R
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where @ represents the mass flow, is the plenum pressure ris® > 0 is the normalized stall cell squared amplitude; is the mass

flow through the throttle (throughout this note we will set= 7, and 3 = 1//2). The functions¥.(®) and &7 (¥) are the compressor

and throttle characteristics, respectively, and are dgfaelc(®) = Ue, + 1 + 3/20 — 1/28%, ¥ = %2(1 + &1 (¥))?, where U¢, is

a constant and is the throttle opening, the control input. Our control aljee is to stabilize system (1) around the critical equilin

R°=0,9°=1,0° = ¥ (P°) = ¥, + 2, which achieves the peak operation on the compressor ¢hegtic. Shifting the origin to the

desired equilibrium with the change of variablgs=® — 1,9 = ¥ — ¥, — 2 we obtain

R=—0R*—oR(2¢ + ¢°)

\il:

¢ =—1p —3/2¢* — 1/2¢° — 3R¢ — 3R @
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We assume the pressure rise (and hengéo be the only measurable state variable.

Il. STATE FEEDBACK CONTROL DESIGN

We start by designing a full-state feedback controller Whitakes the origin of (2) an asymptotically stable equilibripoint with domain
of attraction{(R, ¢,7) € R¥|R > 0}, as seen in the next theorem.

Theorem 1 For system (2), with the choice of the control law
2+ (1 = %kik2)$ + kot + 38°k1 R
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wherek; and k2 are positive scalars satisfying the inequalities,
17 (2Co + 3)?
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the origin is asymptotically stable with domain of attractid = {(R, ¢,v) € R®*| R > 0}.

Proof: Without loss of generality let: = ﬁ—g(qb— Y/ ¥ + ¥, + 2+ 2), so that the last equation in (2) becomgs= u. Next, notice
that system (2) can be viewed as the interconnection of tweystiems:
_ 32 13
¢=—v—3¢"— 50
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Con5|der the following Lyapunov function candidate (paitispired by Section 2.4.3 in [4]) for system (2}, = CR + ¢ + 5 ¢ +

(1/; k1¢) whereC > 0 is a scalar. After noticing thal’ is positive definite on the domaid, and lettings) = ¢ — k:lqb we calculate
the time derivative of V as follows,

[S1] R= —oR?  [S.] {

V =—CoR> - CoR(2¢+ ¢°) + (¢>+ %¢3> (— ¥

_g¢2_%¢3—3R¢—3R) +1;(u+1mp (5)
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Here, as in [4], we use the identity ,
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to eliminate the potentially destabilizing term (¢ + k1/2¢>3) 3/2¢ Next, substituting (3) into (5) (after taking in accoune ttiefinitions
of u and~), letting k1 = k1 — 9/8, and using the definition ofy, we get
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By using Young’s inequality one can show that (refer to [6] for a detailed derivation)
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Using the inequalities in (4) we conclude tHétis negative definite on the domaid. This and the fact that the boundary &f 9.4 =
{(R,®,7%) | R = 0}, is an invariant manifold prove that the origin of the clodedp system in an asymptotically stable equilibrium point
and the se{ (R, ¢,v) |V < K} N A is its region of attraction for any positive real numb€r This in turn shows tha# is the domain of
attraction of the origin of the closed-loop system. [ ]

In practice,k; and k2 can be chosen significantly smaller than their theoretioakt bounds in (4). Choosing = 7 ando = 1/1/2, we
found that the smallest values bf and k. satisfying (4) are given by, = 20.43, k2 = 4.43 - 10* (C' = 0.2179). However, simulations of
the closed-loop system (not included here for space litoitat see [6]) for several different initial conditions iodte thatk, and k2 can

be chosen as low a).

1For any real numbers andb, and any positive reat, one has thatb < % + kb2,



Generally a full-state feedback controller may yield a dretiosed-loop performance than one using partial-staébfeck because it uses
more information about the state of the system. When comgaour full-state feedback controller to the partial-stitedback controller
developed in [3], however, this claim cannot be made witleodgorous analysis which is beyond the scope of this paper.

I1l. OUTPUT FEEDBACK DESIGN

In this section we apply the methodology developed in [7]acower the performance of the state feedback controlleugB)g output
feedback. In what follows, we summarize the main result in Consider the following dynamical system,

z = f(z,u)

y = h(x,u) ©)

wherez € R",u,y € R, f andh are known smooth functions, ant(0,0) = 0. We want to design a stabilizing controller for (6) without
the availability of the system statas In order to do so, we need an observability assumption. Pefie observability mapping{ by
calculatingn — 1 derivatives ofy along the vector fieldf

e Sy, .y )T =H(m,u,.~7u("“*1))7 @)

wheren,, 0 < n, < n, denotes the number of time derivativeswothat appear ir{ (n., = 0 indicates that there is no dependenceun
Next, augment the system dynamics with integrators at the input side, which corresponds to usingmapensator of orden,,

i':f(CC721)72‘,’1:2,’27...,Znu:U7 (8)

so that (7) can be written ag = H(z,2). Let X = [z',2"]" € R™"™« denote the state variable of tietended systenWe are now
ready to state our first assumption.

Assumption Al (Observability): System (6) is observable over an open etC R™ x R™* containing the origin, i.e., the mapping
F: 0O — Y (where)y = F(0O)) defined by

Y=l 2" =F(X) = [H(,2) 2] 9)
has a smooth invers€ ' : Y — O, F~ YY) = F  (ye,2) = [H  (ye,2) ", 2"]".

Following the terminology in [10], whe® = R™™"= we say that the system isiformly completely observable (UCO)
Assumption A2 (Stabilizability): There exists a smooth functiai(x) such that the origin of (6) is an asymptotically stable (abglly
asymptotically stable) equilibrium point af = f(z, a(z)).

Using A2, the knowledge of a Lyapunov function for (6) with= @(x), and the integrator backstepping lemma (see, e.g., [48,may
design a smooth control law = ¢(z, z) = ¢(X) which makes the origin of (8) an asymptotically stable @qtiiim point. In particular,
from the application of the integrator backstepping lemma also gets a Lyapunov functidi(X). Given any scalar > 0, let Q. denote
the generic level set o, i.e., Q. 2 {X € R™*™ |V < c}. Our last assumption concerns the topology of the “obsditabet” O.
Assumption A3 (Topology of ©): Assume that there exists a constapnt> 0 and a set such thatF (2.,) CC C Y (= F (0O)), where
C has the following properties

(i) The boundary ofC, 9C, is classC", i.e., there exists &' function g : C — R such thatdC = {Y € C|g(Y) = 0}, and
(8g/dY)T # 0 on aC.
(i) Each sliceC* = {y. € R™|[y.',Z"]" € C} is convex for allz € R™.
(i) 0 is a regular value ofi(-, z) for each fixedz € R™, i.e., [0g/y.(y.,Z)]" does not vanish anywhere on the boundary of each
slice C*.
(iv) UsegnaC” is compact.

Given a real-valued function — a(z), R™ — R, and a vector field: in R™, recall that the Lie derivativd.,b is defined asL.b =
(0b/0z)a(x). We are now ready to introduce the output feedback contrédlethe extended system (8),

o]y gy p Ne(MLgg oM,
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CEP: Ye o Ye (10)
if Log>0andY” €acC
f@", 2,) otherwise
v=09(",2), (11)
where
: oHGE" )]
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X

F=[f@" 2y 72", G=LyF
and the various parameters are defined in the following table

e = H(E", 2) VP =F@"2) =", =T]"
9 N R n
Ny (Y7) = [09/09] & =diag[p,...,p"],p>0
L € R"™ Hurwitz = p*(8E)~t (8&)~ 7T
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with S = ST = P2, whereP is the solution of the Lyapunov equatid(A. — LC.)+(A.— LC.)T P = —I and (4., C.) is the canonical
observable pair with eigenvalues at zero.

The controller (11) has a certainty equivalence structlife observer with stat@” incorporates a dynamic projection which constrains
the estimate:” to lie inside the set{~'(C) C O and thus guarantees its well-definiteness. This featurariscplarly useful wher® is
not all of R*™™« (that is, when the system is not UCO) and other output feddbantrol approaches based on a separation principle such
as [10] cannot be employed. In the next section we will shost MG3 is not UCO and will use the methodology presented hesolve
the output feedback stabilization problem.

The following result states that (10) and (11) guaranteseddoop stability.

Theorem 2 ([7]) For the closed-loop system (8), (10), (11), satisfying ag#tions Al, A2, and A3, for any < ¢1 < c2 there exists a

scalar p*,0 < p* < 1, such that, for allp € (0, p*], the set{(X,2F) € R*"*"« | X € Q.,, (27,2) € F71(C)} is contained in the region

of attraction of the origin(X, ") = (0,0).

We are now ready to apply the result of Theorem 2 to MG3. To e¢hid, we start by verifying that assumptions A1-A3 hold foy. (2
Observability: We form the mapping+ from the measurable outpyt= v

ye = [y7 y7 y]T = H ([R7 ¢7 w]T7 ’Yy ’Y)
¥ 12
= 1/8% (¢ — 0(s,7)) 42
1/8° (—¢ —3/2¢% —1/2¢° — 3R¢ — 3R — 9')
where, for convenience, we denoté@),y) = vv/¢ + ¥, +2 — 2 andd = (00/0v) ¥+ (00/0v) ~. Recall thaty is the control input

and note that both and appear inH, thusn, = 2. Next, we need to augment the system with = 2 integrators at its input side. To
simplify the integrator backstepping design, we employ airctof two integrators with anodified output

21+ 2
VO + g, +27

so thatd and § in (12) are replaced by; and z2, respectively, and the augmented system becomes the fiofjovascade interconnection
of two subsystem$P;] and [P;]

z1 = z2, Zo = v, Y= (13)

R=—0R? -~ oR(2¢ + ¢*)
[Pi]{ é=—v—3/26° —1/2¢> — 3R$ — 3R

V=g (60— =) (14)
e { 523

Note that the dynamic extension (13) is well-defined in apoufeedback setting because the output of (13) is a functidghe measurable
variablesz; and. Next, the mappingF is given byY = F ([R, ¢, ¥]",[21,22] ") = [H ([R, ¢,%] ", 21,22) |, 21, 22] . Notice that the
observability assumption Al is satisfied on the et {[R, &, ]T €R3,z€R? | > —1} and hence the systeis not UCQ It is easy
to check that, wher) = —1 and henceb = 0, F does not depend oR and hence it is not invertible. Hence, when there is no mass flo
through the compressof(= 0) the normalized stall cell squared amplituBecannot be observed. Clearly, = 0 is a condition we would
like to avoid during normal engine operation.

Stabilizability: To be consistent with the notation used earlier,det [R, ¢,v]". Rewrite[P1] in (14) asi = fi(z) + g1(z)z1 (also,
let f(z,21) = fi(z) + g1(z)z1). From Theorem 1 we have that the stabilizability assurmpA@ is satisfied by the controlley(z). Next,
recalling thatz; = 6, in order to design a stabilizing control law for the extethdgstem (14) one can viefy?;] as a subsystem with input

6 and stabilizing controlled = 5(z)+/¥ + V¢, + 2 — 2 and apply integrator backstepping. Doing so, one obtaiassthabilizing control
law

V=6 — 3 — ko 2 o(x, 2), (15)
wherez; = z1 — 0(z), a(z, 21) = —ksz1 — x) z1], Z2 = z2 — oz, z1), andks, k4 are arbitrary positive constants.

This completes the deS|gn of a stablllzmg state feet?t?ackhie extended system (14). The Lyapunov function of theeddsop extended
system isV =V + zl + 35 zz, whereV is defined in the proof of Theorem 1. Following the same reiagpas in the proof of Theorem
1, we conclude that the orlgln of the extended system is aBytially stable with domain of attractioP = A x R2.

Topology of the Observability SetNoting that) = F(O) = {y. € R 2z € R? | ye 2 > B2( 1—z1)}, it is readily seen that the set

~ o by —
C = {Y €R’ | Ye,1 € [ahbl],ye,g S |:a2 212 Zl] ,

ﬂQ ’ ﬂQ
~ 4 b
zo + a3 z2 + 3:|7z1€[a47b4]7z2€[a’5’b5]}7

g B

Ye,3 S |:



parameterized by the set of scalds;,b; € R|a; < b;,i = 1,...,5}, is contained iny for all az > —1. Furthermore, each slic&*
obtained fromC by holding z constant at is convex (it is a parallelepiped IR®), thus satisfying requirement (ii) in A3. The union of all

slicesC? is the set
a2 — b4 b2 — Q4

g B

U cr = {ye € R3|ye,1 € [a1,b1],ye2 € {

zZeR2

—bs+a3 —as+ bs} }
g B '
which is clearly compact, thus satisfying requirement.(Mptice that the boundary of the sét defined above does not fully satisfy
requirement (i) because it is continuous but not diffesdsig at some corners. This, in general, may generate someriwainproblems in
the projection which can be dealt with by smoothing out theers ofC. Using the definition o above one can calculate the vectdVg,
and N (because of space limitations we omit their expression[8@end verify thatV,, never vanishes. So in particulaf,, does not
vanish on any slic€?, and thus requirement (iii) is fulfilled. In conclusion, inder for A3 to be satisfied, it remains to use the Lyapunov
function V' to find the largest value af; such that2., C O (implying that F(Q.,) C F(O)) and subsequently pick values for the scalars
ai, bi, i=1,...,5 such thatas > —1 and F(.,) C C. A more practical way to address the design{af, b;} entails running a number
of simulations for the closed-loop system under state faeklicorresponding to several initial conditiofis(0), z(0)) and calculating upper
and lower bounds fot)(t), (t), —(t) —3/2¢%(t) — 1/24°(t) — 3R(t)$(t) — 3R(t), z1(t), z2(t). By doing that, we found that whenever
[#(0)7,2(0)T]T € Qo £ {[z(0)7,2(0)T]T €R® : R e [0,0.1],¢ € [-0.1,0.1],% € [~0.5,0.5], z1 € [=0.1,0.1], 22 € [~0.1,0.1]}, we
have thatal = —1.15, by = 0.5, ac = —0.3, bo = —0.1, a3 = —0.75, b3 = 0.4, a4 = —2, by = 7, a5 = —70, b5 = 250. We must point
out that our choice ofg is rather conservative and is made primarily for the sakdlastration.
Observer Design: Having verified that assumptions A1-A3 hold and having gelkt¢he setC, we are ready to design observer (10) for
MG3. Denoting byz” the vector[R”, $*,4*]T, the vector fieldf (27, z,) is given in (16). In conclusion, the output feedback coierol
design is given by = ¢(27, z), where the functions is defined in (15).

Ye,3 S |:

IV. SIMULATION RESULTS

Here we present the simulation results when the output seskdbontroller developed in the previous section is appi@dystem (2).
We choosek; = 20.43, k2 = 4.43 - 10 to fulfill inequalities (4) in Theorem 1, and = [6,12,8]" so that the associated polynomial
5% +115% + las + 13 = 0 is Hurwitz. In Figure 1 system and controller states, togethith the control input, are plotted far= 1/5. The
figure clearly shows the operation of the projection whickvpnts the observer from peaking and guaranteesdthat—0.3, and thus is
bounded away from the singularity in1. Figure 1 also depicts the evolution of the observer estomagrror forp = 1/10 andp = 1/50,
confirming the theoretical predictions of Theorem 1 and Lerimin [7] concerning the arbitrary fast rate of convergentéhe observer
with projection (10). Finally, in Figure 2 the orbits ¢R, ¢, ) are plotted for decreasing values mf

V. CONCLUDING REMARKS

While existing separation principle approaches such asddnot be applied to recover the performance of full-sta¢elback controllers
for MG3, they can be employed to recover the performancangfpartial state feedback controller which does not Bsesuch as the one in
[3]), since the(¢, 1) subsystems UCO (whereas, as shown in earliét,is notobservable whew = —1). Additionally, without resorting to
a separation principle, one can employ the technique deedlin [2], Sections 12.6, 12.7 and obtain semiglobal szatibn of the origin
of the closed-loop system system, or the one presented ,ifbgtspd on a globally convergent observer and a small-gaigrie

The modularity of our approach and, specifically, the atdlity of an estimate for thdull state of the system provides some design
flexibility in that it allows using available state feedbambntrol design techniques. On the other hand, the resudsepted here have some
limitations that need to be addressed. First, our methaggyolas well as the approach in [10]) requires adding two iateegs at the input side
of MG3, thus unnecessarily complicating the state feedlossign. Additionally, assuming, as we do, perfect knowdedfjthe compressor
characteristit and absence of disturbances is not a realistic assumptieraré/currently working on extending our results in this cfig.
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Fig. 1. Closed-loop system trajectorigs £ 1/5) and estimation errorsp(= 1/10, 1/50).
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