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Preface

These notes, developed in support of a mini course at the Norwegian Institute of Science and Technology,

present an overview of a developing body of work on hierarchical set stabilization for nonlinear control

systems. In these notes, a control specification is a closed set that we wish to stabilize by feedback

control. We consider specifications that can be broken down hierarchically.

We propose a framework in which a hierarchy of control specifications is a list of nested closed subsets

Γ1 ⊂ · · · ⊂ Γn to be asymptotically stabilized. The key theoretical tool in this context is a reduction

theorem for asymptotic stability of nested sets.

We present a number of applications of the theory:

• A circular formation path following problem for a collection of nonholonomic vehicles.

• An almost global position control methodology for underactuated thrust-propelled vehicles.

• A backstepping methodology that doesn’t rely on Lyapunov functions.

• A result concerning the stability of sets for cascade-connected systems.

The notes are organized as follows. In Chapter 1 we formulate the hierarchical control problem (HCP)

and introduce a number of examples motivating the chosen formulation. In Chapter 2 we introduce

notions of set stability, and present reduction theorems for stability, attractivity, and asymptotic stability

of nested sets. We use these results to solve HCP. Finally, in Chapter 3 we return to the examples of

Chapter 1 and work out their solution using the theoretical tools of Chapter 1.

I am grateful to my Ph.D. students Mohamed I. El-Hawwary and Ashton Roza, who were collaborators

on this research. Without their penetrating technical insight these results wouldn’t have been possible.

I am deeply indebted to Professor Kristin Y. Pettersen for the invitation to hold a mini-course at NTNU

and for her kind hospitality.

Toronto, February 13, 2015

Manfredi Maggiore

University of Toronto
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Notation

R+ The set of nonnegative real numbers

C− The set of complex numbers with real part < 0

S1 The set of real numbers modulo 2π, with the unique manifold structure

that makes it diffeomorphic to the unit circle in R2

Rn The set of all ordered n-tuples of real numbers

Rn×m The set of n × m matrices with real entries

S1 × S2 The Cartesian product of sets S1 and S2

Sn The Cartesian product S × · · · × S, n times

cl(S) The closure of a set S

{e1, . . . , en} The natural basis of Rn

SO(3) The set {R ∈ R3×3 : R⊤R = I3, det R = 1}

0 A vector or matrix of zeros, with dimension implied from the context

In The n × n identity matrix

n The index set {1, . . . , n}

1 The vector [1 · · · 1]⊤ of dimension deduced from the context

ω× The skew symmetric matrix generated by the vector ω ∈ R3,

ω× =







0 − ω3 ω2

ω3 0 − ω1

− ω2 ω1 0







M× For a skew symmetric M⊤ = −M in R3×3, M× =
[

M32 M13 M21

]⊤

blockdiag(M1, . . . , Mk) The blockdiagonal matrix with diagonal blocks M1, . . . , Mk, in this order

M1 ⊗ M2 The Kronecker product of matrices M1 and M2

‖x‖Γ The point-to-set distance of a point x ∈ Rn to a set Γ ⊂ Rn, ‖x‖Γ :=

infy∈Γ ‖x − y‖

Bδ(p) Open ball of radius δ centred at p ∈ Rn, Bδ(p) = {x ∈ Rm : ‖x‖ < δ}

Bδ(Γ) δ-neighborhood of a set Γ ⊂ Rn, Bδ(Γ) = {x ∈ Rm : ‖x‖Γ < δ}

σ(A) The spectrum of a matrix A
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Chapter 1

The Hierarchical Control Problem

In these notes we present a framework for hierarchical control design. Our aim is to formalize one of the

design principles commonly used by practitioners to solve complex control problems, namely the idea of

breaking down a control problem into a prioritized sequence of elementary sub-problems. The designer

addresses each sub-problem separately, hoping that the final control law works for the ensemble. For

example, a common approach for controlling the speed of electric motors is to have an inner loop that

controls the armature current and an outer loop to control the speed. The proper operation of the current

control loop has higher priority because, without it, the speed control loop would not be able to function.

Our first objective is to gain some intuition about hierarchical control design. We will do that through

three examples. Then, in Section 1.4 we will formulate the hierarchical control problem.

1.1 Position Control of a Thrust-Propelled Vehicle

Consider a rigid body propelled by a thrust force and equipped with some mechanism to induce torques

about the three body axes.

u

R b1

b2

b3

B

I

τ1

τ2 τ3

thrust

Fix an inertial frame I and a body frame B = {b1, b2, b3}. Let (x, v) ∈ R3 × R3 denote the position

and velocity of the vehicle’s centre of mass in frame I . Let R ∈ SO(3) be the attitude of the body, i.e.,

the rotation matrix whose columns are the vectors b1, b2, b3 represented in frame I , and let ω ∈ R3

be the body’s angular velocity in frame B. Assume that the vehicle is propelled by a thrust vector with
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2 CHAPTER 1. THE HIERARCHICAL CONTROL PROBLEM

magnitude u directed along the negative b3 axis. Let τ be the torque vector in body frame. The equations

of motion of the vehicle are

Translational:















ẋ = v

mv̇ = mge3 − uRe3

= mge3 + T.

(1.1)

Rotational:

{

Ṙ = Rω×

Jω̇ + ω × Jω = τ,
(1.2)

where m denotes the mass of the body and J is its symmetric inertial matrix in frame B. We denote the

state of the vehicle by χ := (x, v, R, ω) ∈ X := R3 × R3 × SO(3)× R3.

The above model encompasses a large class of VTOL aircrafts such as quadrotor helicopters. There are

six degrees-of-freedom and four control inputs, the torque τ ∈ R3 and the thrust magnitude u ∈ R+.

Thus the rigid body is underactuated, with degree of underactuation equal to two.

The control objective is position stabilization: stabilize the equilibrium χ⋆ = (x⋆, 0, R⋆, 0), where R⋆, the

attitude of the vehicle at equilibrium, corresponds to a hovering configuration, i.e., R⋆e3 = e3 (the thrust

axis is vertical).

A commonly used control strategy is illustrated in the block diagram below.

desired

thrust

desired

direction

desired

attitude

χ

τ

(x, v)

(R, ω)

x⋆ Td

u = ‖Td‖

Td

‖Td‖

R(Td)

Attitude control loopPosition control loop

There are two nested loops. The outer loop is a position controller which provides reference signals

for the inner loop, an attitude controller. The position controller treats the vehicle as a point-mass

and demands a desired thrust vector Td. The inner loop orients the vehicle so that the actual thrust

vector coincides with the desired one. This control topology is appealing due to its simplicity and

its modularity. One may redesign the position control module without affecting the attitude control

module, and vice versa. The controller structure also conforms to a practical requirement: commonly

available commercial autopilots perform attitude control, so it is desirable to leverage such autopilots by

adding a position control outer loop. We will now outline the steps that one could perform to produce

a position controller that conforms to the above block diagram.

Step 1: Position control design. Consider the translational dynamics in (1.1), repeated below for conve-

nience,

ẋ = v

mv̇ = mge3 − uRe3 = mge3 + T,

This version: February 20, 2015



1.1 POSITION CONTROL OF A THRUST-PROPELLED VEHICLE 3

and view the thrust vector T = −uRe3 as a control input. Let Td(x, v) be a feedback such that when

T = Td(x, v), the equilibrium (x, v) = (x⋆, 0) is globally asymptotically stable for (1.1). Suppose that the

third component of Td is never zero (i.e., the thrust has a nonzero vertical component) so that ‖Td‖ 6= 0.

Step 2: Attitude extraction. Define a function R(Td) : R3 → SO(3) such that

R(Td)e3 = −
Td

‖Td‖
for all Td ∈ R

3\{0}.

In other words, R(Td) is a rotation matrix with the property that when R = R(Td) and u = ‖Td‖, the

thrust vector T = −uRe3 coincides with the desired thrust vector Td. Thus R(Td) represents the desired

attitude of the vehicle.

There are infinitely many choices of smooth functions R. Indeed, if v ∈ R3 is an arbitrary unit vector,

the matrix R(Td) =
[

b1d b2d b3d

]

with

b1d =
Td

‖Td‖
× v, b2d = −

Td

‖Td‖
× b1d, b3d = −

Td

‖Td‖
,

has the required properties.

Step 3: Attitude stabilization. Consider the attitude dynamics in (1.2),

Ṙ = Rω×

Jω̇ + ω × Jω = τ,

and let τd(R, ω) be a smooth feedback that asymptotically stabilizes (R, ω) = (I, 0). There is a multitude

of controllers available in the literature to solve this problem either locally or almost-globally. We will

present one of them in Chapter 3.

Position control feedback. Having performed the three design steps above, we are ready to present a

position control feedback. Recalling the block diagram presented earlier, we set the thrust magnitude

equal to the magnitude of the desired thrust Td,

u = ‖Td(x, v)‖. (1.3)

Next, we use the attitude stabilizer to define a torque feedback making R converge to the desired attitude

R(Td). To this end, we define the desired angular velocity ω(χ) as

ω(χ) :=
[

R(Td(x, v))−1Ṙ(χ)
]

×
,

where Ṙ denotes the derivative of the map (x, v) 7→ R(x, v) along (1.1) substituting u = ‖Td(x, v)‖.

Next, we define error variables

R̃(χ) := R(Td(x, v))−1R, and ω̃(χ) := ω − R̃−1(χ)ω(χ).

It is not hard to show that if one sets

τ(χ) = τd(R̃, ω̃)− ω̃ × Jω̃ + ω × Jω − J
(

ω̃
×R̃−1

ω − R̃−1
ω̇

)

, (1.4)
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4 CHAPTER 1. THE HIERARCHICAL CONTROL PROBLEM

the dynamics of the error variables read as

˙̃R = R̃ω̃
×

J ˙̃ω + ω̃ × Jω̃ = τd(R̃, ω̃).

The function ω̇ in (1.4) is the derivative of the map χ 7→ ω(χ) along (1.1), (1.2) substituting u =

‖Td(x, v)‖.

By the design of τd, the equilibrium (R̃, ω̃) = (I, 0) of the above error dynamics is asymptotically stable

so that R converges to R(Td(x, v)), as required.

In conclusion, we have arrived at the position control feedback (1.3), (1.4). Does this feedback solve the

position control problem? More precisely, suppose we are given:

• a position control feedback Td(x, v),

• an attitude extraction map R(Td), and

• an attitude stabilizer τd(R, ω),

and we combine the three functions above according to the formulas (1.3), (1.4). Noting that, at the

desired equilibrium (x, v) = (x⋆, 0), the desired torque is Td(x⋆, 0) = −mge3, the attitude extraction

map at equilibrium gives R(Td(x⋆, 0)) = R(−mge3). Denote R⋆ := R(−mge3). The question arising in

this context is this: Is it true that the equilibrium (x, v, R, ω) = (x⋆, 0, R⋆, 0) is asymptotically stable?

What we know from the control design is the following:

• Letting Γ2 := {χ ∈ X : R = R(x, v), ω = R̃−1(χ)ω(χ)}, the torque feedback (1.4) makes Γ2

asymptotically stable.

• Due to the property of the attitude extraction map R, on the set Γ2 we have that T = −uRe3 =

Td(x, v). Therefore, the motion of the vehicle on the set Γ2 is described by equation (1.1) with feed-

back T = Td(x, v). By the design of Td, the equilibrium Γ1 := {χ = (x⋆, 0, R⋆, 0)} is asymptotically

stable for (1.1). In other words, the equilibrium Γ1 is asymptotically stable relative to the set Γ2.

In essence, the question we need to answer is this: Does the fact that the set Γ2 is asymptotically stable and

the fact that the equilibrium Γ1 is asymptotically stable relative to Γ2 imply that Γ1 is asymptotically stable?

We need some theoretical development to answer this question. We will return to it in Chapter 3. For

now, we remark that the nested loop structure of this position controller corresponds to a hierarchical

structure in the control specifications. Namely, the design requires first the stabilization of the set Γ2

(attitude control loop) and then the stabilization of the required hovering position within Γ2 (position

control loop). The hierarchy of control specifications is reflected in the fact that Γ1 ⊂ Γ2.

1.2 Circular Formation Stabilization for Kinematic Vehicles

Consider a collection of n ≥ 2 identical vehicles on a plane, modeled as kinematic unicycles,
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1.2 CIRCULAR FORMATION STABILIZATION FOR KINEMATIC VEHICLES 5

ẋi
1 = ui

1 cos xi
3

ẋi
2 = ui

1 sin xi
3

ẋi
3 = ui

2.

i ∈ n. (1.5)

The pair (xi
1, xi

2) ∈ R × R represents the coordinates of unicycle i in a common planar inertial reference

frame, while xi
3 ∈ S1 is the ith unicycle’s heading angle. The control inputs (ui

1, ui
2) represent, respec-

tively, the linear and angular speeds of unicycle i. We denote χi = (xi
1, xi

2, xi
3), and χ = (χ1, . . . , χn). The

collective state space of the unicycles is the Cartesian product X = (R × R × S1)n.

i

i + 1

1

n

r
r

r r

θi

θi

We want to make the vehicles follow a common circle of

radius r with unspecified centre, and move in formation

along the circle counterclockwise, with desired ordering

and spacing, as illustrated in the figure on the right-hand

side. The formation specification on the common circle is

given in terms of angles θi, represented in the side figure.

More precisely, θi is the desired angle subtended by the arc

of the circle between unicycles i and i + 1. Equivalently, as

illustrated in the figure, θi is the desired relative heading an-

gle between unicycles i and i + 1, θi = (xi+1
3 − xi

3) mod 2π.

The circular path following specification can be formalized

with a little geometric insight. In order to travel around a

circle of radius r counterclockwise, the linear and angular speeds of unicycle i must be related as follows:

ui
2 = ui

1/r, ui
1 > 0. If this is the case, then the centre of the circle has coordinates

ci(χi) =

[

xi
1 − r sin xi

3

xi
2 + r cos xi

3

]

.

(This is easily seen by drawing a vector of length r orthogonal to the velocity of unicycle i). The circular

path following specification is the requirement that c1(χ1) = · · · = cn(χn) and that ui
2 = ui

1/r, ui
1 > 0.

Now we create a hierarchy of control specifications. We will first make the unicycles converge to a

common circle, and then stabilize the required formation on the circle. Accordingly, let

Γ2 := {χ : c1(χ1) = · · · = cn(χn)},

and

Γ1 := {χ ∈ Γ2 : xi+1
3 − xi

3 = θi mod 2π, i = 1, . . . , n − 1}.

As in Section 1.1, we have two subsets Γ1 ⊂ Γ2 of the state space representing two control specifications.

The fact that the subsets are nested reflects a hierarchy in the control specifications. We may flip the

order of specifications, picking Γ2 = {χ : xi+1
3 − xi

3 = θi mod 2π, i = 1, . . . , n − 1} and Γ1 = {χ ∈ Γ2 :

c1(χ1) = · · · = cn(χn)}. This definition would give rise to a different control design and a different

physical behavior of the vehicles. The hierarchical control design strategy is to design feedbacks such

that

This version: February 20, 2015



6 CHAPTER 1. THE HIERARCHICAL CONTROL PROBLEM

• The set Γ2 is globally asymptotically stable (the unicycles follow a common circle).

• The set Γ1 is asymptotically stable relative to Γ2 (the unicycles move in formation on the circle).

As in Section 1.1, the question is whether or not the two properties above imply that Γ1 is asymptotically

stable. We will return to this problem in Chapter 3, where we will design smooth static feedbacks with

the two properties above, and we will show that they do indeed solve the circular formation stabilization

problem.

1.3 Backstepping as Hierarchical Control Design

Backstepping [KKK95] is a popular design methodology to stabilize the origin of smooth lower-triangular

systems

ẋ1 = f1(x1) + g1(x1)x2

...

ẋi = fi(x1, · · · , xi) + gi(x1, · · · , xi)xi+1

...

ẋn = fn(x1, · · · , xn) + gn(x1, · · · , xn)u,

where xi ∈ R, fi(0, · · · , 0) = 0, and gi 6= 0, i ∈ n. The idea is to break down the control design into n

steps. At step 1, we view x2 as control input and design a feedback x2 = µ1(x1) stabilizing x1 = 0 for the

x1-subsystem. At step 2, we view x3 as control input and design a feedback stabilizing the error variable

x2 − µ1(x1). The procedure continues recursively in this manner until, at step n, a feedback u is found.

More in detail, let µ1 = g−1
1 (− f1 − K1x1) so that, when x2 = µ1(x1), ẋ1 = −K1x1. Then define the error

e1 = x2 − µ1(x1). Its time derivative is ė1 = f2 + g2x3 − µ̇1. If x3 were a control input, we would set

x3 = µ2(x1, x2) := g−1
2

(

− f2 + µ̇1 − K2e1

)

. Continuing like this, we define1 recursively

µi = g−1
i

(

− fi + µ̇i−1 − Ki(xi − µi−1)
)

, i = 2, . . . , n − 1.

Finally, at step n we obtain

u = g−1
n

(

− fn + µ̇n−1 − Kn(xn − µn−1)
)

.

Denote by Γ1 the equilibrium (x1, . . . , xn) = (0, . . . , 0) and, for i = 2, . . . , n, define sets

Γi = {(x1, . . . , xn) : xj = µj−1(x1, . . . , xj−1), j = i, . . . , n}.

We have n nested invariant sets Γ1 ⊂ · · · ⊂ Γn. The above backstepping design has these properties:

• For i = 1, . . . , n − 1, the set Γi is globally asymptotically stable relative to Γi+1.

• The set Γn is globally asymptotically stable.

1Classical backstepping [KKK95] relies on the recursive definition of a Lyapunov function and results in slightly different

definitions of µi.
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1.4 STATEMENT OF THE HIERARCHICAL CONTROL PROBLEM 7

As in Sections 1.1 and 1.2, the question is whether the above properties imply that Γ1 is globally asymp-

totically stable. We will see in Chapter 3 that the answer is yes for this particular problem.

In light of the above, we can think of backstepping as a hierarchical control design arising from n

specifications: design u to globally asymptotically stabilize Γn. Then make Γn−1 globally asymptotically

stable relative to Γn, and so on. Finally, we require Γ1 to be globally asymptotically stable relative to Γ2.

1.4 Statement of The Hierarchical Control Problem

We now formalize the intuition developed in the previous three examples. Let us review their salient

features.

• Each control specification was formulated as stabilization of a closed subset of the state space.

This subset is controlled invariant, i.e., it can be rendered positively invariant by a suitable feedback.

Imposing controlled invariance amounts to requiring that the control specification is feasible in that,

as we will discuss in Remark 2.6, a necessary condition for a set to be stable is that it be positively

invariant. To illustrate the significance of controlled invariance, consider a point mass on the plane

actuated by a force u, mẍ = u, x, u ∈ R2. Suppose we wish to make the mass converge to the unit

circle Γ = {(x, ẋ) ∈ R2 × R2 : x⊤x = 1}. This set is not controlled invariant: if the point-mass is

initialized on the circle with velocity not tangent to it, the mass will leave the circle no matter what

force is applied to it. It is therefore impossible to stabilize Γ: the specification is not feasible and it

needs to be refined. It is sufficient to replace Γ by its maximal controlled invariant subset,

Γ̂ = {(x, ẋ) ∈ R
2 × R

2 : x⊤x = 1, x⊤ ẋ = 0}.

On this set, the particle is on the circle and its velocity is tangent to it. Now Γ̂ is a feasible

specification.

• Multiple control specifications were prioritized, giving rise to nested controlled invariant sets.

In the circular formation stabilization problem of Section 1.2, higher priority was given to the

stabilization of a common circle; lower priority was given to formation stabilization. In the position

control problem of Section 1.1, we gave higher priority to attitude stabilization, and lower priority

to position control. In backstepping (Section 1.3) we gave higher priority to the stabilization of the

error xn − µn−1(x1, . . . , xn−1), lower priority to the stabilization of xn−1 − µn−2, and so on.

• The control design was decomposed into simpler sub-problems: The enforcement of the i-th spec-

ification was achieved assuming that specification i − 1 had already been met. For instance, in the

position control problem of Section 1.1, position control was achieved assuming that the attitude of

the vehicle coincides with the desired attitude, so that the thrust vector T = −uRe3 coincided with

the desired thrust vector Td(x, v). In backstepping, the stabilization of xi − µi−1(x1, . . . , xi−1) was

achieved assuming that xi+1 = µi(x1, . . . , xi).

We are now ready to formalize the hierarchical control problem. The definitions that follow rely on

notions of set stability that will be defined in the next chapter.
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8 CHAPTER 1. THE HIERARCHICAL CONTROL PROBLEM

Consider a locally Lipschitz control system

ẋ = f (x, u), x ∈ X , (1.6)

with state space an open subset X of Rn.

Definition 1.1. A feasible control specification SPEC for system (1.6) is a closed set Γ ⊂ X which is

controlled invariant. That is, there exists a locally Lipschitz feedback ū(x) such that Γ is a positively

invariant set for the closed-loop system ẋ = f (x, ū(x)).

Now consider a list of feasible control specifications Γi for system (1.6), i ∈ n, labeling the ith specification

as SPEC i.

Definition 1.2. We say that specification SPEC i has lower priority than specification SPEC j, SPEC i �

SPEC j, if Γi ⊂ Γj. This notion of priority induces a partial ordering on specifications. A hierarchy

of control specifications is an ordered list SPEC 1 � · · · � SPEC n of feasible control specifications

corresponding to nested sets Γ1 ⊂ · · · ⊂ Γn.

Now we turn to control.

Definition 1.3. Consider a hierarchy of feasible control specifications SPEC 1 � · · · � SPEC n with

corresponding sets Γ1 ⊂ · · · ⊂ Γn. A locally hierarchical feedback is a locally Lipschitz feedback ū(x)

with the following properties:

(i) For each i ∈ {1, . . . , n − 1}, set Γi is asymptotically stable relative to Γi+1 for ẋ = f (x, ū(x)).

(ii) The set Γn is asymptotically stable for ẋ = f (x, ū(x)).

If ū(x) induces properties (i) and (ii) (almost) globally, then we call it a (almost) globally hierarchical

feedback.

We are now ready to state the hierarchical control problem.

Problem 1.4 (Hierarchical Control Problem (HCP)). Given a hierarchy of feasible control specifications

SPEC 1 � · · · � SPEC n for system (1.6), find conditions under which a hierarchical feedback (globally)

asymptotically stabilizes the set Γ1.
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1.5 BIOGRAPHICAL NOTES 9

1.5 Biographical Notes

The specific formulation of the position control problem for thrust-propelled vehicles and the solution

methodology presented in Section 1.1 are taken from [RM14]. Other papers in the literature use a nested

loop architecture. In particular, the idea of attitude extraction map figures prominently in the work of

Tayebi and collaborators [AT10, RT11, Rob11]. See also [LLM10].

The circular formation stabilization problem of Section 1.2 is taken from [EHM13a]. A similar problem

was investigated in [SPL07] and [SPL08] for planar particles having unit speed whose model coincides

with (1.5) putting ui
1 = 1.

The backstepping controller presented in Section 1.3 is a minor variation of the basic feedback presented

in [KKK95], and it is taken from [EHM13b]. The setup in these notes does not rely on Lyapunov

functions, and as such the “virtual controls” µi in Section 1.3 omit some terms that are normally used to

cancel out certain derivatives of Lyapunov functions.

The formulation of the hierarchical control problem in Section 1.4 is an expanded version of ideas taken

from [EHM13b]. Our formulation differs substantially from the hierarchical control theory pioneered

by Ramadge and Wonham for discrete-event systems [RW87], and adapted to nonlinear control systems

by Pappas and Simic [PS02]. In the context of nonlinear control systems, the notion of hierarchical

consistency of [PS02] imposes requirements on the structure of the system’s vector fields. In these notes,

the hierarchy is embodied in a collection of nested controlled invariant sets, and no structure is assumed

or required on the vector fields.
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Chapter 2

Reduction Principles and Solution of HCP

In this chapter we solve the hierarchical control problem. We begin by presenting basic notions of set

stability, then turn our attention to the so-called reduction problem, a fundamental building block towards

the solution of HCP.

2.1 Stability Notions

Consider a differential equation

Σ : ẋ = f (x) (2.1)

with state space a domain X ⊂ Rn. Assume that f is locally Lipschitz on X , and let φ(t, x0) denote

the maximal solution of (2.1) at time t with initial condition x(0) = x0. For each x0, denote by Tx0

the maximal interval of existence of the solution through x0. Denote T+
x0

= Tx0 ∩ [0, ∞) and T−
x0

=

Tx0 ∩ (−∞, 0].

Definition 2.1. A set Γ ⊂ X is positively invariant for Σ if for all x0 ∈ Γ, φ(t, x0) ∈ Γ for all t ∈ T+
x0

. Γ is

negatively invariant for Σ if for all x0 ∈ Γ, φ(t, x0) ∈ Γ for all t ∈ T−
x0

. Γ is invariant for Σ if it is both

positively and negatively invariant.

Example 2.2. Consider the linear system (a saddle)

ẋ1 = −x1

ẋ2 = x2

The sets {(x1, x2) : x1 = 0} and {(x1, x2) : x2 = 0} are invariant. The set {(x1, x2) : 0 ≤ x1 ≤ 1} is

positively invariant and not invariant. The set {(x1, x2) : 0 ≤ x2 ≤ 1} is negatively invariant.
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12 CHAPTER 2. REDUCTION PRINCIPLES AND SOLUTION OF HCP

Definition 2.3 (Set stability and attractivity). Let Γ ⊂ X be a closed positively invariant set for Σ.

(i) Γ is stable for Σ if for all ε > 0 there exists a neighbourhood of Γ, N (Γ), such that φ(R+,N (Γ)) ⊂

Bε(Γ).

(ii) Γ is an attractor for Σ if there exists a neighbourhood N (Γ) such that limt→∞ ‖φ(t, x0)‖Γ = 0 for

all x0 ∈ N (Γ).

(iii) Γ is a global attractor for Σ if it is an attractor with N (Γ) = X .

(iv) Γ is [globally] asymptotically stable for Σ if it is stable and attractive [globally attractive] for Σ.

(v) Γ is almost globally asymptotically stable for Σ if it is asymptotically stable with domain of

attraction X\N, where N is a set of measure zero.

Example 2.4. Consider again the saddle

ẋ1 = −x1

ẋ2 = x2.

The set {(x1, x2) : x1 = 0}, highlighted in the figure on the

right-hand side, is globally asymptotically stable because the

dynamics transversal to the subspace are described by ẋ1 =

−x1.

More generally, consider a linear time-invariant (LTI) system

ẋ = Ax, x ∈ R
n

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

and let V ⊂ Rn be an A-invariant subspace, i.e., AV ⊂ V . Questions about stability properties of V can

always be reduced to questions about the stability of an equilibrium. Let {v1, . . . , vn} be a basis for Rn

such that {v1, . . . , vk}, k ≤ n, is a basis for V . Let T be the matrix whose columns are the basis vectors

vi, T =
[

v1 · · · vn
]

. The isomorphism (x1, x2) = T−1x gives

[

ẋ1

ẋ2

]

=

[

A11 A12

0 A22

] [

x1

x2

]

.

In new coordinates, the subspace V is given by

T−1V = {(x1, x2) : x2 = 0}.

Thus, the subsystem ẋ2 = A22x2 represents the dynamics transversal to V . It is clear that the subspace

V is asymptotically for the LTI system if and only if the eigenvalues of A22 are in C−. Moreover, V is

globally asymptotically stable if and only if it is a global attractor. Finally, V is stable if and only if the

subsystem ẋ2 = A22x2 is stable.
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2.1 STABILITY NOTIONS 13

Example 2.5. Consider the nonlinear system

ẋ1 = x2(x2)
2

ẋ2 = −x1(x2)
2

whose phase portrait is depicted on the side. The x1 axis

{(x1, x2) : x2 = 0} is a continuum of equilibria. The differ-

ential equation can be rewritten as follows:

ẋ = x2
2

[

0 1

− 1 0

]

x,

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

and we see that this is the vector field of a harmonic oscillator scaled by the nonnegative function x2
2.

We conclude that phase curves are half-circles delimited by the x1 axis, from which it follows that the x1

axis is globally attractive but unstable. Indeed, there are initial conditions arbitrarily close to the x1 axis

which give rise to semicircles with arbitrarily large radius, implying that orbits travel far away from the

x1 axis before returning there.

Remark 2.6. In the definition of feasible control specification (Definition 1.1), we imposed that the set

Γ embodying a specification be positively invariant. As a matter of fact, positive invariance of Γ is a

necessary condition for Γ to be stable. Indeed, consider the definition of stability,

(∀ǫ > 0)(∃N (Γ)) φ(R+,N (Γ)) ⊂ Bǫ(Γ). (2.2)

Suppose, by way of contradiction, that the property above holds but Γ is not positively invariant. Then

there exists x̄ ∈ Γ and t̄ > 0 such that ‖φ(t̄, x̄)‖Γ = µ > 0. Let ǫ = µ/2. Then for any neighbourhood

N (Γ) of Γ, we have x̄ ∈ N (Γ) and φ(t̄, x̄) 6∈ Bǫ(Γ), violating the stability property (2.2). This gives a

contradiction and proves that positive invariance of Γ is necessary for (2.2) to hold.

Definition 2.7 (Relative set stability and attractivity). Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be closed positively

invariant sets.

(i) Γ1 is stable relative to Γ2 for Σ if, for any ε > 0, there exists a neighbourhood of Γ1, N (Γ1), such

that φ(R+,N (Γ1) ∩ Γ2) ⊂ Bε(Γ1).

(ii) Γ1 is attractive relative to Γ2 for Σ if there exists a neighbourhood of Γ1, N (Γ1), such that for all

x0 ∈ N (Γ1) ∩ Γ2, limt→∞ ‖φ(t, x0)‖Γ1
= 0. Γ1 is globally attractive relative to Γ2 if for all x0 ∈ Γ2,

limt→∞ ‖φ(t, x0)‖Γ1
= 0.

(iii) Γ1 is [globally] asymptotically stable relative to Γ2 if it is stable and [globally] attractive relative

to Γ2.
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14 CHAPTER 2. REDUCTION PRINCIPLES AND SOLUTION OF HCP

Example 2.8. In the LTI setting, the relative stability properties of invariant subspaces can be easily

assessed using an adaptation of the technique presented in Example 2.4. Consider an LTI system

ẋ = Ax, x ∈ R
n,

and let V1 ⊂ V2 ⊂ Rn be two A-invariant subspaces. Select a basis {v1, . . . , vn} for Rn in such a way

that {v1, . . . , vk1} is a basis for V1, and {v1, . . . , vk2}, k2 > k1, is a basis for V2. Let T be the matrix whose

columns are the basis vectors vi, T =
[

v1 · · · vn
]

, and consider the isomorphism

(x1, x2, x3) = T−1x.

where dim(x1) = k1 and dim(x2) = k2 − k1. The dynamics in new coordinates read as







ẋ1

ẋ2

ẋ3






=







A11 A12 A13

0 A22 A23

0 0 A33













x1

x2

x3






,

and the subspaces become

T−1V1 = {(x1, x2, x3) : x2 = 0, x3 = 0},

T−1V2 = {(x1, x2, x3) : x3 = 0}.

We see from this decomposition that V1 is globally attractive or globally asymptotically stable relative to

V2 if and only if the eigenvalues of A22 are in C−. Moreover V1 is stable relative to V2 if and only if the

subsystem ẋ2 = A22x2 is stable.

Example 2.9. Consider the system in polar coordinates (r, θ)

ṙ = r(r − 1)

θ̇ = sin2(θ/2).

The equation for r has two equilibria r = 0 and r = 1. If

r > 1 then ṙ > 0, so solutions with initial conditions outside of

the unit disk remain outside of the disk and move away from

it. If 0 < r < 1, then ṙ < 0, so solutions with nonzero ini-

tial conditions inside the unit disk asymptotically move away

from the unit circle and converge to the origin. All solutions

with r(0) = 1 remain on the unit circle - the unit circle is an

invariant set. The equation for θ has equilibria at 0 modulo 2π

and satisfies θ̇ ≥ 0, implying that if the angle is initialized at

0 modulo 2π, then it remains constant; otherwise, the angle

increases and asymptotically approaches 0 modulo 2π. These

considerations justify the phase portrait on the right-hand side.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

Denote the equilibrium (x1, x2) = (1, 0) by Γ1, and let Γ2 be the unit circle. Then Γ1 is globally attractive

and unstable relative to Γ2, and Γ2 is unstable. To see that Γ1 is unstable relative to Γ2, pick an initial

condition on the circle arbitrarily close to Γ1, and lying on the upper-half plane {x2 > 0}. The resulting
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2.1 STABILITY NOTIONS 15

solution will move away from the equilibrium, and travel once counterclockwise around the circle before

returning to the equilibrium.

Definition 2.10 (Local stability and attractivity). Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be closed sets that are

positively invariant for Σ.

(i) The set Γ2 is locally stable near Γ1 for Σ if for all x ∈ Γ1, for all c > 0, and all ε > 0, there exists

δ > 0 such that for all x0 ∈ Bδ(Γ1) and all t > 0, whenever φ([0, t], x0) ⊂ Bc(x) one has that

φ([0, t], x0) ⊂ Bε(Γ2).

(ii) The set Γ2 is locally attractive near Γ1 for Σ if there exists a neighbourhood of Γ1, N (Γ1), such that,

for all x0 ∈ N (Γ1), φ(t, x0) → Γ2 at t → +∞.

Bδ(Γ1)
Bε(Γ2)

x ∈ Γ1Γ2

Bc(x)

Local stability

Γ1
Γ2

N (Γ1)

Local attractivity

Referring to the figure above, the definition of local stability can be rephrased as follows. Given an

arbitrary ball Bc(x) centred at a point x in Γ1, trajectories originating in Bc(x) sufficiently close to Γ1

cannot travel far away from Γ2 before first exiting Bc(x). It is immediate to see that if Γ1 is stable, then

Γ2 is locally stable near Γ1, and therefore local stability of Γ2 near Γ1 is a necessary condition for the

stability of Γ1.

Example 2.11. Consider the system
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16 CHAPTER 2. REDUCTION PRINCIPLES AND SOLUTION OF HCP

ẋ1 = −x1(1 − x2
2)

ẋ2 = x2,

let Γ1 = {0} be the origin, and let Γ2 be the x2 axis.

We claim that Γ2 is unstable, but it is locally stable

near Γ1. Indeed, if x2(0) 6= 0, then x2(t) → ∞, so

that eventually ẋ1(t) will have the same sign as x1(t)

and tend to infinity. Thus Γ2 is unstable. On the

other hand, for any ball Bc(0), let ǫ > 0 be arbitrary.

We see from the phase portrait that we can find δ >

0 such that solutions originating in Bδ(Γ1) do not

exit Bǫ(Γ2) as long as they remain in Bc(0). Thus, Γ2

is locally stable near Γ1.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x1

x2

Bǫ(Γ2)

Bc(0)
Bδ(Γ1)

2.2 The Reduction Problem

At the heart of the statement of HCP in Section 1.4 is the following question. Consider two positively

invariant sets Γ1 ⊂ Γ2 ⊂ X . If Γ1 is asymptotically stable relative to Γ2, and if Γ2 is asymptotically stable,

what conditions (if any) are needed to guarantee that Γ1 is asymptotically stable? In this section, we will

address a generalized version of this problem, investigating not just the property of asymptotic stability,

but also stability and attractivity.

Problem 2.12 (Reduction Problem). Consider two closed sets Γ1 ⊂ Γ2 ⊂ X which are positively invari-

ant for a locally Lipschitz differential equation ẋ = f (x). Suppose that Γ1 is either stable, attractive, or

asymptotically stable relative to Γ2. Find conditions under which Γ1 enjoys the same property relative to

X .

This problem was first formulated by P. Seibert in [Sei69, Sei70]. The biographical notes at the end of

this chapter contain more information.

In the next examples we illustrate some of the challenges of the reduction problem.

Example 2.13. (Relative attractivity is a fragile property). Consider the differential equation
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2.2 THE REDUCTION PROBLEM 17

ẋ1 = (x2
2 + x2

3)(−x2)

ẋ2 = (x2
2 + x2

3)(x1)

ẋ3 = −x3
3,

and define Γ1 = {x ∈ R3 : x2 = x3 = 0}, Γ2 = {x ∈ R3 : x3 =

0}. We see that Γ2 is globally asymptotically stable because

the motion off Γ2 is described by the autonomous differential

equation ẋ3 = −x3
3, whose equilibrium x3 = 0 is globally

asymptotically stable. The motion on Γ2 is described by the

subsystem

ẋ1 = (x2
2)(−x2)

ẋ2 = (x2
2)(x1)

which describes a harmonic oscillator scaled by the nonnega-

tive function x2
2, a system we encountered in Example 2.5.

−2

−1

0

1

2

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1

x1
x2

x3

Γ1
Γ2

Thus, the set Γ1 is globally attractive relative to Γ2. On the other hand, Γ2 is not attractive relative to

R3, as illustrated in the figure on the side. This example illustrates that relative attractivity is a fragile

property that cannot be extended to the whole state space even though Γ2 is globally asymptotically

stable. A reduction theorem for attractivity must require stronger assumptions.

Example 2.14. (Relative stability is a fragile property). Consider the linear time-invariant system

ẋ1 = x2

ẋ2 = 0.

Let Γ1 = {0} and Γ2 = {x2 = 0}. The set Γ2 is stable. On it, the motion is described by ẋ1 = 0, therefore

Γ1 is stable relative to Γ2. Yet, Γ1 is unstable. This example illustrates that the stability of Γ2 is not enough

to guarantee that the stability of Γ1 relative to Γ2 can be extended outside of Γ2.

We have seen in the previous example that relative stability is a fragile property even in the LTI case. In

the next example, we show that relative attractivity or asymptotic stability of invariant subspaces (two

equivalent properties) are not fragile.

Example 2.15. Consider an LTI system

ẋ = Ax, x ∈ R
n,

and let V1 ⊂ V2 ⊂ Rn be two A-invariant subspaces. We have the following result.

Proposition 2.16. If V1 is asymptotically stable relative to V2 and V2 is asymptotically stable, then V1 is asymp-

totically stable.

Proof. Consider the decomposition of Example 2.8,






ẋ1

ẋ2

ẋ3






=







A11 A12 A13

0 A22 A23

0 0 A33













x1

x2

x3






,
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18 CHAPTER 2. REDUCTION PRINCIPLES AND SOLUTION OF HCP

T−1V1 = {(x1, x2, x3) : x2 = x3 = 0},

T−1V2 = {(x1, x2, x3) : x3 = 0}.

The assumption that V1 is asymptotically stable relative to V2 implies that σ(A22) ⊂ C−, and the asymp-

totic stability of V2 implies that σ(A33) ⊂ C−. Thus,

σ

([

A22 A23

0 A33

])

⊂ C
−,

implying that V1 is asymptotically stable.

2.3 Reduction Theorems

In this section we present reduction theorems for stability, attractivity, and asymptotic stability. The

proofs are found in [EHM13b] and are not included in these notes. Consider again the locally Lipschitz

differential equation

Σ : ẋ = f (x), x ∈ X .

Theorem 2.17 (Stability). Let Γ1 ⊂ Γ2 be two closed positively invariant subsets of X , and assume that Γ1 is

compact. Then, Γ1 is stable if the following conditions hold:

(i) Γ1 is asymptotically stable relative to Γ2,

(ii) Γ2 is locally stable near Γ1.

Since the stability of Γ1 implies the local stability of Γ2 near Γ1, we have the following corollary.

Corollary 2.18. Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed positively invariant sets, and assume that Γ1 is

compact. If Γ1 is asymptotically stable relative to Γ2 and Γ2 is stable, then Γ1 is stable.

Theorem 2.19 (Attractivity). Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed positively invariant sets. Then, Γ1 is

attractive if the following conditions hold:

(i) Γ1 is asymptotically stable relative to Γ2,

(ii) Γ2 is locally attractive near Γ1,

(iii) there exists a neighbourhood N (Γ1) such that, for all initial conditions in N (Γ1), the associated solutions are

bounded and such that the set cl(φ(R+,N (Γ1)))∩ Γ2 is contained in the domain of attraction of Γ1 relative

to Γ2.

The set Γ1 is globally attractive if:

(i)’ Γ1 is globally asymptotically stable relative to Γ2,
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2.4 CASCADE-CONNECTED SYSTEMS 19

(ii)’ Γ2 is a global attractor,

(iii)’ all trajectories in X are bounded.

Theorem 2.20 (Asymptotic stability). Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed positively invariant sets, and

assume Γ1 is compact. Then, Γ1 is [globally] asymptotically stable if the following conditions hold:

(i) Γ1 is [globally] asymptotically stable relative to Γ2,

(ii) Γ2 is locally stable near Γ1,

(iii) Γ2 is locally attractive near Γ1 [Γ2 is globally attractive],

(iv) [all trajectories of Σ are bounded.]

Similarly to before, we have the following corollary.

Corollary 2.21. Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed positively invariant sets, and assume that Γ1 is

compact. If Γ1 is asymptotically stable relative to Γ2 and Γ2 is asymptotically stable, then Γ1 is asymptotically

stable. Moreover, if these assumptions hold globally and all trajectories of Σ are bounded, then Γ1 is globally

asymptotically stable.

The reduction theorems for stability and asymptotic stability (Theorems 2.17, 2.20) and their corollaries

presented above rely on the assumption that Γ1 is compact. When Γ1 is unbounded, the conditions of

those theorems are no longer sufficient, an extra condition is needed.

Definition 2.22 (Local uniform boundedness (LUB)). System Σ is locally uniformly bounded near Γ (LUB)

if for each x ∈ Γ there exist positive scalars λ and m such that φ(R+, Bλ(x)) ⊂ Bm(x).

Theorem 2.23. Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed positively invariant sets. If Γ1 is unbounded, the

results of Theorems 2.17 and 2.20, as well as Corollaries 2.18 and 2.21, hold provided that Σ is LUB near Γ1.

2.4 Cascade-Connected Systems

Before using the reduction theorem for asymptotic stability to solve the hierarchical control problem,

we consider a special case of interest: the stability/stabilization of cascade-connected systems. Cascade-

connected systems have received much attention in nonlinear control theory ever since researchers dis-

covered (see [Isi95]) that smooth single-input single-output control-affine systems with input v ∈ R and

output s ∈ R

ż = f1(z) + f2(z)v

s = h(z)
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20 CHAPTER 2. REDUCTION PRINCIPLES AND SOLUTION OF HCP

can be transformed, in a neighborhood of a point at which the system has well-defined relative degree,

in the normal form

ẋ = f (x, y)

ẏ = Ay + Bu

where (A, B) is a controllable pair. Suppose we design a feedback u = Ky stabilizing the linear subsystem

ẏ = Ay + Bu, so that the closed-loop system

ẋ = f (x, y)

ẏ = (A + BK)y

is the cascade connection of a stable LTI system and a nonlinear system. Assuming that f (0, 0) = 0, the

problem is to find conditions under which the equilibrium (x, y) = (0, 0) is (globally) asymptotically

stable for the above cascade.

More generally, consider the locally Lipschitz cascade-connected system

ẋ = f (x, y)

ẏ = g(y)
(2.3)

in which f (0, 0) = 0 and g(0) = 0, and assume that the equilibrium y = 0 is (globally) asymptotically

stable for the subsystem ẏ = g(y). Under what conditions is it true that (x, y) = (0, 0) is (globally)

asymptotically stable for the overall system? This question is a special case of the reduction problem

presented in Section 2.2. Indeed, if we define two nested sets Γ1 ⊂ Γ2 as

Γ1 = {(x, y) = (0, 0)}

Γ2 = {(x, y) : y = 0},

then the following is true:

(i) Assuming that y = 0 is an asymptotically stable equilibrium of ẏ = g(y) corresponds to assuming

that the set Γ2 is asymptotically stable. (This is true provided the cascade-connected system has no

finite escape times).

(ii) Assuming that x = 0 is an asymptotically stable equilibrium of the system ẋ = f (x, 0) corresponds

to assuming that Γ1 is asymptotically stable relative to Γ2.

We therefore have the following corollary of Theorem 2.20.

Corollary 2.24. Consider the locally Lipschitz cascade-connected system (2.3) and assume that f (0, 0) = 0,

g(0) = 0. If, and only if, x = 0 is asymptotically stable for ẋ = f (x, 0) and y = 0 is asymptotically stable for

ẏ = g(y), then (x, y) = (0, 0) is asymptotically stable for (2.3). Furthermore, if the assumptions hold globally,

then (x, y) = (0, 0) is globally asymptotically stable for (2.3) provided that all solutions of (2.3) are bounded.
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2.5 Solution of HCP

In this section we solve the hierarchical control problem stated in Section 1.4. We consider again the

locally Lipschitz control system

ẋ = f (x, u), x ∈ X . (2.4)

Theorem 2.25. Consider a hierarchy of feasible control specifications SPEC 1 � · · · � SPEC n for system (2.4),

with corresponding nested sets Γ1 ⊂ · · · ⊂ Γn, and assume that Γ1 is compact. Then, any locally hierarchical

feedback asymptotically stabilizes Γ1. Moreover, any globally hierarchical feedback globally asymptotically stabilizes

Γ1 provided that all solutions of the closed-loop system are bounded.

When Γ1 is unbounded, we have the following result.

Theorem 2.26. If Γ1 is a closed unbounded set, then the result of Theorem 2.25 holds provided that the closed-loop

system is LUB near Γ1.

In the next chapter we will leverage these results to solve the three problems introduced in Chapter 1:

the position control problem for thrust-propelled underactuated vehicles, the circular formation stabi-

lization problem for kinematic unicycles, and the design of backstepping controllers without Lyapunov

functions.

2.6 Biographical Notes

The notions of stability presented in Definition 2.3 are taken from [BS70]. If the set Γ is not compact,

the notions presented in Definition 2.3 are weaker than notions of uniform set stability and uniform

attractivity commonly used in the Lyapunov-based literature, e.g., [LSW96]. They are equivalent when

Γ is compact.

The notions of relative stability of Definition 2.7 are taken from [SF95]. The notions of local stability

near a set of Definition 2.10 are taken from [EHM13b]. The local stability definition used here and

in [EHM13b] differs from the one used in [SF95], but yields equivalent assumptions in the reduction

theorems for compact sets. The notion of local stability in [SF95] cannot be used for unbounded sets

while the one used here can (Theorem 2.23).

The reduction problem of Section 2.2 was formulated by P. Seibert in [Sei69], [Sei70]. The reduction

theorems for stability and asymptotic stability of compact sets (Theorems 2.17 and 2.20) were proved by

Seibert and Florio in [SF95]. See also work by B.S. Kalitin [Kal99] and co-workers [IKO96]. Their exten-

sion to non-compact sets (Theorem 2.23) as well as the reduction theorem for attractivity (Theorem 2.19)

were proved in [EHM13b]. This latter paper also presents the application to HCP and the stability of

cascade-connected systems (Corollary 2.21 and Theorems 2.25, 2.26).

The literature on stability of equilibria of cascade-connected systems is vast. Vidyasagar [Vid80] showed

that, for local asymptotic stability, it is necessary and sufficient that x = 0 be an asymptotically stable
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equilibrium of the system ẋ = f (x, 0). As illustrated in Section 2.4, this result is actually a corollary of

the reduction theorem 2.20. Vidyasagar’s work was followed by research aimed at establishing global

results, e.g., [SS90, SKS90, CTP95, JSK96, MP96, PL98, Isi99, PL01, Cha08]. The global asymptotic stability

result of Corollary 2.24 relies on the assumption that all solutions of the cascaded system (2.3) are

bounded. The above cited literature provides sufficient conditions guaranteeing that this assumption

holds. Sontag, in [Son89], used a property of converging input bounded state (CIBS) stability. In the

context of time-varying cascades, Panteley and Loria [PL98, PL01] proved global uniform stability of

equilibria using Lyapunov-type conditions and growth rate conditions. In terms of control design,

several results addressed the global stabilization problem for cascade systems, see [CTP95]. Several of

these results present growth rate conditions, see for instance [SKS90], [JSK96], [MP96].
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Chapter 3

Applications

In this chapter we return to the design problems presented in Chapter 1 and solve them using the theory

of Chapter 2.

3.1 Position Control of a Thrust-Propelled Vehicle

Recall the model of the thrust-propelled vehicle of Section 1.1:

ẋ = v

mv̇ = mge3 − uRe3

= mge3 + T.

(3.1)

Ṙ = Rω×

Jω̇ + ω × Jω = τ,
(3.2)

We will review the three-step design of Section 1.1 filling in some of the missing details. We will prove

that the proposed design yields almost global asymptotic stability.

Position Control Design Following the design of Section 1.1, we consider first the translational subsys-

tem
ẋ = v

mv̇ = mge3 + T.
(3.3)

in which we view T as a control input. We seek a feedback Td(x, v) that globally asymptotically stabilizes

the equilibrium (x, v) = (x⋆, 0) and is such that sup(e⊤3 Td(x, v)) < 0. There are many possible choices,

but here we will use the nested saturation feedback of A. Teel [Tee92, Tee96] (see also [RB01]):

Td(x, v) = −mge3 − mσ

(

K1v + λσ

(

K2 x̃ + K3v

λ

))

(3.4)

where x̃ = x − x⋆, K1, K2, K3 are positive definite diagonal matrices, λ is a positive scalar, and σ : R3 →

R3 is a smooth saturation function satisfying
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(i) σ(s) = (σ1(s1), σ2(s2), σ3(s3)), s = (s1, s2, s3);

(ii) siσi(si) > 0 for all si 6= 0, i = 1, 2, 3;

(iii) σ̇(0) = I3;

(iv) |σi(·)| ≤ Mi for some Mi > 0, i = 1, 2, 3, with M3 < g.

In particular, we may choose σi(si) = Mi tanh
(

M−1
i si

)

. We have the following result for the feed-

back (3.4).

Proposition 3.1. Consider the translational dynamics (3.3) with feedback T = Td(x, v) given in (3.4). The

following are true:

(i) There exist positive definite diagonal matrices K1, K2, K3 and a positive scalar λ such that the equilibrium

(x, v) = (x⋆, 0) is globally asymptotically stable.

(ii) There exists ǫ > 0 such that for any piecewise continuous function ρ : R → R3 such that sup ‖ρ‖ < ǫ and

ρ(t) → 0 as t → ∞, letting T = Td(x, v) + ρ(t) in (3.1), all solutions of (3.1) are bounded.

(iii) The function Td satisfies sup(e⊤3 Td(x, v)) < 0 and sup ‖Td(x, v)‖ < ∞.

Proof. Properties (i) and (ii) follow from Theorem 5 in [Tee96]. Property (iii) is a direct consequence of

the bounds chosen on the saturation functions.

We remark that property (ii) of the nested saturation feedback is a form of converging input bounded

state stability. It guarantees that small vanishing input disturbances do not produce unbounded solu-

tions (x(t), v(t)).

Attitude extraction. As done in Section 1.1, we pick a unit vector v and then define

R(Td) :=
[

b1d b2d b3d

]

, where

b1d =
Td

‖Td‖
× v, b2d = −

Td

‖Td‖
× b1d, b3d = −

Td

‖Td‖
.

(3.5)

By definition, the columns of R have unit norm and are mutually orthogonal. Moreover, the third

column is the vector product of the first and second columns. Therefore R maps into SO(3). It is also

clear that the map R : R3\{0} → SO(3) in (3.5) is smooth and such that

R(Td)e3 = −
Td

‖Td‖
. (3.6)

Attitude stabilization. Now we consider the attitude dynamics

Ṙ = Rω×

Jω̇ + ω × Jω = τ,
(3.7)

and design a feedback that asymptotically stabilizes the equilibrium (R, ω) = (I3, 0).
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Proposition 3.2 (Theorem 1 of [CSM11]). The feedback

τ = τd(R, ω) := −KR

(

3

∑
i=1

aiei × Rei

)

− Kωω (3.8)

where KR, Kω are symmetric positive definite matrices, and a1, a2, a3 are distinct positive numbers makes the

equilibrium (R, ω) = (I3, 0) almost globally asymptotically stable for system (3.7).

Almost global position stabilizer.

The functions Td(x, v), R(Td), and τd(R, ω) are combined to form a position control feedback for sys-

tem (3.1), (3.2) as follows:

u(χ) = ‖Td(x, v)‖

τ(χ) = τd(R̃, ω̃)− ω̃ × Jω̃ + ω × Jω − J
(

ω̃
×R̃−1

ω − R̃−1
ω̇

)

,
(3.9)

where
R̃(χ) := R(Td(x, v))−1R

ω(χ) :=
[

R(Td(x, v))−1Ṙ(χ)
]

×

ω̃(χ) := ω − R̃−1(χ)ω(χ).

Theorem 3.3. Consider system (3.1), (3.2) with the hierarchy of specifications Γ1 ⊂ Γ2,

Γ1 := {χ ∈ Γ2 : x = x⋆, v = 0}, Γ2 := {χ ∈ X : R = R(x, v), ω = R̃−1(χ(t))ω(χ)}. (3.10)

The controller (3.9) is an almost globally hierarchical feedback, and it almost globally asymptotically stabilizes the

equilibrium χ = χ⋆ := (x⋆, 0, R⋆, 0), where R⋆ = R(−mge3).

Proof. Consider the sets (3.10). We claim first that Γ1 is the equilibrium χ⋆. To this end, we need to show

that, on Γ1, R = R⋆ and ω = 0. On Γ1 we have R = R(x⋆, 0) = R⋆, proving the first identity. For the

second identity, we use the property of R in (3.6) to deduce that, for all χ ∈ Γ1,

mv̇ = mge3 − ‖Td(x⋆, 0)‖R(Td(x⋆, 0))e3 = mge3 + Td(x⋆, 0) = 0.

The latter identity follows from the fact that the feedback Td(x, v) renders (x, v) = (x⋆, 0) an equilibrium

of the translational subsystem. Since ẋ = v̇ = 0 on Γ1, using the chain rule we deduce that Ṙ(χ) =

(d/dt)R(x, v) = 0, implying that ω(χ) = 0. In conclusion, on Γ1 we have ω = R̃−1(χ(t))ω(χ) = 0. This

concludes the proof that Γ1 = {χ⋆}.

In order to show that Γ1 is almost globally asymptotically stable, we will show that Γ2 is almost globally

asymptotically stable, that Γ1 is globally asymptotically stable relative to Γ2, and then invoke Theo-

rem 2.25.

One can check that the feedback τ(χ) in (3.9) gives the following dynamics for the error variables R̃ and

ω̃:
˙̃R = R̃ω̃

×

J ˙̃ω + ω̃ × Jω̃ = τd(R̃, ω̃).
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By Proposition 3.2, the equilibrium (R̃, ω̃) = (I3, 0) is almost globally asymptotically stable, implying

that Γ2 is almost globally asymptotically stable provided that the closed-loop system given by (3.1), (3.2)

and feedback (3.9) has no finite escape times. We will prove that this is the case, but for now let us

assume this property holds. Then the domain of attraction of Γ2 is a subset X̃ ⊂ X of full measure, so

that Γ2 is globally asymptotically stable relative to X̃ .

The set Γ2 is invariant for the closed-loop system because (R̃, ω̃) = (I3, 0) is an equilibrium. By the

property (3.6) of the map R, on Γ2 we have T = Td(x, v). By Proposition 3.1, Γ1 is globally asymptotically

stable relative to Γ2. This proves that the feedback (3.9) is almost globally hierarchical.

According to Theorem 2.25, we need to show that all solutions of the closed-loop system are bounded.

We will first show that the closed-loop system has no finite escape times, so that Γ2 is globally asymp-

totically stable relative to X̃ . Then we will show that all solutions are actually bounded.

Consider an arbitrary solution χ(t) ∈ X̃ of the closed-loop system. The dynamics of the translational

subsystem (3.1) can be rewritten as

ẍ = mge3 + Td(x(t), ẋ(t)) +
[

− ‖Td(x(t), ẋ(t))‖R(t)e3 − Td(x(t), ẋ(t))
]

.

The right-hand side of the above equation is bounded because Td is bounded (property (iii) of Proposi-

tion 3.1) and R(t)e3 has unit norm. This implies that (x(t), v(t)) has no finite escape times. The smooth

function ω(χ(t)) depends on (x(t), v(t), R(t)). Since (x(t), v(t)) and R(t) ∈ SO(3), a compact set,

ω(χ(t)) is defined for all t ≥ 0. Since ω̃(χ(t)) = ω(t)− R̃−1(χ(t))ω(χ(t)) is bounded, so is ω(t). In con-

clusion, the solution χ(t) has no finite escape times. Next we will show that χ(t) is actually bounded. To

this end, consider again the mẍ equation above. It is the perturbation of a system with a globally asymp-

totically stable equilibrium. The perturbation is the term
[

− ‖Td(x(t), ẋ(t))‖R(t)e3 − Td(x(t), ẋ(t))
]

which is identically zero on Γ2. Having proved that there are no finite escape times, we know that Γ2 is

globally asymptotically stable relative to X̃ , so that the foregoing perturbation vanishes asymptotically.

By property (ii) of Proposition 3.1, the signal (x(t), v(t)) is bounded. This property implies that ω(χ(t))

is bounded. The boundedness of ω(χ(t)) and that of ω̃(χ(t)) = ω(t)− R̃−1(χ(t))ω(χ(t)) imply that

ω(t) is bounded. Finally R(t), being in SO(3), has unit norm columns. In conclusion, all solutions of

the closed-loop system are bounded and, by Theorem 2.25, Γ1 is globally asymptotically stable relative

to X̃ or, what is the same, almost globally asymptotically stable.

Remark 3.4. There are some practical benefits associated with the feedback (3.9). Consider again the
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3.2 CIRCULAR FORMATION STABILIZATION FOR KINEMATIC VEHICLES 27

block diagram of the closed-loop system.

desired

thrust

desired

direction

desired

attitude

χ

τ

(x, v)

(R, ω)

x⋆ Td

u = ‖Td‖

Td

‖Td‖

R(Td)

Attitude control loopPosition control loop

• The translational and rotational control modules (functions Td and τd) are completely decoupled:

the design of either one of them is independent of the design of the other.

• Being modular, the control design is intuitive and structured.

• One can replace either one of the control modules without having to redesign the remaining mod-

ule. This allows one to easily test and compare different translational feedbacks: we could replace

the nested saturation feedback by a wealth of available options.

• The combination of control modules in the final feedback (3.9) does not require the knowledge of

Lyapunov functions, which in fact are not easy to obtain for the chosen controllers Td(x, v) and

τd(R, ω).

3.2 Circular Formation Stabilization for Kinematic Vehicles

We return to the kinematic unicycles of Section 1.2,

ẋi
1 = ui

1 cos xi
3

ẋi
2 = ui

1 sin xi
3

ẋi
3 = ui

2.

i ∈ n, (3.11)

with state χi = (xi
1, xi

2, xi
3), and collective state χ = (χ1, . . . , χn). Define, as before, a hierarchy of two

specifications represented by sets Γ1 ⊂ Γ2,

Γ1 := {χ ∈ Γ2 : xi+1
3 − xi

3 = θi mod 2π, i = 1, . . . , n − 1}, (a desired formation on a common circle)

Γ2 := {χ : c1(χ1) = · · · = cn(χn)}, (vehicles on a common circle)

where

ci(χi) =

[

xi
1 − r sin xi

3

xi
2 + r cos xi

3

]

, c(χ) = [c1(χ1)⊤ · · · cn(χn)⊤]⊤. (3.12)

Our goal in this section is to design a hierarchical feedback consistent with the above specifications. We

also put constraints on the information available for feedback to unicycle i.
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Local and distributed feedback. As is customary in the literature, the information exchange between

vehicles will be modeled by a graph G = (V , E) called the

sensor graph. Here we will assume that G is static and undi-

rected1. Each node of vi ∈ V of G represents a vehicle. An

edge in E from node i to node j of G signifies that vehicle i

has access to the following variables:

• The relative displacement of vehicle j with respect to

vehicle i, measured in the local frame of vehicle i.

i
i

j
j

x
j
3 − xi

3

xij
yij

Sensor digraph G

• The relative heading of vehicle j with respect to vehicle i.

Letting L denote the Laplacian of G, we will use the notation Li for the i-th row of L, and we will denote

L(2) := L ⊗ I2 (Kronecker product), Li
(2) := Li ⊗ I2.

Preliminary feedback transformation. Consider the feedback transformation

ui
2 =

ui
1

r
+ ũi, i ∈ n,

and denote ũ = [ũ1 · · · ũn]⊤. If ũi = 0 and ui
1 > 0, the above control law makes the unicycle travel

around a circle of radius r. The idea then is to use ũi, i ∈ n, to stabilize a common circle (set Γ2), and to

use ui
1 to make the unicycles assemble themselves in a formation around the circle (set Γ1).

Stabilization of Γ2. We wish to design ũi, i ∈ n, to asymptotically stabilize the set

Γ2 := {χ : c1(χ1) = · · · = cn(χn)}.

We have that

ċ = −rS(x3)
⊤ũ,

where

S(x3) = blockdiag
{

[cos x1
3 sin x1

3], · · · , [cos xn
3 sin xn

3 ]
}

.

Since the graph G is undirected, its Laplacian matrix L is symmetric, and so is the matrix L(2). Consider

the C1 function

V(χ) =
1

2
c(χ)⊤L(2)c(χ),

and note that V(χ) = 0 if and only if c(χ) ∈ Ker(L(2)). If the graph G is undirected, L has exactly one

eigenvalue 0 with eigenvector 1. Therefore, V(χ) = 0 if and only if c1(χ) = · · · = cn(χ), or χ ∈ Γ2. The

time derivative of V is V̇(χ) = −rc(χ)⊤L(2)S(x3)⊤ũ, which suggests defining ũ(χ) = KS(x3)L(2)c(χ) to

obtain V̇ ≤ 0. We will do basically that, but we will use a saturation to avoid finite escape times and

guarantee convergence.

1The assumption that G is undirected is made to simplify the proof that Γ2 is globally asymptotically stable. The case of

directed graphs is treated in [EHM13a]. As for the assumption that G is static, one may rightfully argue that it is nonsensical

from a practical viewpoint. In practice, the graph G is state-dependent in that vehicles come in and out of each other’s field of

view as a function of their location. Even the most elementary coordination problems become formidably difficult when the

sensor graph is state-dependent. We will therefore be content with the assumption that G is static.
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Proposition 3.5. Consider the kinematic unicycles in (3.11) and assume that the sensor graph G is connected. Let

ui
1(χ), i ∈ n be an arbitrary locally Lipschitz function such that supχ∈X |u1

1(χ)| < ∞ and infχ∈X u1
1(χ) > 0,

and consider the feedback law

ui
1 = ui

1(χ)

ui
2 =

ui
1(χ)

r
+ Kiφi(yi)yi, where y = S(x3)L(2)c(χ),

i ∈ n, (3.13)

where φi(yi) is a locally Lipschitz function such that φi(yi) > 0 and |φ(yi)yi| < 1. Then for any Ki ∈

(0, (inf ui
1)/r), i ∈ n, the set Γ2 is globally asymptotically stable for the closed-loop system given by (3.11)

and (3.13).

Proof. The assumption on ui
1(χ) and the properties of the function φi(yi) imply that there exist positive

scalars µ1, µ2 such that 0 < µ1 < ẋi
3 < µ2 for all i ∈ n. Moreover, the boundedness of u1 and the

fact that xi
3 ∈ S1, a compact set, imply that all solutions of (3.11) with feedback (3.13) are defined

for all t ≥ 0. This fact and the fact that V̇ ≤ 0 imply that the set {χ ∈ X : V(χ) = 0} is stable

for (3.11) with feedback (3.13). Let χ(0) ∈ Γ1 be arbitrary, and let χ(t) be the associated solution.

One can easily see that the boundedness of V(χ(t)) and the fact that ẋi
3 < µ2 imply that V̈(χ(t)) is

bounded. By Barbalat’s lemma, y(t) = S(x3(t))L(2)c(χ(t)) → 0 as t → ∞. In components, yi(t) =
[

cos xi
3(t) sin xi

3(t)
]

Li
(2)c(χ(t)) → 0. Thus, Li

(2)c(χ(t)) → a(t)
[

− sin xi
3(t) cos xi

3(t)
]⊤

, where a(t) is

a continuous scalar function. Since the function t 7→ V(χ(t)) is continuous, bounded from below, and

nonincreasing, it has a finite limit, implying that L(2)c
i(χ(t)) has a finite limit. Since ẋi

3 > µ1 > 0, the

only way that a(t)
[

− sin xi
3(t) cos xi

3(t)
]⊤

may have a finite limit is that a(t) → 0 as t → ∞. This proves

that for any χ(0) ∈ X , L(2)c(χ(t)) → 0 as t → ∞ or, what is the same, the set Γ2 is globally attractive

for (3.11), and hence also globally asymptotically stable. In conclusion, Γ2 is globally asymptotically

stable for (3.11) with feedback (3.13).

Stabilization of Γ1 relative to Γ2. Recall the definition of Γ1,

Γ1 = {χ ∈ Γ2 : xi+1
3 − xi

3 = θi mod 2π, i = 1, . . . , n − 1}.

Define angles αi ∈ S1, i ∈ n, as follows:

αn = 0 mod 2π, αi =
n−1

∑
j=i

θj, i = 1, . . . , n − 1.

Then, assuming the sensor graph is connected, Γ1 can be equivalently expressed as

Γ1 = {χ ∈ Γ2 : L(x3 − α) = 0 mod 2π},

where x3 ∈ (S1)n is the vector of unicycles’ headings, x3 = [x1
3 · · · xn

3 ]
⊤. To verify the equivalence

of the two definitions of Γ1, notice that L(x3 − α) = 0 mod 2π if and only if x3 − α = 1 mod 2π, or

component-wise, x1
3 − α1 = · · · = xn

3 − αn mod 2π, or xi
3 − xi+1

3 = αi − αi+1 mod 2π = θi mod 2π.

In order to write the dynamics of xi
3 on Γ2, we notice that feedback ui

2 in (3.13) reduces to ui
2 = ui

1(χ)/r

on Γ2. Therefore, denoting u1 := [u1
1 · · · un

1 ]
⊤ and letting x̃3 := x3 − α, we have

˙̃x3 =
ui

1

r
,
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and asymptotically stabilizing Γ1 relative to Γ2 is equivalent to designing u1 stabilizing the set {x̃3 ∈

(S1)n : Lx̃3 = 0 mod 2π}. A reader familiar with the distributed control literature will recognize this

to be a problem of consensus on the n-torus, for which a well-known solution is the control law of the

coupled Kuramoto oscillators with identical frequencies, ui
1 = v − ki ∑j∈N(i) sin(x̃i

3 − x̃
j
3). In the above,

N(i) denotes the set of nodes j in the sensor graph G such that there is an edge from node i to node j.

In original coordinates, the feedback is given by

ui
1 = v − ki ∑

j∈N(i)

sin(xi
3 − x

j
3 + αj − αi). (3.14)

Proposition 3.6 ([JMB04],[LFM07]). Consider the rotational integrators ẋi
3 = ui

1/r, i ∈ n, xi
3 ∈ S1, with

feedback (3.14). If the sensor graph is connected, for all ki > 0, i ∈ n, the set {x3 ∈ (S1)n : L(x3 − α) =

0 mod 2π} is asymptotically stable.

We remark that if the controller parameters ki > 0, i ∈ n, are chosen sufficiently small, the feedback (3.14)

meets the requirements of Proposition 3.5 (it is bounded away from zero and uniformly bounded from

above), and it makes the set Γ1 asymptotically stable relative to Γ2.

Solution of the circular formation stabilization problem. We have designed the feedback

ui
1(χ) = v − ki ∑

j∈N(i)

sin(xi
3 − x

j
3 + αj − αi)

ui
2(χ) =

ui
1(χ)

r
+ Kiφi(yi)yi, where y = S(x3)L(2)c(χ),

i ∈ n. (3.15)

Theorem 3.7. Consider the kinematic unicycles (3.11) with the hierarchy of specifications Γ1 ⊂ Γ2,

Γ1 := {χ ∈ Γ2 : L(x3 − α) = 0 mod 2π}, Γ2 := {χ : c1(χ1) = · · · = cn(χn)},

where α ∈ (S1)n is a vector of angles specifying the ordering and spacing of the formation and ci(χi) is defined

in (3.12). If the sensor graph is undirected and connected, then for all ki ∈ (0, v/n) and Ki ∈ (0, (inf ui
1)/r),

i ∈ n, the feedback (3.15) has the following properties

(i) It is local and distributed.

(ii) It is locally hierarchical.

(iii) It globally asymptotically stabilizes Γ2. In particular, for any initial condition all unicycles converge to a com-

mon stationary circle of radius r, whose centre depends on the initial condition, and travel counterclockwise

along it.

(iv) It asymptotically stabilizes Γ1. In particular, if L(x3(0)− α) is sufficiently close to 0, then for any initial

position, the unicycles will converge to the desired formation on the circle.

Some of the arguments in the proof below are technical and they are only outlined here. We refer the

reader to [EHM13a] for the details.
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Proof. Part (i). The feedback ui
1(χ) relies only on the relative heading angle of unicycle i with respect to

its neighbors in the sensor graph. The feedback ui
2 relies also on the vector

yi =
[

cos xi
3 sin xi

3

]

Li
(2)c(χ)

=
[

cos xi
3 sin xi

3

]

∑
j∈N(i)

ci(χi)− cj(χj)

= ∑
j∈N(i)

−xij + r sin(x
j
3 − xi

3),

where xij is the component along the heading axis of unicycle i of the relative displacement between

unicycle i and unicycle j. This quantity is displayed in the figure of page 28. Thus, feedback (3.15) is

both local and distributed.

Part (ii). By the choice of controller gains, the assumptions of Proposition 3.5 hold, so that Γ2 is glob-

ally asymptotically stable. By Proposition 3.6, Γ1 is asymptotically stable relative to Γ2. According to

Definition 1.3, the feedback (3.15) is locally hierarchical.

Part (iii). By Proposition 3.5, the feedback (3.15) globally asymptotically stabilizes Γ1, and in partic-

ular L(2)c(χ(t)) → 0 for any solution χ(t). One can show (this is done in Section V.B of [EHM13a])

that L(2)c(χ(t)) exponentially decreases to zero. We have ‖ċ‖ = ‖rKc⊤L(2)S(x3)⊤φ(y)S(x3)L(2)c‖ ≤

C‖L(2)c‖
2 for a suitable constant C > 0. Since L(2)c(χ(t)) → 0 exponentially, the above inequality im-

plies that c(χ(t)) has a finite limit. Combined with the fact that Γ2 is globally asymptotically stable, we

conclude that for any initial condition, there exists c̄ ∈ R2 such that ci(χ(t)) → c̄ for all i ∈ n. Since

ui
1 > 0 and since ui

2(χ(t)) → ui
1/r, each unicycle asymptotically moves counterclockwise around a circle

of radius r of centre ci(χ(t)) and, as argued above, all centres converge to a fixed location c̄ dependent

upon the initial conditions.

Part (iv). The set Γ1 is closed but unbounded because its definition doesn’t pose any restriction on

ci(χi), and therefore on the positions of the unicycles. By Theorem 2.26, Γ1 is asymptotically stable

provided that the closed-loop system is LUB near Γ1. The LUB property is proved in [EHM13a] using

averaging.

3.3 Backstepping

We return to the class of lower-triangular control systems

ẋ1 = f1(x1) + g1(x1)x2

...

ẋi = fi(x1, · · · , xi) + gi(x1, · · · , xi)xi+1

...

ẋn = fn(x1, · · · , xn) + gn(x1, · · · , xn)u,

(3.16)
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In Section 1.3 we presented a backstepping control design resulting in the following feedback

µ1 = g−1
1 (− f1 − K1x1)

µi = g−1
i

(

− fi + µ̇i−1 − Ki(xi − µi−1)
)

, 2 = 1, . . . , n − 1

u = g−1
n

(

− fn + µ̇n−1 − Kn(xn − µn−1).

(3.17)

Theorem 3.8. Consider system (3.16), and assume that for each i ∈ n, fi(0) = 0 and gi 6= 0 is uniformly

bounded. Consider the hierarchy of specifications Γ1 ⊂ · · · ⊂ Γn,

Γ1 = {x = 0}

Γi = {(x1, . . . , xn) : xj = µj−1(x1, . . . , xj−1), j = i, . . . , n}, i ∈ {2, . . . , n}.

For any Ki > 0, i ∈ n, the feedback (3.17) is globally hierarchical and it globally asymptotically stabilizes Γ1.

Proof. Assume for a moment that there are no finite escape times in the closed-loop system. Letting

ei = xi+1 − µi(x1, . . . , xi), i = 1, . . . , n − 1, then Γi = {x : ei−1 = · · · = en−1 = 0}. The set Γn is globally

asymptotically stable because ėn−1 = −Knen−1. For i = 1, . . . , n − 1, Γi is globally asymptotically stable

relative to Γi+1 because, on it, ėi−1 = −Ki−1ei−1. Therefore, feedback (3.17) is globally hierarchical. In

light of Theorem 2.25, if all solutions are bounded then Γ1 is globally asymptotically stable. Boundedness

of all solutions in particular implies the absence of finite escape times, justifying our initial assumption.

We prove the boundedness property inductively. Pick an arbitrary initial condition. First, en−1(t) is

bounded. Inductively, assume that ei+1(t) is bounded. It is readily checked that the dynamics of ei is

ėi = −Ki+1ei + gi+1ei+1.

Since gi+1 is a uniformly bounded function, the boundedness of ei+1(t) implies that ei(t) is bounded.

This shows that, for any initial conditions, the signals e1(t), . . . , en−1(t) are bounded. Next, the dynamics

of x1 is ẋ1 = −K1x1 + g1e1, and the boundedness of e1(t) implies that x1(t) is bounded. Finally, the

boundedness of (x1(t), e1(t), . . . , en−1(t)) implies that x(t) is bounded.

3.4 Biographical Notes

The material of Section 3.1 is taken from [RM14]. That paper leverages the reduction theorems to pro-

vided classes of translational and attitude controllers that can be combined to form almost global position

stabilizers. In these notes we have presented one specific choice. Section 3.2 is deduced from [EHM13a],

where the more general case of dynamic unicycles is considered, and the graph is allowed to be directed.

Recently, M.I. El-Hawwary was able to extend the ideas presented in Section 3.2 to general rigid bodies

in three-space, presenting results for fully actuated rigid bodies, as well as underactuated rigid bodies

with degree of underactuation one or two, see [EH14]. Finally, Section 3.3 is taken from [EHM13b]. The

results of this section are not particularly surprising, and certainly not groundbreaking. When compared

with Lyapunov-based backstepping, the feedback in (3.17) is slightly less complex, see [EHM13b] for an

illustration.
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