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Abstract— This paper introduces the notion of a virtual con-
straint generator (VCG) for underactuated mechanical systems
with underactuation degree one. The VCG is a control system
whose state space is the configuration manifold of the mechan-
ical system, and whose orbits are all possible regular virtual
holonomic constraints of the mechanical system. Leveraging this
new tool, we propose to pose the design of virtual constraints as
a suitable control specification for the VCG. We take a first step
in this direction by presenting two such control designs aimed
at producing virtual holonomic constraints whose associated
constrained dynamics correspond to a through-motion with
bounded speed and oscillatory behaviour, respectively. We apply
our results to the control of an acrobot mounted on a cart, with
the goal of designing constraints that make the robot “kneel”
under an obstacle while traversing the real line, or oscillate
back and forth under it.

I. INTRODUCTION

Over the past fifteen years, virtual constraints have become

a prominent tool for motion control of underactuated robots.

The pioneering work in [1], [2], [3] demonstrated how to

induce complex motions in walking robots by imposing,

via feedback control, suitable constraints on the robot’s

configuration variables. Such constraints are called virtual

holonomic constraints (VHCs). Early work in [2] proposed

constraints based on observations about human behaviour,

but soon thereafter, researchers in the area of bipedal lo-

comotion began searching the space of virtual constraints

using Bézier polynomial parametrizations in combination

with constrained optimization methods (e.g., [1], [4], [3]).

Today, numerical optimization methods are the dominant

approach to search the space of virtual constraints.

The key requirement of a VHC is that, when the relation

defining the constraint is viewed as an output function of

the robot, the output in question should yield vector relative

degree {2, . . . , 2} (e.g., [3]). In [5], this property is referred

to as regularity of the VHC. Numerical optimization methods

may not produce regular constraints.

In this paper, for mechanical systems with underactuation

degree one, we introduce a way to systematically explore

the entire space of regular VHCs by means of a control

system which we call the virtual constraint generator (VCG).

While the state space of the robot is the tangent bundle

of the configuration manifold, the state space of the virtual

constraint generator is the configuration manifold itself. The
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VCG has n − 1 control inputs and its orbits, for arbitrary

smooth control signals, form the space of all possible regular

VHCs for the mechanical system, up to reparametrization.

Armed with the VCG, in this paper we take the first steps

towards the conversion of VHC generation problem into con-

trol specifications for the VCG. Specifically, we investigate

the following two problems. Design regular VHCs inducing

constrained dynamics whose orbits correspond, respectively,

to traversal of the VHC curve in one direction with bounded

speed, and closed orbits encircling a given configuration.

We demonstrate our results with the example of an acrobot

mounted on a cart. For this system, we use the VCG to

design constraints making the cart either traverse the track

or oscillate back and forth, while kneeling below an obstacle

placed at the origin of the track.

The notion of VCG introduced in this paper improves and

generalizes an idea introduced in [6]. In [7], the authors

design regular VHCs inducing stable limit cycles in the

constrained dynamics. The philosophy driving the present

paper is very much in line with that of [7].

This paper is organized as follows. Section II reviews

VHCs and the Lagrangian dynamics they induce. Section III

introduces the virtual constraint generator. Section IV for-

mulates the two constraint generation problems investigated

in this paper, and Section V presents an idea allowing one

to convert these problems into output specifications for the

VCG. Sections VI and VII present solutions to the problems

mentioned above, and Section VIII applies the results to

the cart-acrobot system. Finally, Section IX draws some

conclusions.

Notation. We denote by S
1 the set of real numbers modulo

2π, naturally diffeomorphic to the unit circle. If x ∈ R,

then [x]2π ∈ S
1 denotes x modulo 2π. If f : Rn → R

m

is a smooth function, and x ∈ R
n, we denote by dfx the

Jacobian matrix of f at x. If g1, · · · , gm is a collection of

vector fields on R
n and f : Rn → R

k is a smooth function,

then by Lgf(x) we denote the function R
n → R

k×m, x 7→
[dfxg1(x) · · · dfxgn(x)]. If M is a smooth manifold and p ∈
M , TpM is the tangent space to M at p and TM is the

tangent bundle of M .

II. PRELIMINARIES ON VIRTUAL HOLONOMIC

CONSTRAINTS

Consider a simple mechanical system with n degrees of

freedom and n − 1 actuators, with generalized coordinates

q = (q1, . . . , qn), where each qi is either a real number

or a variable in S
1, the unit circle. This would typically

correspond to a robot with prismatic and revolute joints.



The configuration manifold Q of the system is a generalized

cylinder, and the dynamics are described by

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = B(q)τ, (1)

where D : Q → R
n×n is the mass matrix, assumed to

be everywhere symmetric and positive definite, C : TQ →
R

n×n is the Coriolis matrix, P : Q → R is the potential, and

B : Q → R
n×n−1 is the input matrix. The vector τ ∈ R

n−1

contains the control inputs. All functions in (1) are assumed

to be smooth. We also assume that B(q) has a smooth left-

annihilator B⊥ : Q → R
1×n which has rank 1 everywhere.

A regular virtual holonomic constraint (VHC) ([3], [5]) for

system (1) is a relation h(q) = 0 in which h : Q → R
n−1 is

a smooth function whose Jacobian dhq has full rank n−1 for

all q ∈ h−1(0), and is such that the (n−1)× (n−1) matrix

dhqD
−1(q)B(q) is invertible for all q ∈ h−1(0). The latter

condition ensures that system (1) with output y = h(q) has

vector relative degree {2, . . . , 2}. The rank condition on the

Jacobian ensures that the set h−1(0) is a regular embedded

curve (a one-dimensional closed embedded submanifold) in

Q. From now on, we will use the term VHC to mean a regular

VHC. The vector relative degree property1 makes it easy to

enforce VHCs, as one may simply use input-output feedback

linearization to make the output y = h(q) converge to zero

exponentially fast [3], [5] and, in so doing, asymptotically

stabilize the constraint manifold

Γ = {(q, q̇) : h(q) = 0, dhq q̇ = 0}. (2)

In particular, there is a unique smooth feedback τ⋆ : Γ →
R

n−1 rendering Γ invariant, so no matter what feedback one

chooses to asymptotically stabilize Γ, the dynamics on Γ are

uniquely defined.

Geometrically, VHCs for systems with underactuation de-

gree one are one-dimensional closed embedded submanifolds

C of Q satisfying the transversality condition

(∀q ∈ C) TqC ⊕ Im(D−1(q)B(q)) = TqQ. (3)

It is easily seen [5], [9] that condition (3) is indeed equivalent

to the vector relative degree property, when C is a level set

of a smooth function h.

A VHC in parametric form, or parametric VHC, is a

parametrized embedded curve q = σ(s) such that σ : I → Q
is smooth, and I is either R (for an open curve) or S

1

(for a closed curve). Moreover, σ is required to satisfy the

transversality condition (3), which now takes the form

(∀s ∈ I) span{σ′(s)}

+ Im
(

D−1(σ(s))B(σ(s))
)

= Tσ(s)Q. (4)

In (4), and throughout this paper, we use prime to denote

differentiation with respect to the variable s.

Any VHC h(q) = 0 admits a parametrization q = σ(s) as

above, using which one can show (see, e.g., [10])2 that the

1The work by Shiriaev and co-authors in, e.g., [8], does not explictly
require the relative degree property, but then there is no a priori guarantee
that constrained dynamics are well-defined.

2Grizzle and co-authors in [1], [3] develop an equivalent representation
of the reduced dynamics on Γ, but use a different state. In place of ṡ, they
use the momentum conjugate to the unactuated variable of the robot.

closed-loop dynamics on the constraint manifold Γ in (2) are

described by
s̈ = Ψ1(s) + Ψ2(s)ṡ

2, (s, ṡ) ∈ I× R, (5)

Ψ1(s) = −
B⊥∇P

B⊥Dσ′(s)

∣

∣

∣

∣

q=σ(s)

, (6)

Ψ2(s) = −
B⊥Dσ′′ +Σn

i=1B
⊥
i σ′⊤Qiσ

′

B⊥Dσ′(s)

∣

∣

∣

∣

∣

q=σ(s)

, (7)

where (Qi)jk = (∂qkDij + ∂qjDik − ∂qiDjk)/2. We refer

to (5) as the reduced dynamics associated with the VHC q =
σ(s).

The meaning of the reduced dynamics in (5) is this. Con-

sider system (1) with the unique feedback τ⋆ : Γ → R
n−1

rendering the constraint manifold Γ in (2) invariant. Then,

all solutions of the closed-loop system on Γ have the form

(q(t), q̇(t)) =
(

σ(s(t)), σ′(s(t))ṡ(t)
)

, where (s(t), ṡ(t)) is a

solution of the reduced dynamics in (5).

Now we briefly discuss the Lagrangian structure of the

reduced dynamics, a topic investigated in detail in [11].

Define the functions

M(s) = exp

(

−2

∫ s

0

Ψ2(τ) dτ

)

(8)

V (s) = −

∫ s

0

Ψ1(τ)M(τ) dτ, (9)

which we will refer to as the virtual mass and virtual poten-

tial, respectively. If I = R (i.e., the set σ(I) is an open curve),

the reduced dynamics in (5) are always Euler-Lagrange, with

a Lagrangian given by L = (1/2)M(s)ṡ2−V (s). Associated

with these reduced dynamics is the total virtual energy

E(s, ṡ) =
1

2
M(s)ṡ2 + V (s) (10)

which is an integral of motion of the reduced dynamics.

On the other hand, if I = S
1 (i.e., the set σ(I) is a closed

curve), then the reduced dynamics are Euler-Lagrange if and

only if M and V are 2π-periodic (see [11]), in which case

the Lagrangian is again L = (1/2)M(s)ṡ2 − V (s).

III. VIRTUAL CONSTRAINT GENERATOR

In this paper we present the idea of virtual constraint

generator (VCG), a generalization and improvement of

a notion originally presented in [6]. By virtual constraint

generator we mean a control system on Q whose solutions

are all possible parametric VHCs, i.e., all possible embedded

curves q = σ(s) satisfying the transversality condition (4).

Consider the smooth distribution ∆ : Q → TQ, defined as

∆(q) = Im(D−1(q)B(q)). This distribution is regular and

has rank n−1 on Q. One may think of ∆ as an assignment,

to each point q ∈ Q, of an hyperplane ∆(q) with origin

at q. Geometrically, the problem of generating VHCs for

system (1) can be thought of as the problem of generating

all curves that are everywhere transversal to the distribution

∆(q), as illustrated in Figure 1.

Consider a vector field f⋔ : Q → TQ that is everywhere

transversal to ∆, i.e, such that span{f(q)} ⊕∆(q) = TqQ
for all q ∈ Q. For instance, the vector field

f⋔(q) = (B⊥(q))⊤ (11)
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q = σ(s)

Fig. 1. Illustration of a parametric VHC meeting the transversality
requirement (4). In the figure, ∆(q) is the hyperplane Im(D−1(q)B(q))
with origin at q.

has the required property. The orbits of f⋔ are everywhere

transversal to ∆, and therefore they are VHCs. However, these

orbits do not exhaust all possible VHCs, for if g : Q → TQ
is a smooth vector field such that g(q) ∈ ∆(q) for all q ∈ Q,

then the vector field f⋔ + g is also everywhere transversal

to ∆, and its orbits are VHCs. In light of this observation,

we define the control system

dq

ds
= f⋔(q) +D−1(q)B(q)u = f⋔(q) +

n−1
∑

i=1

gi(q)ui, (12)

where u ∈ R
n−1 denotes a virtual control input, and gi(q) is

the i-th column of the matrix D−1(q)B(q). By construction,

for each q ∈ Q, the vectors {f⋔(q), g1(q), . . . , gn−1(q)}
are linearly independent, and they form a basis for TqQ.

As a consequence of this property, system (12) has no

controlled equilibria, and therefore all orbits of (12) are

regular curves. Moreover, as we now show, the space of

solutions of (12) coincides with the space of parametric VHCs

up to reparametrization3.

Theorem 1. Let f⋔ : Q → TQ be a smooth vector field

such that

(∀q ∈ Q) f⋔(q)⊕ Im(D−1(q)B(q)) = TqQ, (13)

such as f⋔ in (11). Let σ(s) be a solution of the differen-

tial (12) corresponding to a smooth control signal ū : R →
R

n−1, and assume that the curve q = σ(s) is embedded in

Q. Then q = σ(s) is a parametric VHC for system (1). Vice

versa, if q = σ(s) is a parametric VHC for system (1), then

there exists a reparametrization σ ◦ µ(s̃) that is a solution

of (12) for a suitable control signal ū(s̃).

Proof. Let σ : R → Q be a solution of (12) corresponding

to a smooth control signal ū(s). For each s ∈ R, we

have σ′(s) = f⋔(σ(s))+D−1(σ(s)B(σ(s)))ū(s). Since f⋔

satisfies (13), it follows that the transversality condition (4)

holds, and therefore q = σ(s) is a VHC for (1).

Now let q = σ(s) be a parametric VHC so that, by

definition, the transversality condition (4) holds. We need

to find a smooth function µ : R → R such that µ′ 6= 0, and

a control signal ū such that, letting σ̃ = σ ◦µ and s = µ(s̃),
it holds that

3Here, a reparametrization of a curve σ(s) is the curve σ̃(s̃) = σ(µ(s̃)),
where µ : R → R is a smooth function such that µ′ 6= 0.

dσ̃

ds̃
= f⋔(σ̃) +D−1(σ̃)B(σ̃)ū(s̃). (14)

By (13), the matrix-valued function T (q) =
[f⋔(q) D−1(q)B(q)] is everywhere nonsingular. Letting

U(s) = T−1(σ(s))σ′(s), we have

σ′(s) = f⋔(σ(s))U1(s) +D−1(σ(s))B(σ(s))U2:n(s),

where U1 is the first component of U and U2:n is the

vector containing the last n − 1 components of U . Since

σ(s) satisfies (4), the function U1(s) is nowhere zero. Let

µ(s̃) =
∫ s̃

0
(1/U1(s))ds. Then, µ′ = 1/U1 6= 0, and letting

σ̃(s̃) = σ ◦ µ(s̃) it holds that

dσ̃

ds̃
=

1

U1(µ(s̃))
σ′(µ(s̃))

= f⋔(σ̃(s̃)) +D−1(σ̃(s̃))B(σ̃(s̃))
U2:n(µ(s̃))

U1(µ(s̃))
.

Denoting ū(s̃) = U2:n(µ(s̃))/U1(µ(s̃)), the function σ̃(s̃)
satisfies (14), as required.

Remark 1. If σ(s) is a periodic solution of the VCG (12)

with period T > 0, then the VHC is q = σ ◦ πT (s), where

πT : R → S
1 is the smooth covering map s 7→ [2πs/T ]2π .

For simplicity, this step was omitted in the statement and

proof of Theorem 1.

Remark 2. From the proof of Theorem 1 it follows that the

effect of scaling the vector field f⋔ by a nonzero smooth

real-valued function is to reparametrize the VHCs resulting

from the integral curves of the VCG.

IV. VIRTUAL CONSTRAINT GENERATION PROBLEMS

In Theorem 1 we have shown that the VCG (12) is a control

system whose orbits are all possible VHCs for system (1). The

line of inquiry of this paper is to convert virtual constraint

generation problems into control specifications for the VCG.

In what follows, as a first step towards a more comprehensive

theory, we focus on two basic VHC generation problems. We

discuss them first by means of an example.

Fig. 2. The cart-acrobot

Consider the cart-acrobot system depicted in Figure 2, a

double-pendulum on cart. The system has three degrees-of-

freedom (the position of the cart and the pendulum angles)

and two actuators, the force applied to the cart and the

torque applied to the second joint. There is an obstacle



descending from above, which we wish the system to pass

under. Represent this obstacle as the set O ⊂ Q, such that

q ∈ O if and only if some part of the cart-acrobot intersects

the obstacle.

The objective is to synthesize parametric constraints q =
σ(s) such that σ(R)∩O = ∅, so that the robot will not hit the

obstacle when its state is on the constraint manifold, and the

integral curves of the closed-loop system on the constraint

manifold, (q(t), q̇(t)) = (σ(s(t)), σ′(s(t))ṡ(t)), exhibit one

of two qualitative properties:

1) A through-motion, where the cart, beginning on one side

of the obstacle, passes under it to the other side, and

then traverses the remainder of the track with bounded

speed, and

2) A cyclical motion, where the system repetitively passes

back-and-forth under the obstacle.

We will return to the cart-acrobot example in Section VIII.

Now, inspired by the problem just outlined, we formulate two

general constraint generation problems.

Problem 1. Design a parametric VHC σ : R → Q for

system (1) such that, for all initial conditions (s(0), ṡ(0)) of

the resulting reduced dynamics (5), the following properties

hold:

(i) s(t) → ∞ as t → ∞, and

(ii) (∃a > 0)(∀t ∈ R) ‖(d/dt)σ(s(t))‖ ≤ a.

In other words, the parametric VHCs generated in the con-

text of Problem 1 should induce integral curves (q(t), q̇(t)) =
(σ(s(t)), σ′(s(t))ṡ(t)) on the constraint manifold with the

property that σ(s(t)) traverses the constraint curve in one

direction, and the speed ‖q̇(t)‖ is bounded.

Now we turn to cyclical motions. In a sense, these are

dual to the through motions we seek in Problem 1. Instead of

having the system carry out a motion in a particular direction,

we want the system to carry out a repetitive motion. First, a

definition.

Definition 1. Consider a parametric VHC q = σ(s), and

let s⋆ ∈ R. An orbit of the reduced dynamics (5) is an

oscillation around s⋆ if it is either a closed orbit encircling

the point (s⋆, 0), or an equilibrium at (s⋆, 0).

Problem 2. Design a parametric VHC σ : R → Q for

system (1) such that all orbits of the reduced dynamics in (5)

are oscillations.

The goal of motion planning is to find one trajectory meet-

ing certain specifications. In contrast, Problems 1 and 2 seek

to determine closed-loop dynamics yielding whole families

of trajectories meeting certain specifications. The trajectories

in question are integral curves on the constraint manifold of

system (1) with a controller enforcing a suitably designed

VHC.

From now on, without loss of generality we let f⋔ : Q →
TQ in the VCG be as in (11), so that the VCG becomes

q′ = (B⊥(q))⊤ +D−1(q)B(q)u. (15)

V. VIEWING Ψ1(s) AS AN OUTPUT SIGNAL OF THE VCG

In this section we make an observation that will allow us

to map Problems 1 and 2 into control specifications for the

VCG in (12), namely the fact that the function Ψ1(s) in the

reduced dynamics (5) can be regarded as an output trajectory

of the VCG (15) with output Ψ̃1 : Q → R given by

Ψ̃1(q) = −
B⊥(q)∇P (q)

B⊥(q)D(q)(B⊥(q))⊤
. (16)

More precisely, let q = σ(s) be a VHC in parametric form

for the mechanical system (1). By Theorem 1, after possibly

reparametrizing σ, we may assume that σ(s) is an integral

curve of (15). Recall that the function Ψ1(s) in the reduced

dynamics is given by

Ψ1(s) = −
B⊥∇P

B⊥Dσ′(s)

∣

∣

∣

∣

q=σ(s)

.

Using the fact that σ′(s) satisfies (15) we get

B⊥(σ(s))D(σ(s))σ′(s) =
[

B⊥(q)D(q)(B⊥(q))⊤
]

q=σ(s)
,

from which it follows that Ψ1(s) in (6) can be expressed as

Ψ1(s) = Ψ̃1(σ(s)). Thus Ψ1(s) is an output trajectory of

the VCG (15) with output Ψ̃1, as claimed.

In light of the above, requiring Ψ1(s) in the reduced

dynamics to have certain properties corresponds to posing

an output specification for the VCG (12) with output function

Ψ̃1 in (16). In the next two sections, we leverage this insight

to solve Problems 1 and 2.

VI. SOLUTION TO PROBLEM 1

In this section we map Problem 1 into a control specifica-

tion for the VCG (15). Recall that, when system (1) is subject

to a feedback τ⋆ : Γ → R
n−1 rendering the constraint mani-

fold Γ invariant, all integral curves of the closed-loop system

on Γ have the form (q(t), q̇(t)) = (σ(s(t)), σ′(s(t))ṡ(t)).
Problem 1 requires that s(t) → ∞ as t → ∞ and that

‖σ′(s(t))ṡ(t)‖ is bounded. Since our expressions only allow

us to determine dynamic properties in terms of s and ṡ,

we cannot a priori guarantee that ‖σ′(s(t))ṡ(t)‖ is bounded

directly from the reduced dynamics. The following lemma

provides this guarantee under mild conditions.

Lemma 1. Consider the VCG in (15). Assume that there

exists A > 0 such that for each q ∈ Q, ‖B(q)‖, ‖B⊥(q)‖,

‖D−1(q)‖ < A. Let ū : R → R
n−1 be a bounded differen-

tiable control signal, and σ(s) be a solution of the VCG (15)

under this control. Then for any differentiable signal s :
R → R, such that ‖ṡ(t)‖ is bounded, ‖σ′(s(t))ṡ(t)‖ is also

bounded.

In light of the lemma, we replace requirement (ii) in

Problem 1 by the simpler requirement that |ṡ(t)| be bounded,

so we can now focus our attention on designing dynamics

for s.

Suppose we only generate constraints which are not closed

curves. Then they are automatically Euler-Lagrange, and

the Lagrangian is given by (1/2)M(s)ṡ2 − V (s). We can



leverage our intuition about Lagrangian systems to design

dynamics for the constraint. In the case where the mass

M(s) = m is constant, the reduced dynamics are simply

ms̈ = −
∂V

∂s
= Ψ1(s) (17)

which is identical to Newton’s second law.

s

ṡ

V (s)

s

E0

V0

s⋆

Fig. 3. E-L Dynamics with an unbounded and strictly decreasing potential

To ensure that s(t) traverses the entire real line from left

to right, we would like the potential function V (s) to be

strictly decreasing and such that V (s) → ∞ as s → −∞.

This will ensure that each solution s(t) of (17) is strictly

increasing after a finite amount of time. In light of (9), the

properties just stated are equivalent to having Ψ1 > 0 and
∫ −∞

0
Ψ1(τ)dτ = −∞. Further, in order to ensure that |ṡ(t)|

is bounded, we would like that V (s) → V0 as s → +∞
or, in light of (9),

∫∞

0
Ψ1(τ)dτ < ∞. A potential function

possessing all required properties is depicted in Figure 3.

That the properties of V (s) discussed above and illustrated

in Figure 3 yield reduced dynamics meeting the requirements

of Problem 1 is clear when the virtual mass is constant.

In what follows we establish that this holds more generally

when the virtual mass varies, subject to mild assumptions on

the virtual mass.

Lemma 2. Suppose that the function Ψ1(s) in the reduced

dynamics (5) satisfies Ψ1 > 0,
∫∞

0
Ψ1(τ) dτ < ∞, and

∫ −∞

0
Ψ1(τ) dτ = −∞. Assume further that there exist two

positive constants M1,M2 such that the function M(s) in (8)

satisfies 0 < M1 < M(s) < M2 for all s ∈ R. Then, for

all initial conditions (s(0), ṡ(0)) = (s0, ṡ0) ∈ R × R of the

reduced dynamics (5), s(t) → ∞ and ṡ(t) is bounded.

Lemmas 1 and 2 convert the requirements of Problem 1 on

integral curves on the constraint manifold into requirements

on the function Ψ1(s) which, as shown in Section V, can be

viewed as an output signal of the VCG in (15) with output

function Ψ̃1(q). We may therefore reformulate Problem 1 as

a control specification for the VCG, as follows.

Problem 3 (reformulation of Problem 1). For the VCG

in (15) with output Ψ̃1(q) given in (16), design a smooth

feedback ū(q) such that for each initial condition in a suit-

able set, the output signal Ψ1(s) = Ψ̃1(σ(s)) corresponding

to the solution σ(s) of (15) enjoys the following properties:

(i) Ψ1(s) > 0 for all s ∈ R,

(ii) Ψ1(s) → 0 exponentially as s → ∞, and

(iii) there exists a positive constant ε such that Ψ1(s) >
ε > 0 for all s ≤ 0.

Property (ii) ensures that
∫∞

0
Ψ1(τ) dτ < ∞, while

property (iii) guarantees that
∫ −∞

0
Ψ1(τ) dτ = −∞. The

next proposition presents a solution to this problem.

Proposition 1. Consider the VCG in (15) with output Ψ̃1

given in (16). Assume that there exist positive constants

A and ε⋆ such that for each q ∈ Q, ‖B⊥(q)‖, ‖B(q)‖,

‖D−1(q)‖ < A, and rank(LgΨ̃1) = 1 for all q ∈ U = {q ∈
Q : 0 ≤ Ψ̃1(q) < ε⋆}. Let K > 0 and ε ∈ (0, ε⋆), and

consider the feedback4

ū(q) = −(LgΨ̃1)
+(Lf Ψ̃1 −KΨ̃1(Ψ̃1 − ε)). (18)

Then, for each initial condition q(0) ∈ {q ∈ Q : 0 <
Ψ̃1(q) < ε}, the integral curve of the VCG in (15) with

feedback (18) is a parametric VHC for system (1) meeting

the conditions of Problem 1.

Proof. Since LgΨ̃1 has full rank on U , the feedback (18)

is well-defined everywhere in U . Within this set, letting

e = Ψ̃1(q), we have e′ = Ke(e − ε). This ODE has two

equilibria at 0 and ε. The equilibrium e = 0 is exponentially

stable, while the equilibrium e = ε is unstable. For all e(0) ∈
(0, ε), the image of the integral curve e(s) is contained

in the interval (0, ε). Moreover, e(s) → 0 exponentially

as s → ∞, and e(s) → ε as s → −∞. Thus for each

q(0) ∈ {q ∈ Q : 0 < Ψ̃1(q) < ε}, the integral curve

σ(s) of the VCG in (15) with feedback (18) is contained

in the set U where the feedback is well-defined, and the

output signal Ψ1(s) = Ψ̃1(σ(s)) satisfies the hypotheses

of Lemma 2. By Theorem 1, q = σ(s) is a parametric

VHC for system (1). By Lemma 2, for each initial condition

of the reduced dynamics in (5), the solution (s(t), ṡ(t)) is

such that s(t) → ∞ and |ṡ(t)| is bounded. By Lemma 1,

this latter property implies that ‖σ′(s(t))ṡ(t)‖ is bounded,

proving that the VHC q = σ(s) satisfies all the requirements

of Problem 1.

VII. SOLUTION TO PROBLEM 2

From classical mechanics it is familiar that for systems

with one degree-of-freedom, oscillations occur around local

minima of the potential energy. If that minimum is unique,

and the potential is unbounded, then all orbits of the systems

are oscillations.

The following two lemmas give characterizations of the

required conditions on a VHC to guarantee the two cases of

oscillatory behaviour described above. The first guarantees

the existence of oscillations locally.

Lemma 3. Consider the reduced dynamics given in (5). Let

s⋆ ∈ R be a point such that Ψ1(s
⋆) = 0, and Ψ′

1(s
⋆) < 0.

4Here, the superscript + denotes the Moore-Penrose pseudoinverse of a
matrix M+ = M⊤/(MM⊤).



Then there exist e⋆ ∈ R and an interval I ⊂ R containing

s⋆ such that for all initial conditions with s0 ∈ I and

E(s0, ṡ0) < e⋆, the solution of the reduced dynamics is an

oscillation around s⋆ in the sense of Definition 1.

The preceding lemma only relies on a local property of

Ψ1, and so only provides local guarantees for the dynamics.

The following lemma guarantees the existence of oscillations

globally, making only mild assumptions on the global prop-

erties of Ψ1.

Lemma 4. Suppose that for some s⋆ ∈ R, the function

Ψ1(s) in the reduced dynamics (5) satisfies Ψ1(s
⋆) = 0,

(s−s⋆)Ψ1(s) < 0 for all s 6= s⋆, and
∫ ±∞

s⋆
Ψ1(τ) dτ = −∞.

Assume further that there exists a positive constant M1 such

that M(s) > M1 > 0 for all s ∈ R. Then, all solutions of

the reduced dynamics are oscillations around s⋆.

Proposition 2. Consider the VCG in (15) with output Ψ̃1

given in (16). Suppose there exist constants ε⋆− < 0 < ε⋆+
such that rank(LgΨ1) = 1 for all q ∈ U = {q ∈ Q : ε⋆− <

Ψ̃1(q) < ε⋆+}. Let K > 0, ε− ∈ (0, ε⋆+), and ε+ ∈ (ε⋆−, 0)
and consider the feedback

ū(q) = −(LgΨ̃1)
+(Lf Ψ̃1 −K(Ψ̃1 − ε+)(Ψ̃1 − ε−)). (19)

Then, for each initial condition q(0) ∈ {q ∈ Q : 0 <
Ψ̃1(q) < ε+}, the integral curve of the VCG in (15) is a

parametric VHCs for system (1) meeting the conditions of

Problem 2.

Proof. The proof is very similar to the proof of Proposition 1,

and it is therefore sketched. Letting e = Ψ̃1(q), we have

e′ = K(e − ε+)(e − ε−). Thus for each q(0) ∈ {q ∈
Q : ε− < Ψ̃1(q) < ε+}, the integral curve σ(s) of the

VCG (15) with feedback (19) is strictly decreasing and such

that Ψ̃1(σ(s)) → ε− as s → ∞, and Ψ̃1(σ(s)) → ε+ as s →
−∞. The resulting output signal Ψ1(s) = Ψ̃1(σ(s)) satisfies

the assumptions of Lemma 4. This fact and Theorem 1

imply that q = σ(s) is a parametric VHC for system (1)

whose associated reduced dynamics meet the requirements

of Problem 2.

VIII. EXAMPLE: ACROBOT ON CART

Consider the model of a double pendulum on cart of mass

M , where the pendula are modelled as point masses m1

and m2 with respective link lengths l1 and l2. Measure the

angle of the first link θ1 counter-clockwise from the vertical,

while the angular position of the second link θ2 will be given

counter-clockwise relative to the first link. The configuration

of this system is then given by the vector q = (x, θ1, θ2),
and the Lagrangian of this system is L = 1

2 q̇
⊤D(q)q̇−P (q),

where the entries of the symmetric mass matrix D are

D11 = M +m1 +m2

D12 = −l1(m1 +m2) cos(θ1)− l2m2 cos(θ1 + θ2)

D13 = −l2m2 cos(θ1 + θ2)

D22 = m1l
2
1 +m2(l

2
1 + 2l1l2 cos(θ2) + l22)

D23 = m2l
2
2 +m2l1l2 cos(θ2)

D33 = m2l
2
2

and the potential is P = m1gl1 cos(θ1) +m2g(l1 cos(θ1) +
l2 cos(θ1 + θ2)). Let the cart and the second joint of the

pendulum be actuated, such that B =
[

e1 e3
]

. For any

λ 6= 0, the vector B⊥ = λe⊤2 is a rank-one left-annihilator

of B. We chooose λ = −1 because, as we shall see, that

will induce VHCs q = σ(s) where x increases in s.

The VCG for the cart-acrobot system has the form q′ =
(B⊥)⊤ + g1u1 + g2u2. Due to space limitations, we omit

the expressions of gi, but we remark that in the definition

of gi, we replaced D−1 by adj(D) in order to get simpler

expressions. The output function Ψ̃1 given in (16) is

Ψ̃1(q) =
2 sin(θ1) + sin(θ1 + θ2)

2 cos(θ2) + 3
.

Calculation of LgΨ̃1 reveals that it satisfies the rank assump-

tions of Propositions 1 and 2.

−6 −4 −2 0 2 4 6
x

Fig. 4. Configuration of the cart-acrobot along a constraint satisfying the
conditions of Problem 1

−6 −4 −2 0 2 4 6
x

Fig. 5. Configuration of the cart-acrobot along a constraint satisfying the
conditions of Problem 2
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Fig. 6. Phase portrait of the reduced dynamics of the constraint depicted
in Figure 4. All integral curves eventually turn around and progress to ∞.
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Fig. 7. Phase portrait of the reduced dynamics of the constraint depicted
in Figure 5. Orbits clearly circle a point.

The results of this paper help one generate constraints

inducing certain qualitative properties in the reduced dy-

namics, but they do not explicitly provide information about

the geometry of the VHC. To illustrate, in the context of

the cart-acrobot we would like the pendula to avoid the

obstacle. We would also like to prevent the second pendulum

from performing full revolutions along the constraint. Finally,

we would like that, on the constraint q = σ(s), σ1(s) is

monotonically increasing, so that x spans the entire real

line. We accomplish these objectives in an ad hoc fashion

as follows. We define the feedback transformation

u = ū(q) +

[

0 −1
1 0

]

(LgΨ̃1)
⊤u⊥,

where u⊥ is a scalar control input to be assigned, and ū(q)
is the feedback (18) (for Problem 1) or (19) (for Problem 2).

For any smooth feedback ū⊥(q), the above controller has

no effect on dynamics of the output e = Ψ̃1(q) in the

proof of Propositions 1 and 2, and therefore the conclusions

of the propositions remain unchanged. For our simulations,

u⊥ = constant will yield the latter two properties listed

above. Initializing the VCG in a configuration underneath

the obstacle allows us to generate constraints avoiding it

by relying on the slow evolution of the configuration under

the VCG dynamics. The justification of this approach and its

generalization will be the subject of future research.

The controller for the VCG presented in Proposition 1 is

identical to the controller of Proposition 2 if we let ε− = 0
and ε+ = ε. Table I summarizes the parameters used to

generate the corresponding constraints, using the notation of

the controller in (19). Figures 4 and 5 show the constraints

solving Problems 1 and 2, respectively, while Figures 6 and 7

show phase portraits of the associated reduced dynamics,

verifying that the desired properties hold.

Dynamics simulations of the cart-acrobot under controllers

enforcing the above constraints were carried out. The system

was initialized left of the obstacle, off the constraint. In each

TABLE I

VCG PARAMETERS

Constraint type

Parameter Traversing Oscillatory

K 1 1
ε+ 0.5 0.5
ε− 0 -0.5
Initial x 0 0
Initial θ1 −π/6 π/6
Initial θ2 2π/3 −3π/4
u⊥ −0.4 −0.5

case, as the system converged to the constraint, it also carried

out the corresponding desired motion. When enforcing the

constraint solving Problem 1, the system performed a single

pass under the obstacle and proceeded to the right. In

contrast, when enforcing the constraint solving Problem 2, it

began to repeatedly pass back and forth under the obstacle.

IX. CONCLUSION

For mechanical systems with underactuation degree one,

we have introduced the virtual constraint generator, a control

system on the configuration manifold whose orbits are all

the VHCs of the system, up to reparametrization. We have

presented two techniques to generate constraints inducing

certain types of constrained dynamics: traversal of the VHC

curve in one direction, and oscillations. In future work we

will explore from a general perspective the idea presented

in Section VIII of using the remaining degrees of freedom

of the VCG to impose requirements on the geometry of the

VHCs it produces.
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