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Abstract— This paper presents the implementation of a two
degree-of-freedom magnetic levitation system employing one
permanent magnet linear synchronous motor, and the experi-
mental validation of a mathematical model previously derived.
The paper focuses on showing the development of a calibration
procedure to estimate model parameters and its subsequent
use for model verification. Experimental results show that
the proposed mathematical model accurately describes the
dynamics of the system over a wide operating range showing
promise for the future implementation of nonlinear controllers.

I. INTRODUCTION

In semiconductor manufacturing, many process stages
require positioning systems, referred to asmicrosteppers,
capable of several degrees of freedom (DOF) with signif-
icant speed and precision [1]. As the pace of technology
causes the dimensions of semiconductors to further de-
crease, there is an increasing interest, in industry, to replace
traditional mechanical microsteppers by contactless posi-
tioning devices. This arises from the fact that mechanical
contacts introduce impurities that may limit the accuracy of
the photo-lithographic process, thus decreasing production
throughput. Further, mechanical positioning devices require
costly maintenance due to the wear of their components.

In [2], Kim and Trumper proposed a contactless mi-
crostepper which employs single sidedair coredpermanent
magnet linear synchronous motors (PMLSM) to actuate six
degrees-of-freedom. Individually, PMLSMs produce both
a normal and translational force with appropriate control.
When several are combined in appropriate fashion, multiple
degrees of freedom can be achieved. In [3], modelling and
nonlinear control designs are presented for an idealized
three degrees-of-freedom device which employsiron cored
PMLSMs. This device was designed to work over a large
range of operation and to employ standard PMLSMs com-
monly found on the market.

This paper initiates the experimental verification of the
theory developed in [3] using a simplified 2-DOF apparatus
constructed by Quanser Consulting. We use a parameter
identification technique developed in [4] to estimate the pa-
rameters of the model in [3] and then compare the behavior
predicted by the model to what is actually observed. Such
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comparison demonstrates accuracy of the model over a wide
range of operation (100 mm ×10 mm). Future work will
focus on the implementation of nonlinear controllers based
on the designs in [3].

We begin our discussion with a description of the mag-
netic levitation hardware utilized during experimentation,
along with a brief summary of the model derivation. This
is followed by the parameter identification technique found
in [4]. The actual model verification procedure is then
presented in conjunction with a series of experimental
results. The paper concludes with a description of future
extensions to the magnetic levitation implementation.

II. DESCRIPTION OF 2-DOF HARDWARE

A photo of the 2-DOF hardware implementation is shown
in Figure 1. As mentioned earlier, we employ a single sided
iron-cored PMLSM.

Fig. 1. 2-DOF magnetic levitation hardware implementation

The stator of the PMLSM, which is fixed in place to
a heavy aluminium frame, is longitudinally laminated and
transversally slotted in order to accommodate a single layer
of 3-phase winding. Themover,which is attached to two
orthogonally mounted linear guides allowing for horizontal
and vertical movement, is composed of a set of four type
N35 permanent magnets (PM) attached to a ferromagnetic
backing. The details of the hardware specifications are
summarized in Table I.

The 3-phase AC current required to actuate the stator
coils is provided by a set of three linear current amplifier
modules (LCAM) which are sent commands via a PC. The
horizontal and vertical position information is provided to
the PC by two linear optical encoders with a resolution of
10 µm. Controllers are implemented using the WINCON
real-time code generator with Simulink as an interface.



TABLE I

SPECIFICATIONS FOR2-DOF MAGNETIC LEVITATION HARDWARE

Parameter Symbol units value
Stator slot width b0 mm 12.7
Stator slot pitch t1 mm 19.05
Turns per phase W – 900
Coil pitch ωc mm 57.15
Stator pole pairs p – 3
Number of stator slots z1 – 18
PM height hm mm 5
PM length LA mm 50
Number of PM’s pm – 4
Pole pitch τ mm 57.15
PM width τp mm 28.58
PM coercivity Hc A/m 875400
Back iron height hb mm 4.7
Back iron width – mm 50
Back iron length – mm 200.0
Horizontal Mover Mass Mh Kg 1.594
Vertical Mover Mass Mv Kg 4.350

With the current setup, the 2-DOF magnetic levitation
system has a horizontal range of approximately±50 mm
and a vertical range of approximately±10 mm. The goal
is to eventually design a nonlinear controller to obtain
positioning and tracking accuracy of at least0.1 mm over
the above mentioned horizontal range and a vertical range
of ±5 mm with as much speed as possible.

III. MODEL OF 2-DOF SYSTEM

The following is a brief summary of the model derivation
applied to the 2-DOF system. The details of the modelling
are found in [3].

Consider the inertial frame of the single PMLSM that
forms the basis of the 2-DOF system, which is shown in
Figure 2. LetLA be the depth of each PM along thez axis,
hm be the height of the magnets,pm the number of PM’s,
g the air-gap length,t1 the slot pitch,b0 the slot aperture,τ
the PM pole pitch,τp the PM pole arc,µrec the relative PM
recoil permeability, andσm the surface magnetic charge. To
account for the effects of the stator slots, replace the air-
gapg by the effective air-gapge, with ge = gKc, whereKc

denotes Carter’s coefficient. In addition, letIa, Ib, and Ic

be the phasors of the phase currents andIa, Ib, andIc their
magnitudes. DefineW to be the number of turns of wire
on each phase,p the number of pole pairs in the stator,wc

the coil pitch, andkw1 the winding factor.
We define the horizontal motion to be along thex-

axis while vertical motion is fixed to they-axis. Defining
G as the gravitational acceleration andMh and Mv as
the horizontal and vertical masses of the platform to be
levitated1, the following 2-DOF system model is obtained

ẋ1 = x2,
ẋ2 = G − L4(x1)[u

2
1 + u2

2] − L3(x1)u2 − L2(x1),
ẋ3 = x4,
ẋ4 = −L1(x1)u1,

(1)

1The horizontal and vertical masses of the platform are different due to
the design of the 2-DOF apparatus

x 1i x 2i

t
1 b

0

 τ τ

g

hm
N

S

 S

N

N

S

p

y

x

z
0

stator

mover

d

Fig. 2. Inertial frame of a single PMLSM

where

x = [g, ġ, d, ḋ]T , u = [iq, id]
T ,

L1(x1) = K1(x1)
Mh

,

Li(x1) = Ki(x1)
Mv

, i = 2, . . . , 4,

K1(x1) =
12

√
2Wkw1pmLAσmµ0λ̃(x1) sinh( π

τ
hm) sin(

πτp
2τ

)

πpKc(x1) sinh( π
τ

(hm+x1))
,

K2(x1) =
λ̃(x1)LApmτBpmy1(x1)

2

4µ0

,

K3(x1) = −
λ̃(x1)3

√
2LApmWkw1Bpmy1(x1) coth( π

τ
(hm+x1))

p2Kc(x1)
,

K4(x1) =
λ̃(x1)18LApmW 2k2

w1
µ0 coth2( π

τ
(hm+x1))

τp2Kc(x1)2
,

λ̃(x1) = 1 −
b2
0

4t1(x1+
b0
2

+ hm
µrec

)
.

The functionBpmy1(x1) represents the magnetic field
produced by the PM’s and is numerically approximated
using a 12th degree polynomial. Furthermore,id and iq
represent the direct and quadrature current inputs to the
PMLSM. They are related to the 3-phase currents as follows

id = Iacos(
π

τ
x3), iq = −Iasin(

π

τ
x3).

The above model does not account for friction, cogging
forces, and end effects. It is necessary to verify to what
extent such unmodeled effects can be neglected within a
reasonable range of operation. This is done in the following.

IV. SYSTEM ID METHODOLOGY

We begin by lumping together all constant unknown (or
not perfectly known) parameters and rewriting (1) as

ẋ1 = x2,

ẋ2 = G − C4

λ̃(x1) coth2(π
τ (hm + x1))

K2
c (x1)

[u2
1 + u2

2]

+ C3

λ̃(x1)Bpmy1(x1) coth(π
τ (hm + x1))

Kc(x1)
u2

− C2λ̃(x1)Bpmy1(x1)
2,

ẋ3 = x4,

ẋ4 = −C1
λ̃(x1)

Kc(x1) sinh( π
τ

(hm+x1))
u1,

(2)



whereC1, . . . , C4 are lumped constants to be determined
experimentally and have the following form

C1 =
12

√
2Wkw1pmLAσmµ0 sinh( π

τ
hm) sin(

πτp
2τ

)

Mhπp ,

C2 = LApmτ
Mv4µ0

,

C3 = 3
√

2LApmWkw1

Mvp2 ,

C4 =
18LApmW 2k2

w1
µ0

Mvτp2 .

Noticing that C1, . . . , C4 enter the model linearly, we
employ the technique presented in [4] to estimate them. For
the sake of illustration, in what follows we briefly review
the parameter identification technique in [4].

Consider the nonlinear system

ẋ = A(x, u)θ + b(x, u) + ω(t), x(0) = x0,

where θ is a vector of constant unknown parameters, all
functions are smooth, andω(t) is anL∞ disturbance. It is
assumed that a noisy measurement of the statex is available,

y = x + εν(t),

whereν(t) is the measurement disturbance andε is a known
scalar. The value ofε reflects the confidence level in the
state measurement. The simplified approximation to the
H∞ optimal NPFSI (noise-perturbed full-state information)
estimator, referred to as the reduced-order NPFSI estimator,
was given in [4] as follows:

˙̂
θγ = ε−1Σ−1

γ A(y, u)T (y − x̂), θ̂γ(0) = θ̄0, (3)

where

˙̂x = A(y, u)θ̂γ + b(y, u) + ε−1(y − x̂), x̂(0) = x̄0,

Σ̇γ = A(y, u)T A(y, u) − γ−2Q(y, u), Σγ(0) = Q0.

In the above,γ represents an attenuation factor that can
be tuned to improve estimator convergence. It is proven in
[4] that if the system under consideration satisfies a suitable
persistency of excitation condition andε is sufficiently
small, the state of (3) converges to the true parameters.

Although the NPFSI technique does not require state
derivative information, it does depend on measurement of
the full state vector. While the position statesx1 andx3 are
measured directly using optical encoders, the velocity states
x2 andx4 are not measured. To overcome this problem, we
use high-gain observers to estimatex2 andx4. The estima-
tion errors are accounted for, in the parameter identification
procedure, by the assumption that a noisy measurement of
the states is available. Further, to guarantee persistencyof
excitation, we employ two PID regulators for the control
inputs id and iq to independently make the horizontal and
vertical dynamics track a suitable reference signal made of
a summation of sinusoids at various frequencies2.

2Clearly, because the horizontal and vertical dynamics of the system
are not decoupled (see (1)), PID control does not yield good tracking
performance. However, since at this stage we only focus on the generation
of persistently exciting reference signals for parameter estimation, tracking
accuracy is not a concern.

With the above in place, the only remaining issue is the
choice of the NPFSI parametersγ and ε. It was found
through successive experimentation that choosingγ ' 1.1
andε ' 0.01 produced good parameter convergence.

The estimator structure in (3) is used, in what follows,
in three different ways. First, to verify the horizontal dy-
namics. Second, to estimateC2, C3, and C4 and verify
the vertical dynamics. Lastly, to estimateC1, . . . C4 and
simultaneously verify horizontal and vertical dynamics.
This is explained in detail in the next section.

V. MODEL VERIFICATION PROCEDURE

With a model of the 2-DOF magnetic levitation system
in place along with a technique to estimate the physical
parameters, the next task is to develop a procedure capable
of verifying the accuracy of said model in predicting the
behavior of the actual magnetic levitation system.

A. Verification of Horizontal Dynamics

If the air-gap of the magnetic levitation system is fixed
to a constant valuēx1, then the horizontal dynamics from
(1) (or (2) equivalently) can be isolated

ẋ3 = x4,
ẋ4 = −L1(x̄1)u1.

(4)

Since at a fixed air-gap̄x1 the L1 term is constant, the
horizontal positionx3 can be solved easily

x3(t) = −
1

2
L1(x̄1)u1t

2 + x3(0). (5)

Note that an initial horizontal velocity of zero is assumed.
Equation (5) tells us that if a constantu1 is applied to the
system when the air-gap is fixed, the horizontal position of
the mover exhibits a parabolic response. By recording the
horizontal position information subject to these conditions,
it should therefore be possible to curve-fit a parabola to the
data points and obtain an estimate ofL1(x̄1) at the air-
gap in question (and therefore an estimate of the horizontal
acceleration of the mover). Such estimate is compared to
the value ofL1(x̄1) obtained applying the NPFSI estimator
to (4). This idea is summarized below.

• The motion of the system is constrained (by hardware)
to lie on the horizontal axis.

• Position data are collected corresponding to different
air-gap values{x̄1

1, . . . , x̄
k
1}.

• A set of parabolas is fitted to horizontal position data
at various air-gaps{x̄1

1, . . . , x̄
k
1} in order to obtain an

estimate ofL1(x̄
i
1), i = 1, . . . k by means of (5).

• For each air-gap̄xi
1, the NPFSI estimator (3) is applied

to (4) to estimateL1(x̄
i
1) and the results are compared.

Figure 3 shows a few examples of the data points
obtained and the parabolas that were fitted. Note how
the parabolic curves closely approximate the position data,
demonstrating the correctness of the horizontal dynamics
model (4). Air-gap values here range between10 and27.5
mm at2.5 mm intervals. In each case, the mover is started
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Fig. 3. Some results of parabolic curve-fitting to position data

nearx3 = −50 mm and accelerated to aboutx3 = 50 mm
using a current ofu1 = −0.5 A.

Figure 4 comparesL1(x̄
i
1) estimates obtained from

parabolic curve-fitting and the NPFSI estimator.
The results demonstrate that two different estimation

techniques have predicted a similar response for the hor-
izontal dynamics of the magnetic levitation system. This
confirms the effectiveness of the NPFSI technique and
shows that the horizontal portion of the model describes
the physical behavior of the system to a reasonable degree
of accuracy. The estimates obtained for theε = 0.05 case
do exhibit increased divergence, but this would be expected
since as the value ofε is increased, the estimator puts
less emphasis on the estimation error and as a result, the
convergence performance of the estimator worsens.
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Fig. 4. Comparison of various estimations ofL1(x1)

B. Verification of Vertical Dynamics

To validate the vertical dynamics, we fix the mover at
x3 = 0 mm to only allow vertical motion. We also set
u1 = 0. The vertical portion of (1) (or (2) equivalently) can

then be isolated

ẋ1 = x2,
ẋ2 = G − L4(x̄1)u

2
2 − L3(x̄1)u2 − L2(x̄1).

(6)

From (6), we have that the currentū2 needed to maintain
the air-gap at a desired equilibrium̄x1 is found by solving

G − L4(x̄1)u
2
2 − L3(x̄1)u2 − L2(x̄1) = 0. (7)

If the model (6) associated with the vertical dynamics is
correct, the equilibrium current̄u2 predicted by (7),

ū2 =
−L3(x̄1) −

√

L2
3(x̄1) − 4L4(x̄1)(L2(x̄1) − G)

2L4(x̄1)
,

(8)
should be close to the measured equilibrium current. The
validation procedure for the vertical dynamics is now clear.

• The motion of the mover is constrained (by hardware)
to lie on the vertical axis atx3 = 0 mm.

• Setu1 = 0.
• For air-gaps in the set{x̄1

1, . . . , x̄
k
1}, the corresponding

equilibrium currents{ū1
2, . . . , ū

k
2} are measured.

• The NPFSI estimator is applied to (6) to estimate the
constantsC2, C3, andC4 and obtainL2, L3, andL4.

• The termsL2, L3, andL4 are used to determine the
theoreticalequilibrium currents by means of (8).

• The theoretical equilibrium currents are compared to
the measured currents.

We choose the air-gap values to range between10 and25
mm with 1 mm increments. The NPFSI estimator is applied
for three different values ofε. The estimation results are
summarized in table II.

TABLE II

VERTICAL MODEL PARAMETERS AT FIXED HORIZONTAL

POSITION USING REDUCED-ORDER NPFSI ESTIMATOR

Parameters ε = 0.001 ε = 0.01 ε = 0.05
C2 790.97 791.00 788.98
C3 30.47 30.90 32.44
C4 0.11 0.12 0.18

In Figure 5 the theoretical equilibrium currents found
using the parametersC2, . . . C4 estimated withε = 0.01
are compared to the measured equilibrium currents.

From the plot, It is clear that while the model begins to
diverge from the physical measurements for air-gaps smaller
then15 mm, within the range between15 and25 mm the
model accurately describes the behavior of the magnetic
levitation system. The results therefore validate the vertical
dynamics of the model within the range of 15 and 25mm
and further validates the NPFSI technique.

The divergence below15 mm is most likely the result
of uncertainties that are not taken into account within the
model. In what follows, evidence is provided that suggests
the cogging force accounts for most of the uncertainty.
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C. Analysis of the cogging force

We now seek to determine the source of the discrepancy,
observed in Figure 5, between theoretical and measured
equilibrium currents at air-gaps smaller than15 mm.

The cogging force of a linear synchronous motor is
defined in [5] to be the force produced by the interaction
between the teeth of the stator and the edges of the
permanent magnets of the mover. It is a periodic function
of the horizontal position of the mover over the slot pitch
of the stator. Equation (9) provides a good mathematical
representation of this cogging forceF c

x

F c
x = ξ(x1) sin

(

π

t1
x3

)

. (9)

The functionξ(x1), representing the peak magnitude of
the cogging force, is typically inversely proportional to the
air-gapx1, meaning that the cogging force gets stronger as
the mover gets closer to the stator. Notice that the peaks of
the cogging force occur at odd integer multiples oft1/2 =
9.525 mm. Hence, if the mover is held at the positionx3 =
28.575 mm= 3t1/2, then the total normal force exerted by
the PMLSM on the surface of the mover is given by

Fn(x1)
∣

∣

∣

x3=3t1/2
= K2(x1)+K3(x1)u2+K4(x1)u

2
2+ξ(x1)

where, as before, we are settingu1 = 0. On the other hand,
whenx3 = 0 mm, the cogging force vanishes and thus the
normal force should accurately be represented by

Fn(x1)
∣

∣

∣

x3=0
= K2(x1) + K3(x1)u2 + K4(x1)u

2
2.

Since the unknown constantsC2, C3, and C4 in the
functionsK2, K3, andK4 have already been estimated in
the previous section, to estimateξ(x1) we let K̂2(x1) =
K2(x1) + ξ(x1), estimateK̂2 and getξ(x1) = K̂2(x1) −
K2(x1). This simple idea is the basis of the next procedure.

• The mover is constrained to lie on the vertical axis at
x3 = 28.575 mm= 3t1/2.

• The constantsC3 andC4 are assumed to be known and
equal to the values estimated in the previous section.
The constantC2 is assumed to be unknown and is
estimated by applying the NPFSI estimator to (6).

• The value ofC2 just found is used to generate an
approximation ofK̂2(x1) as

K̂2(x1) = C2λ̃(x1)Bpmy1(x1)
2.

• The differenceK̂2(x1)−K2(x1) represents an estimate
of the peak cogging forceas a function of the air-gap.

Applying the above procedure and usingε = 0.01 in
the NPFSI estimator we getC2 = 769.99. This gives the
estimate ofξ(x1) depicted in Figure 6. This clearly illus-
trates that the estimated peak cogging force is appreciable
(greater than1 N) when the air-gap is smaller than15 mm,
and otherwise negligible for larger air-gaps.

This is confirmed in Figure 7, where the theoretical equi-
librium currents are compared with the actual measurements
of u2 with and without the horizontal offset. While the two
predictions are almost identical over most of the air-gap
range, they diverge at air-gaps smaller than15 mm.
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Fig. 6. Estimate of the peak cogging force over the entire air-gap range

Since the value of the normal force over the range of
operation is of the order of10 N, it is clear from Figure 6
that, within the air-gap range between15 mm and25 mm,
the cogging force at each horizontal position is a relatively
small percentage of the total force, and can be ignored in
this range. However, Figure 6 indicates that for smaller air-
gaps the discrepancy may become significant.

D. Verification of Complete Model Dynamics

With the horizontal and vertical dynamics of the system
verified, the final task is to confirm that all of the model pa-
rameters can be estimated simultaneously using the NPFSI
estimator and still result in a valid 2-DOF model.

The reduced-order NPFSI estimator is therefore applied
across the entire range of operation simultaneously at 3
values ofε, in order to simultaneously estimate the 4 model
parameters. The results are provided in table III.
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TABLE III

FINAL MODEL PARAMETERS ESTIMATED USING NPFSI

Parameters ε = 0.001 ε = 0.01 ε = 0.05
C1 13.97 14.20 16.23
C2 796.93 796.99 795.01
C3 30.33 31.04 33.44
C4 0.06 0.07 0.15

The complete 2-DOF model generated from the above
parameter estimates is then verified using the previous
horizontal and vertical techniques. Figure 8 compares the
estimate ofL1(x1) generated from the complete model with
the estimates obtained at fixed air-gaps, while Figure 9
compares the predicted currentsu2 from the complete
model with the actual measurements.
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The comparisons show that the model generated using
the full-span NPFSI estimator describes the behavior of
the system to a reasonable degree of accuracy over the
desired air-gap range. It should be noted that the horizontal
dynamics produced by the 2-DOF calibration procedure
appear to diverge from what was estimated in the fixed air-
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Fig. 9. Comparing predictedid current with actual measurement

gap case. This indicates that the decoupled estimates may be
more accurate or that there was not sufficient persistency of
excitation. As a result, elements of both the full parameter
estimator and the fixed air-gap estimator will serve as the
2-DOF calibration procedure in future control experiments.

VI. CONCLUSIONS AND FUTURE WORK

The model verification results in this paper have shown
that when a calibration procedure derived from the work
presented in [4] is applied to a realization of a PMLSM-
based 2-DOF magnetic levitation system, the state-space
model from (1) can accurately predict the behavior of the
physical system in an air-gap range between15 and25 mm
and an horizontal range between−50 mm and50 mm.

For air-gap values any smaller then the 15mm limit, the
effects of uncertainties such as the cogging force become
significant and require representation within the modelling.

These results show promise for the remaining part of
the work which entails implementing the nonlinear control
design developed in [3] on the 2-DOF device presented here
as well as on a 3-DOF device under construction.
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