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Abstract

Wind turbines can in principle be operated to smooth wind power fluctuations by allowing wider

variations in turbine speed and generator torque to store and release energy. This ability must be

constrained by turbine speed and generator torque limits. To date, work in the literature is conceptual and

does not indicate what extent of smoothing is possible before component limits are reached, nor does it

quantify sensitivity to variations in the input wind speed.This paper introduces a method for quantifying

how much wind variation a wind turbine can absorb in variablespeed mode while still being guaranteed

to operate within its component limits. One can apply this method to obtain the dependence of maximum

tolerable wind disturbance on the smoothing time constant,and thus make design decisions. The paper

shows that the analysis of torque speed intersections, as standardly applied in electric machine theory, is

of limited use for studying power smoothing. The new conclusions and design choices made available

by the proposed method are illustrated with a series of computation examples. The method is shown to

agree asymptotically with two limiting cases that can be calculated based on torque-intersection analysis.

The method is based on new theory for computing invariance kernels for nonlinear planar systems and

can be adapted to assess the robustness of other control laws.
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I. I NTRODUCTION

The mechanical behaviour of electric machines has traditionally been analyzed using torque-speed

diagrams. Though the system dynamics are typically nonlinear, operating points are readily determined

by the intersection of load torque-speed and machine torque-speed curves. Transients of such systems

have commonly been viewed merely as transitions between twosteady state operating points on the

torque-speed plane. This simple analysis approach providesuseful insights into the electro-mechanical

system, but it relies on the assumption that (i) the load (or source) torque takes on a constant steady state

value and (ii) electrical dynamics are much faster than the mechanical dynamics of the system.

An example of a widely-found system that violates these assumptions is the variable speed, converter-

interfaced wind turbine. To achieve peak power tracking, generator torque is typically set to be an algebraic

function of generator speed to establish a static curve of desired operating points in the torque-speed

plane [1]. The shaft torque of the machine changes with wind speed. Thus the machine and converter

are subject to a time varying torques, violating the first assumption.

With wind energy systems providing an ever growing portion of total generation, expectation of these

systems to support frequency regulation in the power grid isemerging. Proposals to exploit wind turbine

kinetic energy for smoothing wind power [2],[3],[4],[5], damping oscillations in power system frequency

[6],[7], or counteracting momentary dips in frequency [8],[9] are the subject of growing interest in the

literature. These methods all introduce electrical dynamics that, through control action, are on a time

scale comparable to the mechanical dynamics. This violates the second assumption of static torque-speed

analysis. In sum, static torque-speed analysis approachesare insufficient to assess this new class of system

and alternative analysis techniques are required.

This paper introduces the notion of “wind disturbance margin” and provides an analysis technique to

compute it. The margin in question is the largest bound on the wind input signal variation for which the

turbine is guaranteed to remain within a pre-defined safe operating region. For a given mean wind speed,

the margin characterizes the robustness of the energy conversion system to wind disturbances. Coupled

with advanced wind speed measurement techniques [10], the margin could be used to guarantee safe

operation while providing smoothing or other services thatexploit turbine kinetic energy.

The computation of the margin employs a new technique that canbe applied to planar nonlinear systems

with a single input. The solution technique begins by first identifying the turbine’s safe operating region

and mapping this region from the torque-speed plane into thestate-space plane. The result is a set of

safe operating points in the state plane. This set is then tested for the existence of aninvariance kernel-
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the largest set of initial conditions leading to trajectories that can never leave the set of safe operating

points for a given class of wind disturbance signals. The class of wind disturbance signals is characterized

only by its mean wind speed, and a bound on its range of variation. The bound is increased to find the

disturbance margin, which is the largest possible bound allowed before the invariance kernel becomes

empty. Instead of brute force simulation, computation of the invariance kernel employs an analytical

method that calls only for the integration of a finite number ofspecial trajectories. The paper works

with the example of a wind turbine operating in variable speed mode. The turbine is subjected to wind

variations that are bounded but otherwise unspecified. The generator is thus subject to a commensurate

shaft torque which is also bounded but otherwise unspecified.The generator is regulated via torque

control, where the torque reference is derived by low-pass filtering the generator speed. This achieves

smoothing of the wind turbine output power, allowing the kinetic energy of the rotor to absorb rapid

input energy changes through variation of the rotor speed. Such a system is effective in reducing the

impact of wind turbine power variations on the power grid. However, too large a filtering time constant

may lead to collapse [3] or overshoot of the rotor speed to thepoint where pitch control intervenes and

causes power variations that defeat the purpose of smoothing. The simplified two-state model and the

analysis presented offer a new means of assessing such powersmoothing control schemes present in the

literature.

The structure of the paper is as follows. In Section II the applicability of a simplified wind turbine model

is discussed. Section III introduces the disturbance marginconcept and associated definitions. Section IV

demonstrates computation of the margin for special cases and highlights limitations of standard analysis

techniques. Section V explains the planar invariance kernelanalysis technique and its application to the

wind turbine problem. Section VI demonstrates computation of the margin for the general case, and

Sections VII provides conclusions.

II. W IND TURBINE MODELING AND CONTROL

The power conversion efficiency of a wind turbine depends on thetip-speed ratio

λ =
Rω

vw
(1)

whereR is the radius of the rotor disc,ω is the rotational speed of the turbine rotor, andvw is the wind

speed. There is also a dependence on the pitch angle of the blades which is not considered in this paper.

The dependence of conversion efficiency onλ is shown in Fig. 1. Efficiency has a maximum at the

tip-speed ratioλopt. For any larger tip speed ratioλdel, conversion efficiency is lowered. A conversion
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Fig. 1. Power conversion efficiency curveCp(λ) for optimal constant pitch angle. Optimal operation occurs atλopt, while

de-loaded operation occurs for valuesλ′

del andλdel.

efficiency of at leastCp(λdel) is available over the range of tip-speed ratios[λ′

del, λdel]. Operation atλopt

is referred to as optimal, and operation away fromλopt is referred to as de-loaded.

The aerodynamic torque exerted on the shaft of the wind turbine is as follows:

Taero(ω, vw) =
1
2ρπR

2Cp (λ) v
3
w

ω
(2)

whereρ is the density of air. The dependence of the aerodynamic torque on both rotor speed and wind

speed is illustrated in Fig. 2, where curves corresponding totwo values of wind speed (vloww andvhighw )

are shown in the torque-speed plane. The values chosen are associated with variable speed operation

between the rotor speedsωlow andωhigh.

A. Control Regimes and Component Limits

There are multiple ways in which the physical limitations on wind turbine components affect wind

turbine controls [1]. Wind turbines begin operating above acertain cut-in wind speed. For low wind

speeds, the rotor is maintained close to its minimum speed bya steep generator torque (section (A-B)

in Fig. 2). Above a rotor speedωlow (greater than the minimum allowed speed by some amount [11]),

variable rotor speed operation occurs (section B-C) up to a rotor speedωhigh (less than maximum by

some amount). Aboveωhigh, both generator torque and pitch feedback controls are altered to keep rotor

speed at or below the maximum value of 1.0 per-unit (C-D) [12]. The maximum torque and rotor speed

(D) are reached at the rated wind speed. For wind speeds aboverated, electric power is limited to the
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Fig. 2. Aerodynamic (solid) and generator torque-speed curves (thick) for variable speed wind turbine. Letters label operating

points where various control schemes become active. Safe region for variable speed operation is enclosed by a dashed box.

rated value for the wind turbine using a constant power generator torque curve (D-E) and the adjustment

of pitch to reduce aerodynamic torque.

In variable rotor speed operation (B-C), pitch is set to the optimal value and pitch control is not active

[13]. Rotor speed is free to vary between speedsωlow andωhigh, provided the maximum torque limit

Trated is never exceeded. The generator torqueTgen in modern variable speed wind turbines is established

through control of power electronics [14]. Between the points B and CTgen is set to:

Tgen(ω) = kload(λ⋆)ω
2 (3)

kload(λ⋆) =
1

2
ρπCp(λ⋆)

R5

λ3
⋆

(4)

whereλ⋆ is a desired tip-speed ratio. The generator torque curve in the torque speed plane is often

referred to as theload curve. The load curve is intended to allow the rotor speed to continually adjust to

new setpoints as the wind speed changes. The choice of (3)-(4)has the effect that for a constant wind

speed the efficiencyCp(λ⋆) is reached in the steady state.

B. Simplified Dynamic Model for Power Smoothing

For control design related to power smoothing, a model of wind turbine dynamics in the variable speed

range (B-C) can neglect the pitch control, which is inactive, and can be very simple [15],[13], consisting

only of the single nonlinear differential equation for rotor speed dynamics:

J
dω

dt
= Taero(ω, vw)− Tgen (5)
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where J is the rotational inertia of the turbine hub and generator. For operation at and above rated

wind speed (D-E), structural vibrational modes such as the tower deflection are usually also modelled

because of their interaction with pitch control [13] and relatively large excitation at high wind speeds

[16]. However, in variable speed operation (B-C) the excitation is much smaller and not enough to warrant

extra pitch actuator wear [16]. Tower deflections also have little discernable effect on rotor speed [17].

For these reasons tower and other structural modes can be safely excluded from this model, as is widely

done for control design purposes [18].

The objective of power smoothing is to exploit variable speedoperation to absorb wind power fluc-

tuations using the rotational kinetic energy of the turbine. The concept has been explored with control

schemes that set constant power or torque [4],[5] or that introduce a low-pass filter into the signal path

used to generate these control references [2],[3],[19]. Most of these works acknowledge that depending

on the chosen time constant of smoothing and amount of de-loading, instability may result from power

smoothing. None of these works quantify how much smoothing is practically viable.

To study how power smoothing controls should safely be designed, this paper examines the controller

introduced in [2]. A low-pass filter is applied to a measurement of rotor speed, and a new variableωfilt

is used to generate a power reference. The power reference is extracted regardless of rotor speed by

setting the torque command depicted in Fig. 3, which equals the desired level of power divided by the

unfiltered rotor speedω:

Tgen(ω, ωfilt) =
kload (λ⋆)ωfilt

3

ω
. (6)

Dynamics are now described by two differential equations:

J
dω

dt
= Taero(ω, vw)−

kload (λ⋆)ωfilt
3

ω

τ
dωfilt

dt
= ω − ωfilt.

(7)

whereτ is the time constant of rotor speed filtering. The choice of a power reference with a low-pass

filter in the signal path has two advantages. First, such control structures are already in place (with small

time constants) in some industry implementions [7],[20]. Second, in the limit for largeτ the model (7)

corresponds with constant power smoothing schemes studiedin literature [4],[5].

C. Limiting Cases

Two limiting cases of speed filtering can be considered to provide insight into system operation. For

τ = 0, ωfilt = ω and the generator torque (6) simplifies to the standard maximium power tracking law
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Fig. 3. Block diagram of power smoothing generator torqueTgen(ω, ωfilt) based on filtered rotor speed [2].

(3), in which case the rotor speed variations are dictated by:

J
dω

dt
= Taero(ω, vw)− kload(λ⋆)ω

2. (8)

For τ = ∞, ωfilt is a constantωfilt
0, and rotor speed variations are instead dictated by

J
dω

dt
= Taero(ω, vw)−

kload(λ⋆)
(

ωfilt
0
)3

ω
. (9)

Settingωfilt
0 to the steady state rotor speed associated with a wind speedv̂w

ωfilt
0 =

λ⋆

R
v̂w. (10)

simplifies (9) to

J
dω

dt
=

1
2ρπR

2

ω

(

Cp (λ) v
3
w − Cp(λ⋆)v̂

3
w

)

(11)

wherev̂w sets the constant power level demanded and could be, for example, set to the mean or minimum

value of wind speed expected in a certain period, as is suggested in other work [4],[5].

When the generator torque control law has no dynamics of its own as in (8) or (11), movement in

the torque speed-plane is confined to the load curve. When instead the control input (6) is employed,

movement in the torque-speed plane depends on dynamics of both ω andωfilt and can leave the load

curve.

III. W IND DISTURBANCE MARGIN DEFINITION

In this work, we consider a wind speed input

vw(t) = vw + δvw(t) (12)

wherevw is a mean speed, andδvw(t) is a deviation.

To define the wind disturbance margin, we use a number of sets [21]. We begin by defining the

collection of all wind deviations bounded from above by a constant∆.
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Definition 1: ClassN (∆) of Wind Deviation Signals

Denote byN (∆) the class of all wind deviations bounded by∆:

N (∆) , {δvw(t) : |δvw(t)| ≤ ∆ for all t ∈ R} , (13)

so that

vw(t) ∈ [vw −∆, vw +∆] . (14)

Next, we define the set of all feasible states of the wind turbine model (7) corresponding to arbitrary

constantwind speeds in the interval[vw −∆, vw +∆].

Definition 2: Equilibrium SetE

The equilibrium setE(∆, v̄w, λ⋆) of (7) is the collection of all equilibria of (7) assuming that the wind

is constant, and that its value ranges over the interval[v̄w −∆, v̄w +∆]. In other words,

E(∆, vw, λ⋆) ,

{

(ω, ωfilt) : ω =
λ⋆

R
v0w, ωfilt = ω, v0w ∈ [vw −∆, vw +∆]

}

. (15)

The equilibrium setE(∆, vw, λ⋆) is depicted on theω-ωfilt state plane in Fig. 4 for a specific choice of

∆, vw, andλ⋆. Also shown in Fig. 4 is a dashed line corresponding to the rotor speed limits and torque

limits of the machine. The rotor speed limits are the same as those defined in Fig. 2. Imposing a limit

on the absolute value of generator torqueTgen to be less or equal than the rated torqueTrated requires in

turn a limit on the filter stateωfilt, through the relation (6). The necessary limits onωfilt can be obtained

by settingTgen = ±Trated and solving forωfilt. Outside of these limits, safety controls will intervene to

maintain rotor speed through pitch action or to limit converter currents. Intervention by safety controls

will disrupt the behaviour intended by the control law (6). The rotor speed limits, combined with the

machine torque limits, form bounds on a region in theω-ωfilt state plane. The region of free operation

whose borders are enforced by safety controls will be calledthe safety set.

Definition 3: Safety SetS

S ,

{

(ω, ωfilt) : ωlow ≤ ω ≤ ωhigh,− 3

√

Tratedω

kload(λ⋆)
≤ ωfilt ≤ 3

√

Tratedω

kload(λ⋆)

}

. (16)

In this paper, we will also refer to this set’s boundary usingthe notation∂S.

For a chosen control law, the wind turbine’s state over time will be determined by the dynamical

equations and the wind signal input, which we have restricted for this work to signals of the class
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Fig. 4. Safety setS, equilibrium setE and the invariance kernelS⋆ that define disturbance marginM for the system (7).

defined in Definition 1. We will associate the desired behaviourof the wind turbine over time with the

existence of apositively invariant set. To this end, letx(t, x0) denote the solution of (7) with initial

conditionx0. Fix vw and∆ and consider system (7) with a wind signalvw(t) = vw + δvw(t).

Definition 4: Positively Invariant SetI

A set I ∈ R
2 is said to bepositively invariantfor (7) if ∀x0 ∈ I, and∀δvw(t) ∈ N (∆), x(t, x0) ∈

I, ∀t ≥ 0.

Initial conditions belonging to a positively invariant setproduce trajectories that can never leave that set,

no matter what wind signal in the classvw(t) = vw + δvw(t) ∈ N (∆) affects the wind turbine. The

definition of a positively invariant set can analogously be made for the control law (3) and dynamics (8),

or other control laws.

Of particular interest are positively invariant sets contained in the safety set. Indeed, ifI is such a

positively invariant set, initial conditions inI lead to solutions of (7) that satisfy the safety limits of the

turbine for any wind signal in the classvw(t) = vw + δvw(t), with δvw(t) ∈ N (∆). In this context, it is

natural to look for thelargestpositively invariant set contained in the safe set.

Definition 5: Safety Set Invariance KernelS⋆:

Given the safety setS in Definition 3, a chosen bound∆, a mean wind speedvw, a desired tip-speed

ratio λ⋆, and a filter time constantτ , the setS⋆(∆, vw, λ⋆, τ) is the maximal set contained in the wind

turbine safety setS that is positively invariant for (7).

Given a class of wind signals and values ofλ⋆ andτ , if it happens that the invariance kernelS⋆ is empty,

then for all initial conditions inS, there exists a wind signal making the solutionx(t) exit the safety
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set. In such a situation we would conclude that the wind turbine cannot tolerate arbitrary wind signals

in the stated class. A class of wind signals is therefore feasible for the wind turbine if the associated

invariance kernel is not empty. More precisely, given values of ∆, vw, λ⋆, and τ , the least one must

require in order to conclude that the turbine can tolerate arbitrary wind signalsvw(t) = vw + δvw(t)

with δvw(t) ∈ N (∆), is thatS⋆ contains the equilibrium setE associated with all constant winds in the

interval [vw −∆, vw +∆]. This observation inspires our definition of wind disturbancemargin.

Definition 6: Wind Disturbance MarginM:

Given the safety setS, a mean wind speedvw, a desired tip-speed ratioλ⋆, and a filter time constant

τ , the wind disturbance marginM(vw, λ⋆, τ) is the largest value of∆ for which the invariance kernel

S⋆(∆, vw, λ⋆, τ) is non-empty and contains the equilibrium setE(∆, vw, λ⋆).

IV. W IND DISTURBANCE MARGIN COMPUTATION: SPECIAL CASES

The boundary cases of power smoothing withτ = 0 or τ = ∞ are degenerate cases where the variable

ωfilt is either equalω, or is constant, with no dynamics. Analysis of these cases can be conducted in the

torque speed plane by studying the single differential equation (8) or (11). Because there is only one state,

the setsS, E , andS⋆ are all intervals of the real line. A simplification of the safety set results because

the generator torque depends only onω, and the torque limitTrated is not reached for any rotor speed in

[ωlow, ωhigh]. Therefore ensuring that rotor speed is contained in[ωlow, ωhigh] will also guarantee torque

limits are not exceeded. The safety setS reduces to:

S ,

{

ω : ωlow ≤ ω ≤ ωhigh
}

. (17)

The casesτ = 0 and τ = ∞ will be used to introduce the concept of the disturbance margin and show

the limitations of torque-speed analysis.

A. Degenerate casesτ = 0 and τ = ∞

For the degenerate caseτ = 0, the effect of all wind deviations inN (∆) can be examined using

the pair of extreme aerodynamic torque curves shown in Fig. 5 (light solid), along with the generator

torque given by (3) and also shown (heavy solid). For the practical range of tip-speed ratios encountered,

Taero(ω, vw) depends monotonically onvw. Consequently the extreme values ofTaero(ω, vw) occur at

the wind speedsvw−∆ andvw+∆. The equilibrium setE is defined for the steady states of (8) instead

of the steady states of (7) and coincides with the interval[ω−, ω+].
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Fig. 5. Determination ofS⋆ for τ = 0 based on intervals of guaranteed acceleration and deceleration (shaded). S =

[ωlow, ωhigh],E = [ω−, ω+],S⋆ = S.

The invariance kernelS⋆ is an interval whose torque-speed points are associated with torque-speed

intersections. As depicted in Fig. 5, for all time and for any deviation inN (∆), there are some rotor

speeds that experience a consistent acceleration (shaded +) or deceleration (shaded -). These shaded

intervals are bounded at one end by one of the limiting speedsωlow or ωhigh, and at the other end

by a rotor speed corresponding to torque-speed intersections of the extreme aerodynamic torque curves.

For the single pair of intersections occurring for the caseτ = 0, the intersection associated with the

lowest wind speedvw −∆ is ω− and with the highest wind speedvw + ∆ is ω+. At the lower speed

ωlow, acceleration is consistently experienced, and at the upper speedωhigh, deceleration is consistently

experienced. For the value of∆ chosen in Fig. 5, the rotor speed can not be driven out of the entire safe

interval [ωlow, ωhigh]. ThereforeS⋆ is [ωlow, ωhigh].

The wind disturbance marginM for the caseτ = 0 is the largest bound∆ that still ensures[ω−, ω+]

is contained within the safety set
[

ωlow, ωhigh
]

.

M(vw, λ⋆, 0) =







vhighw − vw, vw > R
λ⋆

(ωhigh
−ωlow)
2

vw − vloww , vw ≤ R
λ⋆

(ωhigh
−ωlow)
2

(18)

wherevloww andvhighw are defined as follows:

vloww =
Rωlow

λ⋆
, (19)

vhighw =
Rωhigh

λ⋆
. (20)
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For the degenerate caseτ = ∞, analogous arguments apply using the aerodynamic torque curve

and generator torque indicated in (11). The equilibrium setE is again [ω−, ω+], but there are two

complications. Fig. 6 shows an example where de-loading has set conversion efficiency to10% lower

than optimal. The first complication is that two torque speed intersections exist for each wind speed. Thus

the two extreme aerodynamic torque curves produce two pairsof intersectionsω+,ω′

+ andω−, ω
′

−
. The

second complication is that for eacĥvw ∈ [vw −∆, vw +∆] there is a corresponding generator curve.

Fig. 6 depicts the casêvw = vw.

When operating with de-loading, the constant power extracted is less than or equal to the maximum

available for a range of speeds belowv̂w. For all possible wind deviations inN (∆) and the choice of̂vw

depicted in Fig. 6, although the wind deviations cause deceleration atωlow, acceleration is experienced

at ω′

−
, and deceleration atωhigh. Thus,S⋆ is not empty for the case shown- it is equal[ω′

−
, ωhigh].

However, for a sufficiently large drop in wind speed, an intersection does not exist betweenTgen(ω, v̂w)

andTaero(ω, vw−∆). Whenv̂w = vw+∆, the drop required is the smallest. In this case, the intersections

at ω− andω′

−
exist only deviations smaller than

∆(vw) , vw

(

1− 3

√

Cp(λ⋆)
Cp(λopt)

)

(

1 + 3

√

Cp(λ⋆)
Cp(λopt)

) , (21)

which is the deviation for whichω′

−
= ω−.

It is also necessary to analyze the deviations in wind speed for which ω− = ωlow or for which

ω+ = ωhigh. Referring to Fig. 6, the rotor speedω+ is the intersection point between the aerodynamic
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torque curve forvw = vw + ∆ and the generator torque curve. The largest value ofω+ is obtained

when v̂w = vw −∆. An implicit definition for ∆high (vw), the deviation for whichω+ = ωhigh in the

steady state, can be identified. Substituting into (11) as follows: (1) forλ, ω = ωhigh, vw and v̂w as just

mentioned, and∆ = ∆high (vw), yields

Cp

(

Rωhigh

vw+∆high(vw)

)

(

vw−∆high(vw)
vw+∆high(vw)

)3 = Cp (λ⋆) . (22)

Similarly, a deviation∆low(vw) is associated with the rotor speedω−, which is the intersection point

between the aerodynamic torque curve forvw = vw −∆ and the generator torque curve. The smallest

value ofω− is obtained when̂vw = vw +∆, leading to a second implicit definition:

Cp

(

Rωlow

vw−∆low(vw)

)

(

vw+∆low(vw)
vw−∆low(vw)

)3 = Cp (λ⋆) . (23)

For a given mean wind speed, it is the smallest of the three deviations∆low(vw),∆(vw), and∆high(vw)

that determines the wind disturbance margin. The wind disturbance marginM for the caseτ = ∞ is:

M(vw, λ⋆,∞) =



















∆low(vw) vw < vloww

∆(vw) , vloww < vw < vhighw

∆high(vw), vhighw ≤ vw

(24)

The threshold valuevloww of mean wind speed where∆low(vw) gives over to∆(vw) is where the

deviations become equal. This threshold speed can be defined implicitly by setting∆low(vw) = ∆(vw)

in (23) and substitutingvloww for vw:

Cp

(

Rωlow

2vlow
w

(

1 + 3

√

Cp(λopt)
Cp(λ⋆)

))





1+ 3

√

Cp(λopt)
Cp(λ⋆)

1+ 3

√

Cp(λ⋆)

Cp(λopt)





3 = Cp (λ⋆) . (25)

Similarly the threshold valuevhighw where∆high(vw) takes over from∆(vw) is also defined implicitly:

Cp

(

Rωhigh

2vhigh
w

(

1 + 3

√

Cp(λ⋆)
Cp(λopt)

))





1+ 3

√

Cp(λ⋆)

Cp(λopt)

1+ 3

√

Cp(λopt)
Cp(λ⋆)





3 = Cp (λ⋆) . (26)
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Fig. 7. Torque-speed curves used to compute disturbance marginM(vw, λ⋆, τ) for systems (8) (τ = 0) and (11) (τ = ∞) at

vw = 7 and a de-loading of5%, λ⋆ = 7.74.

B. Limitations of Torque Speed Intersection Analysis

The computations ofM available from analysis of the limiting cases ofτ are illustrated for an example

in Fig. 7. At the chosen mean wind speed and de-loading, analysis of the caseτ = 0 suggests that wind

deviations inN (∆) for ∆ ≤ 1.18 are acceptable (M = 1.18). Larger disturbances cause the rotor speed

to exceedωhigh. Analysis of the caseτ = ∞ suggests that only values of∆ ≤ 0.06 are acceptable

(M = 0.06). Larger disturbances allow collapse of the rotor speed to occur, because the torque-speed

intersection no longer exists for some wind speeds in the range[vw −∆, vw +∆]. The disturbance margin

M quantifies robustness of a control algorithm to wind disturbances. For the degenerate cases ofτ = 0

or τ = ∞ shown in Fig. 7, torque-speed analysis is sufficient to exactlycompute the disturbance margin.

The cases shown in Fig. (7) are of limited help in assessing the case of0 < τ < ∞. Fig. 8 shows

that the steady state response of the system (7) with the samevw andλ⋆ but with τ = 8s (dashed) is

stable for a periodic disturbance with amplitudes up to0.6. Since the torque-speed variation reaches the

upper rotor speed limitωhigh, M (vw, λ⋆, 8) is surely no greater than0.6, well below M (vw, λ⋆, 0).

However the margin most likely far exceeds an amplitude of0.06 as determined fromM (vw, λ⋆,∞).

A computation ofM’s dependence onτ requires the analysis technique presented in the next section.

V. PLANAR INVARIANCE KERNEL ANALYSIS

A wind turbine subjected to a generator torque based on a filtered rotor speed has dynamics described

by two state variables, as introduced in (7). This case involves a two dimensional vector field in the
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Fig. 8. Response of system (7) withτ = 8s (dashed) compared with response of (8) (thick solid) to periodic wind deviation

around a mean wind speedvw = 7m/s with an amplitude of0.6m/s and a period of40 s, and the same mean wind speed

and de-loading as in Fig. 7. Thin solid lines show aerodynamic torque speed curves forvw ± 0.6).

(ω, ωfilt) state plane. It will be helpful to discuss this vector field in abstract form:

ẋ = f(x) + g(x) h(x, u) (27)

wherex = [x1, x2] with x1 = ω, x2 = ωfilt,u = vw, and

f(x) =





−k1x2
3

x1

x1−x2

k2



 (28)

g(x) =





k3

x1

0



 (29)

h(x, u) = Cp

(

k4x1
u

)

u3 (30)

with constantsk1 = kload(λ⋆)/J , k2 = τ , k3 = 1
2ρπR

2/J , k4 = R, and functionCp(λ) as shown in

Fig. 3. This choice ofg(x) andh(x, u) highlights the slight difference between (27) and a system affine

in the controlu.

A. Concepts and Definitions

If the inputu is bounded (as per (14)) then at each point in the state plane there is a cone of possible

directions for the vector field (27). This is depicted in Fig. 9. Sincef(x) andg(x) are fixed for a given

x, the spread of the cone depends on the known vectorg(x) scaled byh(x, u), which varies between
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xa

f1
f2

f

g · hming · hmax

Fig. 9. Cone of possible variations due to bounded wind variation at a pointxa. Representation using original vectorsf and

g (dashed) is equivalent to convex combination of vectorsf1 andf2 (solid).

hmin andhmax. For the wind turbine system,u corresponds to the wind speed. For theCp curve and

domain of wind and rotor speeds studied in this paper,h(x, u) has a monotonic dependence onu. This

fact is established in the Appendix, where a condition to check monotonicity for a wind turbine model

is derived from the functionh(x, u) and numerically checked. Thus extreme valueshmin andhmax and

therefore also the edges of the cone are obtained for the extreme values of the inputu.

Instead of working with the functionsf(x) andg(x), it is more convenient to work with the vectors

that are the edges of the cone in Fig. 9. These edge vectors are given by:

f1(x) = f(x) + g(x) hmin(x) (31)

f2(x) = f(x) + g(x) hmax(x). (32)

The right-hand side of (27) can be written as a convex combination of f1(x) andf2(x)

ẋ = α f1(x) + (1− α) f2(x). (33)

with α ∈ [0, 1]. Varying α ∈ [0, 1] in (33) corresponds to varyingu ∈ [vw −∆, vw +∆] in (27).

We are in search of the invariance kernel,S⋆, shown in Fig. 4. It has been shown [22] that the invariance

kernel is a closed set with a boundary∂S⋆ that is the union of parts of the boundary∂S of the safety set

S, and of trajectories of the fieldsf1 andf2. On ∂S⋆, we require both edges of the cone to either point

to the interior ofS⋆ or to be tangent to∂S⋆. SinceS⋆ is the largest possible positively invariant subset

of S at least one of the edge fields will be tangent to the boundary∂S⋆ for those pieces not coinciding

with ∂S [22].

We proceed with identification ofS⋆ by first discerning between the left and the right edges of the

cone. Fig. 10 illustrates the need for further definition. At one pointxa, the cone is found to the left of

the fieldf1(x). But for a nearby pointxb, the two fields could be parallel, and at another pointxc, the

cone might now be found to the right off1(x). The plane can be partitioned into three sets based on the
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L+

L−

f1

f1

f1

f1

f2

f2

f2

f2
xa

xb

xc

xd

Fig. 10. Example of extremal trajectory offL(x) (thin solid) and relation betweenf1 and f2 on the setsR+,R−, andL

(dash-dot line).

possible angle relation betweenf1(x) andf2(x). Points such asxa wheref2(x) points to the left-hand

side off1(x) (det[f1, f2] > 0) comprise a setR+. Points such asxc wheref2(x) points instead to the

right-hand side off1 (det[f1, f2] < 0) comprise a setR−. Points where the vectorsf1(x) andf2(x) are

parallel (xb) or anti-parallel (xd) comprise thecollinearity set.

Definition 7: We define thecollinearity set L and its subsets using the determinant and dot product

as follows:

L = {x ∈ R
2 : det[f1(x) f2(x)] = 0}.

with subsetsL+ = {x ∈ L : 〈f1(x), f2(x)〉 > 0}, L− = {x ∈ L : 〈f1(x), f2(x)〉 < 0}.

and the setsR+ andR− similarly:

R+ = {x ∈ R
2 : det[f1(x) f2(x)] > 0},

R− = {x ∈ R
2 : det[f1(x) f2(x)] < 0}.

By assessing whether a point is inR+ or R−, the field vector giving a chosen edge of the cone can

always be identified. The following definition for a new vector field then becomes possible.

Definition 8: The extremal vector fieldsfR(x) andfL(x) are defined as

fL(x) =











f1(x) x ∈ R+

f2(x) x ∈ R−

, fR(x) =











f2(x) x ∈ R+

f1(x) x ∈ R−.

The subscriptL andR indicates to which side of the vector the rest of the cone lies.
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Solutions of the extremal fields exist everywhere on the plane,and are unique almost everywhere.1

The trajectories of extremal solutions on the plane are called extremal arcs, with trajectories offL(x)

being calledL-arcs and trajectories offR(x) R-arcs.

The boundary of the invariance kernelS⋆ is composed of concatenations of extremal arcs that pass

through special points. Theory has been advanced to prove this assertion [21], which can be rigorously

justified given some generic assumptions onS and the vector fields [22]. Further, it has been shown that

these special points and arcs can be computed via an algorithm having a finite number of steps [21],[22].

In order to apply the algorithm, three additional definitionsare necessary.

Definition 9: A connected subset of∂S along which bothf1(x) and f2(x) point inside ofS or are

tangent to∂S is said to be aninvariant arc of ∂S. Each endpoint of an invariant arc of∂S is called a

t∂ point. An invariant arc contains these endpoints and is thus closed.

This definition specifies the character of any endpointt∂ of an invariant arc. An endpoint is a point in

the curve∂S that is the boundary between two connected subsets of the curve. In one subset, bothf1(x)

andf2(x) point inside ofS, while in the other at least one of the fields points out. If∂S is differentiable

(i.e. is a classC1 curve) in a neighborhood of at∂ point, then at least one of the vector fieldsf1(x),

f2(x) must be there tangent to∂S.

The orientation of the extremal arcs is already given by the time parametrization of the corresponding

extremal solutions, so that the orientation indicates the direction of increasing time. We give∂S a positive

orientation so that a point moving along∂S finds the interior ofS to its left-hand side.

At an equilibrium pointx of f1(x) or f2(x), we define two special types of extremal arcs. Recall that

by Definition 8, an extremal arc will coincide with the trajectory on the plane of a solution of either

f1(x) or f2(x).

Definition 10: Suppose that̄x is an equilibrium off1(x) (resp.,f2(x)). An extremal arc through̄x

is said to be anequilibrium extremal arc through x̄ if on a neighborhood of̄x it coincides with a

trajectory off1(x) (resp., a trajectory off2(x)). If, instead, the extremal arc coincides with a trajectory

of f2(x) (resp., a trajectory off1(x)) in a neighborhood of̄x, then it is said to be anon-equilibrium

extremal arc through x̄.

1Two solutions may converge or diverge from a pointx0 ∈ L
−, wheref1(x) and f2(x) are antiparallel. Also the extremal

vector fieldsfL, fR are discontinuous onL. However, the existence and uniqueness of extremal solutions has been discussed

in detail in [22] and is supported by the body of work on differential equations with discontinuous right hand side pioneered

by Filippov [23].
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Fig. 11. Identification of special points (open circles) and closed extremal arc (thin solid). Invariant arcs of∂S (thick solid)

are bounded byt∂ points within∂S (dashed).
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Fig. 12. Integration from special points (open circles) until stopping conditions reached (filled circles).

Definition 11: A point p in L− is called at− point if the trajectories off1(x) andf2(x) throughp

remain in the closure ofR+ or the closure ofR− for some time interval containingt = 0 (i.e., 〈f1, f2〉

has constant sign along the trajectories off1(x) andf2(x) throughp for small time).

B. ComputingS⋆ for Wind Turbine Providing Smoothing

Based on the definitions of the previous section, an algorithmhas been devised to compute the

invariance kernel in a finite number of steps. The algorithm is stated in the Appendix and has been

rigorously justified in an earlier publication [22]. It is assumed that any closed extremal arcs are known.

The validity of the algorithm rests on eight generic assumptions onS and the vector fields, all of which
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Fig. 13. Point numbering, arc partitioning and pruning (axes omitted for clarity). Arcs γ1, ...γ7 will be pruned.

1

5L

5R

Fig. 14. Vertices and edges of graphG constructed after pruning. One cycle exists (gray vertices).

are met by the simplified wind turbine model.

The algorithm is applied in this section to find the invariance kernelS⋆ of the safety setS as defined in

(16), under the dynamics of the wind turbine model (7) with parameters given in [11]. For this example,

vw = 6.4m/s, λ = 7.43, ∆ = 0.700, andτ = 4s.

1) Initialization (Fig. 11):

For the operating point and filter parameter chosen for this example,t∂ points are the only special

points found; the equilibria are foci, and there are not− points. There is one closed extremal arc

of fL(x). Fig. 11 shows the objects identified in the initialization step of the algorithm.

2) Integration (Fig. 12)

Of the four t∂ points, only two require integration. Both of them are at thetail of an invariant arc

(see Fig. 11), withfL(t∂) tangent to the boundary. This corresponds to the first entry of Table I.
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Fig. 15. Invariance kernelS⋆ (shaded region) identified by the algorithm contains the closed extremal arc, which in turn

contains the equilibrium setE (solid black line). Cone of possible directions is depicted at multiple points (arrows).

Therefore the L-arc through each point is integrated in reverse time (solid arcs) and the R-arc is

integrated in forward time. As shown in Fig. 12, the L-arcs (thin solid) hit invariant arcs of∂S

(thick solid), while the R-arcs (thin dashed) hitL−.

3) Pruning (Fig. 13)

Fig. 13 shows points and oriented arcs resulting from carrying out the labeling and partitioning

of Step 3. There are no arcs sharing the same two endpoints, so there is no action for Step 3.2.

Pruning proceeds in several executions as follows:
EXEC. 1: STEP 3.3:γ1, γ2 STEP 3.4:γ3, γ4

EXEC. 2: STEP 3.3:γ5 STEP 3.4:γ6

EXEC. 3: STEP 3.3:γ7 STEP 3.4: NO ACTION

No action is required for step 3.6, and in step 3.7 the points 2, 3, 4, 6, 7, 8 and 9 are removed.

4) Graph Construction (Fig. 14)

Fig. 14 shows the results of applying the rules of Step 4. A single vertex has been created for

t∂ point 1 (by 4.1), while two are created for the integration endpoint 5 (by 4.2). The only arcs

remaining after pruning are either L-arcs or invariant arcs,so step 4.3 is applied. Graph edges are

added fromv1 to vL5 and fromvL5 to v1, forming the only cycle in the graph. Step 4.5 is applied

to the significant point 5 so that an edge is added fromvR5 to vL5 .

5) Cycle Analysis (Fig. 15)

From the graph, there is one cycle that corresponds to a closedcurve in the plane composed of an
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invariant arc of∂S and an L-arc, which we will refer to as a concatenation. From theinitialization

step, there was also a closed extremal arc. Both of these closed curves are plotted in Fig. 15. The

union of the regions enclosed by these two closed curves is the invariance kernel, shaded in Fig. 15.

As a verification, Fig. 15 also depicts the cone of directions atseveral points along∂S and∂S⋆,

showing that, indeed,S⋆ is positively invariant whileS is not.

VI. W IND DISTURBANCE MARGIN COMPUTATION: GENERAL CASE

To practically determineM, one can set the disturbance bound∆ to a small value and then increase it

incrementally, finding the planar invariance kernelS⋆ at each step. As stated in Definition 5, the largest

value of∆ for which S⋆ is both not empty and also containsE is the wind disturbance marginM.

A. Computation for Single Value ofτ

Fig. 16 demonstrates the incremental process of computingM for a single value ofτ . The invariance

kernel S⋆ is plotted for increasing values of∆ ∈ [0.700, 0.807]. The closed extremal curve produced

in Step 1 of the algorithm expands, while the concatenation produced by Steps 2-4 contracts. The

concatenation and the closed extremal curve coincide for the value of∆ = 0.807 m/s. Beyond this

critical value,S⋆ is empty. The wind disturbance marginM(vw,∆) is therefore equal0.807m/s.

The important arc of the concatenation is the trajectory passing through points 1, 9 and 5 in Fig. 13.

That trajectory intersects itself when∆ = M. This observation could lead to a more direct method of

computingM based on analyzing the sensitivity of the trajectory in question. However, different critical

trajectories will determineM for other parameter values ofvw, λ⋆, andτ . The incremental process is a

flexible approach that can be generally applied.

B. Results for Range ofτ

The disturbance margin as determined through the incremental process over a range ofτ is plotted in

Fig. 17(a) forλ⋆ = λopt and in Fig. 17(b) forλ⋆ = 8.62 (a de-loading of20%). The margins for the

extreme casesτ = 0 andτ = ∞ have been computed from (18) and (24) and plotted as horizontal lines

for comparison.

For small values ofτ , the margin approaches the value calculated for the limiting case ofτ = 0 for

both choices of de-loading. For large values ofτ , the margin approaches zero for the selectionλ⋆ = λopt,

and approaches the quantity (21) for the de-loaded selection. The analysis of planar invariance kernels

is required to describe anything other than the asymptotic behaviour of the disturbance margin. Without

November 14, 2012 DRAFT



23

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ω (p.u.)

ω
f
il
t
(p
.u
.)

E(0.807)∆ = 0.807

∆ = 0.800

∆ = 0.750

∆ = 0.700

Fig. 16. Computation ofM for a single value ofτ by incrementing∆ and finding invariance kernels (shaded).vw =

6.4m/s,λ⋆ = 7.43,τ = 4s.
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(a) Optimal (λ⋆ = 6.91), vw = 7.5m/s
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Fig. 17. M(vw, λ⋆, τ) over a range ofτ ∈ [0,∞] (solid with dots), compared with special cases obtained from analysis of

torque-speed intersections (dashed) for degenerate casesτ = 0 (using (18)) andτ = ∞ (using (24)).

such analysis, one could not be sure that smoothing operation would be stable, particularly in the case of

λ = λ⋆. The ability to compute the margin makes it possible to find the largest allowableτ for a given

range of expected wind disturbance, or vice-versa.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper has introduced an efficient method of rigourously studying the behaviour of wind turbines

that implement power smoothing by exploiting the kinetic energy of the rotor. It was argued that traditional

approaches to analyzing machine dynamics are not adequate for studying the problem. It was shown that

by performing a number of integrations of the dynamical equations of a simplified model from certain

special points, it is possible to determine whether a given control law will produce acceptably bounded
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behaviour in response to a class of bounded wind variations.By applying this new method to determine

the largest safe bound on such wind variations, the concept of a disturbance margin for the controlled

wind turbine has been quantified.

The disturbance margin enables a systematic design ofτ to obtain maximal smoothing within available

freedom. In this paper it has been used to prove that smoothing operation can be stable without de-loading.

These two results could not be obtained using the traditionaltechnique of speed torque intersection

analysis. Using the new techniques and disturbance margin concept introduced in this paper, a model of

the wind turbine’s maximal smoothing capability over its operating range could be created. Such models

could be combined with information about expected turbulence intensity to evaluate the availability of

the smoothing capability over a chosen time period. A practical evaluation would likely not be based on

the absolute range of the signal, but on a chosen fraction of its probability mass, so as to indicate highly

probable rather than guaranteed smoothing capability.

The benefit of the disturbance margin introduced in this paper is a quantification of the robustness of

a given control law. The method presented here for finding the invariance kernel allows computation of

the disturbance margin for any system that can be formulatedas a planar nonlinear affine control system.

This can now be used to compare different control laws or different wind turbine technologies on a

common basis of equal robustness, and in future to inform on-line adjustments of control parameters in

response to wind conditions to safely maximize exploitation of wind turbine kinetic energy.

APPENDIX

A. Sufficient Conditions onh(x, u)

The theory presented and applied in this paper is proven in [22] using the properties of the linearization

at equilibria off1(x) and f2(x). For the linearization to exist, the vector fields (31) and (32) must be

differentiable inx at equilibria. Ensuring this requires analysis of the function h(x, u), whose maximum

and minimum valueshmin andhmax are obtained a given pointx with the inputs

ξmin(x) = argmin
u∈[umin,umax]

h(x, u) (34)

ξmax(x) = argmax
u∈[umin,umax]

h(x, u). (35)

By the chain rule, we also require differentiability at equilibria from the minimizing and maximizing

functionsξmin(x) andξmax(x). For (7) these requirements are sufficiently satisfied by the strong property
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that h(x, u) is monotonically dependent onu in the domain of interest. For, where ever

∂

∂u
h(x, u)

∣

∣

∣

∣

x,u

≥ 0 (36)

then functionsξmin(x) andξmax(x) are constant and equal to the minimum and maximum values of the

input u:

ξmin(x) = umin (37)

ξmax(x) = umax (38)

Considering the functionh(x, u) for (7), as given by (30):

∂

∂u
Cp

(

k4x1
u

)

u3
∣

∣

∣

∣

x⋆
1 ,u

⋆

= (39)

[

−
dCp

dλ

k4x
⋆
1

u⋆2
u⋆3 +3Cp

(

k4x
⋆
1

u⋆

)

u⋆2
]

the substitution

λ⋆ =
k4 x⋆1
u⋆

(40)

allows a simplification showing the derivative (39) is equal zero when

λ⋆ =
3Cp(λ

⋆)
dCp

dλ

∣

∣

∣

λ⋆

(41)

which for Cp(λ) can happen at two values ofλ. For the aerodynamic model [11] studied here, (36)

holds for all λ⋆ ∈ [4, 16.9]. The domain of wind speedsvw ∈ [4, 11] and rotor speedsω ∈ [0.92, 1.5]

studied here imply, by the tip-speed ratio (1), a maximum possible range ofλ⋆ ∈ [3.5, 15.8], and thus

the condition (41) is never violated.

B. Algorithm to Find Planar Invariance KernelS⋆

1. Initialization

Determine:

1.1. t∂ points inS,

1.2. t− points inS,

1.3. nodes and saddles off1 or f2 in S,

1.4. closed extremal arcs inS.

2. Integration
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Initial extremal integration

condition arc direction

fL is L rev.

t∂ point, tangent R fwd.

tail of inv. arc fR is do nothing

tangent

fL is do nothing

t∂ point, tangent

head of inv. arc fR is L fwd.

tangent R rev.

L fwd.

t− point L rev.

R fwd.

R rev.

non-eq fwd.

node rev.

stable or (unstable) eq., fast rev. (fwd.)

manifold rev. (fwd.)

non-eq fwd.

rev.

saddle eq., stable rev.

manifold rev.

eq.,unstable fwd.

manifold fwd.

TABLE I

RULES OF INTEGRATION THROUGH SPECIAL POINTS.

Using the integration rules in Table I, generate extremal arcs from all points computed in Part 1.

The stopping criteria for the integration are:

2.1. The solution hitsL− at a point which is not at− point.

2.2. The solution hits∂S at a point which does not lie on an invariant arc of∂S.

2.3. The solution hits an invariant arc of∂S coming fromintS.

2.4. The solution is detected to reach (in finite or infinite time)an equilibrium off1 or f2 or to

spiral (in positive or negative time) around a limit set.

3. Pruning

Label all points identified in Part 1 (steps 1.1-1.4) asspecial points. Label assignificantall special
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points, all the integration endpoints, and all points of intersection between extremal arcs generated

in Part 2 or between extremal and invariant arcs of∂S. Thus, special points are significant, but not

vice versa.

3.1. Partition each extremal arc resulting from an integration performed in Part 2 and invariant

arcs of∂S into sub-arcs whose heads and tails are the significant points. The sub-arcs inherit

the orientation of the parent arc. In the rest of the algorithm below, these sub-arcs will be

simply referred to as extremal arcs.

3.2. Prune one L-arcγ and one R-arcη if γ andη have the same endpoints, and if neither endpoint

is special.

3.3. Prune any L-arc (resp. R-arc) with head at a pointp which is not special if there is no L-arc

(resp., R-arc) with tail atp.

3.4. Prune any extremal arc whose head or tail is at a point where no other arc is connected.

3.5. Repeat steps 3.3-3.4 until there is not more arc to prune.

3.6. Prune extremal arcs that spiral around limit sets in positive or negative time.

3.7. Eliminate from the list of significant points all points with no arcs attached, and points

connecting only two arcs of the same type (L or R).

4. Graph construction

Construct a graphG = (V,E), with V the set of vertices ofG andE the set of edges ofG as

follows.

Vertices of G. Let P denote the set of significant points inS that remain after the pruning in

Part 3.

4.1. For every pointp ∈ P which is special, create a vertexvp.

4.2. For everyp ∈ P which is not special, create two vertices, denotedvLp andvRp .

Edges ofG. Create directed edges between vertices associated with extremal arcs and invariant

arcs of∂S as follows:

4.3. If p is the tail of an L-arc or an invariant arc of∂K with head atq, create a directed edge

from vp, or vLp , to vq, or vLq .

4.4. If p is the tail of an R-arc with head atq, create a directed edge fromvq, or vRq , to vp, or vRp .

4.5. For every(vLp , v
R
p ) pair, create a directed edge fromvRp to vLp .

5. Cycle Analysis

5.1. Find all simple cycles (i.e., closed paths that do not visit any vertex more than once) in the
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graphG.

5.2. Discard any cycles containing two verticesvRp , vLp that are not consecutive (when travelling

in the direction of the edges of the graph).

5.3. For each remaining cycle inG, check whether the region in the plane delimited by the path

associated to the cycle is positively or negatively invariant. If it is negatively invariant, discard

the cycle.

5.4. S⋆ is the union of all regions enclosed by closed paths associated to graph cycles and by

closed extremal trajectories inS.

Remark 1:The test in step 5.3 can be done simply by picking any non-special point p in the closed

path and discarding the cycle iff1(p) points outside the region delimited by the path.
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