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Abstract

Wind turbines can in principle be operated to smooth wind grofluctuations by allowing wider
variations in turbine speed and generator torque to stotk ratease energy. This ability must be
constrained by turbine speed and generator torque limitslate, work in the literature is conceptual and
does not indicate what extent of smoothing is possible kefomponent limits are reached, nor does it
quantify sensitivity to variations in the input wind spedthis paper introduces a method for quantifying
how much wind variation a wind turbine can absorb in variageed mode while still being guaranteed
to operate within its component limits. One can apply thishroé to obtain the dependence of maximum
tolerable wind disturbance on the smoothing time constamd, thus make design decisions. The paper
shows that the analysis of torque speed intersectionsaadastdly applied in electric machine theory, is
of limited use for studying power smoothing. The new coridias and design choices made available
by the proposed method are illustrated with a series of céatipn examples. The method is shown to
agree asymptotically with two limiting cases that can bewdaled based on torque-intersection analysis.
The method is based on new theory for computing invarianceeke for nonlinear planar systems and

can be adapted to assess the robustness of other control laws
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. INTRODUCTION

The mechanical behaviour of electric machines has tradiliprbeen analyzed using torque-speed
diagrams. Though the system dynamics are typically nonlirsggerating points are readily determined
by the intersection of load torque-speed and machine tesgeed curves. Transients of such systems
have commonly been viewed merely as transitions betweensteady state operating points on the
torque-speed plane. This simple analysis approach provideful insights into the electro-mechanical
system, but it relies on the assumption that (i) the load ¢oree) torque takes on a constant steady state
value and (ii) electrical dynamics are much faster than tleehanical dynamics of the system.

An example of a widely-found system that violates theseragsions is the variable speed, converter-
interfaced wind turbine. To achieve peak power trackingegator torque is typically set to be an algebraic
function of generator speed to establish a static curve eirel operating points in the torque-speed
plane [1]. The shaft torque of the machine changes with wirebdpThus the machine and converter
are subject to a time varying torques, violating the first agsion.

With wind energy systems providing an ever growing portiériotal generation, expectation of these
systems to support frequency regulation in the power grihigrging. Proposals to exploit wind turbine
kinetic energy for smoothing wind power [2],[3],[4],[5]athping oscillations in power system frequency
[6],[7], or counteracting momentary dips in frequency [&],are the subject of growing interest in the
literature. These methods all introduce electrical dynanti@at, through control action, are on a time
scale comparable to the mechanical dynamics. This violatesdcond assumption of static torque-speed
analysis. In sum, static torque-speed analysis approarkeassufficient to assess this new class of system
and alternative analysis techniques are required.

This paper introduces the notion of “wind disturbance mdrgimd provides an analysis technique to
compute it. The margin in question is the largest bound on finel \imput signal variation for which the
turbine is guaranteed to remain within a pre-defined safeatipgrregion. For a given mean wind speed,
the margin characterizes the robustness of the energy ionesystem to wind disturbances. Coupled
with advanced wind speed measurement techniques [10], #rgimcould be used to guarantee safe
operation while providing smoothing or other services #gtloit turbine kinetic energy.

The computation of the margin employs a new technique thabeapplied to planar nonlinear systems
with a single input. The solution technique begins by first tidgimg the turbine’s safe operating region
and mapping this region from the torque-speed plane intostht-space plane. The result is a set of

safe operating points in the state plane. This set is theaddst the existence of amvariance kernel
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the largest set of initial conditions leading to trajeatsrihat can never leave the set of safe operating
points for a given class of wind disturbance signals. Thesabdisvind disturbance signals is characterized
only by its mean wind speed, and a bound on its range of vaniafihe bound is increased to find the
disturbance margin, which is the largest possible bouralvalll before the invariance kernel becomes
empty. Instead of brute force simulation, computation @& thvariance kernel employs an analytical
method that calls only for the integration of a finite numberspgcial trajectories. The paper works
with the example of a wind turbine operating in variable spe®de. The turbine is subjected to wind
variations that are bounded but otherwise unspecified. Thergtn is thus subject to a commensurate
shaft torque which is also bounded but otherwise unspecifibé. generator is regulated via torque
control, where the torque reference is derived by low-pagsifig the generator speed. This achieves
smoothing of the wind turbine output power, allowing thedtin energy of the rotor to absorb rapid
input energy changes through variation of the rotor speedh Susystem is effective in reducing the
impact of wind turbine power variations on the power gridweéwer, too large a filtering time constant
may lead to collapse [3] or overshoot of the rotor speed tgpthiet where pitch control intervenes and
causes power variations that defeat the purpose of smapthime simplified two-state model and the
analysis presented offer a new means of assessing such powething control schemes present in the
literature.
The structure of the paper is as follows. In Section Il the aaplility of a simplified wind turbine model

is discussed. Section Il introduces the disturbance mamgirtept and associated definitions. Section IV
demonstrates computation of the margin for special casgéhihlights limitations of standard analysis
techniques. Section V explains the planar invariance keaanalysis technique and its application to the
wind turbine problem. Section VI demonstrates computatibrthe margin for the general case, and

Sections VII provides conclusions.

II. WIND TURBINE MODELING AND CONTROL

The power conversion efficiency of a wind turbine depends ortifhspeed ratio

_ R

(%N

A 1)

whereR is the radius of the rotor disg; is the rotational speed of the turbine rotor, andis the wind
speed. There is also a dependence on the pitch angle of thesbiMdch is not considered in this paper.
The dependence of conversion efficiency bris shown in Fig. 1. Efficiency has a maximum at the

tip-speed ratio\,,;. For any larger tip speed ratib;.;, conversion efficiency is lowered. A conversion
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Fig. 1. Power conversion efficiency curég,(\) for optimal constant pitch angle. Optimal operation occurs\gt, while

de-loaded operation occurs for valuks,, and \z.;.

efficiency of at leastC),(\4) is available over the range of tip-speed ratiyg,;, Aqe;]. Operation at\,,;
is referred to as optimal, and operation away fragy; is referred to as de-loaded.

The aerodynamic torque exerted on the shaft of the wind tarlsiras follows:
1pmR2C, (\) 03,

w

(2)

Taero(wv Uw) =

wherep is the density of air. The dependence of the aerodynamic ¢ooquboth rotor speed and wind
speed is illustrated in Fig. 2, where curves correspondingvtovalues of wind speeds{” and uﬁigh)
are shown in the torque-speed plane. The values chosen areiadsd with variable speed operation

between the rotor speedg®” andw*9",

A. Control Regimes and Component Limits

There are multiple ways in which the physical limitations omavturbine components affect wind
turbine controls [1]. Wind turbines begin operating aboveestain cut-in wind speed. For low wind
speeds, the rotor is maintained close to its minimum speed bieep generator torque (section (A-B)
in Fig. 2). Above a rotor speed'® (greater than the minimum allowed speed by some amount,[11])
variable rotor speed operation occurs (section B-C) up totar rspeed.9" (less than maximum by
some amount). Above™"  both generator torque and pitch feedback controls areedlt® keep rotor
speed at or below the maximum value of 1.0 per-unit (C-D) [T2le maximum torque and rotor speed

(D) are reached at the rated wind speed. For wind speeds abtea electric power is limited to the
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Fig. 2. Aerodynamic (solid) and generator torque-speed curvek)tfuc variable speed wind turbine. Letters label operating

points where various control schemes become active. Safe regiaariable speed operation is enclosed by a dashed box.

rated value for the wind turbine using a constant power ggaetorque curve (D-E) and the adjustment
of pitch to reduce aerodynamic torque.

In variable rotor speed operation (B-C), pitch is set to thénoal value and pitch control is not active
[13]. Rotor speed is free to vary between speet®’ and w"9", provided the maximum torque limit
Ty qteq 1S Never exceeded. The generator tor@ie, in modern variable speed wind turbines is established

through control of power electronics [14]. Between the i and CT,, is set to:

Tgen(w) = kload()\*)WQ (3)
1 RS
kload()\*) = §p7TCp(A*)F (4)

where )\, is a desired tip-speed ratio. The generator torque curve @ntdhque speed plane is often
referred to as théoad curve The load curve is intended to allow the rotor speed to coatipadijust to
new setpoints as the wind speed changes. The choice of (B)a&jhe effect that for a constant wind

speed the efficiency’,(\,) is reached in the steady state.

B. Simplified Dynamic Model for Power Smoothing

For control design related to power smoothing, a model ofiviitbine dynamics in the variable speed
range (B-C) can neglect the pitch control, which is inactaed can be very simple [15],[13], consisting
only of the single nonlinear differential equation for nogpeed dynamics:

dw
J% = Taero(w7 Uw) - Tgen (5)
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where J is the rotational inertia of the turbine hub and generataor. &peration at and above rated

wind speed (D-E), structural vibrational modes such as thertaleflection are usually also modelled
because of their interaction with pitch control [13] andat®fely large excitation at high wind speeds
[16]. However, in variable speed operation (B-C) the exidtais much smaller and not enough to warrant
extra pitch actuator wear [16]. Tower deflections also hatie Idiscernable effect on rotor speed [17].
For these reasons tower and other structural modes can dlg s&€luded from this model, as is widely

done for control design purposes [18].

The objective of power smoothing is to exploit variable spepdration to absorb wind power fluc-
tuations using the rotational kinetic energy of the turbifibe concept has been explored with control
schemes that set constant power or torque [4],[5] or thabdinice a low-pass filter into the signal path
used to generate these control references [2],[3],[19]stMd these works acknowledge that depending
on the chosen time constant of smoothing and amount of akAgainstability may result from power
smoothing. None of these works quantify how much smoothéngractically viable.

To study how power smoothing controls should safely be aesigthis paper examines the controller
introduced in [2]. A low-pass filter is applied to a measuretrairotor speed, and a new variahlg;;;
is used to generate a power reference. The power referencdréxted regardless of rotor speed by
setting the torque command depicted in Fig. 3, which equasdtsired level of power divided by the

unfiltered rotor speed:

koa )\* % 3
Tyen(w, W) = M. (6)
w
Dynamics are now described by two differential equations:
koa A 7 3
dew = Taero(wa’vw) — d( *) Lt
dt w (7)
wafm =W — W
dt filt-

where 7 is the time constant of rotor speed filtering. The choice of agroweference with a low-pass
filter in the signal path has two advantages. First, such clostinactures are already in place (with small
time constants) in some industry implementions [7],[20]c@wl, in the limit for larger the model (7)

corresponds with constant power smoothing schemes studigerature [4],[5].

C. Limiting Cases

Two limiting cases of speed filtering can be considered to igeoinsight into system operation. For

T =0, wp = w and the generator torque (6) simplifies to the standard marmngower tracking law
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Fig. 3. Block diagram of power smoothing generator tor@ye, (w,wrii:) based on filtered rotor speed [2].

\

(3), in which case the rotor speed variations are dictated by

dw
JE = Taero<w7 Uw) - kload()\*)w2' (8)
For 7 = oo, wyy is a constanwﬁlto, and rotor speed variations are instead dictated by
3
dw kioaa(Ae) (wrine”)
Y, = Taero s Uw) — .
I (w,v0) » (©)
Settingwy;;;° to the steady state rotor speed associated with a wind spged
Ae
Wi’ = = Ow- (10)
simplifies (9) to
dw  §prR?
Jdi; - 2”2 (Cp (N 08 — Cp(A)82) (11)

whered,, sets the constant power level demanded and could be, foreaset to the mean or minimum
value of wind speed expected in a certain period, as is stey@s other work [4],[5].

When the generator torque control law has no dynamics ofvits as in (8) or (11), movement in
the torque speed-plane is confined to the load curve. Wheaaitighe control input (6) is employed,
movement in the torque-speed plane depends on dynamicstiotband wy;; and can leave the load

curve.

I1l. WIND DISTURBANCE MARGIN DEFINITION

In this work, we consider a wind speed input
Uy (t) = Ty + 60y (1) (12)

wherew,, is a mean speed, ard,,(¢) is a deviation.
To define the wind disturbance margin, we use a number of séis YZe begin by defining the

collection of all wind deviations bounded from above by astantA.
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Definition 1: ClassN(A) of Wind Deviation Signals
Denote byN (A) the class of all wind deviations bounded by

N(A) 2 {§v,(1) : [du(t)] < Aforall t € R}, (13)

so that
Uy (t) € [Uy — ATy + A (14)

Next, we define the set of all feasible states of the wind twhbitodel (7) corresponding to arbitrary

constantwind speeds in the intervab,, — A, 7, + AJ.

Definition 2: Equilibrium Set€
The equilibrium set€(A, v, A,) of (7) is the collection of all equilibria of (7) assuming thtae wind

is constant, and that its value ranges over the intdeval- A, o, + A]. In other words,

A
E(A, Ty, Ny) = {(w,wfm) Cw = E*vgj,wfilt = w,v?u € [UW—A,’Uw—I—A]}. (15)

The equilibrium se€ (A, v, A.) is depicted on thes-wy;;; state plane in Fig. 4 for a specific choice of
A, 7, and\,. Also shown in Fig. 4 is a dashed line corresponding to therrgpeed limits and torque
limits of the machine. The rotor speed limits are the same @setlilefined in Fig. 2. Imposing a limit
on the absolute value of generator tordlg, to be less or equal than the rated torqug. requires in
turn a limit on the filter statey;;;;, through the relation (6). The necessary limitsuof,; can be obtained
by settingTyc,, = £7}.41ca @nd solving forw ;. Outside of these limits, safety controls will intervene to
maintain rotor speed through pitch action or to limit coteeicurrents. Intervention by safety controls
will disrupt the behaviour intended by the control law (6).eTiotor speed limits, combined with the
machine torque limits, form bounds on a region in the;;, state plane. The region of free operation

whose borders are enforced by safety controls will be catedafety set

Definition 3: Safety SetS

- T atedw Tratedw
S £ wowrg) ¢ W < w < Whh g _rated® < wrpp < o L. (16)
{( I t) kload()\*) fitt kload(A*)

In this paper, we will also refer to this set's boundary using notationds.
For a chosen control law, the wind turbine’s state over timk e determined by the dynamical

equations and the wind signal input, which we have resttidte this work to signals of the class
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Fig. 4. Safety se8S, equilibrium setf and the invariance kerne&l™ that define disturbance margitt for the system (7).

defined in Definition 1. We will associate the desired behav@futhe wind turbine over time with the
existence of goositively invariant set. To this end, letz(¢,z¢) denote the solution of (7) with initial

conditionzy. Fix 7,, and A and consider system (7) with a wind signal(t) = T, + dv.,(t).

Definition 4: Positively Invariant Sef
A setZ € R? is said to bepositively invariantfor (7) if Vo € Z, andVov, (t) € N (A), z(t,xq) €
7, vVt > 0.
Initial conditions belonging to a positively invariant ggbduce trajectories that can never leave that set,
no matter what wind signal in the clasg (t) = 7, + dv,(t) € N (A) affects the wind turbine. The
definition of a positively invariant set can analogously bedenéor the control law (3) and dynamics (8),
or other control laws.

Of particular interest are positively invariant sets camgd in the safety set. Indeed, if is such a
positively invariant set, initial conditions ifi lead to solutions of (7) that satisfy the safety limits of the
turbine for any wind signal in the class, (t) = vy, + dvy(t), with dv,, () € N(A). In this context, it is

natural to look for thdargestpositively invariant set contained in the safe set.

Definition 5: Safety Set Invariance Kernél*:
Given the safety sef in Definition 3, a chosen bound, a mean wind speed,,, a desired tip-speed
ratio \,, and a filter time constant, the setS*(A,v,,, A., 7) is the maximal set contained in the wind

turbine safety sef that is positively invariant for (7).

Given a class of wind signals and values\gfand, if it happens that the invariance kerr&l is empty,

then for all initial conditions inS, there exists a wind signal making the solutioft) exit the safety
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10

set. In such a situation we would conclude that the wind heldannot tolerate arbitrary wind signals
in the stated class. A class of wind signals is thereforeilfeag$or the wind turbine if the associated
invariance kernel is not empty. More precisely, given vale¢ A, 7, \,, and 7, the least one must
require in order to conclude that the turbine can toleralgtrary wind signalsv,,(t) = T, + dvy(t)
with dv,(t) € N (A), is thatS* contains the equilibrium se&t associated with all constant winds in the

interval [v,, — A, 7, + A]. This observation inspires our definition of wind disturbantargin.

Definition 6: Wind Disturbance Margin\:

Given the safety sef, a mean wind speed,,, a desired tip-speed ratib,, and a filter time constant

7, the wind disturbance margiM (v, A, 7) is the largest value oA for which the invariance kernel

S*(A, Ty, A, T) IS nON-empty and contains the equilibrium &N\, 7, A, ).

IV. WIND DISTURBANCE MARGIN COMPUTATION: SPECIAL CASES

The boundary cases of power smoothing witk: 0 or 7 = co are degenerate cases where the variable
wyi 1S either equaly, or is constant, with no dynamics. Analysis of these casaseaconducted in the
torque speed plane by studying the single differential 8ond8) or (11). Because there is only one state,
the setsS, £, and S* are all intervals of the real line. A simplification of the dgfeset results because
the generator torque depends onlywnand the torque limif;..;.q is not reached for any rotor speed in
[whow whigh), Therefore ensuring that rotor speed is containefift’, w9 will also guarantee torque

limits are not exceeded. The safety seteduces to:
S£ {w cwlv < w < whigh} . a7

The cases = 0 and T = oo will be used to introduce the concept of the disturbance maagd show

the limitations of torque-speed analysis.

A. Degenerate cases=0 andr = oo

For the degenerate case= 0, the effect of all wind deviations itV (A) can be examined using
the pair of extreme aerodynamic torque curves shown in Fidight(solid), along with the generator
torque given by (3) and also shown (heavy solid). For thetmalcrange of tip-speed ratios encountered,
Toero(w, vyy) depends monotonically on,. Consequently the extreme values®f,,(w, v,,) occur at
the wind speeds,, — A andw,, + A. The equilibrium sef is defined for the steady states of (8) instead

of the steady states of (7) and coincides with the intejval w_|.
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Fig. 5. Determination ofS* for = = 0 based on intervals of guaranteed acceleration and deceleration dsh&de-

[whw, WM € = [w_,wi],S* = S.

The invariance kerneb* is an interval whose torque-speed points are associatdd tanitue-speed
intersections. As depicted in Fig. 5, for all time and for amgvidtion in A/(A), there are some rotor
speeds that experience a consistent acceleration (shgded deceleration (shaded -). These shaded
intervals are bounded at one end by one of the limiting spe€d$ or w"*9" and at the other end
by a rotor speed corresponding to torque-speed interssctibthe extreme aerodynamic torque curves.
For the single pair of intersections occurring for the case 0, the intersection associated with the
lowest wind speed,, — A is w_ and with the highest wind speed, + A is w,. At the lower speed
w'? acceleration is consistently experienced, and at therugmeedy*9", deceleration is consistently
experienced. For the value df chosen in Fig. 5, the rotor speed can not be driven out of theeesdfe
interval [w'®, w9"], ThereforeS* is [w!®, whigh),

The wind disturbance margin for the caser = 0 is the largest boundh that still ensuregw ™, w™|
is contained within the safety set'*®, w"9"].

high R (@9 —w!o)

- Vw ™ — Uy Uy >
M(UUM )\*7 0) = B low , . )I\%* (whigh2_wlow) (18)
U — Uy s Uy < VA E—
Wherevfj,”” and v{’fgh are defined as follows:
Rwlow
Uqlﬁw = IV (19)
*
) Rwhigh
UZL}Zgh = )\7 (20)
*
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Fig. 6. Determination ofS* for 7 = oo based on intervals of guaranteed acceleration and deceleration dsh&de-

[/, W 9h), € = (W, ws], % = [, W]

For the degenerate case= oo, analogous arguments apply using the aerodynamic torqoee cu
and generator torque indicated in (11). The equilibrium &eis again [w_,w,], but there are two
complications. Fig. 6 shows an example where de-loading easaversion efficiency ta0% lower
than optimal. The first complication is that two torque spegergections exist for each wind speed. Thus
the two extreme aerodynamic torque curves produce two péiirstersectionsv /. andw_,w’ . The
second complication is that for eaéh, € [v, — A, 7, + A] there is a corresponding generator curve.
Fig. 6 depicts the case, = v,,.

When operating with de-loading, the constant power exrhis less than or equal to the maximum
available for a range of speeds beloy. For all possible wind deviations iV (A) and the choice of,,
depicted in Fig. 6, although the wind deviations cause deatite atw'”, acceleration is experienced
atw’ , and deceleration at"9". Thus,S* is not empty for the case shown- it is equ@l , w"9"].

However, for a sufficiently large drop in wind speed, an irget®n does not exist betweéi).,, (w, 0.,)
andTero(w, vy —A). Whenov,, = 1,,+ A, the drop required is the smallest. In this case, the intéses

atw_ andw’ exist only deviations smaller than

3 Cp()‘*)
1 — 3/ =p\As)_
N [(— A ( Cp(Aom))
A (Uw) - Uw 1 5 Cp()\*) 9 (21)
+ Cp()‘om)
which is the deviation for which/ = w_.
It is also necessary to analyze the deviations in wind speedvhich w_ = w® or for which

w4 = w9k Referring to Fig. 6, the rotor speed, is the intersection point between the aerodynamic
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torque curve forv, = 7, + A and the generator torque curve. The largest value) ofis obtained
when,, = 7, — A. An implicit definition for A"9" (%), the deviation for whichu, = w"9" in the
steady state, can be identified. Substituting into (11) asvai (1) for\, w = w"", v, andv,, as just

mentioned, and\ = A"9" (), yields
Rwhigh,
Cp (Ew_i_Ahz‘gh(gw))
ﬁwahigh’(Uw) 3
5w+Ahi9h(ﬁw)

Similarly, a deviationA"*(%,,) is associated with the rotor speed, which is the intersection point

- Cp ()‘*) : (22)

between the aerodynamic torque curve #Qr= v,, — A and the generator torque curve. The smallest
value ofw_ is obtained when,, = 7,, + A, leading to a second implicit definition:
R low
A=)

Vw +Alow (Uw) 3
Ty —Alew (7,,)

=Gy (M) (23)

For a given mean wind speed, it is the smallest of the thremtiens A" (7,,), A(7,,), andAM9"(5,,)
that determines the wind disturbance margin. The wind disiice marginM for the caser = ~ is:
AV (G,) Ty, < vlow
MW, Ay 0) = ¢ A (D),  vlow <, < vhih (24)

Ahigh(ﬁw); szf)igh < Uy

—~

The threshold valuelow of mean wind speed wherd¥(7,,) gives over toA(w,,) is where the

deviations become equal. This threshold speed can be defir@igitiy by setting A" (7,,) = A(7,,)

in (23) and substituting!ow for v,,:

S 3 =Cp (). (25)

3/ Cp(Aopt)
1+ Cp(Ax)

Cp(Xx)
1+ 23 2
A G Grope)

Similarly the threshold value!’?" where A"i9%(%;,,) takes over fromA(3,,) is also defined implicitly:

=Cp (M) (26)
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Fig. 7. Torque-speed curves used to compute disturbance m&tgin,, ., 7) for systems (8)4 = 0) and (11) { = o) at
7, = 7 and a de-loading 05%, A\, = 7.74.

B. Limitations of Torque Speed Intersection Analysis

The computations aM available from analysis of the limiting casesoére illustrated for an example
in Fig. 7. At the chosen mean wind speed and de-loading, @salyshe case- = 0 suggests that wind
deviations inV(A) for A < 1.18 are acceptabled = 1.18). Larger disturbances cause the rotor speed
to exceedw™9", Analysis of the case = oo suggests that only values df < 0.06 are acceptable
(M = 0.06). Larger disturbances allow collapse of the rotor speed tumdecause the torque-speed
intersection no longer exists for some wind speeds in thgegh, — A, v, + A]. The disturbance margin
M quantifies robustness of a control algorithm to wind distndes. For the degenerate cases ef 0
or 7 = oo shown in Fig. 7, torque-speed analysis is sufficient to exadiyipute the disturbance margin.

The cases shown in Fig. (7) are of limited help in assessing dse of0 < 7 < oo. Fig. 8 shows
that the steady state response of the system (7) with the sgnaed )\, but with 7 = 8s (dashed) is
stable for a periodic disturbance with amplitudes up & Since the torque-speed variation reaches the
upper rotor speed limit,"9", M (v, A\, 8) is surely no greater thad.6, well below M (T, A, 0).
However the margin most likely far exceeds an amplitud®.06 as determined frond (v,,, A, 00).

A computation of M’s dependence om requires the analysis technique presented in the nexibgecti

V. PLANAR INVARIANCE KERNEL ANALYSIS

A wind turbine subjected to a generator torque based on eefiltestor speed has dynamics described

by two state variables, as introduced in (7). This case im®la two dimensional vector field in the
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Fig. 8. Response of system (7) with= 8s (dashed) compared with response of (8) (thick solid) to periodic winiaten
around a mean wind speeéd, = 7m/s with an amplitude of0.6m/s and a period off0 s, and the same mean wind speed

and de-loading as in Fig. 7. Thin solid lines show aerodynamic torqued speges forv,, + 0.6).

(w,wpi) state plane. It will be helpful to discuss this vector field bstact form:
i = f(z) + 9(2) h(z,u) (27)

wherex = [z1, z2] With 21 = w, 22 = wpi,u = vy, and

_kas®
flay=1 " (28)
[ ks
glx)=| = (29)
0
h(z,u) = C, <""4u”“"1> u’ (30)

with constantsky = kiad(As)/J, ko = 7, ks = $pmR?/J, ks = R, and functionC,,(A\) as shown in
Fig. 3. This choice ofy(z) andh(z, u) highlights the slight difference between (27) and a systéiinea

in the controlw.

A. Concepts and Definitions

If the inputu is bounded (as per (14)) then at each point in the state plate ts a cone of possible
directions for the vector field (27). This is depicted in Fig. %c®if(z) andg(z) are fixed for a given

x, the spread of the cone depends on the known vegtoy scaled byh(x,u), which varies between
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Fig. 9. Cone of possible variations due to bounded wind variation at a peinRepresentation using original vectofsand

g (dashed) is equivalent to convex combination of vectarand f» (solid).

hmin @nd hy,q,. For the wind turbine systemy corresponds to the wind speed. For tfig curve and
domain of wind and rotor speeds studied in this papér, «) has a monotonic dependence @nThis
fact is established in the Appendix, where a condition tockh@monotonicity for a wind turbine model
is derived from the functior(z,«) and numerically checked. Thus extreme valigs, andh,,,, and
therefore also the edges of the cone are obtained for themegtrvalues of the input.

Instead of working with the functiong(x) and g(x), it is more convenient to work with the vectors

that are the edges of the cone in Fig. 9. These edge vectorsvare fy:

fi(a) = f(z) + 9(z) hmin(z) (31)
folx) = f(x) + 9(2) hmax(@). (32)

The right-hand side of (27) can be written as a convex comibimadf f;(x) and fa(x)
t=a fi(z)+ (1 —«a) faox). (33)

with a € [0, 1]. Varying « € [0, 1] in (33) corresponds to varying € [v,, — A, v, + A] in (27).

We are in search of the invariance kerrgl, shown in Fig. 4. It has been shown [22] that the invariance
kernel is a closed set with a boundai§™* that is the union of parts of the boundady of the safety set
S, and of trajectories of the fieldg and f>. On 9S*, we require both edges of the cone to either point
to the interior ofS* or to be tangent t@S*. SinceS™ is the largest possible positively invariant subset
of S at least one of the edge fields will be tangent to the boundaryfor those pieces not coinciding
with 95 [22].

We proceed with identification aof* by first discerning between the left and the right edges of the
cone. Fig. 10 illustrates the need for further definition. Ae @ointz,, the cone is found to the left of
the field f;(x). But for a nearby point:;, the two fields could be parallel, and at another paintthe

cone might now be found to the right ¢f (z). The plane can be partitioned into three sets based on the
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Fig. 10. Example of extremal trajectory ¢t (=) (thin solid) and relation betweefi and f» on the setsR™,R~, and £
(dash-dot line).

possible angle relation betwegi(x) and fo(x). Points such as, where f»(x) points to the left-hand
side of fi(x) (det[f1, f2] > 0) comprise a seR*. Points such as. where fy(x) points instead to the
right-hand side off; (det[fi, f2] < 0) comprise a seR~. Points where the vector§ () and f»(x) are
parallel ;) or anti-parallel ¢;) comprise thecollinearity set

Definition 7: We define thecollinearity set £ and its subsets using the determinant and dot product
as follows:

L= {z € R%: det[fi(z) fo(z)] = 0}.

with subsetsCt = {& € £ : (fi(2), fo(x)) > 0}, £~ = {w € £ : (fi(2), fo(z)) < O}.

and the setR™ and R~ similarly:
R = {z € R? : det[fi(x) f2(x)] > 0},

R~ = {xz € R?: det[fi1(z) fo(z)] <O}
By assessing whether a point is R or R, the field vector giving a chosen edge of the cone can
always be identified. The following definition for a new vectordi¢hen becomes possible.
Definition 8: The extremal vector fields fr(z) and f7(z) are defined as
fi(z) zeR* fo(z) zeR*

fr(z) = , Jr(z) =
fo(z) zeR™ filr) zeR™.

The subscript. and R indicates to which side of the vector the rest of the cone lies
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Solutions of the extremal fields exist everywhere on the plane, are unique almost everywhére.
The trajectories of extremal solutions on the plane are d¢&idremal arcs with trajectories offy ()
being calledL-arcs and trajectories offr(x) R-arcs.

The boundary of the invariance kerngf is composed of concatenations of extremal arcs that pass
through special points. Theory has been advanced to prosedisertion [21], which can be rigorously
justified given some generic assumptions&and the vector fields [22]. Further, it has been shown that
these special points and arcs can be computed via an algdniliring a finite number of steps [21],[22].

In order to apply the algorithm, three additional definiti@re necessary.

Definition 9: A connected subset @S along which bothf;(z) and fo(x) point inside ofS or are

tangent to0S is said to be annvariant arc of 9.S. Each endpoint of an invariant arc 0 is called a

t? point. An invariant arc contains these endpoints and is thus dlose

This definition specifies the character of any endpethof an invariant arc. An endpoint is a point in
the curvedsS that is the boundary between two connected subsets of the.darone subset, botfi ()
and f»(z) point inside ofS, while in the other at least one of the fields points out)$fis differentiable
(i.e. is a clasg?! curve) in a neighborhood of # point, then at least one of the vector fielfig ),
fa(x) must be there tangent @S.

The orientation of the extremal arcs is already given by the tbarametrization of the corresponding
extremal solutions, so that the orientation indicates thecton of increasing time. We giv@S a positive
orientation so that a point moving alortp finds the interior ofS to its left-hand side.

At an equilibrium pointz of fi(x) or fa(z), we define two special types of extremal arcs. Recall that
by Definition 8, an extremal arc will coincide with the traject on the plane of a solution of either
fi(z) or fa(x).

Definition 10: Suppose that: is an equilibrium of f; (z) (resp., f2(x)). An extremal arc througle
is said to be arequilibrium extremal arc through z if on a neighborhood of: it coincides with a
trajectory of fi(x) (resp., a trajectory of»(x)). If, instead, the extremal arc coincides with a trajectory
of fo(x) (resp., a trajectory of;(z)) in a neighborhood of:, then it is said to be aon-equilibrium

extremal arc through z.

Two solutions may converge or diverge from a painte £~, where fi(x) and f»(z) are antiparallel. Also the extremal
vector fieldsfr, fr are discontinuous of. However, the existence and uniqueness of extremal solutions hasdiseeissed
in detail in [22] and is supported by the body of work on differential éigms with discontinuous right hand side pioneered
by Filippov [23].
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Fig. 11. Identification of special points (open circles) and closed esrant (thin solid). Invariant arcs @S (thick solid)
are bounded by’ points withindS (dashed).

Fig. 12. Integration from special points (open circles) until stoppinglitmms reached (filled circles).

Definition 11: A point p in £~ is called at~ point if the trajectories off;(x) and f2(x) throughp
remain in the closure gR* or the closure ofR ~ for some time interval containing= 0 (i.e., (f1, f2)

has constant sign along the trajectoriesfpofz) and f2(x) throughp for small time).

B. ComputingS* for Wind Turbine Providing Smoothing

Based on the definitions of the previous section, an algorittam been devised to compute the
invariance kernel in a finite number of steps. The algorithmtédes in the Appendix and has been
rigorously justified in an earlier publication [22]. It is assed that any closed extremal arcs are known.

The validity of the algorithm rests on eight generic assuamgionS and the vector fields, all of which
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!

Fig. 13. Point numbering, arc partitioning and pruning (axes omitted l&ity). Arcs ~1,...y7 will be pruned.

Fig. 14. Vertices and edges of grapghconstructed after pruning. One cycle exists (gray vertices).

are met by the simplified wind turbine model.

The algorithm is applied in this section to find the invarianeenkel S* of the safety sef as defined in
(16), under the dynamics of the wind turbine model (7) withapaeters given in [11]. For this example,
Ty = 6.4m/s, A =7.43, A = 0.700, and 7 = 4s.

1) Initialization (Fig. 11):
For the operating point and filter parameter chosen for thismgte,t? points are the only special
points found; the equilibria are foci, and there aretnopoints. There is one closed extremal arc
of fr(x). Fig. 11 shows the objects identified in the initializationpsté the algorithm.

2) Integration (Fig. 12)
Of the fourt? points, only two require integration. Both of them are at thié of an invariant arc

(see Fig. 11), withf;(t?) tangent to the boundary. This corresponds to the first entryabfeTl.
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Fig. 15. Invariance kerneb* (shaded region) identified by the algorithm contains the closed extremalvaich in turn

contains the equilibrium set (solid black line). Cone of possible directions is depicted at multiple pointsway.

3)

4)

5)

Therefore the L-arc through each point is integrated in revéime (solid arcs) and the R-arc is
integrated in forward time. As shown in Fig. 12, the L-arcsr(tbolid) hit invariant arcs obS

(thick solid), while the R-arcs (thin dashed) Hit .

Pruning (Fig. 13)
Fig. 13 shows points and oriented arcs resulting from cagryiat the labeling and partitioning
of Step 3. There are no arcs sharing the same two endpointsesmithno action for Step 3.2.

Pruning proceeds in several executions as follows:
EXEc.1: STEP3.3:71,72 STEP3.4:73,74

EXEC. 2: STEP3.3:7; STEP3.4: 5

EXEC. 3: STEP3.3:77 STEP3.4:NO ACTION
No action is required for step 3.6, and in step 3.7 the point3, 2, 6, 7, 8 and 9 are removed.

Graph Construction (Fig. 14)

Fig. 14 shows the results of applying the rules of Step 4. A singlrtex has been created for
t? point 1 (by 4.1), while two are created for the integratiommint 5 (by 4.2). The only arcs
remaining after pruning are either L-arcs or invariant ascsstep 4.3 is applied. Graph edges are
added fromv; to v¥ and fromvl to vy, forming the only cycle in the graph. Step 4.5 is applied
to the significant point 5 so that an edge is added fidfto vZ.

Cycle Analysis(Fig. 15)

From the graph, there is one cycle that corresponds to a clng®d in the plane composed of an
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invariant arc ofdS and an L-arc, which we will refer to as a concatenation. Fromirilimlization
step, there was also a closed extremal arc. Both of thesecclugves are plotted in Fig. 15. The
union of the regions enclosed by these two closed curvegigwariance kernel, shaded in Fig. 15.
As a verification, Fig. 15 also depicts the cone of directionseaeral points along.S and 9.5*,

showing that, indeedS$™* is positively invariant whileS is not.

VI. WIND DISTURBANCE MARGIN COMPUTATION: GENERAL CASE

To practically determing\1, one can set the disturbance bouldo a small value and then increase it
incrementally, finding the planar invariance kerg#l at each step. As stated in Definition 5, the largest

value of A for which S* is both not empty and also contaiéisis the wind disturbance margim.

A. Computation for Single Value of

Fig. 16 demonstrates the incremental process of compultinfpr a single value of-. The invariance
kernel S* is plotted for increasing values ak € [0.700,0.807]. The closed extremal curve produced
in Step 1 of the algorithm expands, while the concatenatiadyred by Steps 2-4 contracts. The
concatenation and the closed extremal curve coincide ferviliue of A = 0.807 m/s. Beyond this
critical value,S* is empty. The wind disturbance marghd (v,,, A) is therefore equald.807m/s.

The important arc of the concatenation is the trajectoryipgshrough points 1, 9 and 5 in Fig. 13.
That trajectory intersects itself whelh = M. This observation could lead to a more direct method of
computingM based on analyzing the sensitivity of the trajectory in tjoas However, different critical
trajectories will determineM for other parameter values of,, A, andr. The incremental process is a

flexible approach that can be generally applied.

B. Results for Range of

The disturbance margin as determined through the increingrteess over a range ofis plotted in
Fig. 17(a) forA, = Aoy and in Fig. 17(b) for\, = 8.62 (a de-loading 0f20%). The margins for the
extreme cases = 0 andT = oo have been computed from (18) and (24) and plotted as hogkbnés
for comparison.

For small values ofr, the margin approaches the value calculated for the lignidase ofr = 0 for
both choices of de-loading. For large valuesrpthe margin approaches zero for the selection= A,
and approaches the quantity (21) for the de-loaded seteclioe analysis of planar invariance kernels

is required to describe anything other than the asymptai@biour of the disturbance margin. Without
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Fig. 16. Computation ofM for a single value ofr by incrementingA and finding invariance kernels (shaded), =
6.4m/s e = 7.43,7 = 4s.

M (T, A, 0) WM (Ow, A 20) ST
’ 10° 10' 10* 10° 0 10° 10’ 10° 10°
T T
(a) Optimal Q. = 6.91), T, = 7.5m/s (b) 20 % de-rating Q. = 8.62), 7, = 6m/s

Fig. 17. M (v, M\«, ) Over a range ofr € [0, oo] (solid with dots), compared with special cases obtained from analysis of

torque-speed intersections (dashed) for degenerate eases (using (18)) andr = oo (using (24)).

such analysis, one could not be sure that smoothing operatoild be stable, particularly in the case of
A = \.. The ability to compute the margin makes it possible to find #rgdst allowable- for a given

range of expected wind disturbance, or vice-versa.

VIlI. CONCLUSIONS ANDFUTURE WORK

This paper has introduced an efficient method of rigourouslghyséng the behaviour of wind turbines
that implement power smoothing by exploiting the kinetiergyy of the rotor. It was argued that traditional
approaches to analyzing machine dynamics are not adequageutlying the problem. It was shown that
by performing a number of integrations of the dynamical ¢igna of a simplified model from certain

special points, it is possible to determine whether a givamtrol law will produce acceptably bounded
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behaviour in response to a class of bounded wind variatBynapplying this new method to determine
the largest safe bound on such wind variations, the condeptdisturbance margin for the controlled
wind turbine has been quantified.

The disturbance margin enables a systematic desigrt@bbtain maximal smoothing within available
freedom. In this paper it has been used to prove that smaptigaration can be stable without de-loading.
These two results could not be obtained using the traditibeethinique of speed torque intersection
analysis. Using the new techniques and disturbance maggiocept introduced in this paper, a model of
the wind turbine’s maximal smoothing capability over itseogiting range could be created. Such models
could be combined with information about expected turbcdeimtensity to evaluate the availability of
the smoothing capability over a chosen time period. A pcattvaluation would likely not be based on
the absolute range of the signal, but on a chosen fractiots girobability mass, so as to indicate highly
probable rather than guaranteed smoothing capability.

The benefit of the disturbance margin introduced in this paper quantification of the robustness of
a given control law. The method presented here for finding thariance kernel allows computation of
the disturbance margin for any system that can be formukaseal planar nonlinear affine control system.
This can now be used to compare different control laws or wdiffe wind turbine technologies on a
common basis of equal robustness, and in future to informinenadjustments of control parameters in

response to wind conditions to safely maximize exploitatd wind turbine kinetic energy.

APPENDIX
A. Sufficient Conditions oh(x, u)

The theory presented and applied in this paper is proven njg&gg the properties of the linearization
at equilibria of f;(x) and fy(z). For the linearization to exist, the vector fields (31) and) (B®ist be
differentiable inx at equilibria. Ensuring this requires analysis of the fumtt(z, v), whose maximum

and minimum value$.,,,;, and h,,,., are obtained a given poinat with the inputs

Emin(z) = argmin h(x,u) (34)
UE [Umin,;Umax)
Emax(x) = argmax h(z,u). (35)

ue [umin 7umax]

By the chain rule, we also require differentiability at diuia from the minimizing and maximizing

functionsé, i, (x) and&na. (). For (7) these requirements are sufficiently satisfied by ttomgtproperty
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that (z,w) is monotonically dependent anin the domain of interest. For, where ever

0
- >
8uh(x’ u) o 0 (36)
then functions,,,;, () and¢,...(x) are constant and equal to the minimum and maximum valueseof th
input w:
émin(x) = Umin (37)
{max (X) = Umax (38)

Considering the functioh(z,u) for (7), as given by (30):

0 kaz1\ 5 B
8U’Cp< u )u ry,u* B (39)
dC k4$’1( %3 k4fL"1( %2
[_d)\p = u*” +3C, - U
the substitution
k4 x{
allows a simplification showing the derivative (39) is equatawhen
* 3CP<)‘*) (41)
dc,
a |,

which for C,(\) can happen at two values of For the aerodynamic model [11] studied here, (36)
holds for all \* € [4,16.9]. The domain of wind speeds, € [4,11] and rotor speeds € [0.92,1.5]
studied here imply, by the tip-speed ratio (1), a maximumsitibs range ofA* € [3.5,15.8], and thus

the condition (41) is never violated.

B. Algorithm to Find Planar Invariance Kernef*
1. Initialization
Determine:
1.1. t? points inS,
1.2. t~ points inS,
1.3. nodes and saddles ¢f or f5 in S,

1.4. closed extremal arcs .

2. Integration
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Initial extremal | integration
condition arc direction
fris L rev.
9 point, tangent R fwd.
tail of inv. arc fris do nothing
tangent
fris do nothing
t? point, tangent
head of inv. arc| fr is L fwd.
tangent R rev.
L fwd.
t~ point L rev.
R fwd.
R rev.
non-eq fwd.
node rev.
stable or (unstable) eq., fast | rev. (fwd.)
manifold rev. (fwd.)
non-eq fwd.
rev.
saddle eq., stable rev.
manifold rev.
eg.,unstable fwd.
manifold fwd.
TABLE |

RULES OF INTEGRATION THROUGH SPECIAL POINTS

26

Using the integration rules in Table I, generate extremes &rom all points computed in Part 1.

The stopping criteria for the integration are:

2.1. The solution hitsL~ at a point which is not &~ point.

2.2. The solution hit$)S at a point which does not lie on an invariant arcof.

2.3. The solution hits an invariant arc 86 coming fromint .S.

2.4. The solution is detected to reach (in finite or infinite tiraa)equilibrium of f; or f, or to

spiral (in positive or negative time) around a limit set.

3. Pruning

Label all points identified in Part 1 (steps 1.1-1.4)special pointsLabel assignificantall special
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points, all the integration endpoints, and all points o&isection between extremal arcs generated
in Part 2 or between extremal and invariant arc®8f Thus, special points are significant, but not

vice versa.

3.1. Partition each extremal arc resulting from an integraperformed in Part 2 and invariant
arcs ofdS into sub-arcs whose heads and tails are the significant pdihessub-arcs inherit
the orientation of the parent arc. In the rest of the algorithelow, these sub-arcs will be
simply referred to as extremal arcs.

3.2. Prune one L-arg and one R-arg if v andn have the same endpoints, and if neither endpoint
is special.

3.3. Prune any L-arc (resp. R-arc) with head at a ppinthich is not special if there is no L-arc
(resp., R-arc) with tail ap.

3.4. Prune any extremal arc whose head or tail is at a pointavherother arc is connected.

3.5. Repeat steps 3.3-3.4 until there is not more arc to prune

3.6. Prune extremal arcs that spiral around limit sets intppesor negative time.

3.7. Eliminate from the list of significant points all pointstivino arcs attached, and points
connecting only two arcs of the same type (L or R).

4. Graph construction

Construct a graplty = (V, E), with V' the set of vertices o7 and E the set of edges of; as

follows.

Vertices of GG. Let P denote the set of significant points & that remain after the pruning in

Part 3.

4.1. For every poinp € P which is special, create a vertey.

4.2. For everyp € P which is not special, create two vertices, denoﬂzédand vff.

Edges of G. Create directed edges between vertices associated witbnedt arcs and invariant

arcs ofdS as follows:

4.3. If p is the tail of an L-arc or an invariant arc fK with head atg, create a directed edge
from v,, or vl, to vy, or v}

4.4. If pis the tail of an R-arc with head af create a directed edge from, or v}, to v, or v/%.

4.5. For every(v),vlf) pair, create a directed edge fronf to v}

5. Cycle Analysis

5.1. Find all simple cycles (i.e., closed paths that do nat &isy vertex more than once) in the
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graphG.

5.2. Discard any cycles containing two vertio&, vﬁ that are not consecutive (when travelling
in the direction of the edges of the graph).

5.3. For each remaining cycle i, check whether the region in the plane delimited by the path
associated to the cycle is positively or negatively invatridf it is negatively invariant, discard
the cycle.

5.4. §* is the union of all regions enclosed by closed paths assatitt graph cycles and by

closed extremal trajectories .

Remark 1:The test in step 5.3 can be done simply by picking any non-apgcint p in the closed

path and discarding the cycle ff (p) points outside the region delimited by the path.

REFERENCES

[1] T. Burton, D. Sharpe, N. Jenkins, and E. BossaWind Energy HandbookWiley, 2001.
[2] L.Ran, J.R. Bumby, and P.J. Tavner. Use of turbine inertia fiwvgy smoothing of wind turbines with a DFIG. [lth
International Conference on Harmonics and Quality of Powsrges 106—-111, September12—-15 2004.
[3] B. Rawn, P.W. Lehn, and M. Maggiore. A control methodology to naitggthe grid impact of wind turbineslEEE
Transactions on Energy Conversja22(2):431-438, June 2007.
[4] C.L. Luo, H. Banakar, B. Shen, and B.T. Ooi. Strategies to smaadiid power fluctuations of wind turbine generator.
IEEE Transactions on Energy Conversjd®(2):243-349, June 2007.
[5] T.Luu, A.Abedini, and A. Nasiri. Power smoothing of doubly fed urtion generator wind turbines.Industrial
Electronics,2008. IECON 2008. 34th Annual Conference of |Hi#ges 2365 — 2370, 2008.
[6] C. Jauch and T. Cronin. Simulation model of a wind turbine pitch cdietrdor grid frequency stabilization.Wind
Engineering 29(4):377-387, 2005.
[71 F.M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac. Agosystem stabilizer for DFIG-based wind generation.
IEEE Transactions on Power Syster4(2):763—-772, 2006.
[8] J. Morren, J. Pierik, and S. W. H de Haan. Inertial responseaniable speed wind turbinesElectric Power System
Research76:980-987, 2006.
[9] J. Ekanayake and N. Jenkins. Comparison of the responseubfydfed and fixed-speed induction generator wind turbines
to changes in network frequencfeEE Transactions on Energy Conversjd9(4):800-802, 2004.
[10] N. Wang, K. Johnson, and A. Wright. FX-RLS-based feedfdwcontrol for LIDAR-enabled wind turbine load mitigation.
Control Systems Technology, IEEE Transactions(88):1-11, 2011.
[11] J. G. Slootweg, H. Polinder, W. L. Kling, and J.A Ferreira. Repreging wind turbine electrical generating systems in
fundamental frequency simulatiolfEEE Transactions on Energy Conversjdi8(4):516-524, December 2003.
[12] E. Muljadi and C.P Butterfield. Pitch-controlled variable-speed wimthine generationlEEE Transactions on Industry
Applications 37(1):240-246, Jan/Feb 2001.
[13] E.A Bossanyi. Wind turbine control for load reductiowind Energy 6(3):229-244, 2003.

November 14, 2012 DRAFT



[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

29

K.A. Mary, A. Patra, N.K. De, and S. Sengupta. Design and impletation of the control system for an inverter-fed
synchronous motor driveControl Systems Technology, |IEEE Transactions Id}{6):853-859, 2002.

W.E. Leithead, S. de la Salle, and D. Reardon. Roles and objsativeontrol for wind turbines.IEE Proceedings-C
138(2):135-148, 1991.

P. Fleming E. A. Bossanyi, A. Wright. Controller field tests on the NREART3 Turbine. Project Upwind Integrated
Wind Turbine Design2009.

AD Wright, LJ Fingersh, and KA Stol. Designing and testing controls togate tower dynamic loads in the Controls
Advanced Research Turbine. #bth AIAA Aerospace Sciences Meeting and Exhibit, Wind Energy SyampdReno,
Nevada (USA)2007.

B. Connor W.E. Leithead. Control of variable speed wind turhimsmamic models.International Journal of Contrgl
73(13):1173-1188, 2000.

A.M. Howlader, N. Urasaki, T. Senjyu, A. Uehara, A. YonadaflY Saber. Output power smoothing of wind turbine
generation system for the 2-mw permanent magnet synchronoesagiers. InElectrical Machines and Systems (ICEMS),
2010 International Conference ppages 452-457. IEEE, 2010.

N. Miller, W. Price, and J. Sanchez-Gasca. Dynamic modellingeofldp and 3.6 mw wind-turbine generatoiéersion
3.0 Technical Report2003.

B. Rawn. Ensuring Safe Exploitation of Wind Turbine Kinetic Energy: An Invarianeenkl Formulation Ph.D. Thesis,
Department of Electrical and Computer Engineering, University obiitar, 2009.

M. Maggiore, B. Rawn, and P. Lehn. Invariance kernels oflshiigput planar nonlinear systemSIAM Journal on Control
and Optimization Accepted for publication, December 2011.

A.F. Filippov and F.M Arscott.Differential Equations with Discontinuous Righthand Sid8gringer, 1988.

Barry G. Rawn (M '10) received the PhD degree in electrical engineering in 2010 fiteenUniversity
of Toronto, where he also received the BASc and MASc degrees imé&gigng Science and Electrical
Engineering. His research interests include nonlinear dynamics atalrslde energy infrastructure. He
is currently a postdoctoral researcher in the Electrical Power Systeoup @t the Delft University of

Technology, The Netherlands.

Peter Lehn (SM,'05) received the B.Sc. and M.Sc. degrees in electrical eagimg from the University

of Manitoba, Winnipeg, MB, Canada, in 1990 and 1992, respectivelg, the Ph.D. degree from the
University of Toronto, Toronto, ON, Canada, in 1999. From 1992 t841%he was with the Network
Planning Group, Siemens AG, Erlangen, Germany. He is currentlyfad3ar at the University of Toronto.
His research interests include modeling and control of converters @egration of renewable energy

sources into the power grid.

November 14, 2012 DRAFT



It

November 14, 2012

30

Manfredi Maggiore (M '99) was born in Genoa, Italy. He received the "Laurea” degre&lgctronic
Engineering in 1996 from the University of Genoa and the PhD degreé&triEal Engineering from the
Ohio State University, USA, in 2000. Since 2000 he has been with the BdS:aRogers Sr. Department
of Electrical and Computer Engineering, University of Toronto, Canachere he is currently Associate
Professor. He has also been a visiting Professor at the UniversitplofyBa (2007-2008). His research

focuses on mathematical nonlinear control, and relies on methods fyoamdcal systems theory and

ifferential geometry.

DRAFT



