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Abstract— A path following controller is presented for a can be found in [5] and [6] which both present attitude,
quadrotor helicopter model. The controller relies on input position and trajectory tracking controllers implementad
dynamic extension and feedback linearization. The controller - 5 tagthed to obtain experimental results. Quaternionebase
allows the designer to specify the speed profile of the quadrotor . . . .
on the path and its yaw angle as a function of the displacement. attitude contr(_)l is presented in [7].v_vh|Ie quadrotor mareav

are explored in [8] and [9]. Specifically, [8] has a quadrotor
fly through openings and perch on angled surfaces while [9]
|. INTRODUCTION presents a learning strategy for flips.

Applications for search and rescue, exploration, security The main issue with the trajectory tracking method is that
and inspection are often dangerous or time consuming forifathe quadrotor loses track of the reference signal, it may
human operator to perform. One solution is to have a modiave the path and collide with off-course objects. For this
sized quadrotor helicopter do the task. That is, commar@ason, we will focus on the path following approach.

a quadrotor to follow a predefined path while meeting The goal of the path following approach is to stabilize a set
additional specifications regarding its motion such as ¢pe®f permitted trajectories where the quadrotor is on the path
or orientation. For instance, the quadrotor may orientfitee and meets additional specifications regarding its speed and
point an on-board camera or tool in a desired direction asa@ientation as a function of its displacement. The advantag
function of displacement along the path. Two methods to aof the path following method comes from its invariance
complish this are trajectory tracking and path followingileh properties where if the quadrotor begins on a permitted
secondary problems may deal with disturbance rejectidmajectory, it will remain on it for all time. However, even
(e.g., wind in outdoor environments), unmodelled dynamics the quadrotor is not exactly on a permitted trajectory or
(e.g., aerodynamic effects) and parameter uncertainties. has been perturbed slightly off of one, it will at least cagee

In the trajectory tracking case, the quadrotor tracks a timwards nearby points on the path rather than chasing a
parameterized reference signal that moves along the patfstant reference signal. This contrasts the trajectamking
while simultaneously specifying yaw angle. The majorityapproach where this invariance property does not hold.
of the literature for quadrotor trajectory tracking uses a The development in this paper uses a feedback lineariza-
hierarchical method called backstepping. For instancfl]in tion method inspired by the work of Chris Nielsen in [10].
and [2], the controller is split into an outer translationalAs in [4], we rely on an input dynamic extension to design a
control loop and an inner rotational control loop. In thepath following controller. Besides solving the path foliogy
outer loop, the reference signal is the desired displacemeawroblem, our control design allows one to specify the speed
along the path and the control input is the thrust. Therprofile and yaw angle of the quadrotor along the path.
are also additional virtual inputs that together with the Notation.Throughout the paper, we will use the shorthand
desired yaw angle, become the reference signals for the inng := cos 6, sp := sin b, ty := tan 6, seg := secd. By df, we
rotational loop. In this inner loop, the remaining controlwill denote the Jacobian of a functighat z. If f is a real-
inputs representing body torques are assigned. In [1] a modelued function, the gradient gf with respect to the vector
predictive controller is used for the translational subsys = col (z;...z,) will be denoted byd(,, ... ) f, or more
whereas a robust nonlined> controller is used for the conciselyd, f. Note thatd, f = df, " for a real-valuedf.
rotational subsystem. In [2] a sliding-mode controllersed  Finally, v - w denotes the Euclidean inner product between
for both subsystems where neural networks are used feectorsv andw € R3.
disturbance rejection. In [3], the approach has three obntr
steps. The first step uses the thrust input and yawing torque
to control the quadrotor height and yaw angle respectively. The quadrotor model developed in this section is standard.
In the second step, the pitching torque is used to contrélor instance, see Mokhtari, Benallegue, and Orlov in [4]. A
y-position and pitch angle. In this step, a nested saturatiaquadrotor helicopter consists of four rotors connected to a
control is used to bound the pitching torque. The third stepgid frame, as shown in Figure 1. Denote the inertial frame
is similar to the second, where the rolling torque is usetly Z, the body frame attached to the quadrotor centre of
to control z-position and roll angle. In [4], the authors mass by and the distance from the centre of mass to the
use a feedback linearization approach where the path armtors by d. Corresponding to each rotor is a thrust force
yaw specifications are described through the system outpyts acting along thez, axis and a reaction torque.; that
and disturbance rejection is provided through an adaptivapposes the direction of rotation. To produce a thrfjsin
estimator. Other relevant work regarding quadrotor cdntrahe negativez, (i.e., upward) direction, the rotors on thg
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where > F.,; is the sum of external forces composed of a
gravity force and thrust forcen is the quadrotor masg, is
the acceleration due to gravity; = [0 0 I]T and R is
the rotation matrix from to Z given by,

X

CoCyy  CpSHSH — CpSyp  CHCypSe + SppSyp

vi R = CoSyy  S0SpSy T CyCy  CpSeSy — CySe
—S8p 098¢ CQC¢
Fig. 1: Quadrotor system. Using Newton-Euler’s equation, the rotational dynamics of

the quadrotor system are given by,

0 sgseg cyseq
axis rotate in the clockwise direction and the rotors on the &= 10 Co —$¢ | w
yp axis rotate in the counter-clockwise direction. 1 sete  coto 2
The control inputs to the system ate, us, us, uy Where . T

uy is the total thrust along the, axis andus, us, us are the Jotwx Jw=3 Tem=[uz us w]

torques about the, y,, 2, axes respectively. The physical where S 7., is the vector of external torques Hand J is
inputs are the motor torques applied to the rotors denotefe symmetric inertia matrix i with diagonal elements,,
by 71,72, 73, and74. Using the development from Castillo, 7, andr,. The state vector is taken gs= col (X, ®, V,w) €

Lozano, and Dzul in [3], the rotor dynamics are given byy := R!2 and the system model can be represented in the
L..Q = —bQ2,+7; wherel,., is the rotor moment of inertia control-affine form,

about the rotoe-axis, Q2,; is the angular speed of rotéand

b is a coefficient of friction due to aerodynamic drag on the X=F()+90)u y=nhx)

rotor. There is also an algebraic relationship between thei the definitions of f,g derived from equations (1)
rotor thrust and rotor speed given bft, = vQ?, where~ and (2).

is a parameter that can be experimentally measured. If we

assume steady-state rotor dynamics such fhat= 0 then [1l. PROBLEM STATEMENT

fi = (y/b)7; = cm; wherec = /b is the algebraic scaling  The objective of the path following problem is to control
factor between the rotor thrust and the applied motor tarqughe quadrotor helicopter to follow a predefined pathRih
Using this fact, it is readily seen that the relationshipi®sin - \yhjle attaining a desired velocity and yaw angle as it travel
the control inputs and the motor torques is given by along this path. This is stated more precisely below.

Path Following Problem (PFP)Consider the system given

u C C C C T
! _ ! by equations (1) and (2). Given a Jordan cutvia R?, find
Ug 0 cd 0 cd | |12 .
=l T e 0 —ed 0 |m| = M. a continuous feedback = col (uy, ..., u4) such that under
» 1 -1 1 “1] | appropriate initial conditions, the closed-loop systerretse

the following goals:

In the above, the total thrust is equal to the summatiol The quadrotor asymptotically convergesto
of the four rotor thrusts; the torque about the axis is G2 The velocity asymptotically converges to a specified
proportional to the differential thrust of the two rotors ihe value dependent on the quadrotor displacement albng
yp axis, f1— fo; the torque about thg, axis is proportional to
the differential thrust of the two rotors on the axis, f; — f;; G3 The yaw angle asymptotically converges to a specified
and the torque about the, axis is equal to the summation ~ Value dependent on the quadrotor displacement afong
of the four reaction torques.; which are equal and opposite
to the applied motor torques. Therefore giveru, one can The path, velocity and yaw specifications are formulated in
determine the required motor torquesby= M ~'u. Letthe terms of system outputs that we would like to asymptotically

states of the quadrotor system be given by, zero out.
X = col (z,y,2): position inZ Definition 3.1: A path specificationis a smooth function
® = col (¢, 6, ¢): orientation (yaw, pitch, and roll) col (hy (X), ha(X)), R? — R?, such that the ?E)atﬁ ={X:
V = col (u, v, w): velocity in T h1(X) = he(X) = 0} is a Jordan curve ifR® and dxh;,
w = col (p, g,): angular velocity inB. dxhy are linearly independent ofl (i.e., zero is a regular

We now model the system dynamics neglectin rosco yalue of col (1, hy)).
y y g g9y Plthe enforcement of the path specification meets goal G1

effects and disturbances. Using Newton’s equation, thestra .

. : . in PFP. Next, we would like to define velocity and yaw
lational dynamics of the quadrotor system are given by, specifications

X -V Definition 3.2: A velocity specification is a
B (1) smooth functon X — R defined as h3(x) =
mV = ZFest = mge3 — uy Res (8xh1 X 8_)(]12) / ||(9)(h1 X athH -V o= Oé(X) where



the smooth functiony(X) # 0 specifies the velocity along A. Investigation of vector relative degree conditions

C. ) Taking time derivatives of the four outputs in (3) along the
For each pointX € C and each velocity vectdr € R?, the  vector fields of the control system (1)-(2), one can check tha
vector (xhy X Oxhs) [ |0xhy X Oxhs|| -V represents the the control inputs first appear ift s, /dt2, d2sy /dt2, dss/dt,
component of/” tangent to the patld at X. Thus,h3(x)  andd?s,/dt?> suggesting that if vector relative degree were
expresses the requirement that whene C the component \ye|l-defined it would be given by2,2,1,2}. However, one

of the quadrotor's velocity tangential 0 be equal t0 & ¢an check that the corresponding decoupling mabihas
desired value given by (X). The magnitude ofx(X) is  the form

the desired speed, and its sign indicates the desired idinect * 0 0 0
of travel alongC (clockwise or counter-clockwise). Hence, D |* 0 0 O
the enforcement of the velocity specification meets goal G2 = 0 0 0|’
in PFP. * 0 *x *

Definition 3.3: A yaw specificationis a smooth function 4 thatp is always singular, implying that the vector relative
X — R defined a§l4(X') =¥ — B(X). degree{2,2,1,2} is not well-defined anywhere. Interest-
In the above, the desired yaw angle at a paihtalongC gy, the same problem arises when one wants to address
is given by3(X). The enforcement of the yaw specificationype tracking problem, a fact pointed out in [4], although in

meets goal G3 in PFP. this case the output function is completely different. Here

Let s := col(s1,...,s4) and definer : X — R® as a5 in [4], we achieve a well-defined vector relative degree
WELX@,V,@ = X. Defining the output functiorh : X = through the technique of input dynamic extension [11].
R* as Specifically, we add two integrators at the thrust inpuyt

hi(m(x)) Yé?lle leaving the remaining inputs unchanged. That is, we
ha(m(x))
s=h(x) = | oxhixdxh ) ©)) =
) H0§h1§8§h2\| -V —a(X) uy = ¢, (=11, up = Uy, uz = U3, ug =y (4)

V- AX) whereuy, us, U3, g are the new control inputs. The quadro-
the objective of PFP can be restated as that of designingter model with dynamic compensation is given by equa-
feedback such that, for a suitable set of initial conditiongions (1), (2), and (4) with the augmented state vector défine
h(x(t)) — 0 along solutions of the closed-loop system. Ingsy = col (X, ®,V,w,(, () € X := X x R2. The system
other words, we want the sBt= /" (0) to be attractive for el can be represented in the control-affine form,
the closed-loop system. Attractivity alone, however, i no o B
desirable in path following applications because any sligh x=f)+g(x)u, y="nrx)),
perturbation of the quadrotor off df may result in system
behaviour where the quadrotor initially diverges signifiitya
from the path before converging back to it. Rather, we woul
like I' to be asymptotically stable. This, however, is no
possible sinca” is not controlled invariant, i.e., it cannot be
made invariant by any choice of feedback. To illustrate, if h(x) = ho@(%), (5)
the system is initialized off but the velocity vectod (0) is
not tangent ta&’, the quadrotor will leav€, and hencd’, no
matter what feedback we choose. In light of this observation
we will stabilize the maximal controlled invariant subsét oII
I which we call thepath following manifold introduced
in [10]. The path following manifold is simply the zero
dynamics manifold of system (1), (2) with output (3), and ity
will be characterized in the next section.

with the definitions of f,g derived from equations (1),
), and (4). Lettingm : X — X be the projection
X, ®,V,w,(,¢) — (X,®,V,w), the new output function
: X — R* is simply given by

with A given in (3).

To solve PFP for the augmented system, we want to stabi-
ze the maximal controlled invariant subsetiof= ~=1(0).
The following lemma outlines the conditions under which
the vector relative degree is well-defined for the augmented
stem.
Lemma 4.1:The augmented quadrotor system given by
equations (1), (2) and (4) with output (5) has a well-defined
vector relative degregry, o, 73,74} := {4,4, 3,2} ata point
X = (X, (¥,0,0),V,w,¢,¢) if and only if ¢ # 0 and ¢ #

The simplest way to stabilize the zero dynamics of a nont-Z.

linear control system is to use, when feasible, input-outpu  Proof: The determinant of the decoupling matiix of
feedback linearization [11]. In the context of PFP, in orter the augmented system is given by
apply this technique we need to find conditions under which B3¢ (Dyha) ¢
the outputh(x) in (3) yields a well-defined vector relative  det(D) = —#
degree. We begin by finding conditions under which a vector mi Loy Ico
relative degree is well-defined. Then, we design a controlldt follows from the definitions ofiy, hs, hs thatdx hy, Ox ho
based on input-output feedback linearization, and we prowand 0y hs form a linearly independent set. This is because
that it solves PFP. Odxhy andOxhs are linearly independent|oy hs|| = 1 # 0,

IV. SOLUTION OF PFP

(axhl X axhg) . avhg.



and Oy hs = (Oxh1 x Oxha) / ||0xh1 x Oxhz|| is perpen-
dicular todx h; anddx hs. It follows from the definition of
hy thatdyhy = 1 # 0. Thereforedet(D) # 0 if and only if

¢#0andg # £7.

from which we have that¢| > m (g — K1 (K;C + K>»)),
and thus for allK; (K,1C + K2) < g, |[¢| > 0, implying
that property (i) above is satisfied. We also have thaK
m (g + K1(K1C + K3)). In other words( is bounded from

It follows that the system has well-defined vector relativ@bove onl*. Using the fact thati| = |g — ¢/m(cocy)| <

degree at any poin{ where the conditiong # 0 and ¢ #
+7 are satisfied because the decoupling mafrxhas full
rank andngL’]%hi =0fori,je{l,...,4}, k€ {0,...,m—
2}. [ ]

Note also that, in addition to the conditions of the Iemmzilt thus follows that if K
above, we must impose# +7 as this presents a singularity thus and ¢ are boundl
in the model inherited by the singularity in the Euler angleihat property (i) abov

|V < K1(K,C + K5), we have
Q—K1(K1C+K2) _ g—Kl(K10+K2)
g+ Ki(K1C + K»)'

|cocy| = .
max ‘E‘
(K1C+ K3) < g, |cpcy| >0, and
ed away fromt 5 on I'*, implying
e holds. In conclusion, settifg =

representation. Consider the set given by

f*:{;@Lj}hizo,j:0,...,”—1,2’:17...,4}, (6)

Vg/(1+C), for all K € (0, K*) the augmented quadrotor
system has a well-defined vector relative degred’on m
Proposition 4.2 states that if the velocity specification is
where {ry,r2,73,74} = {4,4,3,2}. If the augmented chosen so that the desired tangential velogityX) and
quadrotor system has a well-defined vector relativefdegr%éx(x) have a sufficiently small upper bound, then
{4,4,3,2} at each pointy € I'*, then it follows thatl'™  the augmented quadrotor system has a well-defined vector
is the maximal controlled invariant subset Ef which is relative degree orf‘*’ and therefore this set is the path
precisely the set we wish to stabilize. In light of Lemma 4.1following manifold we wish to stabilize to solve PFP. The
in order to have a well-defined vector relative degred’on path following manifold is one-dimensional singe- (r; +
we need to determine whether, o1, ¢ # 0, ¢ # £7/2,  yy 4 g4 1y) =14— (4+4+3+2) =1 wheren = 14 is
and6 # £ /2. This is the subject of the next proposition. the number of states for the augmented system.
Proposition 4.2:For the augmented quadrotor system Remark 4.3:Recall the functionV = w(X)a(X) in (7)
given by equations (1), (2), and (4), with output (5), thergvhich expresses the velocity of the quadrotor in terms of
exists K* > 0 such that for allk” € (0, K*), if the velocity its displacementy when y € T'*, and its time derivative
specification is chosen so thatax xec |(X)| < K and 7 = d« (na?) + pdax (ua). If one computes< (K, C +
max xec [dax(X)|| < K the system has a well-defined j¢,) .= maxycc ||V], then the proof of Proposition 4.2

vector relative degreéry,ro, 3,74} = {4,4,3,2} on ",
Proof: Let K, maxyec [a(X)| and K

maxxec ||[dax(X)|. The constantds; and K, exist and

are finite becausev is smooth andC is compact. From

provides the upper bounds; and K satisfying Ky (K,C +
K5) < g¢. Since(C is a closed curve, the computation of
C, and hence ofK; and K,, can be easily carried out
numerically.

Lemma 4.1, the system has well-defined vector relative

degree and no Euler angle singularities are encountered
I'* if and only if,

(i) ¢ is bounded away frond on I'*.

(i) ¢,0 are bounded away fromt 7 on .
By definition, on T* we have hi(Y) = ha(x) =
and L7hi(x) = Lsha(x) = 0 or, recalling thaty
(X,®,V,w,(,C), hi(X) = he(X) =0anddxhy(X)-V =
Oxha(X)-V = 0. The latter two identities imply that, o,
V is orthogonal to the vectox h1(X) anddx ha(X). We
also haVél3(X) =0, or (axhl X axhg)/ Haxhl X athH .
V = a(X). SinceV is orthogonal to botldx h,; and dx hs,
the above identity implies that on*,

8Xh1 X 3xh2
||8xh1 X 8xh2||

0

V= pX)a(X), p(X):

= (7)
In particular, V. = jio + pd = dpx (pa?) + pdax (o)
where||u|| < 1 and therefore||V| < ||dux||K? + K, Ko.
Since dux is continuous andX € C, a compact set, it
follows that, onl'*, ||V || < K (K,C+K5), for someC > 0.
OnT* we have

) 0 — %(%cwse + SpSy)
VII={ (0| +¢| - m(%slesw +cyse) | || < Ki(K1C+K>)
g - E(CG%)

Bn Controller Design

From now on we will assume that the velocity speci-
fication has been chosen so thataxxcc |a(X)] < K*
and maxxec [[dax(X)|| < K*. The design of an input-
output feedback linearization contTroIIer is standard. Let
b(x) == [L?M()_() L}‘*M()Z)} and define the feed-
back transformation

u=D"1(x) (=b(x) +v), ®)
where v = col(vy,...,v4) IS the new control input,
and where D(y) is the decoupling matrix with entries
Dy = ngL:;—lhi, i,7 € {1,...,4}. Let & =
- .- AT
[:(0) Ly ' hi()
as

, 1=1,...,4, and choose;

Uz:*kh—lg:n,**kogia i=1,... (9)

such thats” + k,,_1s™ "1 4 --- + ko has roots in the open
left-half plane. The resulting control system is illusémtin
Figure 2. Now the problem is whether the controller just
designed indeed stabilizes the path following manifbtd
In view of the fact that
Iri—l 7 0
e+ ]

éi[o

4

ri—1x1

1

01 XTi—1

:| Vi, (10)



: l‘ : ¢ linearly independent frond;h;, and dghs or, what is the
%=k If B “!| Quadrotor same, if{Oxhy,0xha,dxA} is a linearly independent set,
kA TR where X = 7o #(Y). That this is indeed the case ait
! 1 follows from the fact that\ is the displacement alorgand
Fig. 2: Control system block diagram. hence,dx \ is tangent toC and perpendicular tdxh, and
Ox hs. To show (ii) consider the restriction efto I'*, o|p. =
col(0,...,0,A|p«). The mapA|z. is smooth and surjective
The input-output linearizing feedback guarantees thai-solpecause it is the composition of four smooth surjective maps
tions of the closed-loop system originating in a neighbours . ¥ — X, 7 : X - R3 p: R3 — C, andA : C —
hood of I'* are such that’(x(t)) — 0, i = 1,...,4, S! Therefores|s. is also smooth and surjective. Sinde
provided that there are no finite escape times. Besides@avigp — S is a diffeomorphism, proving injectivity of|z. is
to show that the closed-loop system has no finite escapguivalent to proving injectivity ofp o 7 o 7)|g. : T* — C.
times in a neighbourhood df*, there is anqther issue that Thus, we must show that given a poif € C, we can
requires some analysis. Althoudtt = {y : £'(x) = 0,i =  constructy € T* uniquely such thaporo7(y) = X. Since
L,...,4}, the fact thatt*(x(t)) — 0, i =1,...,4, does not onT* we haveh;(Y) =0,i=1,...,4, given a pointX € C
imply, in general, thag(t) — I'*. To illustrate, consider the we know thatlV’ = u(X)a(X), wherey was defined in (7),
function £(v) = x/(1 + x*), and suppose tha(t) = t. and+ = S(X). Moreover,V = dux (pa?) + pdax (ua).
Then,{(x) — 0 but x(t) does not tend tdx : £(x) = 0}.  From the identity
In order to address the two issues described above we

F——a=D"(~b+v)

Ix

define a diffeomorphism valid in a neighbourhood 1of . u = ¢/mlcocyso + spsy)
which maps the system into a standard normal form. In order V= v =" S/m(cgsyse — sgcy) |
to do that, we need some preliminary definitions. w g —¢/m(cocy)
Let L denote the length of the curég and denote bys! . .
the set of real numbers modulo (this set is diffeomorphic '€Ng a(X) = —m gqv - COI_(Ovovg)) we can ex-
to the unit circle). Fix a poinb on C, and define the map Press ¢,6,¢ as smooth functions ofX with ¢ =

A:C — S asX v n, wheren is the arc length of the [a(X)[, ¢ = sin™(sya1(X) — cpaz(X)) and 6
portion of C from o to X found moving in the counter- Sin ' (cv@(0) +svax(X)/c,) where ¢ > 0,—F < 6,0
clockwise direction. Sinc€ is a Jordan curve, the function 5 hold from Proposition 4.2. Hence,, ¢,¢ are specifi
A is a diffeomorphismC — S'. Let p(X) be the function through smooth functions ofX. Also, ¢ = d(xV
mapping a pointX € R3 to the closest point 0. Note d¢x n(X)a(X). Finally, we observe the relationship between
that p|c is the identity map. On some neighbourhdécbf ¢~ @ andw given by,
the functionp : U — C is well-defined and smooth. Finally, 0 sgses coses

0 Ce —5¢ | w=Yw

1 syte Coty

IN

d

(1]

recall the definition ofr and = b —

YEX —T>xeX —T">XcR?

and define a function\(y) asA(x) :== Aopomoa(y). By and hencew = Y~ ' = Y 'ddyu(X)a(X). This is a
construction,\ is a smooth function in a neighbourhood ofsmooth function ofX becaus&” ', ®, » and« are smooth
{h1(%) = ha(x) = 0}, and hence in a neighbourhoodiof. ~ functions of X, proving thato|:. is injective and its inverse
Now define the coordinate transformation is smooth. [ |

T T The important feature of Lemma 4.4 is the fact that the map
{g : 77} =o(x) = [51(5() L) )\(5()} (11) 5 is proved to be a diffeomorphism in a neighbourhood of

Lemma 4.4:Under the conditions of Proposition 4.2, thethe entire sef™, rather than just in a neighbourhood of a

function o (x) : X — R13 x S1 is a diffeomorphism of a point. We now Present the main result of this paper. -
neighbourhood of * onto its image, and™* is diffeomorphic Theore.m 4.5:For the augmenteq quadrotor system given
0 5! by equations (1), (2), and (4), with output (5), and with
i the feedback (8)-(9) there exists* > 0 such that for all
K € (0, K™), if the velocity specification is chosen so that
. B . . . . max xec |a(X)| < K and max xec ||dax(X>H < K the

(i) for all X € r vld.Ui is an isomorphism path following manifoldT"* in (6) is exponentially stable
(i) ofp. :I* — 5" is a diffeomorphism. for the closed loop system, and hence PFP is solved in a
For eachy € I'", doy has determinant, neighbourhood of™*.

C4(8¢,B4)2035 - - o Propf: By Pro.position 4.2, the feedback (8)-(9) is
—————"[(dgh1 x Oghs) - Oghs] well-defined in a neighbourhood d&f*. By Lemma 4.4 the

- - function o(y) : X — R13 x S! is a diffeomorphism of a

+[(9xha x Oxha) - OxA] - neighbourhood of * onto its image, and* is diffeomorphic
Under the conditions of proposition 4.2,# 0 and#,¢ # to S', and hence compact. Iff,n) coordinates, the sdt*
+% onI'*. Therefore,det(doy) # 0 if and only if 9\ is  is given byo(I'*) = {(£,n) : £ = 0}. The £ subsystem

Proof: According to the generalized inverse function
theorem in [12], we must show that,

det(doy) =

mSeg
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Fig. 3: Case 1: simulation results far= 3. Fig. 4: Case 2: simulation results far= 15.
in (10) is LTI and the feedback (8)-(9) makes it exponentiall VI. CONCLUSIONS

stable. Thus, for aliy(0) nearI™* or, what is the same, for  \We have presented a basic path following controller which
all £(0) near0, £(t) — 0 exponentially as long as there relies on input dynamic extension and feedback lineariza-
are no finite escape times. There cannot be finite escafién to solve the path following problem for a quadrotor
times becausg(t) is bounded and(t) € S', a compact helicopter. Our controller allows the designer to specify a
set. Henceg (I'*) is exponentially stable, which implies that speed profile on the path and the yaw angle of the quadrotor
I'* is exponentially stable as well. B as a function of its displacement along the path. In future
research we will investigate the solution of the same proble
i ) , ) without employing input dynamic extension, and we will
In this section, simulation results are presented for thgyyress issues of robustness against unmodelled effetts su

quadrotor specified to travel at a constant speed along,a ,erodynamic drag forces and parametric uncertainties.
circular path of radiusr parallel to thex — y plane, at

V. SIMULATION RESULTS

a height ofz = 20m and yaw angle of0°. That is, the REFERENCES
specifications are given by; = x? +y* — 12, hy =z — 20, [1] G. V. Raffo, M. Ortega, and F. Rubio, “An integral predici
hs = uy/\/ (22 + y2) — vz /+/(2? + y?) — a and hy = 7). tive/nonlinear# > control structure for a quadrotor helicopteAu-

tomatica vol. 46, pp. 29-39, 2010.

The initial conditions are taken gs= mg, ( =0, (z,y,2) = [2] A Das. F. Lewis, and K. Subbarao, “Backstepping appiosur

(0,10,20)m, (u,v,w) = (=1,0,0)m/s and (¢,0,v) = controlling a quadrotor using lagrange form dynamicigurnal of
(%> %> 5)rad. The parameters are chosen as in [4] torbe- a IntelligeITt Robot Systems(zjol. 56, plp- 127b—|151, 200f9. "
_ . 2 g _ _ 3] P. Castillo, R. Lozano, and A. Dzul, “Stabilization of amhrotorcra

2Kg. I, ’2]-“’ I _* 1.2416N m/rad/s ,d=0.1m an_dg . with four rotors,” IEEE Control Systems Magazingp. 45-55, 2005.
9.81m/s*. On T, the relationshipl” = M(X)TOK(X) in (7) [4] A. Mokhtari, A. Benallegue, and Y. Orlov, “Exact lineastion and

is given bvyV = a/+/z2 2 — 2 0|". Therefore sliding mode observer for a quadrotor unmanned arial vehicle,
. 9 5 y2 5 / ty [y T ] . International Journal of Robotics and Automatjorol. 21, no. 1, pp.
V =ao?/(a*+y*)[-2 —y 0] and maxc|V| = 39-49, 2006.

o?/r, which corresponds to the centripetal acceleration of5] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “Theagp mul-

. - tiple micro-UAV testbed,”IEEE Robotics and Automation Magazijne
the quadrotor moving around a circle at constant spleed vol. 17, pp. 56-65, 2010.

Following Remark 4.3, we must chooseso thata?/r < g, [6] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Priecis

or |a| < \/@ Taking r = 10m, we must piCk|a| < 9.9. flight control for a multi-vehicle quadrotor helicopter testl,” Control
Engineering Practicevol. 19, pp. 1023-1036, 2011.

Two simulation cases are_ considered where the quadro'[%] A. Tayebi and S. McGilvray, “Attitude stabilization of &TOL
travels around the path with a constant speedvof 3m/s quadrotor aircraft,]JEEE Transactions on Control Systems Technalogy

and o = 15m/s respectively. Therefore, the first case meets vol. 14, no. 3, pp. 562-566, 2006. o .

the conditions above but the second does not. o Contral for procise. agaressive. mancuvers with quadroHSPro-
Figures 3 and 4 show simulation results for case 1 and ceedings of the International Symposium on ExperimentéioBes

case 2 respectively. In both cases, the quadrotor suctlgssfu  2010. - 7 L

converges to the patfl. Also, the velocity and yaw angle 9] i‘a';#iﬁgsgt'gtgysfg?'g?éhvépizgrzﬁgﬁ’rj::pg'r ?nﬁgfj,{;;bg:ggﬂe

converge to the desired values. One difference between the ings of the 2010 IEEE International Conference on Robotiosl a

two cases are the roll and pitch angles. In the first case, AutomationMay 3-8 2010, pp. 1642-1648. o

the two angles have a maximum magnitude5af5° while gh.ND'?Eigérgﬁgit’agmfr';?y“;'”?J;i’:ﬁ‘y’%gg&m'”ear'zat'on'

for the second, the maximum magnitudests45°. Another  [11] A. Isidori, Nonlinear Control System8rd ed. Springer Verlag, 1995.

difference is an increased thrust input for the second d¢ase.[12] V. Guillemin and A. Pollack Differential topology ~New Jersey:

neither case does the quadrotor hit a point whigle= +7/2 Prentice Hall, 1974.

or ¢ = 0 and therefore, the controller is well-defined for the

specific initial conditions we have considered. Note, havrev

that in case 2 there is no guarantee that for any initial

condition nearT™* the solution does not cause singularities

in the controller.



