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Abstract— A path following controller is presented for a
quadrotor helicopter model. The controller relies on input
dynamic extension and feedback linearization. The controller
allows the designer to specify the speed profile of the quadrotor
on the path and its yaw angle as a function of the displacement.

I. I NTRODUCTION

Applications for search and rescue, exploration, security
and inspection are often dangerous or time consuming for a
human operator to perform. One solution is to have a model
sized quadrotor helicopter do the task. That is, command
a quadrotor to follow a predefined path while meeting
additional specifications regarding its motion such as speed
or orientation. For instance, the quadrotor may orient itself to
point an on-board camera or tool in a desired direction as a
function of displacement along the path. Two methods to ac-
complish this are trajectory tracking and path following while
secondary problems may deal with disturbance rejection
(e.g., wind in outdoor environments), unmodelled dynamics
(e.g., aerodynamic effects) and parameter uncertainties.

In the trajectory tracking case, the quadrotor tracks a time
parameterized reference signal that moves along the path
while simultaneously specifying yaw angle. The majority
of the literature for quadrotor trajectory tracking uses a
hierarchical method called backstepping. For instance, in[1]
and [2], the controller is split into an outer translational
control loop and an inner rotational control loop. In the
outer loop, the reference signal is the desired displacement
along the path and the control input is the thrust. There
are also additional virtual inputs that together with the
desired yaw angle, become the reference signals for the inner
rotational loop. In this inner loop, the remaining control
inputs representing body torques are assigned. In [1] a model
predictive controller is used for the translational subsystem
whereas a robust nonlinearH∞ controller is used for the
rotational subsystem. In [2] a sliding-mode controller is used
for both subsystems where neural networks are used for
disturbance rejection. In [3], the approach has three control
steps. The first step uses the thrust input and yawing torque
to control the quadrotor height and yaw angle respectively.
In the second step, the pitching torque is used to control
y-position and pitch angle. In this step, a nested saturation
control is used to bound the pitching torque. The third step
is similar to the second, where the rolling torque is used
to control x-position and roll angle. In [4], the authors
use a feedback linearization approach where the path and
yaw specifications are described through the system outputs
and disturbance rejection is provided through an adaptive
estimator. Other relevant work regarding quadrotor control

can be found in [5] and [6] which both present attitude,
position and trajectory tracking controllers implementedon
a testbed to obtain experimental results. Quaternion-based
attitude control is presented in [7] while quadrotor maneuvers
are explored in [8] and [9]. Specifically, [8] has a quadrotor
fly through openings and perch on angled surfaces while [9]
presents a learning strategy for flips.

The main issue with the trajectory tracking method is that
if the quadrotor loses track of the reference signal, it may
leave the path and collide with off-course objects. For this
reason, we will focus on the path following approach.

The goal of the path following approach is to stabilize a set
of permitted trajectories where the quadrotor is on the path
and meets additional specifications regarding its speed and
orientation as a function of its displacement. The advantage
of the path following method comes from its invariance
properties where if the quadrotor begins on a permitted
trajectory, it will remain on it for all time. However, even
if the quadrotor is not exactly on a permitted trajectory or
has been perturbed slightly off of one, it will at least converge
towards nearby points on the path rather than chasing a
distant reference signal. This contrasts the trajectory tracking
approach where this invariance property does not hold.

The development in this paper uses a feedback lineariza-
tion method inspired by the work of Chris Nielsen in [10].
As in [4], we rely on an input dynamic extension to design a
path following controller. Besides solving the path following
problem, our control design allows one to specify the speed
profile and yaw angle of the quadrotor along the path.

Notation.Throughout the paper, we will use the shorthand
cθ := cos θ, sθ := sin θ, tθ := tan θ, seθ := sec θ. By dfx we
will denote the Jacobian of a functionf at x. If f is a real-
valued function, the gradient off with respect to the vector
x = col (x1 . . . xn) will be denoted by∂(x1,...,xn)f , or more
concisely∂xf . Note that∂xf = dfx

⊤ for a real-valuedf .
Finally, v · w denotes the Euclidean inner product between
vectorsv andw ∈ R

3.

II. BACKGROUND

The quadrotor model developed in this section is standard.
For instance, see Mokhtari, Benallegue, and Orlov in [4]. A
quadrotor helicopter consists of four rotors connected to a
rigid frame, as shown in Figure 1. Denote the inertial frame
by I, the body frame attached to the quadrotor centre of
mass byB and the distance from the centre of mass to the
rotors by d. Corresponding to each rotor is a thrust force
fi acting along thezb axis and a reaction torqueτri that
opposes the direction of rotation. To produce a thrustfi in
the negativezb (i.e., upward) direction, the rotors on thexb



Fig. 1: Quadrotor system.

axis rotate in the clockwise direction and the rotors on the
yb axis rotate in the counter-clockwise direction.

The control inputs to the system areu1, u2, u3, u4 where
u1 is the total thrust along thezb axis andu2, u3, u4 are the
torques about thexb, yb, zb axes respectively. The physical
inputs are the motor torques applied to the rotors denoted
by τ1, τ2, τ3, and τ4. Using the development from Castillo,
Lozano, and Dzul in [3], the rotor dynamics are given by
IrzΩ̇ri = −bΩ2

ri+τi whereIrz is the rotor moment of inertia
about the rotorz-axis,Ωri is the angular speed of rotori and
b is a coefficient of friction due to aerodynamic drag on the
rotor. There is also an algebraic relationship between the
rotor thrust and rotor speed given by,fi = γΩ2

ri whereγ
is a parameter that can be experimentally measured. If we
assume steady-state rotor dynamics such thatΩ̇ri = 0 then
fi = (γ/b)τi = cτi wherec = γ/b is the algebraic scaling
factor between the rotor thrust and the applied motor torque.
Using this fact, it is readily seen that the relationship between
the control inputs and the motor torques is given by
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
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In the above, the total thrust is equal to the summation
of the four rotor thrusts; the torque about thexb axis is
proportional to the differential thrust of the two rotors onthe
yb axis,f4−f2; the torque about theyb axis is proportional to
the differential thrust of the two rotors on thexb axis,f1−f3;
and the torque about thezb axis is equal to the summation
of the four reaction torquesτri which are equal and opposite
to the applied motor torquesτi. Therefore givenu, one can
determine the required motor torques byτ =M−1u. Let the
states of the quadrotor system be given by,

X = col (x, y, z): position inI
Φ = col (ψ, θ, φ): orientation (yaw, pitch, and roll)
V = col (u, v, w): velocity in I
ω = col (p, q, r): angular velocity inB.
We now model the system dynamics neglecting gyroscopic

effects and disturbances. Using Newton’s equation, the trans-
lational dynamics of the quadrotor system are given by,

Ẋ = V

mV̇ =
∑

Fext = mge3 − u1Re3
(1)

where
∑

Fext is the sum of external forces composed of a
gravity force and thrust force,m is the quadrotor mass,g is
the acceleration due to gravity,e3 =

[

0 0 1
]T

andR is
the rotation matrix fromB to I given by,

R =





cθcψ cψsθsφ − cφsψ cφcψsθ + sφsψ
cθsψ sθsφsψ + cφcψ cφsθsψ − cψsφ
−sθ cθsφ cθcφ



 .

Using Newton-Euler’s equation, the rotational dynamics of
the quadrotor system are given by,

Φ̇ =





0 sφseθ cφseθ
0 cφ −sφ
1 sφtθ cφtθ



ω

Jω̇ + ω × Jω =
∑

Text =
[

u2 u3 u4
]T

(2)

where
∑

Text is the vector of external torques inB andJ is
the symmetric inertia matrix inB with diagonal elementsIx,
Iy andIz. The state vector is taken asχ = col (X,Φ, V, ω) ∈
X := R

12 and the system model can be represented in the
control-affine form,

χ̇ = f (χ) + g (χ)u, y = h(χ)

with the definitions of f, g derived from equations (1)
and (2).

III. PROBLEM STATEMENT

The objective of the path following problem is to control
the quadrotor helicopter to follow a predefined path inR

3

while attaining a desired velocity and yaw angle as it travels
along this path. This is stated more precisely below.

Path Following Problem (PFP): Consider the system given
by equations (1) and (2). Given a Jordan curveC in R

3, find
a continuous feedbacku = col (u1, . . . , u4) such that under
appropriate initial conditions, the closed-loop system meets
the following goals:

G1 The quadrotor asymptotically converges toC
G2 The velocity asymptotically converges to a specified

value dependent on the quadrotor displacement alongC

G3 The yaw angle asymptotically converges to a specified
value dependent on the quadrotor displacement alongC.

The path, velocity and yaw specifications are formulated in
terms of system outputs that we would like to asymptotically
zero out.

Definition 3.1: A path specification is a smooth function
col (h1(X), h2(X)), R3 → R

2, such that the pathC = {X :
h1(X) = h2(X) = 0} is a Jordan curve inR3 and ∂Xh1,
∂Xh2 are linearly independent onC (i.e., zero is a regular
value of col (h1, h2)).
The enforcement of the path specification meets goal G1
in PFP. Next, we would like to define velocity and yaw
specifications.

Definition 3.2: A velocity specification is a
smooth function X → R defined as h3(χ) =
(∂Xh1 × ∂Xh2) / ‖∂Xh1 × ∂Xh2‖ · V − α(X) where



the smooth functionα(X) 6= 0 specifies the velocity along
C.
For each pointX ∈ C and each velocity vectorV ∈ R

3, the
vector (∂Xh1 × ∂Xh2) / ‖∂Xh1 × ∂Xh2‖ ·V represents the
component ofV tangent to the pathC at X. Thus,h3(χ)
expresses the requirement that whenX ∈ C the component
of the quadrotor’s velocity tangential toC be equal to a
desired value given byα(X). The magnitude ofα(X) is
the desired speed, and its sign indicates the desired direction
of travel alongC (clockwise or counter-clockwise). Hence,
the enforcement of the velocity specification meets goal G2
in PFP.

Definition 3.3: A yaw specificationis a smooth function
X → R defined ash4(χ) = ψ − β(X).
In the above, the desired yaw angle at a pointX along C
is given byβ(X). The enforcement of the yaw specification
meets goal G3 in PFP.

Let s := col(s1, . . . , s4) and defineπ : X → R
3 as

π(X,Φ, V, ω) = X. Defining the output functionh : X →
R

4 as

s = h(χ) :=









h1(π(χ))
h2(π(χ))

∂Xh1×∂Xh2

‖∂Xh1×∂Xh2‖
· V − α(X)

ψ − β(X)









, (3)

the objective of PFP can be restated as that of designing a
feedback such that, for a suitable set of initial conditions,
h(χ(t)) → 0 along solutions of the closed-loop system. In
other words, we want the setΓ = h−1(0) to be attractive for
the closed-loop system. Attractivity alone, however, is not
desirable in path following applications because any slight
perturbation of the quadrotor off ofΓ may result in system
behaviour where the quadrotor initially diverges significantly
from the path before converging back to it. Rather, we would
like Γ to be asymptotically stable. This, however, is not
possible sinceΓ is not controlled invariant, i.e., it cannot be
made invariant by any choice of feedback. To illustrate, if
the system is initialized onΓ but the velocity vectorV (0) is
not tangent toC, the quadrotor will leaveC, and henceΓ, no
matter what feedback we choose. In light of this observation,
we will stabilize the maximal controlled invariant subset of
Γ which we call thepath following manifold introduced
in [10]. The path following manifold is simply the zero
dynamics manifold of system (1), (2) with output (3), and it
will be characterized in the next section.

IV. SOLUTION OF PFP

The simplest way to stabilize the zero dynamics of a non-
linear control system is to use, when feasible, input-output
feedback linearization [11]. In the context of PFP, in orderto
apply this technique we need to find conditions under which
the outputh(χ) in (3) yields a well-defined vector relative
degree. We begin by finding conditions under which a vector
relative degree is well-defined. Then, we design a controller
based on input-output feedback linearization, and we prove
that it solves PFP.

A. Investigation of vector relative degree conditions

Taking time derivatives of the four outputs in (3) along the
vector fields of the control system (1)-(2), one can check that
the control inputs first appear ind2s1/dt2, d2s2/dt2, ds3/dt,
andd2s4/dt2 suggesting that if vector relative degree were
well-defined it would be given by{2, 2, 1, 2}. However, one
can check that the corresponding decoupling matrixD has
the form

D =









⋆ 0 0 0
⋆ 0 0 0
⋆ 0 0 0
⋆ 0 ⋆ ⋆









,

so thatD is always singular, implying that the vector relative
degree{2, 2, 1, 2} is not well-defined anywhere. Interest-
ingly, the same problem arises when one wants to address
the tracking problem, a fact pointed out in [4], although in
this case the output function is completely different. Here,
as in [4], we achieve a well-defined vector relative degree
through the technique of input dynamic extension [11].
Specifically, we add two integrators at the thrust inputu1,
while leaving the remaining inputs unchanged. That is, we
let

u1 = ζ, ζ̈ = ū1, u2 = ū2, u3 = ū3, u4 = ū4 (4)

whereū1, ū2, ū3, ū4 are the new control inputs. The quadro-
tor model with dynamic compensation is given by equa-
tions (1), (2), and (4) with the augmented state vector defined
as χ̄ = col

(

X,Φ, V, ω, ζ, ζ̇
)

∈ X̄ := X × R
2. The system

model can be represented in the control-affine form,

˙̄χ = f̄ (χ̄) + ḡ (χ̄) ū, ȳ = h̄(χ̄),

with the definitions of f̄ , ḡ derived from equations (1),
(2), and (4). Letting π̄ : X̄ → X be the projection
(X,Φ, V, ω, ζ, ζ̇) 7→ (X,Φ, V, ω), the new output function
h̄ : X̄ → R

4 is simply given by

h̄(χ̄) = h ◦ π̄(χ̄), (5)

with h given in (3).
To solve PFP for the augmented system, we want to stabi-

lize the maximal controlled invariant subset ofΓ̄ = h̄−1(0).
The following lemma outlines the conditions under which
the vector relative degree is well-defined for the augmented
system.

Lemma 4.1:The augmented quadrotor system given by
equations (1), (2) and (4) with output (5) has a well-defined
vector relative degree{r1, r2, r3, r4} := {4, 4, 3, 2} at a point
χ̄ = (X, (ψ, θ, φ), V, ω, ζ, ζ̇) if and only if ζ 6= 0 andφ 6=
±π

2 .
Proof: The determinant of the decoupling matrixD of

the augmented system is given by

det(D) = −d
3ζ2 (∂ψh4) cφ
m3IxIyIzcθ

(∂Xh1 × ∂Xh2) · ∂V h3.

It follows from the definitions ofh1, h2, h3 that∂Xh1, ∂Xh2
and ∂V h3 form a linearly independent set. This is because
∂Xh1 and∂Xh2 are linearly independent,‖∂V h3‖ = 1 6= 0,



and ∂V h3 = (∂Xh1 × ∂Xh2) / ‖∂Xh1 × ∂Xh2‖ is perpen-
dicular to∂Xh1 and∂Xh2. It follows from the definition of
h4 that∂ψh4 = 1 6= 0. Thereforedet(D) 6= 0 if and only if
ζ 6= 0 andφ 6= ±π

2 .
It follows that the system has well-defined vector relative

degree at any point̄χ where the conditionsζ 6= 0 andφ 6=
±π

2 are satisfied because the decoupling matrixD has full
rank andLḡjL

k
f̄
h̄i = 0 for i, j ∈ {1, . . . , 4}, k ∈ {0, . . . , ri−

2}.
Note also that, in addition to the conditions of the lemma
above, we must imposeθ 6= ±π

2 as this presents a singularity
in the model inherited by the singularity in the Euler angle
representation. Consider the set given by

Γ̄⋆ = {χ̄ : Lj
f̄
h̄i = 0, j = 0, . . . , ri − 1, i = 1, . . . , 4}, (6)

where {r1, r2, r3, r4} := {4, 4, 3, 2}. If the augmented
quadrotor system has a well-defined vector relative degree
{4, 4, 3, 2} at each pointχ̄ ∈ Γ̄⋆, then it follows thatΓ̄⋆

is the maximal controlled invariant subset ofΓ̄, which is
precisely the set we wish to stabilize. In light of Lemma 4.1,
in order to have a well-defined vector relative degree onΓ̄⋆

we need to determine whether, on̄Γ⋆, ζ 6= 0, φ 6= ±π/2,
andθ 6= ±π/2. This is the subject of the next proposition.

Proposition 4.2:For the augmented quadrotor system
given by equations (1), (2), and (4), with output (5), there
existsK⋆ > 0 such that for allK ∈ (0,K⋆), if the velocity
specification is chosen so thatmaxX∈C |α(X)| ≤ K and
maxX∈C ‖dαX(X)‖ ≤ K the system has a well-defined
vector relative degree{r1, r2, r3, r4} = {4, 4, 3, 2} on Γ̄⋆.

Proof: Let K1 = maxX∈C |α(X)| and K2 =
maxX∈C ‖dαX(X)‖. The constantsK1 and K2 exist and
are finite becauseα is smooth andC is compact. From
Lemma 4.1, the system has well-defined vector relative
degree and no Euler angle singularities are encountered on
Γ̄⋆ if and only if,

(i) ζ is bounded away from0 on Γ̄⋆.
(ii) φ, θ are bounded away from± π

2 on Γ̄⋆.

By definition, on Γ̄⋆ we have h̄1(χ̄) = h̄2(χ̄) = 0
and Lf̄ h̄1(χ̄) = Lf̄ h̄2(χ̄) = 0 or, recalling that χ̄ =

(X,Φ, V, ω, ζ, ζ̇), h1(X) = h2(X) = 0 and∂Xh1(X) ·V =
∂Xh2(X)·V = 0. The latter two identities imply that, on̄Γ⋆,
V is orthogonal to the vectors∂Xh1(X) and∂Xh2(X). We
also havēh3(χ̄) = 0, or (∂Xh1 × ∂Xh2)/ ‖∂Xh1 × ∂Xh2‖ ·
V = α(X). SinceV is orthogonal to both∂Xh1 and∂Xh2,
the above identity implies that on̄Γ⋆,

V = µ(X)α(X), µ(X) :=
∂Xh1 × ∂Xh2

‖∂Xh1 × ∂Xh2‖
. (7)

In particular, V̇ = µ̇α + µα̇ = dµX
(

µα2
)

+ µdαX (µα)

where‖µ‖ ≤ 1 and therefore,‖V̇ ‖ ≤ ‖dµX‖K2
1 +K1K2.

Since dµX is continuous andX ∈ C, a compact set, it
follows that, onΓ̄⋆, ‖V̇ ‖ ≤ K1(K1C+K2), for someC > 0.
On Γ̄⋆ we have

‖V̇ ‖ =

∥

∥

∥

∥

∥

∥





0
0
g



+ ζ





− 1
m
(cφcψsθ + sφsψ)

− 1
m
(cφsθsψ + cψsφ)
− 1

m
(cθcφ)





∥

∥

∥

∥

∥

∥

≤ K1(K1C+K2)

from which we have that|ζ| ≥ m (g −K1(K1C +K2)),
and thus for allK1(K1C + K2) < g, |ζ| > 0, implying
that property (i) above is satisfied. We also have that|ζ| ≤
m (g +K1(K1C +K2)). In other words,ζ is bounded from
above onΓ̄⋆. Using the fact that|ẇ| = |g − ζ/m(cθcφ)| ≤
‖V̇ ‖ ≤ K1(K1C +K2), we have

|cθcφ| ≥
g −K1(K1C +K2)

max
∣

∣

∣

ζ
m

∣

∣

∣

=
g −K1(K1C +K2)

g +K1(K1C +K2)
.

It thus follows that ifK1(K1C +K2) < g, |cθcφ| > 0, and
thusθ andφ are bounded away from± π

2 on Γ̄⋆, implying
that property (ii) above holds. In conclusion, settingK⋆ =
√

g/(1 + C), for all K ∈ (0,K⋆) the augmented quadrotor
system has a well-defined vector relative degree onΓ̄⋆.
Proposition 4.2 states that if the velocity specification is
chosen so that the desired tangential velocityα(X) and
dαX(X) have a sufficiently small upper boundK, then
the augmented quadrotor system has a well-defined vector
relative degree on̄Γ⋆, and therefore this set is the path
following manifold we wish to stabilize to solve PFP. The
path following manifold is one-dimensional sincen− (r1 +
r2 + r3 + r4) = 14− (4 + 4 + 3 + 2) = 1 wheren = 14 is
the number of states for the augmented system.

Remark 4.3:Recall the functionV = µ(X)α(X) in (7)
which expresses the velocity of the quadrotor in terms of
its displacementX when χ̄ ∈ Γ̄⋆, and its time derivative
V̇ = dµX

(

µα2
)

+µdαX (µα). If one computesK1(K1C+

K2) := maxX∈C ‖V̇ ‖, then the proof of Proposition 4.2
provides the upper boundsK1 andK2 satisfyingK1(K1C+
K2) < g. Since C is a closed curve, the computation of
C, and hence ofK1 and K2, can be easily carried out
numerically.

B. Controller Design

From now on we will assume that the velocity speci-
fication has been chosen so thatmaxX∈C |α(X)| < K⋆

and maxX∈C ‖dαX(X)‖ < K⋆. The design of an input-
output feedback linearization controller is standard. Let

b(χ̄) :=
[

Lr1
f̄
h̄1(χ̄) . . . Lr4

f̄
h̄4(χ̄)

]T

and define the feed-
back transformation

ū = D−1(χ̄) (−b(χ̄) + v) , (8)

where v = col (v1, . . . , v4) is the new control input,
and whereD(χ̄) is the decoupling matrix with entries
Dij = LḡjL

ri−1
f̄

h̄i, i, j ∈ {1, . . . , 4}. Let ξi =
[

h̄i(χ̄) . . . Lri−1
f̄

h̄i(χ̄)
]T

, i = 1, . . . , 4, and choosevi
as

vi = −kri−1ξ
i
ri
− · · · − k0ξ

i
1, i = 1, . . . , 4 (9)

such thatsr + kri−1s
ri−1 + · · · + k0 has roots in the open

left-half plane. The resulting control system is illustrated in
Figure 2. Now the problem is whether the controller just
designed indeed stabilizes the path following manifoldΓ̄⋆.
In view of the fact that

ξ̇i =

[

0 Iri−1

01×ri−1
0

]

ξi +

[

0ri−1×1

1

]

vi, (10)



Fig. 2: Control system block diagram.

The input-output linearizing feedback guarantees that solu-
tions of the closed-loop system originating in a neighbour-
hood of Γ̄⋆ are such thatξi(χ̄(t)) → 0, i = 1, . . . , 4,
provided that there are no finite escape times. Besides having
to show that the closed-loop system has no finite escape
times in a neighbourhood of̄Γ⋆, there is another issue that
requires some analysis. Although̄Γ⋆ = {χ̄ : ξi(χ̄) = 0, i =
1, . . . , 4}, the fact thatξi(χ̄(t)) → 0, i = 1, . . . , 4, does not
imply, in general, that̄χ(t) → Γ̄⋆. To illustrate, consider the
function ξ(χ̄) = χ̄/(1 + χ̄2), and suppose that̄χ(t) = t.
Then,ξ(χ̄) → 0 but χ̄(t) does not tend to{χ̄ : ξ(χ̄) = 0}.

In order to address the two issues described above we
define a diffeomorphism valid in a neighbourhood ofΓ̄⋆

which maps the system into a standard normal form. In order
to do that, we need some preliminary definitions.

Let L denote the length of the curveC, and denote byS1

the set of real numbers moduloL (this set is diffeomorphic
to the unit circle). Fix a pointo on C, and define the map
Λ : C → S1 asX 7→ η, whereη is the arc length of the
portion of C from o to X found moving in the counter-
clockwise direction. SinceC is a Jordan curve, the function
Λ is a diffeomorphismC → S1. Let p(X) be the function
mapping a pointX ∈ R

3 to the closest point onC. Note
thatp|C is the identity map. On some neighbourhoodU of C
the functionp : U → C is well-defined and smooth. Finally,
recall the definition of̄π andπ

χ̄ ∈ X̄ π̄
χ ∈ X π

X ∈ R
3

and define a functionλ(χ̄) asλ(χ̄) := Λ ◦ p ◦ π ◦ π̄(χ̄). By
construction,λ is a smooth function in a neighbourhood of
{h̄1(χ̄) = h̄2(χ̄) = 0}, and hence in a neighbourhood ofΓ̄⋆.
Now define the coordinate transformation
[

ξ
... η

]T

= σ(χ̄) :=
[

ξ1(χ̄) . . . ξ4(χ̄)
... λ(χ̄)

]T

(11)

Lemma 4.4:Under the conditions of Proposition 4.2, the
function σ(χ̄) : X̄ → R

13 × S1 is a diffeomorphism of a
neighbourhood of̄Γ⋆ onto its image, and̄Γ⋆ is diffeomorphic
to S1.

Proof: According to the generalized inverse function
theorem in [12], we must show that,

(i) for all χ̄ ∈ Γ̄⋆, dσχ̄ is an isomorphism
(ii) σ|Γ̄⋆ : Γ̄⋆ → S1 is a diffeomorphism.

For eachχ̄ ∈ Γ̄⋆, dσχ̄ has determinant,

det(dσχ̄) = −
ζ4(∂ψh̄4)

2c2φ
m6cθ

[(

∂χ̄h̄1 × ∂χ̄h̄2
)

· ∂χ̄h̄3
]3

·
[(

∂χ̄h̄1 × ∂χ̄h̄2
)

· ∂χ̄λ
]

.

Under the conditions of proposition 4.2,ζ 6= 0 and θ, φ 6=
±π

2 on Γ̄⋆. Therefore,det(dσχ̄) 6= 0 if and only if ∂χ̄λ is

linearly independent from∂χ̄h̄1 and ∂χ̄h̄2 or, what is the
same, if{∂Xh1, ∂Xh2, ∂XΛ} is a linearly independent set,
whereX = π ◦ π̄(χ̄). That this is indeed the case on̄Γ⋆

follows from the fact thatΛ is the displacement alongC and
hence,∂Xλ is tangent toC and perpendicular to∂Xh1 and
∂Xh2. To show (ii) consider the restriction ofσ to Γ̄⋆, σ|Γ̄⋆ =
col(0, . . . , 0, λ|Γ̄⋆). The mapλ|Γ̄⋆ is smooth and surjective
because it is the composition of four smooth surjective maps,
π̄ : X̄ → X , π : X → R

3, p : R3 → C, and Λ : C →
S1. Thereforeσ|Γ̄⋆ is also smooth and surjective. SinceΛ :
C → S1 is a diffeomorphism, proving injectivity ofσ|Γ̄⋆ is
equivalent to proving injectivity of(p ◦ π ◦ π̄)|Γ̄⋆ : Γ̄⋆ → C.
Thus, we must show that given a pointX ∈ C, we can
constructχ̄ ∈ Γ̄⋆ uniquely such thatp◦π ◦ π̄(χ̄) = X. Since
on Γ̄⋆ we havēhi(χ̄) = 0, i = 1, . . . , 4, given a pointX ∈ C
we know thatV = µ(X)α(X), whereµ was defined in (7),
andψ = β(X). Moreover,V̇ = dµX

(

µα2
)

+ µdαX (µα).
From the identity

V̇ =





u̇
v̇
ẇ



 =





− ζ/m(cφcψsθ + sφsψ)
− ζ/m(cφsψsθ − sφcψ)

g − ζ/m(cθcφ)



 ,

letting a(X) = −m
(

V̇ − col(0, 0, g)
)

, we can ex-
press ζ, θ, φ as smooth functions ofX with ζ =
‖a(X)‖, φ = sin−1(sψa1(X) − cψa2(X)) and θ =
sin−1 (cψa1(X) + sψa2(X)/cφ) where ζ > 0,−π

2 ≤ φ, θ ≤
π
2 hold from Proposition 4.2. Hence,ζ, φ, θ are specified
through smooth functions ofX. Also, ζ̇ = dζXV =
dζXµ(X)α(X). Finally, we observe the relationship between
Φ andω given by,

Φ̇ =





0 sφseθ cφseθ
0 cφ −sφ
1 sφtθ cφtθ



ω = Y ω

and hence,ω = Y −1Φ̇ = Y −1dΦXµ(X)α(X). This is a
smooth function ofX becauseY −1, Φ, µ andα are smooth
functions ofX, proving thatσ|Γ̄⋆ is injective and its inverse
is smooth.
The important feature of Lemma 4.4 is the fact that the map
σ is proved to be a diffeomorphism in a neighbourhood of
the entire set̄Γ⋆, rather than just in a neighbourhood of a
point. We now present the main result of this paper.

Theorem 4.5:For the augmented quadrotor system given
by equations (1), (2), and (4), with output (5), and with
the feedback (8)-(9) there existsK⋆ > 0 such that for all
K ∈ (0,K⋆), if the velocity specification is chosen so that
maxX∈C |α(X)| ≤ K and maxX∈C ‖dαX(X)‖ ≤ K the
path following manifold Γ̄⋆ in (6) is exponentially stable
for the closed loop system, and hence PFP is solved in a
neighbourhood of̄Γ⋆.

Proof: By Proposition 4.2, the feedback (8)-(9) is
well-defined in a neighbourhood of̄Γ⋆. By Lemma 4.4 the
function σ(χ̄) : X̄ → R

13 × S1 is a diffeomorphism of a
neighbourhood of̄Γ⋆ onto its image, and̄Γ⋆ is diffeomorphic
to S1, and hence compact. In(ξ, η) coordinates, the set̄Γ⋆

is given by σ(Γ̄⋆) = {(ξ, η) : ξ = 0}. The ξ subsystem
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Fig. 3: Case 1: simulation results forα = 3.

in (10) is LTI and the feedback (8)-(9) makes it exponentially
stable. Thus, for all̄χ(0) near Γ̄⋆ or, what is the same, for
all ξ(0) near 0, ξ(t) → 0 exponentially as long as there
are no finite escape times. There cannot be finite escape
times becauseξ(t) is bounded andη(t) ∈ S1, a compact
set. Hence,σ(Γ̄⋆) is exponentially stable, which implies that
Γ̄⋆ is exponentially stable as well.

V. SIMULATION RESULTS

In this section, simulation results are presented for the
quadrotor specified to travel at a constant speed along a
circular path of radiusr parallel to thex − y plane, at
a height of z = 20m and yaw angle of0◦. That is, the
specifications are given bȳh1 = x2 + y2 − r2, h̄2 = z− 20,
h̄3 = uy/

√

(x2 + y2) − vx/
√

(x2 + y2) − α and h̄4 = ψ.
The initial conditions are taken asζ = mg, ζ̇ = 0, (x, y, z) =
(0, 10, 20)m, (u, v, w) = (−1, 0, 0)m/s and (φ, θ, ψ) =
(π8 ,

π
8 ,

π
2 )rad. The parameters are chosen as in [4] to bem =

2Kg, Ix, Iy, Iz = 1.2416N ·m/rad/s2, d = 0.1m andg =
9.81m/s2. On Γ⋆, the relationshipV = µ(X)α(X) in (7)
is given by V = α/

√

x2 + y2
[

y − x 0
]T

. Therefore

V̇ = α2/(x2 + y2)
[

− x − y 0
]T

and maxC ‖V̇ ‖ =
α2/r, which corresponds to the centripetal acceleration of
the quadrotor moving around a circle at constant speed|α|.
Following Remark 4.3, we must chooseα so thatα2/r < g,
or |α| < √

rg. Taking r = 10m, we must pick|α| < 9.9.
Two simulation cases are considered where the quadrotor
travels around the path with a constant speed ofα = 3m/s
andα = 15m/s respectively. Therefore, the first case meets
the conditions above but the second does not.

Figures 3 and 4 show simulation results for case 1 and
case 2 respectively. In both cases, the quadrotor successfully
converges to the pathC. Also, the velocity and yaw angle
converge to the desired values. One difference between the
two cases are the roll and pitch angles. In the first case,
the two angles have a maximum magnitude of5.25◦ while
for the second, the maximum magnitude is66.45◦. Another
difference is an increased thrust input for the second case.In
neither case does the quadrotor hit a point whereφ, θ = ±π/2
or ζ = 0 and therefore, the controller is well-defined for the
specific initial conditions we have considered. Note, however,
that in case 2 there is no guarantee that for any initial
condition nearΓ̄⋆ the solution does not cause singularities
in the controller.
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Fig. 4: Case 2: simulation results forα = 15.

VI. CONCLUSIONS

We have presented a basic path following controller which
relies on input dynamic extension and feedback lineariza-
tion to solve the path following problem for a quadrotor
helicopter. Our controller allows the designer to specify a
speed profile on the path and the yaw angle of the quadrotor
as a function of its displacement along the path. In future
research we will investigate the solution of the same problem
without employing input dynamic extension, and we will
address issues of robustness against unmodelled effects such
as aerodynamic drag forces and parametric uncertainties.
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