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Abstract— A hierarchical design framework is presented to
control the position of a class of vehicles in SE(3) that are
propelled by a thrust vector along a single body axis and
incorporate some mechanism to induce torques about all body
axes. A position control outer loop provides reference signals
for an attitude control inner loop. The main result of this
paper is a set of conditions under which a position controller
designed for a point-mass system and an attitude controller can
be combined to form a position controller that almost globally
asymptotically stabilizes the vehicle to a desired position with
desired heading. As opposed to the classical backstepping
framework, the proposed approach is modular, in that position
control and attitude control designs are completely separate.
Thus, for instance, with the proposed technique one can employ
any attitude controller from the vast literature on attitude
stabilization, provided it enjoys a basic almost global stability
property.

I. I NTRODUCTION

In this paper, we consider a class of vehicles in SE(3)
that are propelled by a thrust vector along a single body
axis and incorporate some mechanism to induce torques
about all three body axes. Examples include vertical take-off
and landing (VTOL) aircrafts such as helicopters as well as
underwater and space vehicles. We investigate the problem
of position control for such vehicles to a desired position
in R

3. These vehicles are underactuated since they can only
achieve thrust in a single direction at a given time. That is,
there are four degrees of freedom: one translational and three
rotational. This makes the control problem more complex.
In particular, to obtain a desired thrust direction, we must
induce body torques that align the vehicle thrust vector to
the desired axis. The work of Tayebi and collaborators [3],
[4], [5], [6] adopts a two-stage design strategy to solve the
position control problem. An outer translational control loop
assigns a desired thrust vector, treating the vehicle as a point
mass. An inner attitude control loop then applies a torque
input that aligns the thrust vector to the desired axis, while
simultaneously controlling the vehicle’s heading. This latter
stage is designed using the backstepping technique. A similar
approach is found in [7].

In some papers, attitude is parameterized with Euler-angles
and the control yields only local results. For instance, in [8]
a model predictive controller is used for the translational
control stage whereas a robust nonlinearH∞ controller is
used for the attitude control stage. In [9], a sliding mode
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controller is used for both stages where neural networks
are used for disturbance rejection. In [10], the approach has
three control stages. The first stage uses the thrust input and
yawing torque to control the vehicle elevation and yaw angle,
respectively. In the second stage, the pitching torque is used
to controly-position and pitch angle. In this stage, a nested
saturation control is used to bound the pitching torque. The
third stage is similar to the second, where the rolling torque
is used to controlx-position and roll angle.

To avoid singularities associated with Euler-angles, other
approaches parameterize attitude using global representa-
tions. In some literature, this is done with rotation matrices
and the control yields almost-global results. In [7], a simple
linear proportional-derivative controller is chosen for the
outer translational control loop. In [11], rather than using the
two-stage approach, the authors develop a position controller
which is evolved through a series of simpler controllers (i.e.,
from thrust direction control to velocity control to position
control). In [4] and [6], the attitude parameterization is done
with quaternions, and the controller is designed without
measurements in linear and angular velocity, respectively.
The resulting control produces a global result. However,
quaternions suffer from an unwinding issue related to attitude
control [12].

The goal of this paper is to develop a hierarchical control
design framework for position stabilization that provides
benefits over the backstepping approach. Like [3], [4], [5],
[6], [7], we use a two-stage approach. However, rather
than relying on specific position control and attitude control
designs, we show thatany outer position control stage
belonging to a suitable class can be combined withany inner
attitude control stage in a suitable class in such a way that the
resulting hierarchical controller stabilizes the desiredposition
almost-globally. This result has useful consequences. First,
by decoupling position control from attitude control, the
complexity of the control design process is significantly
reduced and the final control is intuitive and structured.
Second, the proposed hierarchical design is modular in that
one can replace either one of the control stages without
having to redesign the remaining stage. As a result, one
can leverage the rich literature on attitude control to sys-
tematically generate position controllers for thrust-propelled
vehicles in SE(3). Finally, the modularity of our approach
allows one to easily change the control specification for the
outer control stage. For instance, one may swap the position
stabilizer with a path following controller.

In this paper, we will provide a solution to the position
control problem for the rotation matrix parameterization.
Identical results can be formulated using quaternions, but
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Fig. 1: Vehicle class under consideration.

they are not included for space limitations. Our results rely
on the so-called reduction theorem for asymptotic stability
of sets by P. Seibert and J.S. Florio in [13]. Some of the
ideas presented here were explored in the context of co-axial
helicopters in [14].

Notation.We let v ·w denote the Euclidean inner product
between vectorsv andw ∈ R

3 and the vectorei represents
the i-th Euclidean axis inR3. Let S(x) be the skew-
symmetric representation of the vectorx, so that S(x)y =
x × y for all x, y ∈ R

3, and S
−1(s) be its inverse. If‖ · ‖

is a vector norm andΓ is a closed subset of a manifoldX
a metric space, we denote by‖x‖Γ the point-to-set distance
of x ∈ X to Γ, bothx andΓ being viewed as subsets ofX .
If ǫ > 0, we let Bǫ(Γ) = {x ∈ X : ‖x‖Γ < ǫ}. By N (Γ)
we denote a generic neighbourhood ofΓ in X . Finally, if
A andB are two sets, we denote byA\B the set-theoretic
difference ofA andB.

II. M ODELING

Consider the vehicle depicted in Figure 1, with a body
frame B attached to it. Thezb axis is the direction of
actuation, in that the vehicle is propelled by a thrust vector
directed opposite tozb. This thrust vector has constant
direction in the body frame, but its magnitudeu1 can be
freely controlled. It is assumed that the vehicle incorporates
some mechanism that can induce torquesu2, u3, u4 about the
three body axes, as shown in the figure. The control inputs of
our abstracted model areu1, u2, u3, u4. The actual physical
inputs (e.g., rotor speeds) will depend on the vehicle design
and the mechanism used to induce torques. In this paper, we
consider the rotation matrix parameterization for attitude. We
define the following states:

• x ∈ R
3: vehicle position expressed in frameI.

• v ∈ R
3: vehicle linear velocity expressed in frameI.

• R ∈ SO(3): vehicle attitude.
• Ω ∈ R

3: vehicle angular velocity expressed in frameB.

The state vectors is given by,

χ = col (x, v,R,Ω) ∈ X := R
3 × R

3 × SO(3)× R
3.

The system configuration is specified by the pair(x,R)
which can be identified with a homogeneous transformation
matrix

H =

[

R x
0 1

]

∈ SE(3),

and for this reason the configuration space of the vehicle is
SE(3). We now model the system dynamics. The model has

two components. A translational subsystem,

ẋ = v

mv̇ = mge3 − u1Re3 = mge3 + T,
(1)

and a rotational subsystem,

Ṙ = RS(Ω)

JΩ̇ + Ω× JΩ =





u2

u3

u4



 = τ.
(2)

In the above,τ := col (u1, u2, u3) is the vector of external
torques expressed in frameB andJ is the symmetric inertia
matrix of the vehicle expressed in frameB.

Remark 2.1:The model in (1)-(2) neglects disturbances
and dissipative effects that are present in specific applica-
tions, and in this paper we will design feedbacks that ignore
these effects. In specific vehicle applications, the experienced
practitioner knows which effects can be ignored and which
ones need modelling. In the latter case, the feedbacks we
propose in this paper can be easily modified to compensate
for those disturbances or dissipative effects whose model is
partially known. As for effects whose model is not available
or too complex to use, the practitioner has to rely on the
intrinsic robustness of feedback.
A broad range of vehicles fit the class under consideration.
These include space vehicles, unmanned aerial vehicles and
automated underwater vehicles.

III. STABILITY DEFINITIONS AND REDUCTION THEOREM

The solution of PCP will rely on some basic stability
notions, presented next. LetΣ : χ̇ = f(χ) be a smooth
dynamical system with state space a manifoldX endowed
with a metric, and flow mapφ(t, χ0). Let Γ ⊂ X be a closed
and positively invariant set forΣ.

Definition 3.1: Γ is stablefor Σ if for any ǫ > 0 there ex-
ists a neighbourhoodN (Γ) ⊂ X such thatφ(R+,N (Γ)) ⊂
Bǫ(Γ). Γ is attractive for Σ if there exists neighbourhood
N (Γ) ⊂ X such that limt→∞ ‖φ(t, χ0)‖Γ = 0 for all
χ0 ∈ N (Γ). The domain of attraction ofΓ is the set
{χ0 ∈ X : limt→∞ ‖φ(t, χ0)‖Γ = 0}. Γ is asymptotically
stable if it is stable and attractive.

Definition 3.2: Let Γ1 ⊂ Γ2 be two closed subsets of
X which are positively invariant forΣ. We say thatΓ1

is globally asymptotically stable relative toΓ2 if it is
asymptotically stable when initial conditions are restricted
to lie in Γ2, and its domain of attraction containsΓ2.

Definition 3.3: The setΓ is almost-globally asymptoti-
cally stable (AGAS)for Σ if the setΓ is asymptotically stable
for Σ with domain of attractionX\N whereN ⊂ X is a
set of Lebesgue measure zero.
The following result is key to our development.

Theorem 3.4 (Seibert-Florio [13]):Let Γ1 andΓ2, Γ1 ⊂
Γ2 ⊂ X , be two closed sets that are positively invariant
for Σ, and supposeΓ1 is compact. Then,Γ1 is globally
asymptotically stable if the following conditions hold:

(i) Γ1 is globally asymptotically stable relative toΓ2,



(ii) Γ2 is globally asymptotically stable,
(iii) All trajectories of Σ are bounded.
The statement above is actually a corollary of a more general
result by Seibert and Florio. See also [15]. We remark that
the state spaceX in Theorem 3.4 can be replaced by any
positively invariant subset ofX .

IV. POSITION CONTROL PROBLEM

We now look to define formally the position control
problem. Since the manifoldX is not contractible, we cannot
globally asymptotically stabilize the point̄χ = (x̄, 0, R̄, 0)
using a continuous feedback [12]. Therefore, we will look
for an almost-global result. We are now ready to state the
problem investigated in this paper.
Position Control Problem (PCP): Design smooth feedbacks
u(χ) = (u1(χ), . . . , u4(χ)) for systems (1)-(2) that almost
globally asymptotically stabilize a desired equilibrium̄χ =
(x̄, 0, R̄, 0).

We remark that in order for̄χ = (x̄, 0, R̄, 0) to be an
equilibrium of the closed-loop system, the matrix̄R must
represent a rotation about the inertial axiszi.

Our design is performed in two stages. A block diagram
illustrating the approach is found in Figure 2. In the first
stage, we design an outer loop controller for the translational
subsystem assuming that the thrust vector is a control input.
Then, in the second stage we design an inner loop attitude
controller for the rotational subsystem which orients the
thrust vectorT of the vehicle to match the desired thrust
designed in the first stage. Such an approach is not new in
the literature. It is found prominently in the work of Tayebi
and collaborators [3], [4], [5], [6] as well as in [7]. These
papers, however, present specific position and attitude control
designs, inextricably tied together through the techniqueof
backstepping. The resulting controllers are complex, a fea-
ture that is typical of Lyapunov-based backstepping control.
On the other hand, rather than relying on specific position
control and attitude control designs, in this paper we show
that any outer position control stage belonging to a suitable
class can be combined withany inner attitude control stage
in a suitable class in such a way that the resulting controller
stabilizes the desired position almost-globally. Since wedo
not rely on Lyapunov methods, the combination of inner and
outer controllers is transparent.

The technique presented in this paper has a number of
useful features. First, by decoupling position control from
attitude control, the complexity of the control design process
is significantly reduced and the final control is intuitive and
structured. Second, the proposed design is modular, in that
one can replace either one of the control stages without
having to redesign the remaining stage. As a result, one
can leverage the rich literature on attitude control to sys-
tematically generate position controllers for thrust-propelled
vehicles in SE(3). Finally, the modularity of our approach
allows one to easily change the control specification for the
outer control stage. For instance, one may swap the position
controller with a path following controller for a point-mass
system.

The results of this paper rely on the so-called reduction
theorem for asymptotic stability of sets by P. Seibert and
J.S. Florio in [13]. Some of the ideas presented here were
explored in the context of co-axial helicopters in [14]. Note
that the position control problem can be mapped to one of
tracking if the vehicle is controlled to a series of way-points.

V. H IERARCHICAL SOLUTION OF PCP

As mentioned earlier, our control design relies on a
two-stage approach, depicted in Figure 2 for the vehicle
model. An outer loop position controller is designed for the
translational subsystem (1) by viewing the thrust forceT as a
control input. The result is a feedbackTd(x, v) that globally
asymptotically stabilizes the equilibrium(x, v) = (x̄, 0)
for (1). We then assign the thrust magnitude input by setting
u1 = ‖Td‖, and we compute the desired attitudeRd through
a process calledattitude extraction[3], [4], [6] which is
standard in the literature. Specifically, we find a smooth
functionR : (R3\{0})× R

3 → SO(3) such that

(i) (∀(T, x) ∈ (R3\{0})× R
3) ‖T‖R(T, x)e3 = −T,

(ii) R(−mge3, x̄) = R̄,
(3)

and we letRd = R(Td, x). Identity (i) in (3) guarantees
that whenR = R(T, x) andu1 = ‖T‖, the resulting thrust
vector in (1) coincides withT . Identity (ii) in (3) guarantees
that the attitude extraction functionR returns the desired
equilibrium orientationR̄ when the vehicle hovers at the
desired equilibrium position̄x. There are infinitely many
choices1 of smooth functionsR satisfying (3). As a matter of
fact, one can defineR(T, x) in such a way that the heading
vectorxb is any arbitrary unit vector orthogonal toT .

The desired attitudeRd obtained at the first stage becomes
the reference signal for the inner loop attitude controller
at the second stage. The attitude controller assigns a body
torqueτ making the point(R−1

d R,Ω−Ωd) = (I, 0) AGAS,
for a suitableΩd(t). This control scheme is illustrated in
Figure 2. We now present the main result of this paper.

Theorem 5.1:Consider smooth position and attitude con-
trollers Td(x, v) : R

3 × R
3 → R

3\{0} and τd(R,Ω) :
SO(3)× R

3 → R
3 satisfying the following properties:

(i) inf ‖Td(x, v)‖ > 0 and sup ‖Td(x, v)‖ < ∞.
(ii) When T = Td(x, v), the equilibrium(x, v) = (x̄, 0)

is globally asymptotically stable for the translational
subsystem (1).

(iii) For any piecewise continuous functionρ : R → R
3

such thatρ(t) → 0, letting T = Td(x, v) + ρ(t) all
solutions of the(x, v) subsystem (1) are bounded.

(iv) When τ = τd(R,Ω), the point (R,Ω) = (I, 0) is
AGAS for the (R,Ω) subsystem (2).

1This degree of freedom in the choice ofR is useful because it allows
one to incorporate specifications on the heading vectorxb. For instance,
one may want a camera on the vehicle to fixate on a point during motion,
in which casexb would depend onx, hence the dependence ofR on x.



Fig. 2: Block diagram of position control system. The outer loop assigns a thrust vector referenceTd. The inner loop converts
Td into a reference attitude, which is then used by an attitude controller to assign the vehicle torques.

Then, letting

R̃ := R
−1(Td(x, v), x)R

Ω̃ := Ω− R̃−1
Ω(x, v,R)

Ω(x, v,R) := S
−1
(

R
−1(Td(x, v), x)Ṙ(x, v,R)

)

,

the smooth feedback

u1 = ‖Td(x, v)‖

τ = τd(R̃, Ω̃)− Ω̃× JΩ̃ + Ω× JΩ

− J
(

S(Ω̃)R̃−1
Ω(x, v,R)− R̃−1

Ω̇(x, v,R,Ω)
)

,

(4)

solves PCP for system (1), (2).
Remark 5.2:The functionsṘ(x, v,R) and Ω̇(x, v,R,Ω)

in the feedback above are the time derivatives of
R(Td(x, v), x) and Ω(x, v,R) along (1)-(2) with u1 =
‖Td(x, v)‖.

Remark 5.3:As mentioned earlier, the proposed con-
trol structure has two nested loops, depicted in Figure 2.
The outer loop is the position controllerTd(x, v) for the
translational subsystem. The inner loop generates reference
signalsR(Td(x(t), v(t)), x(t)) andΩ(x(t), v(t), R(t)), and
produces a torque feedbackτ in (4) makingR(t) andΩ(t)
track these references. The definition ofτ in (4) has an
intuitive explanation. Taking the time derivatives of the error
signalsR̃ and Ω̃, it is readily seen that

˙̃R = R̃S(Ω̃)

J ˙̃Ω + Ω̃× JΩ̃ = τd(R̃, Ω̃).
(5)

So we see thatτ has been defined in such a way that,
in error coordinates(R̃, Ω̃), the proposed feedback reduces
to τd, an attitude stabilizer that makes the equilibrium
(R̃, Ω̃) = (I, 0) AGAS. This property implies thatR(t) →
R(Td(x(t), v(t)), x(t)) andΩ(t) → Ω(x(t), v(t), R(t)).

Proof: [Proof of Theorem 5.1] Consider first system (1)-
(2), and define sets

Γ1 = {(x, v,R,Ω) = (x̄, 0,R(Td(x̄, 0), x̄), 0)}

Γ2 =
{

χ : R(Td(x, v), x)
−1R = I,Ω− R̃−1

Ω(x, v,R) = 0
}

.

Assume for a moment that the closed-loop system has no
finite escape times. By assumption (ii) in the theorem,
Td(x, v) is an almost global stabilizer of(x, v) = (x̄, 0)
for subsystem (1). This implies thatTd(x̄, 0) = −mge3. By
assumption (i),inf ‖Td(x, v)‖ > 0, so the attitude extraction

function in (3) is well-defined. By property (ii) in (3),
R(Td(x̄, 0), x̄) = R̄, so thatΓ1 = {χ̄}, the equilibrium we
wish to stabilize.Γ2 is the set where(R̃, Ω̃) = (I, 0). The
dynamics of the(R̃, Ω̃) subsystem are given in (5), and by
assumption (iv) the equilibrium(R̃, Ω̃) = (I, 0) is AGAS. If
we let X denote its domain of attraction inχ coordinates,
thenX is positively invariant for the closed-loop system, and
Γ2 is globally asymptotically stable relative toX . Note that
X is a set of full measure inR3×R

3×SO(3)×R
3. OnΓ2,

we haveR = R(Td(x̄, v), x). By property (i) of the attitude
extraction function in (3), we have

−u1Re3 = −‖Td(x, v)‖R(Td(x̄, v), x)e3 = Td(x, v).

Therefore, the motion onΓ2 is governed by

ẋ = v

v̇ = mge3 + Td(x, v).

By assumption (ii) in the theorem,Γ1 is globally asymp-
totically stable relative toΓ2. We will now show that all
solutions of the closed-loop system originating inX have no
finite escape times and they are bounded. The translational
subsystem can be written as

ẋ = v

v̇ = mge3 + Td(x, v) + (−‖Td‖Re3 − Td(x, v)).

In the above,Re3 has unit norm, and by assumption (i),
Td(x, v) is bounded. Hence,̇v is bounded, and the(x, v)
subsystem has no finite escape times. This in turn implies
that the smooth functionΩ(x, v,R) has no finite escape
times. Finally, sinceR lives in SO(3), a compact set, and
Ω − Ω(x, v,R) is bounded, we have that(R,Ω) has no
finite escape times. Now consider assumption (iii), and for
an arbitraryχ(0) ∈ X let ρ(t) = −‖Td(x(t), v(t))‖R(t)e3−
Td(x(t), v(t)). By property (i) in (3), and by the global
asymptotic stability ofΓ2, ρ(t) → 0. Therefore,(x(t), v(t))
are bounded, implying that the signalΩ(x(t), v(t), R(t)) is
bounded as well. Finally, the boundedness ofΩ̃(t) and that of
Ω(x(t), v(t), R(t)) imply thatΩ is bounded. Having shown
that all solutions of the closed-loop system originating inX
are bounded, by Theorem 3.4 we conclude thatΓ1 is globally
asymptotically stable relative toX or, what is the same, the
equilibriumχ = χ̄ is AGAS for the closed-loop system.

Remark 5.4:The globality of Theorem 5.1 is inherited
from the globality of the attitude control stage. For example,



we obtain a local result for a feedbackτd(R,Ω) that asymp-
totically stabilizes the point(R,Ω) = (I, 0) such as those
with attitude parameterized by Euler angles.

VI. SAMPLE IMPLEMENTATION

In section V, we developed a general framework for
the solution of PCP. In this section we present a sample
implementation.

A. Stage 1: Position control

For the point-mass system

ẋ = v

mv̇ = mge3 + T,

we need to design a feedbackTd(x, v) that globally asymp-
totically stabilizes the equilibrium(x, v) = (x̄, 0) and is
such that inf ‖Td(x, v)‖ > 0, sup ‖Td(x, v)‖ < ∞, and
the solutions whenT = Td(x, v) + ρ(t), with ρ(t) → 0 are
bounded. There are many ways to design a bounded feedback
meeting these specifications. We will use a nested-saturation
controller developed in [16] (also see [17]),

Td(x, v) = −m
(

ge3+σ2

(

K2v+σ1

(

K1(x− x̄)+
K1

K2

v
)))

(6)
whereK1,K2 > 0 and σ1, σ2 are smooth saturation func-
tions satisfying,

i σi(s) = (σi1(s1), σi2(s2), σi3(s3)) for i = 1, 2
ii sσij(s) > 0 whens 6= 0 for i = 1, 2 j = 1, 2, 3

iii σ̇ij(0) 6= 0 for i = 1, 2 j = 1, 2, 3

iv |σij(s)| ≤ Mij ∀s ∈ R whereM1j <
M2j

2
for i = 1, 2

j = 1, 2, 3.

In particular, we chooseσij(s) = Mij tanh
(

1

Mij
s
)

. We im-

pose the condition thatM23 < g so that inf ‖Td‖ > 0 at any
time. It is also obvious thatsup ‖Td‖ < ∞. Thus,Td(x, v)
satisfies assumption (i) of Theorem 5.1. Moreover, in [16]
it was shown thatTd(x, v) above globally asymptotically
stabilizes the equilibrium(x, v) = (x̄, 0) for (1), and thus
condition (ii) of Theorem 5.1 is satisfied. Finally, it is readily
seen that (6) makes the equilibrium(x, v) = (x̄, 0) expo-
nentially stable. Using a standard Lyapunov analysis with a
quadratic Lyapunov function arising from the linearization of
the closed-loop system, it is easy to show that solutions of
the system with vanishing input perturbations are bounded,
so that assumption (iii) of Theorem 5.1 is satisfied.

B. Stage 2: Attitude extraction

We begin the attitude control design by defining the
attitude extraction functionR(T, x) satisfying the identities
in (3). Let b1d(T, x) be any smooth functionR3 × R

3 →
S2 such that for all(T, x), b1d(T, x) is orthogonal toT
and b1d(mg, x̄) = R̄e1 (this is the desired heading at the
hovering equilibrium). Defineb3d(T, x) = −T/‖T‖. Then,
the function

R(T, x) :=
[

b1d(T, x) b3d(T, x)× b1d(T, x) b3d(T, x)
]

satisfies the two identities in (3).

C. Stage 2: Attitude control

Now we need to define the attitude controllerτd that
achieves almost global stabilization of(R,Ω) = (I, 0). There
is a vast literature on the subject of attitude stabilization, and
our modular design allows one to pick from a multitude of
designs. We pick the controller presented in [18],

τd(R,Ω) = −KR

(

3
∑

i=1

aiei ×Rei

)

−KΩΩ (7)

whereKR,KΩ > 0, andai are distinct positive constants.
From the analysis in [18], the point(R,Ω) = (I, 0) is
AGAS for the closed-loop system. Therefore, condition (iv)
of Theorem 5.1 is satisfied, and PCP is solved.

VII. S IMULATION RESULTS

In this section, we will provide simulation results for
the sample implementation. The vehicle will be specified to
travel from an initial to a desired position inR3. We will
look at two cases. In case1, the vehicle is initially upright
and the desired heading is different from the initial heading.
In case2, the vehicle is initially upside-down and the desired
heading is the same as the initial heading.

The initial conditions are taken as,

• x0 = (1, 1, 1)m
• v0 = (0, 0, 0)m/s
• R0 = I (upright) or R0 = diag(1,−1,−1) (upside-

down)

and the desired position is chosen to bexd = (0, 0, 0)m. The
desired heading while hovering isb1d(−mge3, x̄) = (0, 1, 0)
in case 1 andb1d(−mge3, x̄) = (1, 0, 0) in case 2. The
parameters are chosen asm = 2 Kg andIx, Iy, Iz = 1.2416
Kg.mˆ2 and the gains for the translational controller are
chosen asM1j = 2, M2j = 5, n1j = 1, n2j = 1
for j = 1, 2, 3. The rotational control gains are chosen as
KR = 200, KΩ = 8, a1 = 0.9, a2 = 1, a3 = 1.1.

Figure 3 shows simulation results for case 1 and Figure 4
shows simulation results for case 2. The translational plots
show the vehicle trajectory projected onto thexi − yi,
yi − zi and xi − zi planes, and the linear velocity given
by
√

v21 + v22 + v23 . The attitude plot shows the three body
axes plotted on a unit sphere.

For all the results, the vehicle successfully converges to
the desired equilibrium point. In case 2, we see that the
vehicle has some drift away from the desired equilibrium
while it flips to an upright orientation. In figure 4 this drift
is around6m for the particular choices ofKR andKΩ. It has
been observed through simulation that increasingKR has the
effect of reducing this drift. Also, an increase inKΩ has the
effect of reducing oscillation of the vehicle. Overall, we have
obtained satisfactory performance with appropriately chosen
gainsKR andKΩ.

VIII. C ONCLUSIONS

This paper presented a hierarchical approach to position
control design for a class of thrust-propelled vehicles on
SE(3). The main result of the paper is a set of conditions



Fig. 3: Rotation matrix: simulation results for case 1.

under which a position controller designed for a point-mass
system and an attitude controller can be combined to form a
position controller for the vehicle. We tested our controller
using a nested saturation feedback for the outer position
control loop, and an attitude controller taken from [7]. Due
to the modularity of our approach, it is possible to test a
variety of available attitude control techniques.
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