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Abstract—A hierarchical design framework is presented to controller is used for both stages where neural networks
control the position of a class of vehicles in SB) that are  are used for disturbance rejection. In [10], the approach ha
propelled by a thrust vector along a single body axis and a6 control stages. The first stage uses the thrust inplt an

incorporate some mechanism to induce torques about all body ina t t trol th hicle elevati d |
axes. A position control outer loop provides reference signals yawing torque to control the venicle elevation and yaw angle

for an attitude control inner loop. The main result of this respectively. In the second stage, the pitching torqueasl us
paper is a set of conditions under which a position controller to controly-position and pitch angle. In this stage, a nested
designed for a point-mass system and an attitude controller can saturation control is used to bound the pitching torque. The
be combined to form a position controller that almost globally third stage is similar to the second, where the rolling terqu
asymptotically stabilizes the vehicle to a desired position with is used to controk-position and m”’ angle

desired heading. As opposed to the classical backstepping - e - - )
framework, the proposed approach is modular, in that position To avoid singularities associated with Euler-angles, othe

control and attitude control designs are completely separate. approaches parameterize attitude using global representa
Thus, for instance, with the proposed technique one can employ tions. In some literature, this is done with rotation masic
any attitude controller from the vast literature on attitude and the control yields almost-global results. In [7], a d&np
stabilization, provided it enjoys a basic almost global stability . . S . ’

linear proportional-derivative controller is chosen fdret
property. ;

outer translational control loop. In [11], rather than gsthe

. INTRODUCTION two-stage approach, the authors develop a position cdatrol

which is evolved through a series of simpler controllers. (.

In this paper, we consider a class of VEh'CIeS. in(5E from thrust direction control to velocity control to positi
that are propelled by a thrust vector along a single bod . o
: . : ; ontrol). In [4] and [6], the attitude parameterization énd
axis and incorporate some mechanism to induce torques ; : . .
. . with quaternions, and the controller is designed without

about all three body axes. Examples include vertical tdke-o - ; .
measurements in linear and angular velocity, respectively

and landing (VTOL) aircrafts such as helicopters as well 2Phe resulting control produces a global result. However

underwater and space vehicles. We investigate the problem . o2 .
o . ; -._fuaternions suffer from an unwinding issue related touatét
of position control for such vehicles to a desired pOSItlonﬁontrol [12]

in R°. These vehicles are underactuated since they can on Yhe goal of this paper is to develop a hierarchical control

achieve thrust in a single direction at a given time. That iSdesi n framework for position stabilization that provides
there are four degrees of freedom: one translational aee thr, g P P

rotational. This makes the control problem more comple penefits over the backstepping approach. Like [3], [4], [5],
. : : o 6], [7], we use a two-stage approach. However, rather
In particular, to obtain a desired thrust direction, we mu

induce body torques that align the vehicle thrust vector t an relying on specific position contro_l _and affitude conir
. : . esigns, we show thaany outer position control stage
the desired axis. The work of Tayebi and collaborators [3 : . . L
. elonging to a suitable class can be combined waithinner
[4], [5], [6] adopts a two-stage design strategy to solve the . ) . .
- . attitude control stage in a suitable class in such a way kteat t
position control problem. An outer translational contimb

) ) . . . resulting hierarchical controller stabilizes the desjpedition
assigns a desired thrust vector, treating the vehicle asn po : .
. . : almost-globally. This result has useful consequencest,Fir
mass. An inner attitude control loop then applies a torquge

input that aligns the thrust vector to the desired axis, ewhilIOy decoupling position control from attitude control, the

. . S . : complexity of the control design process is significantly
simultaneously controlling the vehicle's heading. Thitea .reduced and the final control is intuitive and structured.

stage is designed using the backstepping technique. A&s'm'gecond, the proposed hierarchical design is modular in that

approach is found |n'[7]. : . . one can replace either one of the control stages without
In some papers, attitude is parameterized with Euler-zxnglvﬁming to redesign the remaining stage. As a result, one

and the control yields only local results. For instance 8 | (I:an leverage the rich literature on attitude control to sys-

a model predictive controller is used for the tranSIationatematically generate position controllers for thrustyeited

control stage whereas a robust nonling#* cont_rqller 'S vehicles in SE3). Finally, the modularity of our approach
used for the attitude control stage. In [9], a sliding mode . e

allows one to easily change the control specification for the
This research was supported by the National Sciences antdengg outer control stage. For instance, one may swap the position

Research Council of Canada. stabilizer with a path following controller.
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v two components. A translational subsystem,
U2

R .
D — To T =" (1)
B mv = mges — uy Res = mges + T,
us a and a rotational subsystem,
Yo 7b .
. : . . R=RS(Q)
Fig. 1: Vehicle class under consideration.
: U2 @
JA+Qx JQ = |us| =T.

they are not included for space limitations. Our resulty rel

on the so-called reduction theorem for asymptotic stabilitin the above, := col (u1,u9,us) is the vector of external
of sets by P. Seibert and J.S. Florio in [13]. Some of thgyrques expressed in franfeand.J is the symmetric inertia
ideas presented here were explored in the context of cd-axj@atrix of the vehicle expressed in franfe
helicopters in [14]. Remark 2.1:The model in (1)-(2) neglects disturbances
Notation.We letv - w denote the Euclidean inner productand dissipative effects that are present in specific applica
between vectors andw € R® and the vectoe; represents tions, and in this paper we will design feedbacks that ignore
the i-th Euclidean axis inR®. Let S(z) be the skew- these effects. In specific vehicle applications, the expeed
symmetric representation of the vectorso thatS(z)y =  practitioner knows which effects can be ignored and which
z x y for all z,y € R®, and S™'(s) be its inverse. If| - | ones need modelling. In the latter case, the feedbacks we
is a vector norm and' is a closed subset of a manifold  propose in this paper can be easily modified to compensate
a metric space, we denote Hy||r the point-to-set distance for those disturbances or dissipative effects whose madel i
of z € X to I, bothz andI" being viewed as subsets 4f.  partially known. As for effects whose model is not available
If € >0, we let B.(I') = {x € X' : [lzflr < e}. By M(I')  or too complex to use, the practitioner has to rely on the
we denote a generic neighbourhoodIofin X. Finally, if  intrinsic robustness of feedback.
A and B are two sets, we denote by\ B the set-theoretic A proad range of vehicles fit the class under consideration.
difference ofA and B. These include space vehicles, unmanned aerial vehicles and

Il. M ODELING automated underwater vehicles.

Consider the vehicle depicted in Figure 1, with a bodyll. STABILITY DEFINITIONS AND REDUCTION THEOREM

frame.B a'ttached to it .The?b axis is the direction of  rpe soiution of PCP wil rely on some basic stability
actuation, in that the vehicle is propelled by a thrust vectq, .-« presented next. L&t : y — f(y) be a smooth

directed opposite toz,. This thrust vector has ConStantdynamicaI system with state space a manifaldendowed

?lrelctlon n }Ihed blo‘?'y frame, SUL Its hmagnr:t.uld@_ can be \ith o metric, and flow map(t, xo). LetT' C X be a closed
reely controlled. It is assumed that the vehicle incorfesa o o cively invariant set foF.,

some mechanism that can induce torqugsis, u, about the Definition 3.1: T is stablefor X if for any € > 0 there ex-

three body axes, as shown in the figure. The control inputs f,¢ 5 neighbourhood/ (') ¢ X such thath(R+, A'(T')) C

our abstracted model are, uz, us, us. The actual physical p 1y "1 ig attractive for 3 if there exists neighbourhood

inputs (e.g., rotor speeds) will depend on the vehicle dESigj\;(F) C X such thatlims_,. [6(f, vo)|lr = 0 for all

and the mechanism used to induce torques. In this paper, we

consider the rotation matrix parameterization for atétud/e X0 € N(I). The domain of attraction ofl’ is the set
. . e Xl - ||o(t, = 0}. I is asymptoticall
define the following states: o o0 |60 xo) v = 0} ymp y

stableif it is stable and attractive.

« 2 € R?: vehicle position expressed in frande Definition 3.2: Let I'; C T'; be two closed subsets of
« v € R3: vehicle linear velocity expressed in frarfie X which are positively invariant forS. We say thatl;

« R € SO(3): vehicle attitude. is globally asymptotically stable relative t&- if it is

« Q€ R% vehicle angular velocity expressed in fraie  asymptotically stable when initial conditions are reséit
The state vectors is given by, to lie in I'y, and its domain of attraction contails.

Definition 3.3: The setI" is almost-globally asymptoti-
cally stable (AGASHor X if the setl" is asymptotically stable
for ¥ with domain of attractionY\N where N C X is a
The system configuration is specified by the pair R) set of Lebesgue measure zero.
which can be identified with a homogeneous transformatiohhe following result is key to our development.

x = col (z,v, R, Q) € X := R® x R? x SO(3) x R3.

matrix Theorem 3.4 (Seibert-Florio [13])Let I'; andT';, I’y C
H= {R x] € SE(3), I's ¢ X, be two close'd sets that are posit!vely invariant
0 1 for ¥, and supposd’; is compact. Then['; is globally

and for this reason the configuration space of the vehicle &symptotically stable if the following conditions hold:
SE(3). We now model the system dynamics. The model has(i) T'; is globally asymptotically stable relative 1o,



(i) T’y is globally asymptotically stable, The results of this paper rely on the so-called reduction
(i) All trajectories of ¥ are bounded. theorem for asymptotic stability of sets by P. Seibert and
The statement above is actually a corollary of a more generdlS. Florio in [13]. Some of the ideas presented here were
result by Seibert and Florio. See also [15]. We remark thaixplored in the context of co-axial helicopters in [14]. Blot
the state spac&” in Theorem 3.4 can be replaced by anythat the position control problem can be mapped to one of
positively invariant subset ot'. tracking if the vehicle is controlled to a series of way-gsin

IV. POSITION CONTROL PROBLEM

We now look to define formally the position control V. HIERARCHICAL SOLUTION OF PCP

problem. Since the manifold@ is not contractible, we cannot . ) . .
globally asymptotically stabilize the point = (z,0, R, 0) As mentioned earlier, our eontrel design relies on a
using a continuous feedback [12]. Therefore, we will loo#WO-Stage approach, depicted in Figure 2 for the vehicle
for an almost-global result. We are now ready to state tHgodel- An outer loop position controller is designed for the
problem investigated in this paper. translatl_onal subsystem (_1) by viewing the thrust fdftas a
Position Control Problem (PCP) Design smooth feedbacks CONtrol input. The result is a feedbal(x, v) that globally
u(x) = (ui(x), ..., us(x)) for systems (1)-(2) that almost asymptotically stab|_I|zes the eqwhbnu_r(w,v)l = (z,0) .
globally asymptotically stabilize a desired equilibriugn= for (1). We then assign the thrust megnltude input by setting
(z,0, R, 0). uy = ||Tq4||, and we compute the'deswed attitullg through

_ _ a process calleattitude extraction[3], [4], [6] which is
We remark that in order fory = (z,0,R,0) to be an  g@angard in the literature. Specifically, we find a smooth
equilibrium of the closed-loop system, the matd must  f,nctionR. : (R3\{0}) x R® — SQ(3) such that
represent a rotation about the inertial axjs
. Our Qesign is performed in two etages. A block diagram () (V(T,z) € (R®\{0}) x R®) ||T||R(T, z)es = —T,
illustrating the approach is found in Figure 2. In the first (i) R(— 7= R
stage, we design an outer loop controller for the transiatio mges, ) =1,
subsystem assuming that the thrust vector is a control .inpyt _ G
Then, in the second stage we design an inner loop attitu Q;{ Vv\\llﬁe:?];R:d I;(Jf“? g‘%ﬁé’;??ﬁg”fl)ﬂ:g r(s;u%llj%ratﬂtiif
‘f“tm"er fothh? L"ta“or:‘.a'l S“bSySte'r? x"h'gh .O”S”tf] thGector in (1) coincides with". Identity (i) in (3) guarantees
thrust vector/” of the vehicle to match the desired t ruStthat the attitude extraction functioR returns the desired

designed in the first stage. Such an approach is not new.ér(]quilibrium orientationR when the vehicle hovers at the

the literature. It is found prominently in the Werk of Tayeb|desired equilibrium positiorz. There are infinitely many
and collaborators [3], [4], [5], .[5] as .V\./e" as in [.7 ] Thesechoiceé of smooth function®R satisfying (3). As a matter of
Papers, hewever, present specific position and att'tUdai‘CdO” fact, one can defin® (7, x) in such a way that the heading
designs, inextricably tied together through the technigtie vectora, is any arbitrary unit vector orthogonal .

backstepping. The resulting controllers are complex, a fea . . . .
ture that is typical of Lyapunov-based backstepping contro The desired attitud®, obtained at the first stage becomes

On the other hand, rather than relying on specific positiowe reference signal for the .inner loop attitude. controller
control and attitude control designs, in this paper we sho the second stage. The attitude controller assigns a body

that any outer position control stage belonging to a suitabl orquer _maklng the DO'T“(Rd R,Q-Qq) = .(I’.O) AGAS, .
class can be combined witny inner attitude control stage or a suitableQ,(t). This control scheme is illustrated in

in a suitable class in such a way that the resulting con'trollezIgure 2. We new present the main r_e_sult of th|s_ paper.
stabilizes the desired position almost-globally. Sincedee 1 neorem 5.1:Consider smooth position and attitude con-

. 3 3 3 .
not rely on Lyapunov methods, the combination of inner anf©!ers ngx7”) ; R? >} R* — R*\{0} and Td(R’Q) '
outer controllers is transparent. SQO(3) x R* — R* satisfying the following properties:

The technique presented in thi_s paper _has a number ofj) inf | Ty(z,v)|| > 0 and sup | Ty(z,v)|| < .
useful features. First, by decoupllng position cc_mtrolniro (i) When T' = Ty(z,v), the equilibrium(z,v) = (z,0)
attitude control, the complexity of the control design s is globally asymptotically stable for the translational
is significantly reduced and the final control is intuitivedan
S - subsystem (1).

structured. Second, the proposed design is modular, in thﬂ
one can replace either one of the control stages witho such thatp(t) — 0, letting T = Tu(z,v) + p(t) all
having to redesign the remaining stage. As a result, one solutions of the(z ,l;) subsystem (1) a’re bounded.
can leverage the rich literature on attitude control to sys-. ’ . .

. . (iv) When 7 = 74(R,Q), the point (R,Q) = (I,0) is
tematically generate position controllers for thrustgeited AGAS for the (R, Q) subsystem (2)
vehicles in SE3). Finally, the modularity of our approach ’ 4 '
allows one to easily change the control specification for the
outer control stage. For instance, one may swap the positiori This degree of freedom in the choice Bf is useful because it allows

I ith a path followina controller for a point-m@s one to incorporate specifications on the headlng ve;eteror instance,
controller wi p g9 p one may want a camera on the vehicle to fixate on a point duringomoti
system. in which caser;, would depend orx, hence the dependence Bf on x.

©)

i) For any piecewise continuous function : R — R?



1]

Translational
Control T Ry — Vehicle

Ry R(T1.) | Rotational | T
Extract Control

Fig. 2: Block diagram of position control system. The outeyd assigns a thrust vector referefi¢e The inner loop converts
T, into a reference attitude, which is then used by an attituagroller to assign the vehicle torques.

Then, letting function in (3) is well-defined. By property (ii) in (3),
5 o R(T4(z,0),7) = R, so thatl'; = {x}, the equilibrium we
B =R (Tu(z,v), )R wish to stabilizel’s is the set wherdR, Q) = (I,0). The

0 :=Q - R'Q(z,v,R) dynamics of the(R, Q) subsystem are given in (5), and by
Q(z,0,R) =S~ (R’l(Td(:v,v),w)R(x,v,R)), assumption (iv) the equilib.riurﬁR,Q) = (I,(_)) is AGAS. If
we let X denote its domain of attraction i coordinates,
the smooth feedback thenX is positively invariant for the closed-loop system, and
w = || Ty(z,v)|| 1)“(2_is gIobalIg/faﬁymptotical_lésstaltélse reSIz(i)té\?/)()e ttiﬂ.%;\l(ge '{E]at
. - ~ is a set of full measure iR3 x R? x x R3. OnTy,
T =7a(R, Q) — Q@ x JA+ QX JQ (4)  we haveR = R(T;(&,v), ). By property (i) of the attitude
—J (S(Q)R‘lﬂ(x,v,R) — R'Q(z,v, R, Q)) 7 extraction function in (3), we have
solves PCP for system (1), (2). —uiRes = —||Tu(z,v)[|R(Ta(Z,v), x)es = Ta(x,v).

Remark 5.2:The functionsR(z, v, R) and Q(z, v, R, Q)
in the feedback above are the time derivatives
R(T;(z,v),z) and Q(z,v,R) along (1)-(2) withu; = T=v
[Ta(z,v)||. 0 = mges + Ty(z,v).

Remark 5.3:As mentioned earlier, the proposed con-

trol structure has two nested loops, depicted in Figure 2 tically stabl lative . We will how that all
The outer loop is the position controllér;(x,v) for the otically stable refalive ta ;. We will now show that a

translational subsystem. The inner loop generates referen?o!u“ons of the closed-loop system originating¥irhave no
signalsR(Ty(x(t), v(t)), 2(t)) and Q(z(t), v(t), R(t)), and |n|tt)e escape tlmbes and they are bounded. The translational
produces a torque feedbackin (4) making R(t) andQ(¢) ~ SUPSystem can be written as

track these references. The definition ofin (4) has an i=w

intuitive explanation. Taking the time derivatives of ttreoe o = mges + Ta(x,v) + (— | Tul| Res — Ta(z,v)).

signalsR and(, it is readily seen that

0‘{herefore, the motion ofi; is governed by

y assumption (ii) in the theorend;; is globally asymp-

P In the above,Res has unit norm, and by assumption (i),
R=RS(Q) 5) Ty(z,v) is bounded. Hencej is bounded, and théz,v)
56 5 5 & subsystem has no finite escape times. This in turn implies
T+ 0 I =72, 0) that the smooth functio2(z,v, R) has no finite escape
So we see that has been defined in such a way thattimes. Finally, sinceR lives in SQ(3), a compact set, and
in error coordinategR, ), the proposed feedback reduces) — Q(z,v, R) is bounded, we have thdtR,2) has no
to 74, an attitude stabilizer that makes the equilibriunfinite escape times. Now consider assumption (iii), and for

(R,©) = (I,0) AGAS. This property implies thak(t) —  an arbitraryy(0) € X let p(t) = —||Ty(2(t), v(t))||R(t)es —
R(Tu(x(t),v(t)), z(t)) andQ(t) — Q(x(t), v(t), R(t)). Ta(z(t),v(t)). By property (i) in (3), and by the global
Proof: [I_Droof of Theorem 5.1] Consider first system (1)-asymptotic stability of's, p(t) — 0. Therefore,(z(t), v(t))
(2), and define sets are bounded, implying that the sigr@|(x(t),v(t), R(t)) is
Iy = {(z,v,R,Q) = (z,0,R(Ty(z,0),7),0)} bounded as well. Finally, the boundednes$§0f) and that of

_ - Qx(t),v(t), R imply that2 is bounded. Having shown
= (X R(Tu(w,v),2) 'R = 1,Q = R7'Q(x, v, R) = 0}. thét (al)l S(()|l)JtI0r(15))Of the closed-loop system originatingtin
Assume for a moment that the closed-loop system has faoe bounded, by Theorem 3.4 we conclude thais globally
finite escape times. By assumption (ii) in the theoremasymptotically stable relative t& or, what is the same, the
Ty(z,v) is an almost global stabilizer ofx,v) = (z,0) equilibrium x = x is AGAS for the closed-loop systemm
for subsystem (1). This implies th&i;(z,0) = —mges. By Remark 5.4:The globality of Theorem 5.1 is inherited
assumption (i),inf || T;(z,v)|| > 0, so the attitude extraction from the globality of the attitude control stage. For exaenpl



we obtain a local result for a feedback( R, 2) that asymp- C. Stage 2: Attitude control

totically stabilizes the pointR,{2) = (I,0) such as those  Now we need to define the attitude controlley that
with attitude parameterized by Euler angles. achieves almost global stabilization(@®, Q) = (I,0). There
VI. SAMPLE IMPLEMENTATION is a vast literature on the subject of attitude stabilizgtend

) developed | K our modular design allows one to pick from a multitude of
In secyon V., we deve oped a genera framewor f%lesigns. We pick the controller presented in [18],
the solution of PCP. In this section we present a sample

implementation. 3

Td(R, Q) = —KR (Z a;e; X R61> — KQQ (7)
A. Stage 1: Position control i=1
For the point-mass system where Kg, Ko > 0, anda; are distinct positive constants.
From the analysis in [18], the pointR,$?) = (1,0) is

] AGAS for the closed-loop system. Therefore, condition (iv)
mo = mges + T, of Theorem 5.1 is satisfied, and PCP is solved.

we need to design a feedbaZk(x, v) that globally asymp-
totically stabilizes the equilibrium{z,v) = (z,0) and is
such thatinf | T;(z,v)|| > 0, sup ||Ty(z,v)|]| < oo, and
the solutions whel” = T,(x,v) + p(t), with p(t) — 0 are
bounded. There are many ways to design a bounded feedb
meeting these specifications. We will use a nested-saturati
controller developed in [16] (also see [17]),

T =v

VII. SIMULATION RESULTS

In this section, we will provide simulation results for
the sample implementation. The vehicle will be specified to
drgvel from an initial to a desired position R3. We will
look at two cases. In cask the vehicle is initially upright
and the desired heading is different from the initial hegdin
In case2, the vehicle is initially upside-down and the desired

Ty(z,0) = _m(ge3+02 (ng—i—ol (Kl(x_jH_ilU))) heading is the same as the initial heading.
K, The initial conditions are taken as,

where K, K, > 0 and oy, 0, are smooth saturation func- * %o = (1,1, 1)m
tions satisfying, . ;1%0 = (0}070)m/h8 R diag(1. —1. —1 id
i 0i(s) = (0i1(s1), 0i2(s2), 0iz(s3)) for i = 1,2 "y | PO or o = el 7L 7 (upsides

i soi;(s) >0 whens £0fori=12;=123 down) - o
i 5;;(0)£0fori=1,2j=1,2,3 and the desired position is chosen toahe= (0,0, 0)m. The
¥ - Bt . . . . _
v [oy,(s)| < M;; Vs € R where My, < 21 for i — 1,2 desired heading while hovering ds;(—mges, Z) = (0,1,0)
j:dl 2.3 ! ! 2 ’ in case 1 andhy4(—mges,Z) = (1,0,0) in case 2. The

) L i parameters are chosenras= 2 Kg andl,, I,, I, = 1.2416
In particular, we choose;; (s) = Mi;; tanh gl\{js) Weim- kg m™2 and the gains for the translational controller are
pose the condition that/os < ¢ so thatinf ||T,|| > 0 atany chosen asMy; = 2, My; = 5, ny; = 1, ng; = 1
time. It is also obvious thasup ||Ty|| < oc. Thus,Tu(z,v) for j = 1,2,3. The rotational control gains are chosen as
satisfies assumption (i) of Theorem 5.1. Moreover, in [16f;, = 200, Kq =8, a1 = 0.9, as =1, ag = 1.1.
it was shown thatl,(x,v) above globally asymptotically  Figure 3 shows simulation results for case 1 and Figure 4
stabilizes the equilibriun{z,v) = (z,0) for (1), and thus shows simulation results for case 2. The translationalsplot
condition (ii) of Theorem 5.1 is satisfied. Finally, itis tB¥ ~ show the vehicle trajectory projected onto the — y;,
seen that (6) makes the equilibriue,v) = (z,0) expo- 4, — 2, and z; — z; planes, and the linear velocity given
nentially stable. Using a standard Lyapunov analysis with gy /v? 4 v3 + v2. The attitude plot shows the three body
quadratic Lyapunov function arising from the linearizatmf  axes plotted on a unit sphere.
the closed-loop system, it is easy to show that solutions of For all the results, the vehicle successfully converges to
the system with vanishing input perturbations are boundethe desired equilibrium point. In case 2, we see that the
so that assumption (iii) of Theorem 5.1 is satisfied. vehicle has some drift away from the desired equilibrium
while it flips to an upright orientation. In figure 4 this drift
i ) ) . is aroundém for the particular choices dk p and K. It has

We begin the attitude control design by defining thgeen observed through simulation that increadinghas the
attitude extraction functioR (T, x) satisfying the identities effect of reducing this drift. Also, an increase i, has the
in (3). Let bi4(T,z) be any smooth functio® x R* —  effect of reducing oscillation of the vehicle. Overall, wavi

S? such that for all(T,x), bia(T,x) is orthogonal toT  gptained satisfactory performance with appropriatelyseimo
and biq(mg, ) = Rey (this is the desired heading at thegains i, and K.

hovering equilibrium). Definésq(T,z) = —T/|T||. Then,
the function VIII. CONCLUSIONS

o This paper presented a hierarchical approach to position

R(T,z) := [b1a(T,z) bsa(T bia(T,x) bsa(T, ; :
(T,2) := [b1a(T,2) bsalT, ) x bra(T,7) bsa(T: )] control design for a class of thrust-propelled vehicles on
satisfies the two identities in (3). SE(3). The main result of the paper is a set of conditions

B. Stage 2: Attitude extraction
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Fig. 3: Rotation matrix: simulation results for case 1. Fig. 4: Rotation matrix: simulation results for case 2.
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