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Abstract

This paper proposes a unified framework for stabilizing a hover equilibrium for a class of
vertical take-off and landing (VTOL) aircraft using a cascade control architecture which yields
almost global stability in the absence of wind gusts. The control design process is partitioned
into two decoupled parts: the design of a bounded position controller for a fully actuated point-
mass particle, and the design of an attitude stabilizer. The position feedback is then used in
an outer loop to provide reference signals for the inner loop attitude stabilizer. A number of
sample feedbacks in the proposed controller class are presented, some of which include integral
action to compensate for an unknown mass.

I. Introduction

The most basic control specification for autonomous vehicles is that of position control, which

requires stabilizing a desired position and orientation in space of the vehicle. In this paper we

investigate the problem of making a VTOL aircraft hover at a desired position in space for almost

any initial condition, assuming that the aircraft is not affected by wind gusts. The aircraft in

question is propelled by a nonzero thrust vector along a single body axis, and incorporates

some mechanism to induce torques about all three body axes. A typical example is a quadrotor

helicopter. The challenge in the position control problem arises from the fact that the VTOL

aircraft under consideration is underactuated, having six degrees-of-freedom (three for rotation

and three for translation) and four control inputs (the magnitude of the thrust and three torques).

The position control problem has been researched with vigour over the past decade. In [5],

Hua et al. developed a general framework for attitude, position, and velocity control of the

same class of vehicles considered in this paper. Using a backstepping approach, they proposed

a position control design that is developed in steps through a series of simpler controllers (i.e.,

from thrust direction control, to velocity control, to position control). The multi-stage design

idea in [5] is appealing and intuitive. Different manifestations of this idea are found in the work

of many researchers. Of particular note is the work of A. Tayebi and collaborators in [6], [7],

[8], where a two-stage design strategy is developed whereby an outer translational control loop

assigns a desired thrust vector, treating the vehicle as a point mass. An inner attitude control loop

then applies a torque input that aligns the thrust vector to the desired axis, while simultaneously

controlling the vehicle’s heading. This latter stage is designed using the backstepping technique.

In [6], the two-stage design approach is used to derive a position controller that does not
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rely on linear and angular velocity measurements, and in [7] it is used to design an adaptive

position controller that compensates for a constant disturbance force. The two-stage approach

of Tayebi and collaborators relies on unit quaternion representations of attitude. In [9], a similar

two-stage approach is developed for rotation matrix representations. All approaches described

above achieve almost-global position stabilization, i.e., asymptotic stabilization with a domain

of attraction which has full measure in the state space of the closed-loop system. The majority

of approaches in the literature provide local asymptotic stabilization either because they cannot

guarantee that combining separately designed controllers for the translational and rotational

systems in cascade will guarantee almost global stability of the overall system, or because they

represent attitude using local parametrizations such as Euler angles. For instance, see [10], [11],

or [12].

In this paper we present a two-stage control architecture to solve the position control problem

almost globally. The proposed architecture is inspired by the work of A. Tayebi and collabo-

rators in [6], [7], [8]. Indeed, the control design is partitioned into two stages, a translational

control stage for a point-mass system and an attitude control stage. But rather than relying

on specific intermediate control designs for the individual control stages tied together through

the backstepping technique, we identify general classes of point-mass controllers and attitude

stabilizers that can be combined to form almost-globally stabilizing controllers for the thrust-

propelled vehicle. In the proposed framework, the control design is modular, in that the design

of either one control stage is independent of the design of the other stage. This is achieved by

avoiding the use of backstepping, and it has a number of advantages when compared to existing

approaches. First, decoupling the design of the two control stages has the effect of reducing

the complexity of the control design process, and the final feedback is intuitive and structured.

Second, the modularity of the approach allows one to leverage the rich literature on point-mass

position control and on attitude stabilization, without having to develop ad-hoc designs. For

instance, one may easily compare the performance of different attitude stabilizers by simply

swapping them in the architecture. One can incorporate integral action in the position control

stage to gain robustness against an unknown mass without having to redesign the attitude

controller. Some of the ideas presented here were explored in the context of co-axial helicopters

in [13].

II. Preliminaries

We now review preliminary notions and stability definitions used in this paper. We let v · w

denote the Euclidean inner product between vectors v, w ∈ R
3, and by ‖v‖ := (v · v)1/2 the

Euclidean norm of v. We let {e1, e2, e3} denote the natural basis of R
3. If x ∈ R

3, we denote

x× =





0 − x3 x2

x3 0 − x1

− x2 x1 0



 ,

so that x×y = x × y for all x, y ∈ R
3. Vice versa, given a skew-symmetric matrix M = −M⊤ ∈

R
3×3, we denote M× := [M32 M13 M21]

⊤. If x ∈ R
3, we let x∧ := (0, x) ∈ R × R

3. We denote

SO(3) := {R ∈ R
3×3 : R−1 = R⊤, det(R) = 1}. If Γ is a closed subset of a Riemannian manifold

X , and d : X ×X → [0, ∞) is a distance metric on X , we denote by ‖x‖Γ := infy∈Γ d(x, y) the

point-to-set distance of x ∈ X to Γ. If ǫ > 0, we let Bǫ(Γ) := {x ∈ X : ‖x‖Γ < ǫ}. By N (Γ)
we denote a generic neighbourhood of Γ in X . We will let S1 denote the set of real numbers
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modulo 2π. Finally, if A and B are two sets, we denote by A\B the set-theoretic difference of

A and B. We use bold characters to denote state-dependent reference values: R is an attitude

reference and ω is an angular velocity reference. The tilde mark on top of a symbol denotes an

error between an actual state and its corresponding reference: R̃ is an attitude error and ω̃ is

an angular velocity error.

The following stability definitions are taken from [14]. Let Σ : χ̇ = f (χ) be a smooth dynamical

system with state space a Riemannian manifold X , and let φ(t, χ0) denote its local phase flow.

Let Γ ⊂ X be a closed set which is positively invariant for Σ, i.e., such that for all χ0 ∈ Γ,

φ(t, χ0) ∈ Γ for all t ≥ 0 for which φ(t, χ0) is defined.

Definition 2.1: The set Γ is stable for Σ if for any ǫ > 0 there exists a neighbourhood N (Γ) ⊂
Bǫ(Γ) ⊂ X such that, for all χ0 ∈ N (Γ) and all t ≥ 0 for which φ(t, χ0) is defined, φ(t, χ0) ∈
Bǫ(Γ). Γ is attractive for Σ if there exists neighbourhood N (Γ) ⊂ X such that limt→∞ ‖φ(t, χ0)‖Γ =
0 for all χ0 ∈ N (Γ). The domain of attraction of Γ is the set {χ0 ∈ X : limt→∞ ‖φ(t, χ0)‖Γ = 0}. Γ

is globally attractive for Σ if it is attractive with domain of attraction X . Γ is locally asymptotically

stable (LAS) (or just asymptotically stable) for Σ if it is stable and attractive. Γ is globally asymp-

totically stable (GAS) for Σ if it is stable and globally attractive. Γ is almost-globally asymptotically

stable (AGAS) for Σ if the set Γ is LAS for Σ with domain of attraction X\N where N ⊂ X is

a set of Lebesgue measure zero. △
Definition 2.2: Let Γ1 ⊂ Γ2 be two closed subsets of X which are positively invariant for Σ.

Γ1 is globally asymptotically stable relative to Γ2 if it is LAS when initial conditions are restricted

to lie in Γ2, and its domain of attraction contains Γ2. Γ2 is locally stable near Γ1 if for all χ ∈ Γ1,

for all c > 0, and all ǫ > 0, there exists δ > 0 such that for all χ0 ∈ Bδ(Γ1) and all t > 0, if

φ([0, t], χ0) ⊂ Bc(χ) then φ([0, t], χ0) ⊂ Bǫ(Γ2). Γ2 is locally attractive near Γ1 if there exists a

neighbourhood N (Γ1) such that, for all χ0 ∈ N (Γ1), ‖φ(t, χ0)‖Γ2
→ 0 as t → ∞. △

Theorem 2.3 (Reduction Theorem [15]): Let Γ1 and Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed sets that are

positively invariant for Σ, and suppose Γ1 is compact. Consider the following conditions: (i) Γ1

is LAS relative to Γ2; (i)’ Γ1 is GAS relative to Γ2; (ii) Γ2 is locally stable near Γ1; (iii) Γ2 is locally

attractive near Γ1; (iii)’ Γ2 is globally attractive; (iv) all trajectories of Σ are bounded.

Then, the following implications hold: (i) ∧ (ii) =⇒ Γ1 is stable. (i) ∧ (ii) ∧ (iii) ⇐⇒ Γ1

is LAS. (i)’ ∧ (ii) ∧ (iii)’ ∧ (iv) =⇒ Γ1 is GAS.

The result above is the basic tool used in this paper to solve the position control problem by

decoupling translational and rotational control designs. Its significance will become apparent

in Sections IV and V. See, in particular, Remark 4.7. The paper [14] generalizes the theorem

above to the case when Γ1 is unbounded, and presents a reduction-based backstepping design

technique that does not rely on Lyapunov functions. That technique is used in this paper.

III. Position Control Problem

Consider the vehicle class depicted in Figure 1, where I and B = {b1, b2, b3} represent,

respectively, an inertial and a body frame. The b1 axis represents the vehicle’s heading, while the

b3 axis represents the propulsion direction. The thrust vector has constant direction in the body

frame, but its magnitude, u, can be freely controlled. The vehicle incorporates some actuation

mechanism inducing a torque τ about the three body axes that can be freely assigned.

The actual physical inputs (e.g., rotor speeds) will depend on the vehicle design and the

actuation mechanism used to induce torques. An example of this vehicle type is the quadrotor

helicopter depicted in Figure 1, see for instance [2], [16]. Each rotor produces a thrust force fi
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Fig. 1. On the left-hand side, the vehicle class under consideration. On the right-hand side, a quadrotor helicopter
is an example of a vehicle in the class discussed in this paper.

parallel to the b3 axis, and a reaction torque τri of the motor that drives it. Using the development

from Castillo, Lozano, and Dzul in [12], the relationship between the control inputs and the

motor torques is given by u = c(τr1 + τr2 + τr3 + τr4), τ1 = cd(−τr2 + τr4), τ2 = cd(τr1 − τr3) and

τ3 = (τr1 − τr2 + τr3 − τr4), where c is a physical constant and d is depicted in Figure 1.

Returning to the general vehicle class, we define the state χ := (x, v, R, ω) ∈ X := R
3 × R

3 ×
SO(3)× R

3, where x ∈ R
3 is the vehicle position expressed in frame I ; v ∈ R

3 is the vehicle’s

linear velocity expressed in frame I ; R ∈ SO(3) is the attitude of the vehicle (the columns of R

are the vectors b1, b2, b3 expressed in frame I); ω ∈ R
3 is the vehicle angular velocity expressed

in frame B. We model the vehicle dynamics using the Newton-Euler equation:

ẋ = v, mv̇ = mge3 − uRe3 = mge3 + T (1)

Ṙ = R ω×, Jω̇ + ω × Jω = τ. (2)

In the above, m is the mass of the vehicle, J is its symmetric inertia matrix expressed in frame

B, and T = col(T1, T2, T3) = −Re3u is the thrust vector. The vehicle has four control inputs:

u, the magnitude of the thrust vector, and τ := col (τ1, τ2, τ3), the vector of applied torques

expressed in frame B. The model in (1)-(2) neglects disturbances and dissipative effects that

are present in specific vehicle types. In Section V we discuss how our approach can be used to

handle state-dependent uncertainties.

Position Control Problem (PCP): Consider system (1), (2), and a desired position x⋆ ∈ R
3 and

attitude R⋆ ∈ SO(3) such that R⋆e3 = e3. Letting χ⋆ = (x⋆, 0, R⋆, 0), design a smooth feedback

of the form

ż = ϕ(χtran), u = ψ1(χ, z), τ = ψ2(χ, z) (3)

with z ∈ R
p, χtran := (x, v, z) such that for some z⋆ ∈ R

p, the state (χ, z) = (χ⋆, z⋆) is an AGAS

equilibrium of the closed-loop system. △
The condition R⋆e3 = e3 expresses the obvious requirement that, at a hovering equilibrium, the

vehicle’s b3 axis is parallel to the third inertial axis. It is not a restriction in PCP. The statement

of PCP allows for a dynamic feedback controller for flexibility of design, but dynamic feedback

control is not required.

IV. Two-Stage Control Architecture

In this section we present a class of feedback controllers solving PCP. The main result is

Theorem 4.6. The proposed control design has two nested feedback loops, shown in the block
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diagram of Figure 2. The outer loop views system (1) as a fully actuated point-mass system

with three control inputs T = col (T1, T2, T3), and produces a thrust controller. The inner loop

is an attitude controller for the rotational subsystem (2) which orients the thrust vector T of the

vehicle to match the desired thrust assigned by the outer loop controller. To do that, from the

desired thrust direction we extract a desired attitude with the property that the propulsion axis

associated with this attitude is parallel to the desired thrust force. Then, the attitude controller

regulates the actual attitude of the vehicle to the desired one.

Fig. 2. Block diagram of position control system. The outer loop assigns a desired thrust vector Td. The inner loop
converts the desired thrust direction Td/‖Td‖ into a reference attitude R(Td, x), which is then used by an attitude
controller to assign the vehicle torques.

A similar two-stage design philosophy has been used in the literature, particularly in the work

of Tayebi and collaborators [6], [7], [8], as well as in [9]. These papers present specific position

and attitude control designs that are tied together through the technique of backstepping.

Backstepping requires the knowledge of Lyapunov functions, and it may lead to controllers that

have complex expressions. More importantly, when using backstepping, position and attitude

control designs are tied together. One may not change one design without affecting the other.

We now present a control architecture that is modular, in that it completely decouples position

and attitude control designs, and it identifies general classes of position and attitude controllers

that can be combined to solve PCP.

Definition 4.1 (Point-Mass Position Control Class, PMPC): A pair (ϕ, Td) is a controller of class

PMPC, written (ϕ, Td) ∈ PMPC, if ϕ : R
3 × R

3 × R
p → R

p and Td : R
3 × R

3 × R
p → R

3 are

smooth maps, and the dynamic smooth feedback

ż = ϕ(χtran), T = Td(χtran) (4)

where χtran := (x, v, z), satisfies the following properties: (i) There exist constants C1, C2 > 0 such

that ‖ϕ(χtran)‖ ≤ C1 + C2‖χtran‖. Moreover, sup(e3
⊤Td(χtran)) < 0 and sup ‖Td(χtran)‖ < ∞.

(ii) There exists z⋆ ∈ R
p such that the equilibrium χtran = (x⋆, 0, z⋆) is GAS for the point-

mass system (1) with dynamic feedback (4). (iii) There exists ǫ > 0 such that for any piecewise

continuous function ρ : R → R
3 such that sup ‖ρ‖ < ǫ and ρ(t) → 0 as t → ∞, letting

T = Td(χtran) + ρ(t), all solutions of the system (1)-(4) are bounded. If the feedback is static, so

that χtran = (x, v), we will write (∅, Td) ∈ PMPC. △
Definition 4.2 (Attitude Control Class, AC): A smooth function τd : SO(3) × R

3 → R
3 is a

feedback of class AC, written τd ∈ AC, if, letting τ = τd(R, ω), the point (R, ω) = (I, 0) is

an AGAS equilibrium for the rotational subsystem (2). △
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Definition 4.3 (Attitude Extraction Map, R): Let U := {T ∈ R
3 : e3

⊤T < 0}. A smooth function

R : U × R
3 → SO(3) is an attitude extraction map if it satisfies:

(a) (∀(T, x) ∈ U × R
3) ‖T‖R(T, x)e3 = −T,

(b) R(−mge3, x⋆) = R⋆,
(5)

where x⋆, R⋆ are defined in the statement of PCP. △
Remark 4.4: Identity (a) in (5) guarantees that when R = R(Td, x) and u = ‖Td‖, the resulting

thrust vector T in (1) coincides with Td. Identity (b) in (5) guarantees that the attitude extraction

map R returns the desired equilibrium orientation R⋆ when the vehicle hovers at the desired

equilibrium position x⋆. The set U in Definition 4.3 is introduced to guarantee the existence of

map R with the required properties, as we shall see in Section VI. △
Definition 4.5 (Position Controller Class, PC): Let (ϕ, Td) ∈ PMPC, τd ∈ AC, and R be an atti-

tude extraction map. Denote χtran := (x, v, z), χrot := (R, ω), and χ̄ := (χtran, χrot). A feedback

of class PC is defined as
ż = ϕ(χtran)

u = ‖Td(χtran)‖

τ = τd(R̃, ω̃)− ω̃ × Jω̃ + ω × Jω

− J
(

ω̃
×R̃−1

ω − R̃−1
ω̇

)

,

(6)

where ω(χ̄) :=
[

(R(Td(χtran), x))−1Ṙ(χ̄)
]

×
, R̃(χ̄) :=

(

R(Td(χtran), x)
)−1

R, ω̃(χ̄) := ω− R̃−1(χ̄)ω(χ̄)

and Ṙ, ω̇ are the time derivatives of the maps χ̄ 7→ R(Td(χtran), x) and χ̄ 7→ ω(χ̄) along (1), (2)

setting u = ‖Td(χtran)‖. △
The structure of the attitude control τ in (6) is intuitive. It is an attitude tracker for the

reference signal R(Td, x) provided by the outer translational control loop. The first term τd(R, ω)
is an almost global attitude stabilizer for the upright attitude R = I. The remaining terms

act to transform the attitude stabilizer into an attitude tracker. Consider the diffeomorphism

(x, v, R, ω) 7→ (x, v, R̃, ω̃). One can show that, in new coordinates, the closed-loop system reads

ẋ = v, mv̇ = mge3 − uR(Td(χtran), x)R̃e3 (7)

˙̃R = R̃ω̃
×, J ˙̃ω + ω̃ × Jω̃ = τd(R̃, ω̃). (8)

Theorem 4.6 (Main Result): Any feedback of class PC solves PCP for system (1), (2).

Proof: Consider system (1), (2). Since (ϕ, Td) ∈ PMPC, sup(e3
⊤Td(χtran)) < 0, so the image of

the function χtran 7→ Td(χtran) is contained in U (see Definition 4.3), so that the function χtran 7→
R(Td(χtran), x) is well-defined, and the feedback (6) is smooth. Denote χ⋆

tran := (x⋆, 0, z⋆),
χ⋆

rot := (R⋆, 0), and χ̄⋆ := (χ⋆

tran, χ⋆

rot). Define sets Γ1 = {χ̄⋆}, Γ2 =
{

χ̄ : R̃(χ̄) = I, ω̃(χ̄) = 0}.

We first show that Γ1 ⊂ Γ2. Since (ϕ, Td) ∈ PMPC, χtran = χ⋆

tran is an equilibrium of (1)

with T = Td(χtran). This implies that Td(χ
⋆

tran) = −mge3. Using property (b) in (5), we have

R(Td(χ
⋆

tran), x⋆) = R(−mge3, x⋆) = R⋆. Therefore, R̃(χ̄⋆) = I. We also have ω̃(χ̄⋆) = −ω(χ̄⋆) =
−[(R⋆)−1Ṙ(χ̄⋆)]× = 0 because Ṙ(χ̄⋆) is proportional to χ̇tran|χ̄=χ̄⋆ = 0. This proves that Γ1 ⊂ Γ2.

Recall the error dynamics in (8). Since τd ∈ AC, the equilibrium (R̃, ω̃) = (I, 0) is AGAS for (8),

implying that Γ2 is AGAS provided that the closed-loop system has no finite escape times.

Assume for the moment that this is the case, and let X̄ be the domain of attraction of Γ2. Then,

X̄ is positively invariant, and Γ2 is GAS relative to X̄ . For all χ̄ ∈ Γ2, R = R(Td(χtran, x))
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so that, by property (a) in (5), − uRe3 = −‖Td(χtran)‖R(Td(χtran), x)e3 = Td(χtran). Therefore,

the motion on Γ2 is governed by ẋ = v, v̇ = mge3 + Td(χtran), ż = ϕ(χtran). Since (ϕ, Td) ∈
PMPC, the equilibrium χtran = χ⋆

tran is GAS for the system above, so that Γ1 is GAS relative

to Γ2. We now wish to apply the reduction Theorem 2.3. To this end, we need to show that

all solutions of the closed-loop system originating in X̄ have no finite escape times (implying

that Γ2 is GAS relative to X̄ ) and they are bounded. Let χ̄(0) ∈ X̄ be arbitrary, and let χ̄(t)
be the corresponding solution of the closed-loop system. The dynamics of the χtran subsystem

can be written as ẍ = mge3 + Td(χtran) + (−‖Td‖Re3 − Td(χtran)), ż = ϕ(χtran). Here, Re3

has unit norm and, by assumption, sup ‖Td‖ < ∞, so ẍ is bounded. Since (ϕ, Td) ∈ PMPC,

‖ϕ(χtran)‖ ≤ C1 + C2‖χtran‖, so the signal χtran(t) = (x(t), v(t), z(t)) is defined for all t ≥ 0.

The function ω depends on (x, v, z, R). Since the first three arguments are defined for all t ≥ 0,

and R ∈ SO(3), a compact set, ω(χ̄(t)) is defined for all t ≥ 0. Since (R̃, ω̃) = (I, 0) is AGAS

for (8), ω̃(χ̄(t)) = ω(t)− ω(χ̄(t)) is bounded, implying that ω(t) is defined for all t ≥ 0. In

conclusion, χ̄(t) is defined for all t ≥ 0, so that the closed-loop system has no finite escape

times, and Γ2 is GAS relative to X̄ . Now consider property (iii) in Definition 4.1, and let

ρ(t) = −‖Td(χtran(t))‖R(t)e3 − Td(χtran(t)). By property (a) in (5), and by the global asymptotic

stability of Γ2 relative to X̄ , ρ(t) → 0. Since (ϕ, Td) ∈ PMPC, this implies that χtran(t) is bounded.

Since ω is a smooth function of (χtran, R), and the signals χtran(t), R(t) are bounded, ω(χ̄(t)) is

bounded. Finally, the boundedness of ω̃(χ̄(t)) and that of ω(χ̄(t)) imply that ω(t) is bounded.

Having shown that all solutions of the closed-loop system originating in X̄ are bounded, by

part (c) of Theorem 2.3 we conclude that Γ1 is GAS relative to X̄ or, what is the same, the

equilibrium χ̄ = χ̄⋆ is AGAS for the closed-loop system, proving that the feedback (6) solves

PCP.

Remark 4.7: The basic tool enabling the decomposition of PCP into point mass position control

and attitude control is the reduction theorem, Theorem 2.3. In the proof of Theorem 4.6, we

consider positively invariant sets Γ1 ⊂ Γ2. Γ2 is the set where the vehicle attitude is equal to

the desired attitude signal provided by the translational stage. On Γ2, the vehicle behaves like

a point-mass system subject to the stabilizing control law (ϕ, Td) ∈ PMPC. Thus, the hovering

equilibrium Γ1 ⊂ Γ2 is GAS relative to Γ2. The feedback for τ in (6) is designed to almost

globally stabilize the set Γ2. The reduction theorem allows us to deduce that the combination

of the translational and rotational control modules makes Γ1 AGAS for the closed-loop system.

△

V. Remarks on Two-Stage Control Architecture

The two-stage control architecture presented in the previous section parametrizes a class of

feedbacks solving PCP using three modules: a point-mass position controller of class PMPC,

an attitude extraction map, and an attitude stabilizer of class AC. The combination of these

modules, depicted in Figure 2, results in two nested loops. The outer loop is the feedback

of class PMPC producing a reference thrust signal Td(χtran(t)). The inner loop relies on the

attitude extraction map to generate reference signals R(Td(χtran(t)), x(t)) and ω(χ̄(t)). Then,

an attitude controller τ(χ̄) makes R(t) and ω(t) track these references. Specifically, the proof

of Theorem 4.6 shows that τ is such that the error functions (R̃, ω̃) satisfy (8), the equation of

a rotating rigid body subject to the stabilizing torque τd.

The two-stage control architecture has a number of useful features: (1) The control modules of

class PMPC and AC are completely decoupled: the design of either one of them is independent of
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the design of the other. (2) Being modular, the control design process is intuitive and structured.

It can be explained to a non-expert. (3) One can replace either one of the control modules

without having to redesign the remaining module. This allows one to easily test and compare

different feedbacks of class PC. (4) The combination of control modules in the final feedback (6)

does not require the knowledge of Lyapunov functions for the individual modules. (5) In light

of the reduction theorem, Theorem 2.3, the proof of Theorem 4.6 remains unchanged if one

replaces the equilibrium Γ1 = {χ̄⋆} by an arbitrary compact and controlled invariant subset of

Γ2 = {χ̄ : R̃(χ̄) = I, ω̃(χ̄) = 0}. Since the definition of Γ1 arises from the control specification

for system (1), allowing Γ1 ⊂ Γ2 to be an arbitrary compact set corresponds to changing the

control specification for the PMPC class. The result is that the two-stage control architecture

can be used to solve other control problems for thrust-propelled vehicles. For instance, suppose

the translational dynamics (1) are affected by a state-dependent uncertainty, and that (ϕ, Td)
is a robust controller that globally practically stabilizes the desired equilibrium χtran = χ⋆

tran

for (1). In other words, for any compact neighbourhood Γ1 of χ⋆

tran, a parameter in (ϕ, Td) can

be chosen that makes Γ1 asymptotically stable for the fully actuated point-mass system (1).

Then, the feedback of class PC will recover the properties of the point-mass controller, and

make Γ1 almost globally asymptotically stable for the thrust-propelled vehicle. For another

example, suppose we wish to make the vehicle follow a smooth embedded path in three-space.

Solving the problem for the point-mass system (1) would correspond to finding a feedback

(ϕ, Td) stabilizing a compact set Γ1. Then, the two-stage control architecture will solve the path

following problem for the thrust-propelled vehicle. (6) One can employ observers in the two-

stage architecture (adding a dynamic extension to the rotational subsystem) and exploit the

proof technique of Theorem 4.6 to prove asymptotic stability of the desired equilibrium. This

is done in [17]. Finally, in [17] it is shown that the result of Theorem 4.6 holds if one uses the

quaternion representation of attitude.

VI. Sample Feedbacks Solving PCP

In this section we present specific feedbacks of class PC that solve PCP. Following the two-

stage control architecture, we need to design three modules: a point-mass position controller of

class PMPC, an attitude extraction map, and an attitude stabilizer of class AC.

A. Sample Feedbacks of Class PMPC

We will present three feedbacks of class PMPC for the point-mass system ẋ = v, mv̇ =
mge3 + T.

1) Nested saturation feedback. To meet the requirements in part (i) of Definition 4.1 one can use

the nested saturation controller of A. Teel (see [18], [19], [20]),

Td(x, v) = −mge3 − mσ

(

K1v + λσ

(

K2 x̃ + K3v

λ

))

(9)

where x̃ = x − x⋆, K1, K2, K3 are positive definite diagonal matrices, λ is a positive scalar,

and σ : R
3 → R

3 is a smooth saturation function satisfying (i) σ(s) = (σ1(s1), σ2(s2), σ3(s3)),
s = (s1, s2, s3); (ii) siσi(si) > 0 for all si 6= 0, i = 1, 2, 3; (iii) σ̇(0) = I; (iv) |σi(·)| ≤ Mi for

some Mi > 0, i = 1, 2, 3, with M3 < g. In particular, we choose σi(si) = Mi tanh
(

M−1
i si

)

. The

feedback in (9) is static, with χtran = (x, v). We will see in Proposition 6.1 that it belongs to

class PMPC.
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2) Nested saturation feedback with integral action. In order to accommodate for imperfect knowl-

edge of the vehicle’s mass, it is desirable to design a feedback with integral action. This can

be achieved by adding a state representing the integral of the position error x̃ = x − x⋆ and

applying Teel’s nested saturation approach to the resulting triple-integrator:

ż = x̃

Td(x, v, z) = −mge3 − mσ

(

K1
1v + λ1σ

(

K2
1 x̃ + K2

2v

λ1

+
λ2

λ1
σ

(

λ3

λ2
σ

(

K3
1z + K3

2 x̃ + K3
3

λ3

))))

,

(10)

where σ is as above, and K
j
i are suitable positive definite diagonal matrices and λk suitable

positive scalars. Note that the feedback (10) is dynamic, being of the form (ϕ, Td), with χtran =
(x, v, z) ∈ R

3 × R
3 × R

3 and ϕ(χtran) = x − x⋆.

Proposition 6.1: There exist positive definite diagonal matrices K1, . . . , K3, K
j
i , i, j = 1, 2, 3, and

positive scalars λ, λk, k = 1, 2, 3, such that the feedbacks in (9) and (10) belong to class PMPC.

Proof: For both feedbacks (9) and (10), we have sup ‖Td‖ < mg + m max{M1, M2, M3}.

Moreover, e3
⊤Td = −mg − mσ3(·) < 0 because |σ3| < g. For feedback (10) we have ‖ϕ(χtran)‖ =

‖x − x⋆‖ ≤ ‖x⋆‖ + ‖χtran‖. Thus, property (i) in Definition 4.1 holds. By Theorem 5 in [19],

there exist positive definite diagonal matrices λ, K1, . . . , K3, K
j
i , i, j = 1, 2, 3, and λk, k = 1, 2, 3

such that properties (ii) and (iii) of Definition 4.1 hold.

3) Saturated PID controller with antiwindup compensation. The presence of integral action with

nested saturation may give rise to undesirably slow transient performance. For better transient

performance, one may use the saturated PID controllers with antiwindup compensation of [21]:

ξ̇ = x̃ − qe

q̈e = σ(σ(yc) + v1)− yc

Td(x, v, z) = −mge3 − mσ(σ(yc) + v1)

z := (ξ, qe, q̇e) ∈ R
3 × R

3 × R
3,

(11)

where σ satisfies (i)-(iv) above1, v1 = Kgσ(K−1
g Kqqe) + Kqd(qe, q̇e)q̇e, Kqd is a diagonal smooth

positive definite matrix-valued function which is constant in a neighbourhood of the origin and

bounded away from zero. Finally, yc = KP(x̃ − qe) + KD(v − q̇e) + KIξ.

Proposition 6.2: Let Kg be a diagonal matrix with entries in the interval (0, 1), and let Kq, KP, KD, KI

be diagonal positive definite matrices. Then, feedback (11) belongs to class PMPC.

Proof: Property (i) of Definition 4.1 is satisfied by the same argument presented in the proof

of Lemma 6.1. Properties (ii) and (iii) follow from Theorem 1 and Lemma 1 in [21].

B. Sample Attitude Extraction Maps

Let b1d(T, x) be any smooth function R
3 × R

3 → {v ∈ R
3 : v · v = 1} such that, for all

(T, x), b1d(T, x) is orthogonal to T and b1d(−mge3, x⋆) = R⋆e1 (this is the desired heading

1In [21], the authors use the standard saturation function which is globally Lipschitz but not smooth. As the
authors of [21] point out, their approach is applicable to a wider class of saturation nonlinearities, and in particular
it is applicable to the class identified in this paper.
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at the hovering equilibrium). The simplest choice is the vector b1d(T, x) = (T × (R⋆e2))/‖(T ×
(R⋆e2))‖, but in certain applications one may have specifications for the vehicle’s heading during

transient, in which case other functions b1d(T, x) would be required. Define b3d(T) = −T/‖T‖.

Then, the function

R(T, x) :=
[

b1d(T, x) b3d(T)× b1d(T, x) b3d(T)
]

(12)

is an attitude extraction map. Note that R(T, x) is defined as long as T 6= 0, so in particular it

is smooth on U × R
3.

C. Sample Feedbacks of Class AC

Now we need to define attitude controllers τd that achieve almost global stabilization of

(R, ω) = (I, 0). There is a vast literature on the subject of attitude stabilization, and our modular

design allows one to pick from a multitude of designs. We pick the controller presented in [22],

τd(R, ω) = −KR

(

3

∑
i=1

aiei × Rei

)

− Kωω, (13)

where KR, Kω are symmetric positive definite matrices, and a1, a2, a3 are distinct positive num-

bers.
Proposition 6.3: Feedback (13) belongs to class AC

Proof: The fact that (13) is of class AC is proved2 in Theorem 1 of [22].

VII. Simulation Results

In this section, we present simulation results for a feedback of class PC. The vehicle is specified

to travel from an initial to a desired position in R
3. We will look at two cases. In case 1, the

vehicle is initially upright and the desired heading is different from the initial heading. In

case 2, the vehicle is initially upside-down, and the desired heading is the same as the initial

heading. The initial conditions are taken as x0 = (1, 1, 1)m, v0 = (0, 0, 0)m/s, R0 = I (case

1: upright) or R0 = diag(1,−1,−1) (case 2: upside-down). The target position is chosen to be

x⋆ = (0, 0, 0)m, and the target attitude is R⋆ = [e2 − e1 e3] in case 1, and R⋆ = I in case

2. The vehicle mass is chosen to be m = 2 Kg. The inertia matrix J is diagonal, with diagonal

elements equal to 1.2416 Kg·m2 as in [16]. All simulations use (φ, Td) ∈ PMPC given in (9),

with σi(si) = 5 tanh(si/5), λ = 2/5I, K1 = 2I, K2 = 2/5I, K3 = 1/5I. The gains are chosen as

KR = 200I, Kω = 8I, a1 = 0.9, a2 = 1, a3 = 1.1. Figure 3 shows the results when disturbances

are present. The disturbance includes an additive random noise on the applied force and torque

with maximum magnitude of 0.5 N and 0.5 N·m, respectively. We also include random additive

noise on the attitude (yaw, pitch and roll) and on the angular velocity measurements with

maximum magnitudes of 0.5 rad and 0.5 rad/s, respectively, and include a constant bias of

0.1 rad/s added to the measurement of angular velocity. The translational plots show the vehicle

trajectory projected onto the xi − yi, yi − zi and xi − zi planes, and the linear speed given by
√

v2
1 + v2

2 + v2
3. The attitude plot shows the three body axes plotted on a unit sphere. For all

the results, the vehicle successfully converges to the desired equilibrium point. For the results

including disturbances, the vehicle converges to a point in a small neighbourhood of the desired

equilibrium point with an oscillating attitude.

2Theorem 1 of [22] requires a1, a2, a3 to be positive integers. This requirement does not seem necessary, hence we
are letting ai be positive real numbers.
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Fig. 3. Position control simulations. Case 1 without disturbances on the left hand side. Case 1 in the presence of
random disturbances on the applied force and torque in the middle. Case 2 without disturbances on the right. The
attitude plots in the bottom panels show the body axes with respect to the inertial frame (b1, b2, b3) parametrized by
time starting from the initial condition R0 = I (case 1: upright) or R0 = diag(1,−1,−1) (case 2: upside-down). The
small oscillations in the steady-state attitude in the middle plot are due to the random disturbances.

VIII. Conclusions

We have presented a class of feedbacks and a control architecture solving the position control

problem for a class of VTOL aircraft. We have not explicitly addressed issues of robustness

against unmodeled uncertainties and measurement errors, although we surmise that the overall

robustness of the nested control loop is inherited from the robustness of the feedbacks one selects

in the classes PMPC and AC. More research is needed to substantiate this claim. Two of the

sample feedbacks of class PMPC presented in this paper include integral action to accommodate

for imperfect knowledge of the vehicle’s mass. The control approach presented in this paper can

easily accommodate observers for attitude estimation, and it can be used with quaternion-based

attitude stabilizers (see [17]).
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