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Abstract— A framework is presented for rendezvous in a
network of n underactuated thrust-propelled rigid bodies. A
nested loop control structure is proposed whereby an outer loop
consensus controller for a double integrator system provides
reference signals to an inner loop thrust direction stabilizer.
Both outer loop and inner loop controllers can be chosen from
a wealth of solutions available in the literature, and it is shown
that their combination solves the rendezvous problem almost
globally for the rigid body network. We illustrate the theory by
combining sample feedbacks, and we show robustness to noise
by means of numerical simulations.

I. INTRODUCTION

This paper investigates the rendezvous problem for a

network of n underactuated vehicles. Each vehicle is mod-

eled as a rigid body to which thrust is applied along a

single body axis while a torque can be applied along any

axis. The configuration space of each vehicle is SE(3) and

the model takes into account the rigid body dynamics.

Examples of vehicles in this class include vertical take-off

and landing (VTOL) aircraft and quadrotor helicopters. The

control objective is to design a locally distributed controller

making the vehicles converge to one another and move

in synchrony. Each vehicle can measure relative positions,

relative velocities, and relative attitudes, but cannot measure

any absolute quantities except for its own angular velocity

and the gravity vector in its body frame. Measurement of

body frame angular velocity is common in literature [1], [2],

and in applications it can be obtained using a rate gyroscope

mounted on the vehicle. Measurement of the gravity vector

can be obtained using an accelerometer.

Synchronization and coordination in multi-agent systems

have been researched heavily in recent years. Several authors

have focused specifically on attitude synchronization. In [3],

the authors adopted a passivity approach for a kinematic

model, while in [2] a potential shaping approach was used

for a dynamic model to achieve an almost global result.

This potential shaping approach requires an angular velocity

dissipation term that drives the angular velocity to zero.

In [4], [5], [6], the solution requires that each vehicle

measures its own attitude with respect to an inertial frame.

Many authors have considered kinematic vehicle models

in which the velocity along a heading direction and the

vehicles’ angular velocities are directly controlled using only
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relative measurements with respect to neighboring vehicles.

In SE(2) this corresponds to synchronization/coordination

in a system of unicycles as discussed in [7], [8], [9]. The

case of SE(3) is considered in [10], [11]. In [1], the authors

present a control solution based on a variational formulation

of mechanics to address synchronization in SE(3) for fully

actuated dynamic vehicle models.

Finally, in [12], [13] the authors address synchronization

in SE(3) for underactuated dynamic vehicle models. These

approaches consider relative measurements between neigh-

boring vehicles but are not computed locally, that is, on board

with respect to the vehicle’s own body frame. As such, each

vehicle requires inertial measurements of its own state.

To the best of our knowledge, no result in literature solves

the rendezvous problem for a set of underactuated dynamic

models ensuring almost global asymptotic stability of the

rendezvous manifold using locally distributed measurements.

To attain this result, building on recent results [14], [15],

we develop a nested loop design methodology, reducing

the rigid body rendezvous problem to a consensus problem

for double integrators. In the proposed framework, an outer

loop consensus controller for double integrators provides

reference signals for an inner loop thrust direction stabilizer.

If the double integrator controller achieves consensus for

a certain class of communication graphs, the nested loop

controller proposed in this paper achieves almost global

rendezvous in the network of rigid bodies for the same class

of graphs.

II. PRELIMINARIES AND NOTATION

In this section we summarize the notation and review

preliminary notions and stability definitions used throughout

the paper. We let v · w denote the Euclidean inner product

between vectors v, w ∈ R
3, and by ‖v‖ := (v · v)1/2 the

Euclidean norm of v. We let {e1, e2, e3} denote the natural

basis of R3. We denote

v× =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 .

With this definition, one has that v×w = v ×w. Vice versa,

given a skew-symmetric matrix M = −M⊤ ∈ R
3×3, we

denote M× := [M32 M13 M21]
⊤. We denote SO(3) :=

{R ∈ R
3×3 : R−1 = R⊤, det(R) = 1}. If Γ is a closed

subset of a Riemannian manifold X , and d : X × X →
[0,∞) is a distance metric on X , we denote by ‖χ‖Γ :=
infψ∈Γ d(χ, ψ) the point-to-set distance of χ ∈ X to Γ. If

ǫ > 0, we let Bǫ(Γ) := {χ ∈ X : ‖χ‖Γ < ǫ}. By N (Γ) we



denote a generic neighborhood of Γ in X . We will let S1

denote the set of real numbers modulo 2π and if A and B
are two sets, we denote by A\B the set-theoretic difference

of A and B. Finally, if I = {i1, . . . , in} is an index set, the

ordered list of elements (xi1 , . . . , xin) is denoted as (xj)j∈I .

The following stability definitions are taken from [16]. Let

Σ : χ̇ = f(χ) be a smooth dynamical system with state space

a Riemannian manifold X , and let φ(t, χ0) denote its local

phase flow. Let Γ ⊂ X be a closed set which is positively

invariant for Σ, i.e., such that for all χ0 ∈ Γ, φ(t, χ0) ∈ Γ
for all t ≥ 0 for which φ(t, χ0) is defined.

Definition 1: The set Γ is stable for Σ if for any ǫ > 0
there exists a neighborhood N (Γ) ⊂ X such that, for all

χ0 ∈ N (Γ) and all t ≥ 0 for which φ(t, χ0) is defined,

φ(t, χ0) ∈ Bǫ(Γ). Γ is attractive for Σ if there exists

neighborhood N (Γ) ⊂ X such that limt→∞ ‖φ(t, χ0)‖Γ =
0 for all χ0 ∈ N (Γ). The domain of attraction of Γ
is the set {χ0 ∈ X : limt→∞ ‖φ(t, χ0)‖Γ = 0}. Γ is

globally attractive for Σ if it is attractive with domain of

attraction X . Γ is locally asymptotically stable (LAS) (or

just asymptotically stable) for Σ if it is stable and attractive.

Γ is globally asymptotically stable (GAS) for Σ if it is stable

and globally attractive. Γ is almost-globally asymptotically

stable (AGAS) for Σ if the set Γ is LAS for Σ with domain of

attraction X\N where N ⊂ X is a set of Lebesgue measure

zero.

Definition 2: Let Γ1 ⊂ Γ2 be two closed subsets of

X which are positively invariant for Σ. Γ1 is globally

asymptotically stable relative to Γ2 if it is LAS when initial

conditions are restricted to lie in Γ2, and its domain of

attraction contains Γ2. Γ2 is locally stable near Γ1 if for

all χ ∈ Γ1, for all c > 0, and all ǫ > 0, there exists

δ > 0 such that for all χ0 ∈ Bδ(Γ1) and all t > 0, if

φ([0, t], χ0) ⊂ Bc(χ) then φ([0, t], χ0) ⊂ Bǫ(Γ2). Γ2 is

locally attractive near Γ1 if there exists a neighborhood

N (Γ1) such that, for all χ0 ∈ N (Γ1), ‖φ(t, χ0)‖Γ2
→ 0

as t→ ∞.

We present now a reduction theorem that will be instrumental

to derive our main result

Theorem 1 (Reduction Theorem [17]): Let Γ1 and Γ2,

Γ1 ⊂ Γ2 ⊂ X , be two closed sets that are positively invariant

for Σ, and suppose Γ1 is compact. Consider the following

conditions: (i) Γ1 is LAS relative to Γ2; (i)’ Γ1 is GAS

relative to Γ2; (ii) Γ2 is locally stable near Γ1; (iii) Γ2 is

locally attractive near Γ1; (iii)’ Γ2 is globally attractive; (iv)

all trajectories of Σ are bounded.

Then, the following implications hold: (i) ∧ (ii) =⇒ Γ1

is stable. (i) ∧ (ii) ∧ (iii) ⇐⇒ Γ1 is LAS. (i)’ ∧ (ii) ∧ (iii)’

∧ (iv) =⇒ Γ1 is GAS. �

III. MODELING

We consider a model of n identical thrust-propelled

vehicles. Each vehicle i is an underactuated mechanical

system with six degrees of freedom and four scalar control

inputs. This system is underactuated because one cannot

independently assign linear and angular accelerations. This

is depicted in Figure 1, where I and Bi = {bi1, bi2, bi3}

Fig. 1. Vehicle class under consideration.

represent, respectively, the inertial and body frame. The

vehicle is propelled by a thrust vector directed opposite to

bi3, which represents the propulsion direction. The thrust

vector has, therefore, constant direction in the body frame,

but its magnitude, ui, can be freely controlled. The vehicle

incorporates some actuation mechanism inducing a torque τi
about the three body axes that can be freely assigned.

The rigid body equations of motion are given by

ẋi = vi, mv̇i = mge3 − uiRie3 = mge3 + Ti, (1)

Ṙi = Ri ω
×
i , Jω̇i = τi − ωi × Jωi, (2)

where i = 1, 2, . . . , n. In the above, xi ∈ R
3 is the position

of vehicle i expressed in frame I, vi ∈ R
3 is the linear

velocity of vehicle i expressed in frame I, Ri ∈ SO(3) is

the attitude of vehicle i with respect to the inertial frame, and

ωi ∈ R
3 is the angular velocity of vehicle i expressed in body

frame Bi. Further, the thrust axis of vehicle i in the inertial

frame is denoted by qi = Rie3. The remaining variables

are the vehicle mass m, the symmetric inertia matrix J
expressed in body frame, and finally the thrust vector Ti =
−Rie3ui. The state vector for vehicle i is given by χi :=
(xi, vi, Ri, ωi) ∈ Xi where Xi := R

3 × R
3 × SO(3) × R

3

and the configuration space of each vehicle is SE(3).

Denote x := (x1, . . . , xn), v := (v1, . . . , vn), R :=
(R1, . . . , Rn), ω := (ω1, . . . , ωn) where n is the number

of vehicles in the configuration. The state vector is given by

χ := (x, v,R, ω) ∈ X where X := R
3n × R

3n × SO(3)n ×
R

3n is the state space for the n-vehicle system.

An example of a vehicle that falls into our modeling

framework is the quadrotor aerial vehicle [6], [18].

The information exchange between vehicles is modelled

by a graph G = (V , E , A). Each node ni ∈ V of G represents

a rigid body and E is the set of edges specified from some

node i to another node j indicating that vehicle i can measure

its state relative to vehicle j (sensing convention). The graph

G is said to be an undirected graph if ∀i, j ∈ V , (i, j) ∈ E
implies (j, i) ∈ E . It is otherwise called a directed graph. A
is an n × n adjacency matrix corresponding to the graph

G where the entry aij 6= 0 if (i, j) ∈ E and aij = 0
otherwise. A path between two nodes n1, nl is a sequence

of nodes {n1, n2, . . . , nl} such that ni, ni+1 is an edge for

i = 1, . . . l − 1. We denote Ni as the set of vehicles j ∈ V
such that there is an edge from vehicle i to vehicle j i.e.

(i, j) ∈ E .



IV. RENDEZVOUS CONTROL PROBLEM

The communication topology, and the absence of a global

reference frame, constrain the available information to each

vehicle. Any feedback control law and computation proce-

dure must therefore rely on only “measurable variables”.

This leads to the notion of a locally distributed function.

For vehicles i and j, we define the relative displacement

xij := xj−xi of vehicle i with respect to vehicle j. Similarly,

we define the relative velocity vij := vj − vi, relative

attitude Rij := RTi Rj , relative thrust axes qij = qj − qi and

relative angular velocity ωij := Rijωj − ωi. The collection

of relative displacements and velocities of vehicle i with

respect to its neighbors in the sensor graph is defined as

ŷi :=
(

xij , vij
)

j∈Ni
. On the other hand, the collection of

the same quantities projected onto body frame Bi is defined

as yi :=
(

R⊤
i xij , R

⊤
i vij

)

j∈Ni
.

In this paper, we denote an inertial vector r ∈ R
3 with

respect to the reference frame Bi by ri, that is, R⊤
i r = ri.

We use bold characters to denote state-dependent reference

values: qi is a thrust direction reference and ωi is an angular

velocity reference for vehicle i. The tilde mark on top of

a symbol denotes an error between an actual state and its

corresponding reference: q̃i = R⊤
i qi is a thrust direction

error measured with respect to e3 and ω̃i = ωi − ωi is an

angular velocity error.

Definition 3 (Locally Distributed Function): A smooth

function is a locally distributed function for vehicle i if its

arguments include exclusively

1) The collection yi of relative positions and velocities of

vehicle i with respect to its neighbors in the sensor

graph, projected on the body frame Bi;

2) Relative attitudes (Rij)j∈Ni
and relative angular veloc-

ities
(

ωij
)

j∈Ni
;

3) the angular velocity ωi in the body frame Bi;

4) the values
(

uj, u̇j
)

j∈Ni
.

Remark 1: Following from Definition 3, a locally dis-

tributed feedback for vehicle i can also be a function of

(ωj)j∈Ni
. To see this notice that, since ωij , ωi and Rij

are available to vehicle i, vehicle i can compute ωj =
R⊤
ij(ωi + ωij) for any j ∈ Ni.

Remark 2: By Definition 3, a function is locally dis-

tributed for vehicle i if it can be computed using relative

quantities expressed locally in the vehicle’s body frame.

Practically, such quantities could be measured with on-

board devices like cameras. The only absolute measurement

that vehicle i needs is its own body referenced angular

velocity ωi. This quantity is commonly considered available

in literature [1], [2], in applications using an on-board rate

gyroscope and therefore can be justified. In our notion of a

locally distributed function, vehicle i is allowed to receive

two real numbers (uj , u̇j) from vehicle j. That is, vehicle

j computes its own control input uj and its derivative

u̇j(R
⊤
j xjk, R

⊤
j vjk, Rjk, ωj, uj , uk)k∈Nj

where the quantity

uk is the control input of neighboring vehicle k and sends

these quantities to vehicle i. The computation of a locally

distributed function, therefore, relies on communication be-

tween vehicles.

If a vector function of ŷi represented in body frame i is

a locally distributed function for vehicle i, that is it can be

computed locally using relative quantities, then the first two

derivatives of this vector along the vector field of (1)-(2)

represented in body frame i are also locally distributed for

vehicle i, as shown in the next lemma.

Lemma 1: If a smooth function f(ŷi), has the

property that there exists a locally distributed smooth

function f i(yi) such that R⊤
i f(ŷi) = f i(yi) then

there exist locally distributed smooth functions

ḟ i((yi, Rij , uj)j∈Ni
), f̈ i((yi, Rij , ωi, ωj, uj , u̇j)j∈Ni

) such

that R⊤
i ḟ((ŷi, Ri, Rj , uj)j∈Ni

) = ḟ i((yi, Rij , uj)j∈Ni
)

and R⊤
i f̈((ŷi, Ri, Rj , ωi, ωj , uj, u̇j)j∈Ni

) =
f̈ i((yi, Rij , ωi, ωj, uj , u̇j)j∈Ni

), where time derivatives

are calculated using equations (1)-(2).

The proof of Lemma 1 has been omitted due to space

limitations.

We are now ready to present the problem investigated in

this paper.

Rendezvous Control Problem (RCP): Given sys-

tem (1), (2), design locally distributed feedback functions

(ui, τi) such that the rendezvous manifold

Γ := {χ ∈ X : xij = vij = 0, q̃i = e3, ω̃i = 0 ∀i, j} (3)

is AGAS for the the closed loop system. The goal of RCP

is to synchronize the vehicle positions and velocities. The

conditions that q̃i = e3 and ω̃i = 0 impose that the desired

vehicle thrust direction and angular velocity are achieved.

V. CONTROL ARCHITECTURE

In this section we present a class of feedback controllers

solving RCP. The proposed control has two nested feedback

loops for each vehicle, shown in the block diagram of

Figure 2. The outer loop treats the vehicle as a double

integrator (1) with the thrust control input vector Ti =
Td(ŷi). The feedback Td(ŷi) is a consensus control law

for double integrators. The inner loop is a thrust direction

controller for the rotational subsystem (2) which orients the

thrust vector Ti of the vehicle to match the desired thrust

Td(ŷi) assigned by the outer loop consensus controller using

the vehicle torque input τi.
The approach just described is inspired by the two-stage

control architecture used in [15] for position control. A

similar control architecture is also used in the work of Tayebi

and collaborators [19], [20], [21] devoted to position tracking

of individual aerial vehicles.

We now present classes of consensus and thrust direction

controllers that can be combined to solve RCP.

Definition 4 (Double Integrator Consensus Control Class):

A smooth function Td(ŷi) is a controller of class CC, written

Td ∈ CC, if Td(ŷi) satisfies the following properties:

1) sup ‖Td(ŷi)‖ <∞ and ‖Td(ŷi)‖ > 0, ∀ŷi;
2) When Ti = Td(ŷi) in (1), the set

{

(x, v) ∈ R
3 × R

3 : xij = 0, vij = 0, i, j ∈ {1, . . . , n}
}

is GAS for the point-mass system (1);
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Fig. 2. Block diagram of the rendezvous control system for vehicle i. The outer loop assigns a desired thrust vector T i

d
(yi). The reference thrust direction

q
i

i
= T i

d
(yi)/‖T i

d
(yi)‖ is then used by a thrust direction controller to assign the vehicle torque input τi.

3) There exists ǫ > 0 such that for any piecewise con-

tinuous function ρi : R → R
3 such that sup ‖ρi‖ < ǫ

and ρi(t) → 0 as t → ∞, letting Ti = Td(ŷi) + ρi(t),
the solutions of relative states (xij , vij), ∀i, j of the

system (1) are bounded;

4) There exists a locally distributed, smooth function

T id(yi) such that R⊤
i Td(ŷi) = T id(yi).

Definition 5 (Thrust Direction Control Class): A smooth

function τd : R3 × R
3 → R

3 is a feedback of class TDC,

written τd ∈ TDC, if the system,

Γ̇i = Γi × ωi, Jω̇i = τd(Γi, ωi)− ωi × Jωi (4)

has an AGAS equilibrium point (Γi, ωi) = (e3, 0).
Examples of feedback functions in the classes CC and

TDC are presented at the end of this section. Controllers

in the CC and TDC classes can be combined to define the

rendezvous controller class.

Definition 6 (Rendezvous Controller Class): Let Td ∈
CC, τd ∈ TDC. The feedback (ui, τi) of class RC is defined

as,

ui = ‖T id(yi)‖,

τi = τd(q̃i, ω̃i)− ω̃i × Jω̃i + ωi × Jωi + Jω̇i,
(5)

where,

qi(ŷi) :=
Td(ŷi)

‖Td(ŷi)‖

q̃i(yi) := R⊤
i qi =

R⊤
i Td(ŷi)

‖R⊤
i Td(ŷi)‖

=
T id(yi)

‖T id(yi)‖

ωi((yi, Rij , uj)j∈Ni
) := q

i
i(yi)× q̇

i
i((yi, Rij , uj)j∈Ni

)

ω̃i((yi, Rij , ωi, uj)j∈Ni
) := ωi − ωi,

and q̇i, ω̇i are the time derivatives of the maps qi,ωi
along (1), (2) computed setting ui = ‖T id(yi)‖.

Remark 3: The vector q̃i is the error between the desired

thrust axis qi and the actual thrust axis qi = Rie3 with

respect to the reference vector e3. In other words, q̃i = e3 if

and only if qi = qi. The term ω̃i is the angular velocity error.

In conclusion, the objective of the torque feedback controller

τi in (5) is to drive (q̃i, ω̃i) to (e3, 0).
Now we will present the error dynamics. It immediately

follows from the definition ωi := R⊤
i qi ×R⊤

i q̇i that R⊤
i q̇i

is perpendicular to ωi. Further, since qi is a unit vector, the

derivative q̇i is perpendicular to it and therefore R⊤
i q̇i is

perpendicular to R⊤
i qi. It follows that R⊤

i q̇i = ωi ×R⊤
i qi.

Then taking the derivative of q̃i,

˙̃qi = −ωi ×R⊤
i qi +R⊤

i q̇i

= −ωi ×R⊤
i qi + ωi ×R⊤

i qi

= R⊤
i qi × (ωi − ωi) = q̃i × ω̃i.

With τi from (5) we obtain error dynamics given by,

˙̃qi = q̃i × ω̃i, J ˙̃
ωi = τd(q̃i, ω̃i)− ω̃i × Jω̃i.

These dynamics have the same structure as the dynamics

in (4). With τ = τd ∈ TDC, we have that the equilibrium

(q̃i, ω̃i) = (e3, 0) is AGAS for the system above so that the

thrust axis qi tracks the reference qi. Therefore the torque

feedback τi in (5) converts the thrust axis stabilizer τd into

a thrust direction tracker.

Remark 4: Any feedback (ui, τi) ∈ RC is locally dis-

tributed for vehicle i. To see this, note that q̃i = R⊤
i qi

is locally distributed. By Lemma 1, R⊤
i q̇i is also locally

distributed, so that ωi = R⊤
i qi × R⊤

i q̇i and hence ω̃i =
ωi − ωi are locally distributed as well. Finally, ω̇i = ωi ×
(R⊤

i q̇i × R⊤
i qi) + R⊤

i qi × R⊤
i q̈i is locally distributed by

the same arguments. In conclusion, τi is a locally distributed

feedback for vehicle i.

Remark 5: On the rendezvous set in (3) we have that ŷi =
0 and therefore qi(ŷi) = qi(0) is constant. It follows that

q̇i = 0 and that ωi = R⊤
i (qi × q̇i) = 0. Therefore, on the

rendezvous set, the angular velocity is driven to zero. The

same is true in current approaches in literature [1], [2].

Theorem 2: Any feedback of class RC solves RCP for

system (1), (2).

�

Proof: We have already shown in Remark 4 that any

feedback of class RC is locally distributed for vehicle i.
For analysis purposes, we consider the system under relative

translational coordinates and absolute attitude coordinates,

(xij , vij , Ri, ωi)i,j∈{1,...,n} ∈ X̄ := R
3n2

×R
3n2

×SO(3)n×
R

3n with the dynamics given by:

ẋij = vij , v̇ij = Rie3ui −Rje3uj

Ṙi = Ri ω
×
i , Jω̇i = τi − ωi × Jωi,

(6)



Define the sets Γ1 = {χ̄ ∈ X̄ : xij = 0, vij = 0, q̃i =
e3, ω̃i = 0 ∀i, j}, Γ2 =

{

χ̄ ∈ X̄ : q̃i = e3, ω̃i = 0 ∀i}.

The set Γ1 corresponds to the rendezvous set in (3) since

on Γ1, qi = qj and ωi = ωj = 0 by Remark 5 and

hence qij = 0, ωij = 0 for i, j ∈ {1, 2, . . . , n}. The set Γ2

is the set where all vehicles have the desired thrust vector

Td(ŷi) and the problem of rigid body rendezvous is reduced

to one of double integrator consensus. Γ1 is compact for

system (6) since xij = vij = 0, Ri lies on a compact set

and ωi = ωi = 0. It is obvious that Γ1 ⊂ Γ2. By the

choice of τi in Definition 6, Γ2 is AGAS provided that the

closed-loop system has no finite escape times. Assume for

the moment that this is the case, and let D be the domain of

attraction of Γ2. Then, D is positively invariant, and Γ2 is

GAS relative to D. Now, for all χ̄ ∈ Γ2, Ti = Td(ŷi) and the

motion on Γ2 is governed by ẋi = vi, v̇i = mge3+Td(ŷi) in

the translational system (1). Since Td ∈ CC, the equilibrium

Γ1 is therefore GAS respect to Γ2. Given that Γ2 is GAS

relative to D and Γ1 is GAS relative to Γ2, we now wish to

apply the reduction Theorem 1. To this end, we need to show

that all solutions of the closed-loop system (6) originating

in D have no finite escape times (implying that Γ2 is

GAS relative to D) and they are bounded. Let χ̄(0) ∈ X̄
be arbitrary, and let χ̄(t) be the corresponding solution of

the closed-loop system. The dynamics of the translational

subsystem can be written as ẍij = −Td(ŷi) + Td(ŷj) −
(−‖Td(ŷi)‖Rie3 − Td(ŷi)) + (−‖Td(ŷj)‖Rje3 − Td(ŷj)).
Here, Rie3, Rje3 have unit norm and, by assumption,

sup ‖Td(ŷi)‖, sup ‖Td(ŷj)‖ < ∞, so ẍij is bounded for all

i, j and so the signal (xij(t), vij(t))i,j∈{1,...,n} is defined for

all t ≥ 0.

The function ωi depends indirectly on

(xij , vij , Ri, Rj , uj)j∈Ni
. Since the first two arguments

are defined for all t ≥ 0, Ri, Rj ∈ SO(3), a compact set,

and uj is bounded, ωi(xij , vij , Ri, Rj , uj)j∈Ni
is defined

for all t ≥ 0. Since (qi, ωi) = (qi,ωi) is AGAS, ωi − ωi

is bounded, implying that ωi(t) is defined for all t ≥ 0.

In conclusion, χ̄(t) is defined for all t ≥ 0, so that the

closed-loop system has no finite escape times, and Γ2 is

GAS relative to D. Now consider the third property in

Definition 4, and let ρi(t) = −‖Td(ŷi)‖Rie3 − Td(ŷi). By

the global asymptotic stability of Γ2 relative to D, ρi(t) → 0.

Since Td ∈ CC, this implies that the translational system (1)

is bounded by the third property in Definition 4. Since ωi is

a continuous function of (xij , vij , Ri, Rj , uj)j∈Ni
, and the

signals (xij(t), vij(t), Ri(t), Rj(t), uj(t))j∈Ni
are bounded,

ωi(t) is bounded. Finally, the boundedness of ω̃i(t) and

that of ωi(t) imply that ωi(t) is bounded. Having shown

that all solutions of the closed-loop system originating in

D are bounded, by Theorem 1 we conclude that Γ1 is GAS

relative to D, proving that the feedback (5) solves RCP.

A. Sample Feedback of Class CC

We now present a feedback of class CC for the point-mass

system

ẋi = vi, mv̇i = mge3 + Ti.

To meet the requirements in part (i) of Definition 4 one

can use the nested saturation controller derived in [22] where

the component-wise saturation is replaced with a magnitude

saturation

Td(ŷi) =αw +
n
∑

j=1

aij

{

xij
tanh(‖xij‖)

‖xij‖

+
vij
b

tanh(‖vij‖)

‖vij‖

}

(7)

where α, aij ≥ 0, b > 1 satisfying 2
∑n
j=1

aij < ‖αw‖
∀i and aij = aji. The vector w is an inertial vector

available to all vehicles in their body frames and chosen

such that Td 6= 0 for every ŷi. For example, this could be

the gravity vector obtained using an on-board device such

as an accelerometer or magnetometer. Alternatively in space

applications, w could be an inertial vector measured using a

star sensor.

Proposition 1: Assuming an undirected and strongly con-

nected1 graph G, the feedback in (7) is of class CC.

Proof: For the feedback (7), we have ‖Td(ŷi)‖ 6= 0
since 2

∑n
j=1

aij < ‖αw‖. Since the feedback is saturated,

we also satisfy sup ‖Td(ŷi)‖ < ∞. The proof of (ii)

employs similar arguments as in the case of component-

wise saturation of [22] and makes use of the assumptions

on the graph. The proof of (iii) has been omitted due to

space limitations. As the last property (iv) we note that

R⊤
i Td(ŷi) =αR

⊤
i w +

n
∑

j=1

aij

{

R⊤
i xij

tanh(‖R⊤
i xij‖)

‖R⊤
i xij‖

+R⊤
i

vij
b

tanh(‖R⊤
i vij‖)

‖R⊤
i vij‖

}

= T id(yi)

is a locally distributed function if R⊤
i w is available for

vehicle i with w ∈ R
3.

B. Sample Feedback of Class TDC

Now we need to define a thrust direction controller τd
that achieves almost global stabilization of (Γi, ω) = (e3, 0).
Our modular design allows one to pick from a multitude of

designs. We pick the controller presented in [23],

τd(Γi, ωi) = kq (e3 × Γi)−Kωωi, (8)

where kq is positive and Kω is a symmetric and positive

definite matrix.

Proposition 2: Feedback (8) belongs to class TDC

Proof: The fact that (8) is of class TDC is proved in

Theorem 2 of [23].

VI. SIMULATION RESULTS

In this section, we present simulation results for a feedback

of class RC for a group of five vehicles with an undirected

graph, with non-adjacency matrix entries a12 = a21 = a23 =
a32 = a34 = a43 = a45 = a54 = 1 and initial conditions

shown in Table I.

1A graph is called strongly connected if any two distinct nodes of the
graph can be connected via a path.



TABLE I

SIMULATION INITIAL CONDITIONS

Vehicle x0 (m) v0 (m/s) R0 ω0 (rad/s)

1 (10, 0, 0) (1, 0, 0) up (0, 0, 0)
2 (0, 10, 0) (0, 1, 0) side (0, 0, 0)
3 (0, 0, 0) (0, 0, 0) down (0, 0, 0)
4 (0,−10, 0) (0,−1, 0) side (0, 0, 0)
5 (−10, 0, 0) (−1, 0, 0) up (0, 0, 0)
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Fig. 3. Rendezvous control simulation in the presence of disturbances.

For the initial rotations R0, up(right), side(ways) and (up-

side)down. The vehicle masses are chosen to be m = 2Kg.

The inertia matrix J is diagonal, with diagonal elements

equal to 1.2416 Kg·m2 as in [18]. All simulations use Td ∈
CC given in (7).

The gains in (8) are chosen as kq = 50, Kω = 10I .

Figure 3 shows the simulation when disturbances are present.

The disturbance includes an additive random noise on the

applied force and torque with maximum magnitude of 0.5N

and 0.5N·m, respectively. We also include random additive

noise on the attitude (yaw, pitch and roll) and on the angular

velocity measurements with maximum magnitudes of 0.5 rad

and 0.5 rad/s, respectively, and include a constant bias of

0.1 rad/s added to the measurement of angular velocity.

The translational plots show the vehicle positions on the

inertial frame x, y, z axes, and the linear speed given by
√

v21 + v22 + v23 .

In Figure 3, the vehicles converge to a small neighbour-

hood of one another and have a steady state speed of about

5m/s.

VII. CONCLUSIONS

We have presented a class of feedbacks and a control ar-

chitecture solving the rendezvous control problem for under-

actuated thrust-propelled vehicles. The control is static and

yields almost global asymptotic stability of the rendezvous

configuration. The final control assumes each vehicle can

measure only relative quantities, its own angular velocity and

its neighbors’ thrust inputs and their derivatives. We have not

explicitly addressed issues of robustness against unmodelled

uncertainties and measurement errors but simulation results

were presented that include the effect of disturbances on the

force and torque inputs.
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