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Abstract— We present a local and distributed control law
with connected, undirected sensor graph to drive a group of
kinematic unicycles to a desired line formation with aligned
heading directions, and assuming initial heading angles lie in
a common half-plane. We present a controller solving the line
formation control problem, combining a bounded translational
consensus controller with an attitude synchronizer. We present
simulation results that suggest that the proposed approach also
works in the case of more general formations.

I. INTRODUCTION

In this paper, we present a solution to the formation

control problem for kinematic unicycles with connected,

undirected sensor graphs. The objective of the formation

control problem is to drive a group of unicycles from any

initial configuration, with headings lying in a common half-

plane, to a desired formation. In our notion of formation,

in steady state, agents form a fixed geometric pattern in

which the fixed inter-agent displacements are defined a priori

modulo roto-translations. The type of formations considered

in this paper are limited to lines, with prescribed spacing of

the robots. One important requirement is that the feedbacks

are local and distributed, which means that the feedback

of any unicycle depends only on relative displacements and

angles between itself and its neighbors, quantities that can

be measured on-board each robot using cameras. The graph

is assumed to be static and undirected, and the feedbacks are

time invariant and do not rely on inertial measurements or

communicated information from neighboring robots. In this

paper we present a new approach to address the problem of

formation control in which we attach to each unicycle body

frame an offset vector. The problem of stabilizing the desired

formation is reduced to that of achieving consensus on these

offset vectors and the unicycle attitudes. Although we only

consider line formations, we present simulation results that

suggest that the proposed approach also works in the case

of more general formations. Proving stability of non-line

formations is the subject of ongoing research. To the best of

our knowledge there is no result in the literature that solves

the line formation control problem for connected, undirected

graphs with static, local and distributed, time invariant feed-

backs without the requirement of communication.

Many authors have studied the relative equilibria that

arise for a system of kinematic unicycles under local and

distributed feedbacks. In [1], [2], the authors use a Lie
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group formulation to show that the possible relative equilibria

are characterized by either parallel motion or motion on a

common circle. In [3], the authors show that the relative

equilibria for three dimensional kinematic vehicles corre-

spond to parallel motion or motion along circles or helices,

and in [4], feedbacks are presented to stabilize each one of

these relative equilibria. The authors do this by imposing

consensus on the so-called twist vectors for each robot but

the sensing graph is assumed to be all-to-all. To avoid all-

to-all sensing, the authors present a solution using dynamic

variables, communicated between neighboring robots.

Much of the literature on formation control considers

single or double-integrator models or fully-actuated unicy-

cles. The dominant approach for single-integrator formation

control is distance-based [5], [6], [7], where a desired scalar

distance between neighboring robots specifies the formation

for infinitesimally rigid graphs. Other approaches define

formations in terms of relative angles between neighboring

robots instead of distances, [8], [9], or in terms of a complex

Laplacian, [10], [11], [12]. Formation flocking of double-

integrators is considered in [13], [14], while formation con-

trol of fully-actuated unicycles is considered in [15], [16],

[17].

Most relevant to this paper is the literature on kinematic

unicycles. The paper [18] discusses feasibility conditions to

achieve various formations of kinematic unicycles including

necessary and sufficient conditions for stabilizing a line

formation. Time-dependent solutions are presented in each

case. In [19], the authors consider formations of two agents

where the follower robot is controlled to stay at a desired

distance from the leader with no specification on their

relative angles. The result yields global convergence for

graphs containing a directed spanning tree. In [20], a group of

robots is considered in which at least one follower robot can

see a leader that follows a desired path. The control presented

attains the desired formation about the leader in finite time.

However, the formation is not rotation invariant and the

control is not local and distributed. Also in [21], a follower-

leader approach is considered. The analysis transforms the

unicycle model into a system of double integrators through

a dynamic feedback linearization. The desired formation

is attained for graphs containing a spanning tree but each

follower robot requires access to the acceleration of the

leader through communication. In [22] each unicycle es-

timates its own position using a dynamic extension with

communication. The unicycles use these estimated states to

attain the desired formation globally. The rotational control

however is time-dependent and oscillatory. Finally, a result

for dynamic unicycles is found in [23], driving them to a



common circle with desired spacing.

II. LINE FORMATION CONTROL PROBLEM

The notation and unicycle model in this paper are taken

from [24]. We use interchangeably the notation v =
[v1 · · · vn]

⊤ or (v1, . . . , vn) for a column vector in R
n.

Let {e1, e2} denote the natural basis of R2, SO(2) := {M ∈
R

2×2 : M−1 = M⊤, det(M) = 1} and let S
1 denote the

unit circle. If I = {i1, . . . , in} is an index set, the ordered

list of elements (xi1 , . . . , xin) is denoted by (xj)j∈I .

Consider a group of n kinematic unicycles. Let I =
{ix, iy} be an inertial frame in two-dimensional space and

consider the i-th unicycle. Fix a body frame Bi = {bix, biy}
to the unicycle, where bix is the heading axis, and denote by

xi ∈ R
2 the position of the unicycle in the coordinates of

frame I. The unicycle’s attitude is represented by a rotation

matrix Ri whose columns are the coordinate representations

of bix and biy in frame I. Letting θi ∈ S
1 be the angle

between vectors ix and bix, we have

Ri =

[

cos θi − sin θi
sin θi cos θi

]

.

The angular speed of robot i is denoted by ωi. The equations

of motion for the unicycles is as follows,

ẋi = uiRie1 (1)

θ̇i = ωi, i = 1, . . . , n. (2)

Its control inputs are the linear speed ui and angular

speed ωi. Let x := (xi)i∈{1,...,n} and θ := (θi)i∈{1,...,n}.

The relative displacement of robot j with respect to robot

i is xij := xj − xi while the relative angles are given by

θij = θj−θi. The frame of robot j with respect to frame i is

defined by Ri
j := R⊤

i Rj which is a function of θij . If v ∈ R
2

is the coordinate representation of a vector in frame I, then

we denote by vi := R−1
i v the coordinate representation of

v in body frame Bi.

We define the undirected sensor graph G = (V, E), where

each node in the node set V represents a robot, and an edge

in the edge set E between node i and node j indicates that

robot i can sense robot j and vice versa. We assume that G
has no self-loops and is time-invariant. Given a node i, its

set of neighbors Ni represents the set of vehicles that robot i
can sense. If j ∈ Ni, then we say that robot j is a neighbour

of robot i. If this is the case, then robot i can sense the

relative displacement of robot j in its own body frame, i.e.,

the quantity xi
ij as well as the relative angle θij between

their body frames. Define the vector yi := (xij , θij)j∈Ni
.

The relative displacements and angles available to robot i
are contained in the vector yii := (xi

ij , θij)j∈Ni
. A local and

distributed feedback (ui, ωi) for robot i is a locally Lipschitz

function of yii .
The objective of the formation control problem considered

in this paper is to develop local and distributed feedbacks to

drive a group of unicycles, each modelled by (1), (2), to

a desired formation. In our notion of formation, in steady

state, agents form a fixed geometric pattern in which the

fixed inter-agent displacements are defined a priori modulo

roto-translations. A parallel formation is a configuration in

which all unicycles have the same attitude with respect to

the inertial frame I, i.e., Bi = B1, ∀i ∈ {2, . . . , n}, and

the relative displacement vector di1 between unicycle 1 and

unicycle i ∈ {2, . . . , n} is fixed with respect to this common

body frame. A parallel formation can therefore be uniquely

defined with respect to unicycle 1 by a constant vector r :=
(d11i)i∈{2,...,n} ∈ R

2(n−1). Notice that by this definition, a

parallel formation is invariant under translations or rotations

of the formation. An example of a parallel formation is

illustrated in Figure 1(a). The type of parallel formations we

will consider in this paper are limited to lines, along which

the spacing of the robots can be specified. In particular, a

parallel line formation is a parallel formation r ∈ R
2(n−1)

in which d11i · e1 = 0 for all i ∈ {2, . . . , n}. An example of

a parallel line formation is illustrated in Figure 1(b).

Fig. 1: Parallel formation represented in terms of: (a) relative

displacement vectors d1i1 represented in frame B1 and (c)

offset vectors δi to a common point p in front of all unicycles.

(b) shows an example of a parallel line formation

For a given parallel line formation r ∈ R
2(n−1), we define

the line formation manifold as,

Γ(r) :=
{

(xi, θi)i∈{1,...,n} ∈ R
2n × T

n :

xi = x1 + d1i, θ1i = 0, ∀ i ∈ {2, . . . , n}} .
(3)

Let Sσ :=
{

(θi)i∈{1,...,n} ∈ T
n : |θij | < σ, ∀ i, j

}

, where

σ ∈ (0, π], be the set where all vehicle angles lie in the same

half plane on an open arc of σ radians. We are now ready

to define the line formation control problem in which we

stabilize any parallel line formation from any initial condition

where the unicycle headings lie in a common half plane.

Line Formation Control Problem: Consider system (1)-(2)

with connected, undirected sensor graph G. For any parallel

line formation r ∈ R
2(n−1) and any σ ∈ (0, π), find local and

distributed feedbacks (ui, ωi)i∈{1,...,n} that asymptotically

stabilize the line formation manifold Γ(r) with domain of

attraction containing R
2n × Sσ. △

Although in this paper we consider parallel line forma-

tions, we believe our approach works for general parallel

formations, as is suggested by the simulation results pre-

sented at the end of this paper.



III. SOLUTION OF THE LINE FORMATION CONTROL

PROBLEM

In this section we present a solution to the line formation

control problem defined in the previous section. From now

on we will refer to a parallel formation simply as a formation

with the understanding that the angles are aligned. We

can represent a formation in an alternative way from that

discussed in the previous section. Consider any point p that

lies in front of the desired formation as shown in Figure 1(c).

We add to each unicycle an offset (or lookahead) vector

δi := αiRie1 + βiRie2 in its own body frame as the vector

p−xi, which starts from unicycle i and ends at the lookahead

point p. In this set-up, αi > 0 is the component parallel

to the heading axis of unicycle i and βi ∈ R lies along

the perpendicular axis. Notice that when the unicycles are

in formation, δi = αiRie1 + βiRie2 = αiR1e1 + βiR1e2
since the orientations of all the frames are equal. When the

unicycles have not yet reached formation, the offset vectors

attached to each body will not coincide, and as unicycle

i moves and rotates, the vector δi fixed to its body frame

will correspondingly move as well. Its endpoint represented

in inertial frame I is denoted x̂i := xi + δi. The desired

formation in Figure 1(c) is achieved when θij = 0 and x̂ij =
x̂j − x̂i = 0 for all i, j ∈ {1, . . . , n}. That is, the problem of

formation stabilization has been reduced to that of consensus

of the quantities (x̂i, θi)i∈{1,...,n}. Recall that the type of

formations we are considering in this paper are limited to

lines, along which the spacing of the robots can be specified.

In particular, these are formations in which αi = αj =: α
for all i, j ∈ {1, . . . , n}, while there is no restriction on

(βi)i∈{1,...,n}. In an initial design stage, one must design an

appropriate set of offset vectors (δi)i∈{1,...,n} corresponding

to a desired parallel line formation r ∈ R
2(n−1). The offset

vectors (δi)i∈{1,...,n} are not unique (for example, α can

be any value greater than zero). Unicycle i must store the

quantities (βj)j∈Ni
of its neighbors in memory.

Position
Consensus

Attitude
Synchroniztion

Fig. 2: Block diagram of the formation control system for

robot i.

Now we will present a class of feedbacks to stabilize the

desired line formation. We will follow a three-step procedure.

First we define a consensus controller for single-integrators

with the property of boundedness. We next define a rotational

control law to synchronize angles. Finally, we combine these

two controllers to design the unicycle control inputs ui

and ωi. Define the vectors ŷi := (x̂ij , θij)j∈Ni
and ŷii :=

(x̂i
ij , θij)j∈Ni

. Consider the system of single integrators,

˙̂xi = fi(ŷi), i = 1, . . . , n (4)

where fi(ŷi) is a bounded integrator consensus controller of

the form,

fi(ŷi) =
∑

j∈Ni

aij
f(‖x̂ij‖)

‖x̂ij‖
x̂ij (5)

with aij = aji > 0 and Lipschitz continuous interaction

function f : R → R satisfying the following assumptions,

A1: sf(s) > 0 when s 6= 0 and f(0) = 0.

A2: sup |f(s)| < ∞.

Note that the component (x̂ij/‖x̂ij‖)f(‖x̂ij‖) of feed-

back (5) is well-defined at x̂ij = 0. Its value will be zero

since f(‖x̂ij‖) = 0 when x̂ij = 0 by assumption A1.

It is easy to show that fi(ŷi) is Lipschitz continuous for

all i ∈ {1, . . . , n}. As an example of a suitable bounded

interaction function, one could use f(s) = tanh(s).
Proposition 1: Consider system (4) with feedback (5) and

connected, undirected sensor graph G. The consensus set

{x̂ ∈ R
2n : x̂i = x̂j , ∀i, j ∈ {1, . . . , n}} is globally

asymptotically stable.

Proof: The input fi in (5) for unicycle i points into the

convex hull formed by its neighbours. By [25] the group of

unicycles for system (4) achieves global consensus.

Proposition 2: System (4) with feedback (5) is gradient

with the following positive definite storage function,

Vt =
1

2

n
∑

i=1

∑

j∈Ni

aij

∫ ‖x̂ij‖

0

f(s)ds, (6)

assuming the sensor graph G is connected and undirected.

Proof: It follows from assumption A1 that
∫ ‖x̂ij‖

0
f(s)ds attains a minimum when x̂ij = 0.

Therefore Vt attains a minimum when x̂ij = 0 for all

i, j ∈ {1, . . . , n} and therefore Vt is positive definite. To

show Vt is a valid storage function, it needs to be shown

that (∂/∂x̂i)Vt = −f⊤
i . The proof has been omitted due to

space limitations.

Proposition 3: Consider system (4) with feedback (5) and

connected, undirected sensor graph G. The following two

properties hold,

(i) R⊤
i fi(ŷi) = fi(ŷ

i
i) for all i ∈ {1, . . . , n}.

(ii) {x̂ ∈ R
2n : fi = 0, ∀i ∈ {1, . . . , n}} = {x̂ ∈ R

2n :
x̂i = x̂j , ∀i, j ∈ {1, . . . , n}}.

Proof: To show (i) we use the fact that ‖x̂ij‖ = ‖x̂i
ij‖.

Then,

R⊤
i fi(x̂ij) =

∑

j∈Ni

aij
f(‖x̂i

ij‖)

‖x̂i
ij‖

R⊤
i x̂ij = fi(ŷ

i
i).

To show (ii), assume fi = 0 for all i ∈ {1, . . . , n}. Then

system (4) is at a fixed point. But by Proposition 1, the

set {x̂ ∈ R
2n : x̂i = x̂j , ∀i, j ∈ {1, . . . , n}} is globally

asymptotically stable and therefore contains all fixed points.

Conversely, if x̂ij = 0 for all i ∈ {1, . . . , n} then it follows

by definition that fi = 0 for all i ∈ {1, . . . , n}.



Analogous to the translational case, consider the system

of unicycle heading angles,

θ̇i = gi(ŷi), i = 1, . . . , n (7)

where gi(ŷi) is an attitude synchronizer of the form,

gi(ŷi) = gi(ŷ
i
i) =

∑

j∈Ni

bij sin(θij) (8)

with bij = bji > 0. This is the well-known Kuramoto model

for attitude synchronization of angles on S
1 [26] with zero

natural frequencies.

Proposition 4 ([25]): Consider system (7) with feed-

back (8) and connected, undirected sensor graph G. the set

{θ ∈ T
n : θi = θj , ∀i, j ∈ {1, . . . , n}} is asymptotically

stable with domain of attraction containing Sπ.

Proposition 5: System (7) with feedback (8) is gradient

with the following positive definite storage function,

Vr =
1

2

n
∑

i=1

∑

j∈Ni

bij(1− cos(θij)), (9)

assuming the sensor graph G is connected and undirected.

We combine fi(ŷ
i
i) and gi(ŷ

i
i) to construct the following

feedbacks,

ui = fi(ŷ
i
i) · e1 + βiωi,

ωi =
1

α

(

fi(ŷ
i
i) · e2 + kgi(ŷ

i
i)
)

, i = 1, . . . , n,
(10)

where k > 0 scales the contribution of the attitude syn-

chronizer gi(ŷ
i
i). The feedbacks in (10) depend on the new

translational quantities (x̂i)i∈{1,...,n}.

Remark 1: For unicycle i, the feedback in (10) requires

the formation parameters (βj)j∈Ni
of its neighbors be stored

in memory. The unicycle feedbacks are not identical and the

final formation is not invariant to a relabelling of the agents.

The choice of α has no effect on the final formation but will

affect the transient behaviour of the system.

The feedbacks in (10) are local and distributed. This fol-

lows because ui and ωi are functions of the vector ŷii =
(x̂i

ij , θij)j∈Ni
in which,

x̂i
ij = R⊤

i (xj + αRje1 + βjRje2 − xi − αRie1 − βiRie2)

= xi
ij + αRi

je1 + βjR
i
je2 − αe1 − βie2,

is a function of yii and (βj)j∈Ni
and therefore so is ŷii .

The block diagram in Figure 2 summarizes the design

of feedbacks (ui, ωi)i∈{1,...,n}. From its sensors, unicycle i
obtains the vector ŷii of measurable quantities relative to its

neighbors. These are the relative displacements x̂ij between

the end points of the offset vectors fixed to each body

frame and relative angles θij . The relative quantities can

be measured locally in unicycle i’s body frame using, for

example, on-board cameras. The position consensus block

assigns the feedback fi as a bounded integrator consensus

controller in (5) satisfying assumptions A1 and A2 and the

attitude synchronization block assigns the feedback gi as the

Kuramoto model in (8). The thrust control and rotational

control blocks then combine the feedbacks fi and gi to

design the unicycle control inputs ui and ωi as in (10). The

result below states that for sufficiently large k, the feedbacks

in (10) solve the line formation control problem.

Theorem 1: Consider a collection of n unicycles satisfy-

ing (1), (2) with connected, undirected sensor graph G, a

parallel line formation r ∈ R
2(n−1) and a corresponding

set of offset vectors (δi)i∈{1,...,n}. Consider any translational

interaction function f(s) satisfying assumptions A1 and A2

and any parameters aij = aji > 0, bij = bji > 0 for

i ∈ {1, . . . , n}, j ∈ Ni. Then for any σ ∈ (0, π), there

exists k⋆ > 0 such that for all k > k⋆ feedback (10)

asymptotically stabilizes the formation manifold Γ(r) with

domain of attraction containing R
2n × Sσ .

Proof: Take an arbitrary connected, undirected graph

G, desired parallel line formation r ∈ R
2(n−1) and σ ∈

(0, π). Define a set of offset vectors (δi)i∈{1,...,n} using

the procedure outlined in Section III. This yields the new

translational quantities (x̂i)i∈{1,...,n}. The set of quantities

(x̂i, θi)i∈{1,...,n} can be treated as new states. Computing

the time derivative of x̂i yields,

˙̂xi = uiRie1 +Ri

[

0 − ωi

ωi 0

]

(αie1 + βie2)

= uiRie1 + αωiRie2 − βiωiRie1

= (ui − βiωi)Rie1 + αωiRie2,

and therefore the equations of motion of the (x̂i, θi)i∈{1,...,n}

states are given by,

˙̂xi = (ui − βiωi)Rie1 + αωiRie2

θ̇i = ωi, i = 1, . . . , n.
(11)

Using Proposition 3(i) and the property that gi(ŷ
i
i) =

gi(ŷi) the feedbacks in (10) can equivalently be represented

with inertial quantities (ŷi)i∈{1,...,n} as,

ui = fi(ŷi) ·Rie1 + βiωi,

ωi =
1

α
(fi(ŷi) ·Rie2 + kgi(ŷi)) , i = 1, . . . , n.

(12)

Substituting (12) into (11) and using the fact that fi(ŷi) =
(f(ŷi)·Rie1)Rie1+(f(ŷi)·Rie2)Rie2 for all i ∈ {1, . . . , n}
yields the closed-loop system,

˙̂xi = fi(ŷi) + kgi(ŷi)Rie2

θ̇i =
1

α
(fi(ŷi) ·Rie2 + kgi(ŷi)) , i = 1, . . . , n.

(13)

Now we’ll re-define the line formation manifold with respect

to the new coordinates as,

Γ̂(r) :=
{

(x̂i, θi)i∈{1,...,n} ∈ R
2n × T

n :

x̂ij = 0, θij = 0, ∀ i, j} .
(14)

On this set the desired formation r is achieved. To prove

Theorem 1 we need to show that Γ̂(r) is asymptotically sta-

ble with domain of attraction containing (x̂i, θi)i∈{1,...,n} ∈
R

2n × Sσ using the feedbacks in (12).

From Proposition 2 and Proposition 5 systems (4), (7) are

gradient with positive definite storage functions Vt(x̂) and

Vr(θ) respectively. Combining these, we produce a positive



definite Lyapunov function for the closed-loop system (13)

given by V = Vt + kαVr. Using (13), the time derivative of

Vt is given by,

V̇t =

n
∑

i=1

∂

∂x̂i

Vt · ˙̂xi =

n
∑

i=1

−fi · (fi + kgiRie2)

=

n
∑

i=1

(

−‖fi‖
2 − (fi ·Rie2)kgi

)

(15)

where the arguments of fi(ŷi) have been dropped for nota-

tional convenience. Analogously, the derivative of Vr is given

by,

V̇r =

n
∑

i=1

∂

∂θi
Vr · θ̇i =

1

α

n
∑

i=1

−gi · (fi ·Rie2 + kgi)

=
1

α

n
∑

i=1

(

−(fi ·Rie2)gi − kg2i
)

.

(16)

Combining (15) and (16), the time derivative of V can be

computed as follows,

V̇ = V̇t + kαV̇r

=

n
∑

i=1

(

−‖fi‖
2 − 2(fi ·Rie2)(kgi)− (kgi)

2
)

=

n
∑

i=1

(

−‖fi ·Rie1‖
2 − ‖fi ·Rie2 + kgi‖

2
)

≤ 0.

Therefore V̇ is less than or equal to zero with equality if

and only if fi · Rie1 = 0 and fi · Rie2 = −kgi for all

i ∈ {1, . . . , n}. Together these conditions imply that points

in the zero level set of V̇ , denoted E, satisfy,

fi = −kgiRie2, ∀i ∈ {1, . . . , n}. (17)

Using LaSalle’s invariance principle, since the sublevel sets

of V are compact in relative coordinates (x̂1i, θ1i)i∈{2,...,n},

the closed-loop solutions converge to the largest invariant

set contained in E which we now characterize on the set

R
2n × Sπ , i.e., the set where all vehicle headings lie in

the same half plane. By the definition of (5), it holds

that
∑n

i=1 fi = 0 and therefore, −
∑n

i=1 giRie2 =
−
∑n

i=1

∑

j∈Ni
bij sin(θij)Rie2 = 0. For each edge (i, j) ∈

E there are two corresponding components in the previous

summation, bij sin(θij)Rie2 and bji sin(θji)Rje2. This im-

plies that,

−
n
∑

i=1

giRie2 = −
∑

(i,j)∈E

bij (sin(θij)Rie2 + sin(θji)Rje2)

=
∑

(i,j)∈E

bij sin(θij) (Rje2 −Rie2) = 0,

(18)

and it can be shown that this implies,

∑

(i,j)∈E

2bij sin(θij) sin

(

θj − θi
2

)





− cos
(

θi+θj
2

)

sin
(

θi+θj
2

)



 = 0.

(19)

Suppose all unicycle headings lie in a common half plane,

i.e., (x̂i, θi)i∈{1,...,n} ∈ R
2n × Sπ. Then without loss of

generality, we can assume that θi ∈ (−π/2, π/2) for all

i ∈ {1, . . . , n}. Both sin(θij) and sin (θij/2) are less than

zero for θij ∈ (−π, 0), equal to zero for θij = 0 and

greater than or equal to zero for θij ∈ (0, π). Therefore

2bij sin(θij) sin (θij/2) ≥ 0 for θij ∈ (−π, π). On the other

hand, the quantity − cos
(

θi+θj
2

)

is less than zero on the

range θi+ θj ∈ (−π, π). Since by choice θi ∈ (−π/2, π/2),
it holds that θij ∈ (−π, π) and θi + θj ∈ (−π, π) for all

i, j ∈ {1, . . . , n} and therefore the first vector component

in (19) is less than or equal to zero for all summands.

Therefore, the only way the first vector component in (19)

is zero is if θij = 0 for all i, j ∈ {1, . . . , n} which implies

that gi = 0 for all i ∈ {1, . . . , n} on the set E. By (17) this

implies that fi = 0 for all i ∈ {1, . . . , n} on E and therefore,

by Proposition 3(ii), x̂i = x̂j for all i, j ∈ {1, . . . , n}. It

follows that E ⊂ Γ̂.

This proves that on the set R
2n × Sπ, V̇ ≤ 0 with

equality only on Γ̂. So if it can be shown that for any

solution with initial conditions in R
2n × Sσ there exists a

time such that the solution enters and remains in the set

R
2n × Sπ , then by LaSalle’s invariance principle, solutions

with initial conditions in R
2n × Sσ must converge to Γ̂,

proving attractivity. Stability of Γ̂ follows directly from the

fact that Γ̂ lies at the minimum of the Lyapunov function V .

It remains to show that there exists k⋆ > 0 such that for

all initial conditions χ0 ∈ R
2n×Sσ there exists t⋆ such that

choosing k > k⋆ implies solutions φk(t, χ0) ∈ R
2n×Sπ for

all t > t⋆. Consider just the rotational system from (13),

θ̇i =
1

α

(

fi(ŷ
i
i) · e2 + kgi(ŷ

i
i)
)

, i = 1, . . . , n (20)

where the term fi(ŷ
i
i) · e2 is bounded from assumption

A2 and therefore acts as a bounded perturbation on the

nominal rotational gradient system with storage function Vr.

By Proposition 4, for the nominal rotational system, the set

{θ ∈ T
n : θi = θj , ∀i, j ∈ {1, . . . , n}} is asymptotically

stable with domain of attraction containing Sπ. Let U1, U2

be sublevel sets of Vr such that U1 ⊂ U2 ⊂ Sπ . This property

implies that there exists k0 > 0 such that choosing k > k0
implies U2 is positively invariant for (20).

Now consider a solution φk(t, θ̄) of (20) with initial angle

θ̄ = (θi(0))i∈{1,...,n} ∈ S̄σ where S̄σ is the closure of Sσ and

hence a compact set. To conclude the proof it is sufficient

to show that there exists k⋆ > k0 such that for all θ̄ ∈
S̄σ , there exists t⋆ > 0 such that choosing k > k⋆ implies

φk(t
⋆, θ̄) ∈ U2 a positive invariant set. Take any θ̄ ∈ S̄σ . For

the nominal system, the solution φk(t, θ̄) converges to the

set {θ ∈ T
n : θi = θj , ∀i, j ∈ {1, . . . , n}}. By [27] theorem

3.4, there exists k1 > k0, t1 > 0, ǫ > 0 such that for all

θ ∈ Bǫ(θ̄) =: W1 choosing k > k1 implies φk(t1, θ̄) ∈
U1 and φk(t1, θ) ∈ U2 which by positive invariance of the

set U2 implies that φk(t, θ) ∈ U2 for all t > t1. Since S̄σ

is compact, it has a finite sub-covering of ǫ-neighborhoods

{Wi}i∈I where I is a finite index set. Corresponding to each

set Wi there exists ki > 0 and ti > 0 such that choosing



k > ki implies φk(t,Wi) ⊂ U2 for all t > ti. Then choosing

k⋆ > max{ki}i∈I concludes the proof.

Simulation results are presented in Figure 3. In the left fig-

ure, a group of five unicycles stabilize a line formation spec-

ified by (αi)i∈{1,...,5} = (5, 5, 5, 5, 5) and (βi)i∈{1,...,5} =
(−10,−5, 0, 5, 10) while in the right figure they stabi-

lize a triangular formation specified by (αi)i∈{1,...,5} =
(15, 10, 5, 10, 15) and (βi)i∈{1,...,5} = (−10,−5, 0, 5, 10).
We have chosen random initial unicycle positions on a 40m

× 40m area with random initial angles and a ring graph.

In addition, we have chosen f(s) = s as the translational

interaction function. Notice that f(s) does not meet assump-

tion A2. Although Theorem 1 only considers parallel line

formations, the simulations suggest that the feedback in (10)

also works for general formations.

−20 −10 0 10 20 30 40 50
−30

−20

−10

0

10

20

30

40

x (m)

y
 (

m
)

−15 −10 −5 0 5 10 15 20
−35

−30

−25

−20

−15

−10

−5

0

x (m)

y
 (

m
)

Fig. 3: Simulation for a line formation (left) and a triangular

formation (right). Initial positions are indicated with ◦ and

final positions are indicated with ×.

IV. CONCLUSION

We have presented a local and distributed control law

for connected, undirected sensor graphs to drive a group

of kinematic unicycles to a desired line formation with

aligned heading directions. We assumed initial conditions

in which the unicycle headings all lie in a common half

plane. We presented a controller that solves the line for-

mation control problem, combining a bounded translational

consensus controller meeting certain assumptions with an

attitude synchronizer. We presented simulation results that

indicate that the proposed approach also works in the case of

more general formations. In future work, we look to extend

the present framework to solve the formation control problem

for general formations over a larger set of initial conditions.
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