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Abstract—This paper presents a solution to the rendezvous
control problem for a network of kinematic unicycles in the
plane, each equipped with an onboard camera measuring its
relative displacement with respect to its neighbors in body frame
coordinates. A smooth, time-independent control law is presented
that drives the unicycles to a common position from arbitrary
initial conditions, under the assumption that the sensing digraph
contains a reverse-directed spanning tree. The proposed feedback
is very simple, and relies only on the onboard measurements. No
global positioning system is required, nor any information about
the unicycles’ orientations.

I. INTRODUCTION

This paper investigates rendezvous control of kinematic

unicycles. The objective is to design smooth feedbacks for

each robot so as to drive the group to a common position from

arbitrary initial conditions. An important requisite is that the

feedback be local and distributed. In other words, it is required

that the feedback depend only on the relative displacement of

each robot to its neighbours measured in the robot’s own body

frame, so that the feedback can be computed using onboard

sensing devices such as cameras or laser systems.

The solution to the rendezvous control problem proposed

in this paper is time-independent and it does not require

any information about the orientation of the unicycles, not

even their relative orientation. To the best of our knowledge,

this is the first solution for directed graphs containing a

reverse directed spanning tree having the property of being

local and distributed, continuously differentiable, and time-

independent. As we argue below, previous solutions require

either time-varying or discontinuous feedback or are restricted

to undirected sensing graphs. For simplicity of exposition, the

proposed solution relies on the assumption that the sensing

digraph of the unicycles is time-invariant. However, it is only

required to contain a reverse directed spanning tree, which is

the minimal connectivity requirement.

The main difficulty in solving the rendezvous control prob-

lem comes from the fact that the unicycles are nonholonomic,

in that their velocity is restricted to be parallel to the vehicle’s

heading direction. To overcome this difficulty, the solution

we present relies on a control structure made of two nested

loops. An outer loop treats the vehicles as fully-actuated

single integrators with a linear consensus controller providing

This research was supported by the National Sciences and Engineering
Research Council of Canada.

The authors are with the Department of Electrical and Com-
puter Engineering, University of Toronto, 10 King’s College Road,
Toronto, ON, M5S 3G4, Canada. ashton.roza@mail.utoronto.ca,
maggiore@ece.utoronto.ca, scardovi@scg.utoronto.ca

a reference velocity. Here we leverage existing consensus

algorithms for single integrators [1], [2], [3]. The desired

velocity computed by the outer loop becomes a reference

signal for the inner loop, which assigns local and distributed

feedbacks that solve the rendezvous control problem. This

methodology is inspired by our previous work in [4], [5] for

rendezvous of rigid bodies in three dimensions.

The rendezvous control problem for unicycles has been

investigated before. In [6], the authors presented the first

solution. The feedback in [6] is local and distributed, but it

requires the use of time-varying feedbacks. In [7] the authors

present a solution using a local and distributed, continuously

differentiable, and time-independent feedback. However the

result yields rendezvous only when the sensing graph is undi-

rected and connected. The feedback in [7] makes the unicycles

converge to a circular formation instead of rendezvous for

some directed graphs containing a reverse directed spanning

tree. In [8] the authors also consider undirected graphs, and

present a feedback to achieve rendezvous in finite time. In [9]

both positions and attitudes of the unicycles are synchronized

using a time-invariant distributed control. The graph is time-

dependent and the authors assume an initially connected com-

munication graph. The controller that is implemented, how-

ever, is discontinuous. In [10] a time-independent, local and

distributed controller is presented. However, the authors make

the assumption that whenever two vehicles get sufficiently

close together they merge into a single vehicle, introducing

a discontinuity in the control function. The same merging

technique is used in [11] for cyclic and tree graphs where each

unicycle keeps its neighboring vehicle within its windshield’s

field of view in order to maintain graph connectivity and

achieve rendezvous. In [12], [13] distributed solutions are

presented whereby the unicycles move toward the average

position of their neighbors. However, a unicycle’s feedback

becomes undefined when it already lies at this average position

which includes the case when the unicycles are at rendezvous.

Finally, in [14] the authors solve the problem of practical

rendezvous using a hybrid controller in which the unicycles

converge to an arbitrarily small neighborhood of one another

for undirected and connected graph topologies.

To the best of our knowledge, the solution presented in this

paper is the first one for directed graphs containing a reverse

directed spanning tree involving feedbacks that are local and

distributed, time-independent, and continuously differentiable.

The proposed solution is of simple implementation, not even

requiring any knowledge about the relative orientation of the

unicycles. As we illustrate through simulations, the proposed

time-independent, continuously differentiable feedback has
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practical advantages over the time-varying feedback in [6]

and the feedback in [7] in that it induces a more natural

behaviour in the ensemble of unicycles. The feedback in [6]

makes the unicycle “wiggle” indefinitely, a behaviour which

would be unacceptable in practice. The feedback in [9] induces

instantaneous changes in direction that are impossible to

achieve with realistic implementations.

The paper is organized as follows. In Section II we present

the notation and review basic graph theory and stability

definitions. In Section III we formulate the rendezvous control

problem. The solution of the rendezvous control problem is

presented in Section IV, together with an intuitive description

of its operation. The proof of the main theorem is presented in

Section V. Finally, in Section VI we make concluding remarks.

Lemmas and claims related to the proof are in the appendix.

II. PRELIMINARIES

A. Notation

We use interchangeably the notation v = [v1 · · · vn]⊤ or

(v1, . . . , vn) for a column vector in R
n. We denote by 1 ∈ R

m

the vector (1, . . . , 1). If v, w are vectors in R
2, we denote by

v · w := v⊤w their Euclidean inner product, and by ‖v‖ :=
(v · v)1/2 the Euclidean norm of v. If ω ∈ R, we define

ω× :=

[

0 − ω
ω 0

]

.

Let {e1, e2} denote the natural basis of R
2, SO(2) := {M ∈

R
2×2 : M−1 = M⊤, det(M) = 1} and let S

1 denote the

unit circle. If Γ is a closed subset of a geodesically complete

Riemannian manifold X , and d : X×X → [0,∞) is a distance

metric on X , we denote by ‖χ‖Γ := infψ∈Γ d(χ, ψ) the point-

to-set distance of χ ∈ X to Γ. If ε > 0, we let Bε(Γ) := {χ ∈
X : ‖χ‖Γ < ε} and by N (Γ) we denote an open subset of

X containing Γ. If A,B ⊂ X are two sets, denote by A\B
the set-theoretic difference of A and B. If I = {i1, . . . , in}
is an index set, the ordered list of elements (xi1 , . . . , xin) is

denoted by (xj)j∈I .

Let U, V,W be finite-dimensional vector spaces. A function

f : U →W is homogeneous of degree r if, for all λ > 0 and

for all x ∈ U , f(λx) = λrf(x). A function f : U × V →W ,

(x, y) 7→ f(x, y), is homogeneous of degree r with respect to

x if for all λ > 0 and for all (x, y) ∈ U × V , f(λx, y) =
λrf(x, y).

B. Graph Theory

We refer the reader to [15] for more details on the notions

reviewed in this section. We denote a digraph by G = (V, E),
where V is a set of nodes labelled as {1, . . . , n} and E is the

set of edges. The set of neighbors of node i is Ni := {j ∈
V : (i, j) ∈ E}.

Given positive numbers aij > 0, i, j ∈ {1, . . . , n}, the

associated weighted Laplacian matrix of G is the matrix

L := D − A, where D is a diagonal matrix whose i-th
diagonal entry is the sum

∑

j∈Ni
aij , and A is the matrix

whose element (A)ij is aij if j ∈ Ni, and 0 otherwise.

A directed spanning tree is a graph consisting of n − 1
edges such that there exists a unique directed path from a

node, called the root, to every other node. A reverse directed

spanning tree is a graph which becomes a directed spanning

tree by reversing the directions of all its edges. We identify the

root of a reverse spanning tree with the root of its associated

spanning tree. A graph G contains a reverse directed spanning

tree if it has a subgraph which is a reverse directed spanning

tree.

Proposition 1 ([1], [6]): The following conditions are

equivalent for a digraph G:

(i) G contains a reverse directed spanning tree.

(ii) For any set of positive gains aij > 0, i, j ∈ {1, . . . , n}
the associated weighted Laplacian matrix L of G has rank

n− 1, and KerL = span{1}.

A graph G = (V, E) is strongly connected if for any two

nodes i, j ∈ V there exists a path from i to j. A set of nodes

S ⊂ V is an isolated component if it has no outgoing edges,

i.e., for any edge (i, j) ∈ E , if i ∈ S then j ∈ S. A graph

G′ = (V ′, E ′) is a subgraph of G if V ′ ⊂ V and E ′ ⊂ E .

A subgraph G′ is an induced subgraph of G if for any two

vertices i, j ∈ V ′, (i, j) ∈ E ′ if and only if (i, j) ∈ E . A

strongly connected component G′ of G is a maximal strongly

connected induced subgraph of G. In other words, there does

not exist any other strongly connected induced subgraph of

G containing G′. Letting G0 = (V0, E0), . . . ,Gr = (Vr, Er)
be the strongly connected components of G, the condensation

digraph of G, denoted C(G) = (VC(G), EC(G)), is defined as

follows. The vertex set VC(G) is the set of nodes {vi}i∈{0,...,r}

where the node vi is a contraction of the vertex set Vi of the

i-th strongly connected component Gi. The edge set EC(G)
contains an edge (vi, vj) if there exist vertices i′ ∈ Vi and

j′ ∈ Vj such that (i′, j′) ∈ E . The following properties of the

condensation digraph are found in [16].

Proposition 2 ([16]): Consider a graph G containing a

reverse directed spanning tree. The condensation C(G) satisfies

the following properties:

(i) C(G) is acyclic, i.e., there is no path in C(G) beginning

and ending at the same node.

(ii) C(G) contains a reverse directed spanning tree T with a

unique root v0 ∈ VC(G).
(iii) There exists at least one vertex vi ∈ VC(G) such that v0

is the only neighbor of vi.

An example of a digraph G containing a reverse directed

spanning tree is shown in Figure 1. The strongly connected

components are boxed. The resulting acyclic condensation

graph C(G) is shown in Figure 2. The vertex v0 in the figure is

the unique root of the reverse directed spanning tree in C(G).
As in [16], we define the vertex set Lj ⊂ V to be the union

of those vertex sets Vi that correspond to vertices vi in the

condensation digraph with the property that the maximal path

length from vi to the root v0 is equal to j. By this definition,

L0 := V0. We let L−1 := ∅. Defining the vertex set L̄j :=
∪ji=0Li, by construction, the neighbors of any vertex in Lj
are contained in L̄j−1. Therefore each node set L̄j is isolated.

For the example in Figure 2, we have L0 = {1, 2, 3, 4, 5, 6},

L1 = {10} ∪ {11, 12} and L2 = {7, 8, 9}.
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Fig. 1: Directed graph G containing a reverse directed spanning

tree. The strongly connected components G0, . . . ,G3 are boxed
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Fig. 2: Condensation digraph C(G) associated with the graph G
in Figure 1 (left) and reverse directed spanning tree contained

in C(G) (right).

C. Stability Definitions

The following stability definitions are taken from [17]. Let

Σ : χ̇ = f(χ) be a smooth dynamical system with state

space a geodesically complete Riemannian manifold X with

Riemannian distance d : X × X → [0,∞), so that (X , d) is

a complete metric space. Let φ(t, χ0) denote the local phase

flow of Σ.

Definition 1: Consider a closed set Γ ⊂ X that is positively

invariant for Σ, i.e., for all χ0 ∈ Γ, φ(t, χ0) ∈ Γ for all t > 0
for which φ(t, χ0) is defined.

• Γ is stable for Σ if for any ε > 0, there exists a

neighborhood N (Γ) ⊂ X such that, for all χ0 ∈ N (Γ),
φ(t, χ0) ∈ Bε(Γ), for all t > 0 for which φ(t, χ0) is

defined.

• Γ is attractive for Σ if there exists neighborhood N (Γ) ⊂
X such that for all χ0 ∈ N (Γ), limt→∞ ‖φ(t, χ0)‖Γ =
0. The domain of attraction of Γ is the set {χ0 ∈ X :
limt→∞ ‖φ(t, χ0)‖Γ = 0}. Γ is globally attractive for Σ
if it is attractive with domain of attraction X .

• Γ is locally asymptotically stable (LAS) for Σ if it is

stable and attractive. The set Γ is globally asymptotically

stable (GAS) for Σ if it is stable and globally attractive.

Definition 2: Let Γ1 ⊂ Γ2 be two subsets of X that are

positively invariant for Σ. Assume that Γ1 is compact and Γ2

is closed.

• Γ1 is globally asymptotically stable relative to Γ2 if it is

GAS when initial conditions are restricted to lie in Γ2.

• Γ2 is locally stable near Γ1 if for all c > 0 and all ǫ > 0,

there exists δ > 0 such that for all x0 ∈ Bδ(Γ1) and all

t⋆ > 0, if φ([0, t⋆], x0) ⊂ Bc(Γ1) then φ([0, t⋆], x0) ⊂
Bǫ(Γ2).

• Γ2 is locally attractive near Γ1 if there exists a neigh-

bourhood N (Γ1) such that, for all

x0 ∈ N (Γ1), ‖φ(t, x0)‖Γ2
→ 0 as t→ ∞.

We present a reduction theorem used to derive our main result

Theorem 1 (Reduction Theorem [17], [18]): Let Γ1 and

Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed sets that are positively

invariant for Σ, and suppose Γ1 is compact. Consider the

following conditions: (i) Γ1 is LAS relative to Γ2; (i’) Γ1

is GAS relative to Γ2; (ii) Γ2 is locally stable near Γ1; (iii)

Γ2 is locally attractive near Γ1; (iii)’ Γ2 is globally attractive;

(iv) all trajectories of Σ are bounded.

Then, the following implications hold: (i) ∧ (ii) =⇒ Γ1

is stable; (i) ∧ (ii) ∧ (iii) ⇐⇒ Γ1 is LAS; (i)’ ∧ (ii) ∧ (iii)’

∧ (iv) ⇐⇒ Γ1 is GAS.

III. RENDEZVOUS CONTROL PROBLEM

Consider a group of n kinematic unicycles. Let I = {ix, iy}
be an inertial frame in two-dimensional space and consider the

i-th unicycle in Figure 4. Fix a body frame Bi = {bix, biy}
to the unicycle, where bix is the heading axis, and denote by

xi ∈ R
2 the position of the unicycle in the coordinates of

frame I. The unicycle’s attitude is represented by a rotation

matrix Ri whose columns are the coordinate representations of

bix and biy in frame I. Letting θi ∈ S
1 be the angle between

vectors ix and bix, we have

Ri =

[

cos θi − sin θi
sin θi cos θi

]

.

The angular speed of robot i is denoted by ωi. The unicycle

dynamics are given by,

ẋi = uiRie1 (1)

Ṙi = Ri(ωi)
×, i = 1, . . . , n. (2)

In what follows, we refer to system (1)-(2) as Σi. Its control

inputs are the linear speed ui and angular speed ωi. The

relative displacement of robot j with respect to robot i is

xij := xj − xi. If v ∈ R
2 is the coordinate representation

of a vector in frame I, then we denote by vi := R−1
i v the

coordinate representation of v in body frame Bi.
We define the sensor digraph G = (V, E), where each node

represents a robot, and an edge from node i to node j indicates

that robot i can sense robot j. We assume that G has no self-

loops and is time-invariant. Given a node i, its set of neighbors

Ni represents the set of vehicles that robot i can sense. If j ∈
Ni, then we say that robot j is a neighbour of robot i. If this

is the case, then robot i can sense the relative displacement of

robot j in its own body frame, i.e., the quantity xiij . Define the

vector yi := (xij)j∈Ni
. The relative displacements available

to robot i are contained in the vector yii := (xiij)j∈Ni
. A

local and distributed feedback (ui, ωi) for robot i is a locally

Lipschitz function of yii . We define the rendezvous manifold

Γ :=
{

(xi, Ri)i∈{1,...,n} ∈ R
2n × SO(2)n : xij = 0, ∀ i, j

}

.
(3)

We are now ready to state the rendezvous control problem.

Rendezvous Control Problem: For system (1)-(2) with

sensor digraph G, find local and distributed feedbacks
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(ui, ωi)i∈{1,...,n} that globally asymptotically stabilize the

rendezvous manifold Γ. △

IV. SOLUTION OF THE RENDEZVOUS CONTROL PROBLEM

Consensus

Control

Rotational

Control

robot

Sensors

Thrust

Control

Fig. 3: Block diagram of the rendezvous control system for

robot i.

In this section we present the solution of the rendezvous

control problem. Let Fi(G, ρ1, ρ2) denote the set of linear

functions

fi(yi) :=
∑

j∈Ni

aijxij , (4)

i = 1, . . . , n, such that aij > 0 for all j ∈ Ni and

0 < ρ1 < aij < ρ2. Each choice of fi ∈ Fi(G, ρ1, ρ2),
i = 1, . . . , n, is a rendezvous controller for a collection of

n kinematic integrators with sensor digraph G [1], [2], [3].

We use f(yi) to construct the feedbacks

ui = ‖fi(yii)‖fi(yii) · e1,
ωi = −kfi(yii) · e2, i = 1, . . . , n.

(5)

The result below states that for sufficiently large k, the

feedbacks in (5) solve the rendezvous control problem if the

network of unicycles has a sensor digraph containing a reverse

directed spanning tree.

Theorem 2: The rendezvous control problem is solvable for

system (1)-(2) if, and only if, the sensor graph G contains

a reverse directed spanning tree, in which case a solution is

the following. For each positive integer n, and each ρ1, ρ2
such that 0 < ρ1 < ρ2, there exists k⋆ > 0 such that for all

k > k⋆, for all sensor digraphs G with n nodes containing a

reverse directed spanning tree, and for all linear functions fi ∈
Fi(G, ρ1, ρ2), i = 1, . . . , n, feedback (5) solves the rendezvous

control problem.

Theorem 2 states that, if the sensor digraph contains a

reverse directed spanning tree, then for a sufficiently large gain

k, controller (5) solves the rendezvous control problem. The

lower bound on k is uniform over all sensor digraphs with n
nodes, and all consensus controllers fi with gains aij in a fixed

compact interval [ρ1, ρ2]. In practice this implies that one can

tune the controller (5) without knowing the sensor digraph G
nor the controller parameters aij . All what is required is to

know bounds on these parameters.

The necessity portion of Theorem 2 was proved in [6]. The

sufficiency part, namely the fact that the feedback (5) solves

the rendezvous control problem, is proved in Section V.

The feedback in (5) is very similar in form to the one in [7]

given by,

ui = fi(y
i
i) · e1,

ωi = fi(y
i
i) · e2, i = 1, . . . , n.

(6)

with aij = 1 for all j ∈ Ni. The main difference in (5)

is the extra multiplicative factor ‖fi(yii)‖ in the control ui
and the control gain k chosen sufficiently large. While the

feedback in (6) achieves rendezvous for undirected and con-

nected graphs, the solution cannot be generalized to the broad

class of directed graphs considered in this paper in that, as

shown in [19], when the sensor digraph is a directed ring,

the feedback (6) drives the unicycles to a circular formation

instead of achieving rendezvous. Our solution in (5) can be

viewed as an adaptation of the controller in (6) that allows for

rendezvous with directed graph topologies containing a reverse

directed spanning tree.

In the presence of link failures in the sensor digraph, as

long as the resulting graph after the last failure maintains a

reverse directed spanning tree, the presented solution in (5)

will still achieve rendezvous. It remains an open problem to

solve the rendezvous control problem with saturated feedback.

If the rotational control gain k > k⋆ results in feedbacks

that are too large, the magnitude of the gains aij can be

reduced appropriately to avoid actuator saturation over any

compact set of initial conditions. This, however, would slow

the convergence rate.

The proposed control architecture is illustrated in the block

diagram of Figure 3. There are two nested loops. The outer

loop treats each robot as a single-integrator driven by the linear

consensus controller,

ẋi = fi(yi), i = 1, . . . , n. (7)

The set
{

(xi)i∈{1,...,n} ∈ R
2n : xij = 0, ∀i, j

}

is globally

asymptotically stable for (7) if the sensing graph has a reverse

directed spanning tree [2]. The signal fi(yi(t)) is computed in

the body frame Bi, and used as a reference signal for the inner-

loop thrust and direction controllers that assign the unicycle

control inputs in (5). The intuition behind these controllers

is shown in Figure 4. The speed input ui is the dot product

ui = ‖fi(yii)‖fi(yii) ·e1. This is the projection of the reference

‖fi(yi)‖fi(yi) onto the heading axis bix of robot i. The angular

speed, on the other hand, is proportional to the dot product

between the reference fi(yi) and the second body axis biy .

In Figure 4, one can see that ωi = −k‖fi‖ sin(φi) acts to

reduce the angle φi between bix and fi(yi) with a rate propor-

tional to the magnitude of fi. Together, these control inputs

drive the robot velocity uibix approximately to the reference

‖fi(yi)‖fi(yi). The convergence is approximate because the

control inputs do not depend on the time derivative of fi. It

is the difference in angle between uibix and ‖fi(yi)‖fi(yi) as

opposed to the difference in magnitude that is important for

obtaining rendezvous. Since ‖fi(yi)‖fi(yi) is homogeneous of

degree two, as the robots approach consensus, ωi converges to

zero slower than ui. This allows ωi to exert sufficient control

authority even as the robots converge to consensus, closing

the gap between the vectors uibix and ‖fi(yi)‖fi(yi).
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Fig. 4: Illustration of the control inputs ui and ωi in (5).

A. Simulation Results

We consider a group of five robots with sensor digraph in

Figure 5. For the feedback in (5), we pick aij = 0.05 for all

j ∈ Ni. The control gain k is chosen to be k = 0.2. The initial

conditions of the robots are shown in Table I. The simulation

is presented in Figure 6(a) and the control inputs for the five

vehicles are plotted in Figure 7 showing reasonable linear and

rotational speeds. In Figure 5 the trajectories corresponding to

the feedback in [6], the feedback in [7], and our solution are

compared. The simulations are run with the initial conditions

in Table I and the sensing graph in Figure 5. It can be seen

that the proposed feedback has practical advantages over the

time-varying feedback in [6] as well as the solution in [7].

The proposed feedback induces a more natural behaviour in

the ensemble of unicycles. The feedback in [6] makes the

unicycle “wiggle” indefinitely, a behaviour which would be

unacceptable in practice. The feedback in [7] causes the unicy-

cles to converge to a circular formation instead of rendezvous.

Rendezvous is guaranteed only for undirected graphs.

3 1

2

4

5

Fig. 5: Sensor di-

graph used in the

simulation results.

TABLE I: Simulation Initial Conditions

Vehicle i xi(0) (m) θi(0) (rad)

1 (0, 10) 0
2 (−10,−10) 2π/5
3 (−50, 10) 4π/5
4 (−10, 0) 6π/5
5 (10, 0) 8π/5

V. PROOF OF THEOREM 2

This section presents the sufficiency proof of Theorem 2.

The necessity was proved in [6].

The key tool in our proof is the condensation graph and the

isolated node sets L̄j defined in Section II-B. The same tool

was employed in [16] for pose synchronization (synchroniza-

tion of positions and attitudes) of fully actuated vehicles.

The dynamics of unicycles associated with an isolated node

set L̄j are independent of the nodes outside of this set because,

for any robot i ∈ L̄j , the feedbacks ui and ωi in (4), (5) depend

only on states of robots within L̄j . Therefore, the dynamics

of the collection of unicycles in L̄j ,
ẋi = uiRie1 (8)

Ṙi = Ri(ωi)
×, i ∈ L̄j (9)

define an autonomous dynamical system. Henceforth,

the dynamics in (8), (9) are denoted by ΣL̄j
and

we define the reduced rendezvous manifold ΓL̄j
:=

{

(xi, Ri)i∈L̄j
: xik = 0, ∀i, k ∈ L̄j

}

.

Recall from Section II-B that the set L̄−1 is empty, which

implies that the set ΓL̄−1
is also empty. We adopt the conven-

tion that ΓL̄−1
is GAS for ΣL̄−1

.

The proof of Theorem 2 relies on an induction argument on

the node sets L̄j . Key in the induction argument is the next

result stating that if the vehicles in L̄j−1 achieve rendezvous,

then so do the vehicles in L̄j .
Proposition 3: Consider system (1), (2) and assume that the

sensor graph G contains a reverse directed spanning tree and

let ρ1 and ρ2 be such that 0 < ρ1 < ρ2. Suppose that, for some

integer j ≥ 0, the set ΓL̄j−1
is globally asymptotically stable

for the dynamics ΣL̄j−1
. There exists l⋆ > 0 such that for any

k > l⋆ in (5) and for all linear functions fi ∈ Fi(G, ρ1, ρ2),
i = 1, . . . , n, feedback (5) globally asymptotically stabilizes

ΓL̄j
for the dynamics ΣL̄j

.

In the statement of Proposition 3, the lower bound l⋆ on

k depends on the sensor digraph G, while in the statement

of Theorem 2, k⋆ does not. In the proof of Theorem 2

below we show that the lower bound l⋆ can in fact be made

uniform over sensor digraphs G containing a reverse directed

spanning tree. The same comment holds for Corollary 1

below. In Section V-A, we use the above proposition to prove

Theorem 2, and in Section V-B we prove Proposition 3.

In the special case when G is strongly connected, we have

L̄0 = V . Since, by definition, L̄−1 = ∅, the set ΓL̄−1
is GAS

for ΣL̄−1
, and Proposition 3 yields the following corollary.

Corollary 1: Consider system (1), (2) and assume that the

sensor graph G is strongly connected and let ρ1 and ρ2 be such

that 0 < ρ1 < ρ2. There exists l⋆ > 0 such that for any k > l⋆

and for all linear functions fi ∈ Fi(G, ρ1, ρ2), i = 1, . . . , n,
feedback (5) solves the rendezvous control problem.

A. Proof of Theorem 2

To begin with, the feedback in (5) is local and distributed

because it is a smooth function of yii only. The proof in this

section is performed in two steps. First we will show that for

all graphs G = (V, E) containing a reverse directed spanning

tree, for all parameter bounds ρ1, ρ2 such that 0 < ρ1 < ρ2
there exists l⋆ > 0 such that for all k > l⋆, and for all linear

functions fi ∈ Fi(G, ρ1, ρ2), i = 1, . . . , n, feedback (5) solves

the rendezvous control problem. We then show that the lower

bound on k can be made uniform over all sensor digraphs

containing a reverse directed spanning tree.

Consider any graph G = (V, E) containing a reverse directed

spanning tree, parameter bounds ρ1 and ρ2 such that 0 <
ρ1 < ρ2, and the node sets Lj and L̄j defined in Section II-B.

By construction, the node sets L̄j are isolated, the subgraph

(V0, E0) is strongly connected, and L̄0 = L0 = V0.

The proof is by induction. Since the subgraph (L̄0, E0)
is strongly connected, by Corollary 1, there exists l⋆0 such

that choosing k > l⋆0 makes the set ΓL̄0
globally asymp-

totically stable for system ΣL̄0
for all linear functions fi ∈

Fi(G, ρ1, ρ2), i = 1, . . . , n.
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Fig. 6: Rendezvous control simulation for: (a) proposed feedback in (5), (b) feedback in [6], and (c) feedback in [7]
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Fig. 7: Simulation control inputs for proposed feedback in (5)

Now consider L̄j and suppose the reduced rendezvous

manifold ΓL̄j−1
is globally asymptotically stable for system

ΣL̄j−1
. It holds from Proposition 3 that there exists l⋆j such

that choosing k > l⋆j makes the isolated node set ΓL̄j
globally

asymptotically stable for system ΣL̄j
for all linear functions

fi ∈ Fi(G, ρ1, ρ2), i = 1, . . . , n. By part (ii) of Proposition 2,

the condensation digraph C(G) contains a reverse directed

spanning tree, so there is a path from every node of C(G) to

the unique root of C(G). By part (i) of the same proposition,

C(G) is acyclic, which implies that the paths connecting the

nodes of C(G) to the unique root of C(G) have a maximum

length, L. Recall that, by definition, L̄L =
∑L
i=1 Li is the

union of those strongly connected components Vi of V that

are associated with nodes vi of the condensation digraph C(G)
with the property that the maximum path length from vi to

the root v0 is ≤ L. As we argued earlier, the set of such

nodes vi equals the entire condensation digraph, implying

that L̄L = V . Let l⋆ > max{l⋆0, . . . , l⋆L}. By induction, it

must hold that choosing k > l⋆ makes ΓL̄L
= Γ globally

asymptotically stable for system ΣL̄L
= ΣV = Σ for all linear

functions fi ∈ Fi(G, ρ1, ρ2), i = 1, . . . , n. We conclude that

Γ is globally asymptotically stable.

To prove Theorem 2, it remains to show that the lower

bound k can be taken to be uniform over the set of digraphs

with n nodes containing a reverse directed spanning tree. In

other words, we need to show that for all n, for all ρ1, ρ2

such that 0 < ρ1 < ρ2, there exists k⋆ > 0 such that choosing

k > k⋆ solves the rendezvous control problem for all graphs

with n nodes containing a reverse directed spanning tree and

for all linear functions fi ∈ Fi(G, ρ1, ρ2), i = 1, . . . , n. Corre-

sponding to n nodes, there is a finite number of directed graphs

containing a reverse directed spanning tree. Enumerating these

graphs by Gj , j = 1, . . . ,m, for all j = 1, . . . ,m the result

from the first part of the proof gives values (l⋆)j , such that

choosing k > (l⋆)j , (5) solves the rendezvous control problem

for all linear functions fi ∈ Fi(Gj , ρ1, ρ2), i = 1, . . . , n.

Choosing k⋆ = max{(l⋆)1, . . . , (l⋆)m} then solves the ren-

dezvous control problem for all graphs Gj , j = 1, . . . ,m for

all linear functions fi ∈ Fi(Gj , ρ1, ρ2), i = 1, . . . , n. �

B. Proof of Proposition 3

Consider a graph G = (V, E) containing a reverse directed

spanning tree and let ρ1 and ρ2 be such that 0 < ρ1 < ρ2.

Recall that the vertex set Lj ⊂ V is the union of those vertex

sets Vi that correspond to vertices vi in the condensation

digraph C(G) associated to strongly connected components

with maximal path length j to the root node v0. Without loss of

generality, we assume there is a single vertex set Vi such that

Lj = Vi. In the case that Lj is the union of several vertex sets,

one can repeat the argument of this proof sequentially for each

component. We denote A := L̄j−1 and B := Lj = Vi and

therefore L̄j = A ∪ B. Denote by r the number of unicycles

in the set B. By assumption, ΓA is globally asymptotically

stable for the dynamics ΣA and the graph associated to the

nodes in B is strongly connected. We need to show that ΓA∪B

is globally asymptotically stable for the dynamics ΣA∪B . The

proof relies on the following coordinate transformation.

1) Coordinate Transformation: For notational convenience,

we collect the position vectors xi and rotation matrices Ri
into variables x := (x1, . . . , xn) and R := (R1, . . . , Rn). We

define the space R := SO(2)× · · · × SO(2) (n times), so that

x ∈ R
2n and R ∈ R. For each i ∈ {1, . . . , n}, define

Xi := fi(yi)/Ai, (10)

where Ai :=
∑

j∈Ni
aij , and let X := (X1, . . . , Xn). We may

express X as

X = (diag(1/A1, · · · , 1/An)L⊗ I2)x.

In the above, diag(. . .) is the diagonal matrix with diagonal

elements inside the parenthesis; L is the weighted Laplacian
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matrix of the sensor digraph associated with the gains aij ;
finally, ⊗ denotes the Kronecker product of matrices. X lies on

the subspace of R2n given by Im(diag(1/A1, · · · , 1/An)L⊗
I2) ⊂ R

2n. We let X := Im(diag(1/A1, · · · , 1/An)L⊗ I2) ⊂
R

2n. From now on, we will take into consideration that X is

a vector in R
2n constrained to lie in the 2(n−1) dimensional

subspace X representing the values of X which are well-

defined. Since the sensor digraph contains a reverse directed

spanning tree, by Proposition 1 the matrix L ⊗ I2 has rank

2(n − 1), and Ker(L ⊗ I2) = span{1 ⊗ e1,1 ⊗ e2} with

1 ∈ R
n. Let x̄ := [I2 · · · I2]x =

∑

i xi, then the linear

map T : R
2n → R

2n × R
2, x 7→ (X, x̄) is an isomor-

phism onto its image. Under the action of T , the subspace

{x ∈ R
2n : x1 = · · · = xn} is mapped isomorphically onto

the subspace {(X, x̄) ∈ ImT : X = 0}. Since the feedbacks

in (4)-(5) are local and distributed, it can be seen that the

dynamics of the closed-loop unicycles in (X, x̄, R) coordinates

are independent of x̄. Moreover, as we have seen, in these

coordinates the control specification is the global stabilization

of {(X, x̄, R) ∈ X×R
2×R : X = 0}, a set whose description

is independent of x̄. In light of these considerations, for the

stability analysis we may drop the variable x̄, and show that

the set Γ̂ := {(X,R) ∈ X×R : X = 0} is GAS for the (X,R)
dynamics.

From here on we will use the hat notation to refer to

quantities represented in (X,R) coordinates. Denote gi(yi) :=
‖fi(yi)‖fi(yi). Let ā = (aij)(i,j)∈E denote the vector con-

taining the parameters of the linear consensus controller fi ∈
Fi(Gi, ρ1, ρ2), i = 1, . . . , n. Given positive bounds ρ1 and ρ2,

by definition of Fi(G, ρ1, ρ2), the vector of controller gains ā
lies in the compact set K(G, ρ1, ρ2) := {x ∈ (R+)|E| : ρ1 ≤
xi ≤ ρ2, ∀xi} where R

+ is the set of positive real numbers

and |E| is the cardinality of the edge set E . Using (10), the

functions fi and gi and their body frame representations are

given in (X,R) coordinates by

f̂i(ā, Xi) = AiXi, ĝi(ā, Xi) = Ai
2‖Xi‖Xi

f̂ ii (ā, Xi, Ri) = AiR
−1
i Xi,

ĝii(ā, Xi, Ri) = Ai
2R−1

i ‖Xi‖Xi,

(11)

where we have made explicit the dependence of these func-

tions on the parameter vector ā. We can use these functions to

rewrite feedback (5) in new coordinates as ui = ĝi(ā, Xi, Ri)·
e1, ωi = −kf̂i(ā, Xi, Ri) · e2. We remark that f̂i and f̂ ii are

homogeneous of degree one with respect to Xi. Similarly, ĝi
and ĝii are homogeneous of degree two with respect to Xi.

The closed-loop unicycle dynamics in (X,R) coordinates are

given by

Ẋi =

∑

j∈Ni
aij((ĝ

j
j · e1)Rje1 − (ĝii · e1)Rie1)

Ai
, (12)

Ṙi = Ri(−kf̂ ii · e2)×. (13)

We will refer to system (12)-(13) as Σ̂i.
In analogy with what we did earlier, for a set of m nodes

S ⊂ V we let XS := (Xi)i∈S ∈ XS and RS := (Ri)i∈S ∈
RS := SO(2)×· · ·×SO(2) (m times). XS lies on the subspace

of R
2m given by XS := πS(X) in which πS : R2n → R

2m

is the projection map whereby πS(X) = (Xi)i∈S ∈ R
2m.

Moreover, if S is an isolated node set, the systems Σ̂i, i ∈ S
determine an autonomous dynamical system which we denote

by Σ̂S . We also denote the reduced rendezvous manifold

by Γ̂S := {(XS , RS) ∈ XS × RS : XS = 0} . In new coor-

dinates, it needs to be shown that the set Γ̂A∪B is globally

asymptotically stable for the dynamics Σ̂A∪B under the as-

sumption that Γ̂A is globally asymptotically stable for the

dynamics Σ̂A.

2) Stability analysis: Let

V (γ,XB) =
∑

i∈B

γiX
⊤
i Xi

Wtran(γ,XB) =
√

V (γ,XB)

Wrot(ā, XB , RB) =
∑

i∈B

f̂ ii (ā, Xi, Ri) · e1,
(14)

where γi(ā) > 0 are gains that are continuous functions of

ā ∈ K(G, ρ1, ρ2) defined in the proof of Lemma 2 and let

γ(ā) := (γ1(ā) . . . γr(ā)). Consider the function W : Rr ×
K × XB × RB → R defined as

W (γ, ā,XB , RB) = αWtran(γ,XB) +Wrot(ā, XB , RB),
(15)

where α > 0 is a design parameter.

The next two lemmas are used in the subsequent analysis.

Lemma 1: Let γ(ā) be any positive real-valued con-

tinuous function and consider the continuous function

W (γ, ā,XB , RB) defined in (15). There exists α⋆ > 0 such

that, for all α > 2α⋆ and for all ā ∈ K, the following

properties hold:

(i) W ≥ 0 and W−1(0) = {(XB , RB) : XB = 0}.

(ii) For all c > 0, the sublevel set Wc := {(XB , RB) :
W (γ, ā,XB , RB) ≤ c} is compact.

(iii) α⋆
√

V (γ,XB) < W (γ, ā,XB , RB) < 2α
√

V (γ,XB).

The proof is in the appendix. From now on assume α > 2α⋆.

Lemma 2: Consider system (12), (13). There exist positive

real-valued functions γi(ā) in (14) and l⋆ > 0 such that

choosing k > l⋆ implies

d

dt
W (γ, ā,XB , RB) ≤ −σV (γ,XB) + Φ(ā, XA, R), σ > 0,

(16)

for all ā ∈ K where Φ(ā, XA, R) is continuous with respect

to its arguments and Φ(ā, 0, R) = 0.

The proof of Lemma 2 is presented in the appendix.

We will now show that choosing k > l⋆ implies Γ̂A∪B is

globally asymptotically stable for Σ̂A∪B . The proof will make

use of the reduction theorem (Theorem 1). We will first show

that all solutions of the closed-loop system are bounded. The

rotation matrices live in a compact set, therefore we only need

to show that the states XA∪B = (Xi)i∈A∪B are bounded.

Since A is isolated, Σ̂A is an autonomous subsystem and

by assumption, Γ̂A = {(XA, RA) ∈ XA × RA : XA =
0} (compact), is globally asymptotically stable. Therefore,

XA is bounded. From the inequality W (γ, ā,XB , RB) ≥
α⋆
√

V (γ,XB) in part (iii) of Lemma 1, to show boundedness

of V (γ,XB), it suffices to show that W (γ, ā,XB , RB) is



8

bounded. Boundedness of V (γ,XB), in turn, implies bound-

edness of XB . From the bound on the derivative of W in (16),

and by Lemma 1 we obtain

d

dt
W (γ, ā,XB , RB) ≤ −σW (γ, ā,XB , RB)

2

(2α)2
+Φ(ā, XA, R),

σ > 0. Since XA is bounded and R ∈ R lies on a compact

set, it holds that Φ(ā, XA, R) is bounded and therefore W
is bounded, which implies that XB is bounded. Therefore

XA∪B is bounded, as claimed. Now define the set, Λ̂ :=
{(XA∪B , RA∪B) ∈ XA∪B × RA∪B : XA = 0}. Since the

set Γ̂A is globally asymptotically stable for system Σ̂A and

XA∪B is bounded, it holds that Λ̂ is globally asymptotically

stable for Σ̂A∪B .

To show that the set Γ̂A∪B , which is compact, is globally

asymptotically stable for the system Σ̂A∪B , it suffices to

show that Γ̂A∪B is globally asymptotically stable relative

to Λ̂. On the set Λ̂, Φ(ā, XA, R) is equal to zero and the

derivative of W is therefore given by d
dtW (γ, ā,XB , RB) ≤

−σW (γ,ā,XB ,RB)2

(2α)2 , σ > 0. By Lemma 1, all level sets of

W (γ, ā,XB , RB) are compact and W−1(0) = {(XB , RB) :
XB = 0}. This implies Γ̂A∪B is globally asymptotically

stable relative to the set Λ̂. By Theorem 1, Γ̂A∪B is globally

asymptotically stable for Σ̂A∪B . This completes the proof.

VI. CONCLUSION

We have presented the first solution to the rendezvous con-

trol problem for a group of kinematic unicycles on the plane

for directed graphs containing a reverse directed spanning

tree and using continuous, time-independent feedback that is

local and distributed. The solution assumes a fixed sensing

digraph that contains a reverse-directed spanning tree. The

control methodology is based on a control structure made

of two nested loops. An outer loop produces a standard

feedback for consensus of single integrators which becomes

reference to an inner loop assigning the unicycle control inputs

that rely only on onboard measurements. Information of the

unicycles’ relative orientations is not required. We believe that

our control scheme can be shown to yield stability also when

the digraph is time-varying. This would require a modification

of the Lyapunov argument used in the proof. The problem of

full synchronization of the unicycle positions and orientations

for smooth, local and distributed feedbacks remains an open

problem.

APPENDIX

Throughout this appendix we will make use of functions µi
and µ defined as follows. Let γ(ā) be any positive real-valued

continuous function and recall from (14) that V (γ,XB) is

positive definite. Define the continuous functions µ(γ,XB) :=
XB/

√

V (γ,XB), and µi(γ,XB) := Xi/
√

V (γ,XB), i ∈
B. Since the numerator and denominator are both homoge-

neous of degree one, these functions are both homogeneous

of degree zero with respect to XB . Therefore, the images

satisfy µ(γ,XB\0) = µ(γ, S2r ∩ XB) and µi(γ,XB\0) =
µi(γ, S

2r ∩ XB), where S
2r is the unit sphere in R

2r where

r is the number of agents in B. Since µ, µi and γ(ā) are

continuous functions and the sets K and S
2r∩XB are compact,

the images µ(γ(K),XB\0) and µi(γ(K),XB\0) are compact

sets.

A. Proof of Lemma 1

Recall the definition of W (γ, ā,XB , RB),

W = α
√

V (γ,XB) +
∑

i∈B

f̂ ii (ā, Xi, Ri) · e1

=
√

V (γ,XB)

(

α+

∑

i∈B f̂ ii (ā, Xi, Ri) · e1
√

V (γ,XB)

)

.

Using the fact that f̂ ii (ā, Xi, Ri) is homogeneous with respect

to its second argument, we have

W =
√

V (γ,XB)

(

α+
∑

i∈B

f̂ ii (ā, µi(γ,XB), Ri) · e1
)

.

Since f̂ ii is continuous, µi(γ,XB) is bounded, and RB ∈ RB ,

a compact set, it follows that the function
∑

i∈B

∣

∣

∣f̂
i
i (ā, µi(γ,XB), Ri) · e3

∣

∣

∣

has a bounded supremum. Accordingly, let

α⋆ = sup
(ā,XB ,RB)∈K×XB×RB

∑

i∈B

∣

∣

∣
f̂ ii (ā, µi(γ(ā), XB), Ri) · e1

∣

∣

∣
.

For all α > 2α⋆, we have W (γ, ā,XB , RB) ≥
W (γ, ā,XB , RB) := α⋆

√

V (γ,XB) ≥ 0. This inequality

implies that W ≥ 0 and W−1(0) ⊂ W−1(0). But W =
0 if and only if V (γ,XB) = 0 (i.e., XB = 0). Thus

W−1(0) ⊂ {(XB , RB) : XB = 0}. Conversely, on the set

{(XB , RB) : XB = 0}, XB = 0 and hence W = 0, and

therefore {(XB , RB) : XB = 0} ⊂ W−1(0). It follows that

W−1(0) = {(XB , RB) : XB = 0} proving part (i).

For part (ii), note that for all c > 0, Wc ⊂
{W (γ, ā,X,R) ≤ c}. Since the sublevel sets of W are

compact and RB ∈ RB , a compact set, the set Wc is bounded.

Continuity of W implies that Wc is compact.

For part (iii), it has already been shown that

W (γ, ā,XB , RB) ≥ α⋆
√

V (γ,XB). It also holds that

W =
√

V (γ,XB)

(

α+
∑

i∈B

f̂ ii (ā, µi(γ,XB), Ri) · e1
)

≤
√

V (γ,XB) (α+ α) ≤ 2α
√

V (γ,XB).

�

B. Proof of Lemma 2

We first compute inequalities for Ẇtran and Ẇrot for sys-

tem (12) and (13). We then combine them to derive (16).

Consider unicycle i ∈ B. The dynamics of Xi in (12) are

split into two terms, for neighboring robots j ∈ Ni ∩ A and

j ∈ Ni ∩B respectively,

Ẋi =
∑

j∈Ni∩A

aij
(ujRje1 − uiRie1)

Ai

+
∑

j∈Ni∩B

aij
(ujRje1 − uiRie1)

Ai
.

(17)
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For simplicity of notation, we drop the arguments of ĝi(ā, Xi)
and ĝii(ā, Xi, Ri). Adding and subtracting the term,

∑

j∈Ni∩B
aij(ĝj − ĝi)−

∑

j∈Ni∩A
aij ĝi

Ai

to (17) yields,

Ẋi =

∑

j∈Ni∩B
aij(ĝj − ĝi)−

∑

j∈Ni∩A
aij ĝi

Ai

+

∑

j∈Ni∩B
aij(ujRje1 − uiRie1)

Ai
−
∑

j∈Ni∩B
aij(ĝj − ĝi)

Ai

+

∑

j∈Ni∩A
aijujRje1

Ai
+

∑

j∈Ni∩A
aij(ĝi − uiRie1)

Ai

=

∑

j∈Ni∩B
aij(ĝj − ĝi)−

∑

j∈Ni∩A
aij ĝi

Ai

+

∑

j∈Ni∩B
aij(ujRje1 − ĝj)

Ai
−
∑

j∈Ni∩B
aij(uiRie1 − ĝi)

Ai

+

∑

j∈Ni∩A
aijujRje1

Ai
+

∑

j∈Ni∩A
aij(ĝi − uiRie1)

Ai
.

Replacing uj and ui by the assigned feedbacks in (5) and

using the identity Riĝ
i
i = ĝi then,

Ẋi = ai(ā, XB)+bi(ā, XB , R)+ci(ā, XB , R)+di(ā, XA, R),

where,

ai(ā, XB) :=

∑

j∈Ni∩B
aij(ĝj − ĝi)−

∑

j∈Ni∩A
aij ĝi

Ai

bi(ā, XB , R) :=

∑

j∈Ni∩B
aijRj((ĝ

j
j · e1)e1 − ĝ

j
j)

Ai

−
∑

j∈Ni∩B
aijRi((ĝ

i
i · e1)e1 − ĝii)

Ai

ci(ā, XB , R) :=

∑

j∈Ni∩A
aijRi(ĝ

i
i − (ĝii · e1)e1)

Ai

di(ā, XA, R) :=

∑

j∈Ni∩A
aij(ĝ

j
j · e1)Rje1

Ai
.

The time derivative of Wtran =
√

V (γ,XB) in (14) yields,

Ẇtran =
1

2
√
V

[

∑

i∈B

∂V (γ,XB)

∂Xi
(ai(ā, XB) + bi(ā, XB , R)

+ ci(ā, XB , R))

]

+
1

2
√
V

∑

i∈B

∂V (γ,XB)

∂Xi
di(ā, XA, R).

(18)

The derivative of the first term is considered in Claim 1.

Claim 1: There exist gains γi(ā) > 0 in (14) that are con-

tinuous functions of ā and a continuous function r(γ, ā,XB),
negative definite and homogeneous of degree three with

respect to XB , such that
∑

i∈B
∂V (γ,XB)

∂Xi
ai(ā, XB) ≤

r(γ, ā,XB).

The proof of Claim 1 is presented in Section C of this

Appendix. Let the gains γi be as in Claim 1. The derivative

of the remaining terms in the square brackets of (18) satisfies,

∑

i∈B

∂V (γ,XB)

∂Xi
(bi(ā, XB , R) + ci(ā, XB , R))

≤
∑

i∈B

1

Ai

∂V (γ,XB)

∂Xi





∑

j∈Ni∩B

aij

∥

∥

∥(ĝ
j
j · e1)e1 − ĝ

j
j

∥

∥

∥

+
∑

j∈Ni∩B

aij
∥

∥(ĝii · e1)e1 − ĝii
∥

∥

+
∑

j∈Ni∩A

aij
∥

∥ĝii − (ĝii · e1)e1
∥

∥





≤
∑

i∈B

1

Ai

∂V (γ,XB)

∂Xi





∑

j∈Ni∩B

aij

∥

∥

∥(ĝ
j
j · e1)e1 − ĝ

j
j

∥

∥

∥

+
∑

j∈Ni

aij
∥

∥(ĝii · e1)e1 − ĝii
∥

∥



 .

We claim that ‖(ĝii(ā, Xi, Ri) · e1)e1 − ĝii(ā, Xi, Ri)‖ =
∣

∣ĝii(ā, Xi, Ri) · e2
∣

∣. Indeed, writing ĝii = (ĝii ·e1)e1+ĝii−(ĝii ·
e1)e1, we have ĝii ·e2 = (ĝii−(ĝii ·e1)e1) ·e2. Since the vector

ĝii − (ĝii · e1)e1 is parallel to e2,
∣

∣(ĝii − (ĝii · e1)e1) · e2
∣

∣ =
‖ĝii− (ĝii ·e1)e1‖, so that

∣

∣ĝii · e2
∣

∣ = ‖ĝii− (ĝii ·e1)e1‖. Then,

∑

i∈B

∂V (γ,XB)

∂Xi
(bi(ā, XB , R) + ci(ā, XB , R))

≤
∑

i∈B

∥

∥

∥

∥

∂V (γ,XB)

∂Xi

∥

∥

∥

∥





∑

j∈B

∣

∣

∣ĝ
j
j · e2

∣

∣

∣+ n
∣

∣ĝii · e2
∣

∣





which is homogeneous of degree three with respect to XB

since
∂V (γ,XB)

∂Xi
is homogeneous of degree one and ĝii is

homogeneous of degree two with respect to XB for all i ∈ B.

The last term in (18) satisfies,

1

2
√

V (γ,XB)

∑

i∈B

∂V (γ,XB)

∂Xi
di(ā, XA, R)

≤ 1

2
√

V (γ,XB)

∑

i∈B

1

Ai

∂V (γ,XB)

∂Xi

∑

j∈Ni∩A

aij(ĝ
j
j · e1)Rje1

≤ 1

2
√

V (γ,XB)

∑

i∈B

1

Ai

∥

∥

∥

∥

∂V (γ,XB)

∂Xi

∥

∥

∥

∥

∑

j∈Ni∩A

aij‖ĝjj‖

≤
∑

i∈B

sup
(ā,XB)∈K×XB

{

1

2
√

V (γ(ā), XB)
∥

∥

∥

∥

∂V (γ(ā), XB)

∂Xi

∥

∥

∥

∥

}

∑

j∈Ni∩A

‖ĝjj‖ := Φtran(XA, R).

(19)

The bounded supremum of 1√
V (γ(ā),XB)

∥

∥

∥

∂V (γ(ā),XB)
∂Xi

∥

∥

∥ exists

because this term is homogeneous of degree 0 with respect to

XB and γ(ā) is a continuous function of ā. Moreover, XA = 0
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implies that ‖ĝjj‖ = 0 for all j ∈ A and hence Φtran(0, R) = 0.

Everything together, (18) yields,

Ẇtran ≤
1

2
√

V (γ,XB)

[

r(γ, ā,XB) +
∑

i∈B

∥

∥

∥

∥

∂V (γ,XB)

∂Xi

∥

∥

∥

∥





∑

j∈B

∣

∣

∣
ĝ
j
j · e2

∣

∣

∣
+ n

∣

∣ĝii · e2
∣

∣







+Φtran(XA, R).

(20)

Since r(γ, ā,XB) is homogeneous of degree three with respect

to XB . We can write,

r(γ, ā,XB) =

√

V (γ,XB)V (γ,XB)
√

V (γ,XB)V (γ,XB)
r(γ, ā,XB)

=
√

V (γ,XB)V (γ,XB)r

(

γ, ā,
XB

√

V (γ,XB)

)

=
√

V (γ,XB)V (γ,XB)r (γ, ā, µ(γ,XB)) .

Analogous operations can be performed with the remaining

term in the square bracket of (20) yielding,

Ẇtran ≤ V (γ,XB)

2

[

r(γ, ā, µ(γ,XB))

+
∑

i∈B

∥

∥

∥

∥

∂V (γ, µ(γ,XB))

∂Xi

∥

∥

∥

∥





∑

j∈B

∣

∣

∣
ĝ
j
j(ā, µj(γ,XB), Rj) · e2

∣

∣

∣

+n
∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

)]

+Φtran(XA, R).

Since r is continuous and negative definite, ā lies on a compact

set K and µ(γ(ā), XB) lies on a compact set S1, it follows that

r(γ(ā), ā, µ(γ(ā), XB))/2 has bounded maximum −M2 < 0.

Similarly, the function

∥

∥

∥

∂V (γ(ā),µ(γ(ā),XB))
∂Xi

∥

∥

∥ has a maximum.

Letting M1 := nmax(ā,θ)∈K×S1
i∈B

∥

∥

∥

∂V (γ(ā),θ)
∂Xi

∥

∥

∥
yields,

Ẇtran ≤V



−M2 +
M1

2n

∑

i∈B





∑

j∈B

∣

∣

∣
ĝ
j
j(ā, µj(γ,XB), Rj) · e2

∣

∣

∣

+n
∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

)]

+Φtran(XA,R)

≤V
[

−M2 +
M1

2n

∑

i∈B

(

n
∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

+n
∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

)]

+Φtran(XA,R)

≤V
[

−M2 +M1

∑

i∈B

∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

]

+Φtran(XA,R)
(21)

for all ā ∈ K. This proves the first inequality. We now turn to

the second. Recall the definition of Wrot, Wrot(ā, XB , RB) =
∑

i∈B f̂ ii (ā, Xi, Ri) · e1. The time derivative of Wrot along

the vector field in (12)-(13) is Ẇrot =
∑

i∈B

(

d
dt f̂

i
i

)

· e1. To

express (d/dt)f̂ ii , recall that f̂ ii (ā, Xi, Ri) = R−1
i f̂i(ā, Xi).

Then, d
dt f̂

i
i =

(

d
dtR

−1
i

)

f̂i + R−1
i

df̂i
dt . We will denote the

derivative of f̂i(ā, Xi) = AiXi by,

hi(ā, X,R) := (d/dt)f̂i(ā, Xi) = Ai (ai(ā, XB)

+bi(ā, XB , R) + ci(ā, XB , R) + di(ā, XA, R))

where the first three terms are homogeneous of degree two

with respect to XB and the last term is homogeneous of degree

two with respect to XA. Consistently with our notational

convention, we will let hii(ā, X,R) := R−1
i hi(ā, X,R).

Returning to the derivative of f̂ ii , we have

d

dt
f̂ ii = −(ωi)

×R−1
i f̂i(ā, Xi) +R−1

i hi(ā, X,R)

= −
[

0 − ωi
ωi 0

]

f̂ ii (ā, Xi, Ri) + hii(ā, X,R).

We substitute the above identity in the expression for Ẇrot,

Ẇrot =
∑

i∈B

(

−e⊤1
[

0 − ωi
ωi 0

]

f̂ ii (ā, Xi, Ri) + hii(ā, X,R) · e1
)

=
∑

i∈B

(

(f̂ ii (ā, Xi, Ri) · e2)ωi + hii(ā, X,R) · e1
)

.

Substituting the feedback ωi = −k(f̂ ii (ā, Xi, Ri) · e2) and

taking norms, we arrive at the inequality

Ẇrot ≤
∑

i∈B

[

− k
∣

∣

∣f̂
i
i (ā, Xi, Ri) · e2

∣

∣

∣

2

+ hii(ā, X,R) · e1
]

.

This gives,

Ẇrot ≤
[

−k
∑

i∈B

∣

∣

∣f̂
i
i (ā, Xi, Ri) · e2

∣

∣

∣

2

+ ℓ(ā, XB , R)

]

+Φrot(ā, XA, R)

where

ℓ(ā, XB , R) :=
∑

i∈B

AiR
⊤
i (ai(ā, XB) + bi(ā, XB , R)

+ci(ā, XB , R)) · e1

and Φrot(ā, XA, R) :=
∑

i∈B AiR
⊤
i di(ā, XA, R) · e1. Note

that
∑

i∈B

∣

∣

∣f̂ ii (ā, Xi, Ri) · e2
∣

∣

∣

2

and ℓ(ā, XB , R) are homo-

geneous of degree two with respect to XB . The function

Φrot(ā, XA, R) does not depend on XB and Φrot(ā, 0, R) = 0.

This yields,

Ẇrot ≤V (γ,XB)

[

−k
∑

i∈B

∣

∣

∣f̂
i
i (ā, Xi/

√

V (γ,XB), Ri) · e2
∣

∣

∣

2

+ℓ(ā, XB/
√

V (γ,XB), R)
]

+Φrot(ā, XA, R)

≤ V (γ,XB)

[

−k
∑

i∈B

∣

∣

∣f̂
i
i (ā, µi(γ,XB), Ri) · e2

∣

∣

∣

2

+ℓ(ā, µ(γ,XB), R)] + Φrot(ā, XA, R).

|ℓ(ā, µ(γ(ā), XB), R)| has a bounded supremum. Letting

M3 = sup(ā,θ,R)∈K×S1×R (|ℓ(ā, θ, R)|), we conclude that,

Ẇrot ≤V (γ,XB)

[

−k
∑

i∈B

∣

∣

∣
f̂ ii (ā, µi(γ,XB), Ri) · e2

∣

∣

∣

2

+M3

]

+Φrot(ā, XA, R)
(22)
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for all ā ∈ K. By using the inequalities (21) and (22) we now

bound the derivative of W to derive (16). Notice that

Ẇ = αẆtran + Ẇrot

≤ V (γ,XB)

[

−αM2 + αM1

∑

i∈B

∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

−k
∑

i∈B

∣

∣

∣f̂
i
i (ā, µi(γ,XB), Ri) · e2

∣

∣

∣

2

+M3

]

+Φ(ā, XA, R),

where Φ(ā, XA, R) := αΦtran(XA, R) + Φrot(ā, XA, R).

Choose α > 3M3/M2. This implies,

Ẇ ≤ V

[

−2M3 + αM1

∑

i∈B

∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

−k
∑

i∈B

∣

∣

∣
f̂ ii (ā, µi(γ,XB), Ri) · e2

∣

∣

∣

2
]

+Φ(ā, XA, R).

(23)

Since f̂ ii (ā, Xi, Ri) is homogeneous with re-

spect to Xi, we have, f̂ ii (ā, µi(γ,XB), Ri) =√
‖ĝi

i
(ā,µi(γ,XB),Ri)‖

‖ĝi
i
(ā,µi(γ,XB),Ri)‖

ĝii(ā, µi(γ,XB), Ri). Plugging the

last expression into (23) yields

Ẇ ≤ V

[

−2M3 + αM1

∑

i∈B

∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

−k
∑

i∈B

1

‖ĝii(ā, µi(γ,XB), Ri)‖
∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

2

]

+Φ(ā, XA, R).

Since ĝii(ā, µi(γ,XB), Ri) is a continuous function of its

arguments and µi(γ,XB) is compact,
∣

∣ĝii(ā, µi(γ,XB), Ri)
∣

∣

has a maximum M4. This implies,

Ẇ ≤ V

[

−2M2 + αM1

∑

i∈B

∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

−k
∑

i∈B

1

M4

∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣

2

]

+Φ(ā, XA, R).

Denote βi(ā, µi(γ,XB), Ri) :=
∣

∣ĝii(ā, µi(γ,XB), Ri) · e2
∣

∣,

and β := (βi(ā, µi(γ,XB), Ri))i∈B . Then,

Ẇ ≤ V

[

−2M2 + αM11
⊤β − k

M4
|β|2

]

+Φ(ā, XA, R)

= V
[

1⊤ β⊤
]

[−2M2

n I αM1

2 I
αM1

2 I
−k
M4
I

] [

1

β

]

+Φ(ā, XA, R).

There exists l⋆ > 0 such that choosing k > l⋆, the matrix

above is negative definite and therefore the first term satisfies,

V
[

1⊤ β⊤
]

[−2M2

n I αM1

2 I
αM1

2 I
−k
M4
I

] [

1

β

]

≤ −σV (γ,XB), (24)

σ > 0 for all ā ∈ K. This concludes the proof of Lemma 2.

�

C. Proof of Claim 1

Recalling that V (γ,XB) = γiX
⊤
i Xi with Xi = f̂i/Ai and

defining bij :=
aij
Ai

2 , it holds that,

∑

i∈B

∂V (γ,XB)

∂Xi
ai(ā, XB) = 2

∑

i∈B

γi
f̂i

Ai
· ai(ā, XB)

≤2
∑

i∈B

γif̂i ·





∑

j∈Ni∩B

bij(‖f̂j‖f̂j − ‖f̂i‖f̂i)−
∑

j∈Ni∩A

bij‖f̂i‖f̂i





≤2
∑

i∈B

γi





∑

j∈Ni∩B

bij(−‖f̂i‖3 + ‖f̂j‖f̂j · f̂i)−
∑

j∈Ni∩A

bij‖f̂i‖3




≤
∑

i∈B

γi
∑

j∈Ni∩B

bij

(

−4

3
‖f̂i‖3 +

4

3
‖f̂j‖3

)

+
∑

i∈B

γi
∑

j∈Ni∩B

bij

(

−2

3
‖f̂i‖3 + 2‖f̂j‖f̂j · f̂i −

4

3
‖f̂j‖3

)

− 2
∑

i∈B

γi
∑

j∈Ni∩A

bij‖f̂i‖3.

The first term equals 4
3γ

⊤Mĥ with ĥ := (‖f̂i‖3)i∈B . M is

the (r×r)-matrix whose (i, j)-th component is
∑

k∈Ni∩B
bik

for i = j, bij for j ∈ Ni ∩ B and zero otherwise for

i, j ∈ {1, . . . , r} where it is assumed without loss of generality

that B = {1, . . . , r}. The components of the matrix M
are continuous functions of ā. Since B corresponds to a

strongly connected graph, the zero eigenvalue of M is unique

and all components of left eigenvectors corresponding to the

zero eigenvalue are nonzero and have the same sign (see

Proposition D.5 in [16]). Further, it follows from Theorem

3.4.35 in [20] that there exists a left eigenvector associated to

the zero eigenvalue of M , γ(ā) = (γ1(ā), . . . , γr(ā)), which is

a continuous function of ā. Without loss of generality, we can

choose the vector γ(ā) with positive components. Therefore,

∑

i∈B

∂V (γ,XB)

∂Xi
ai(ā, XB)

≤
∑

i∈B

γi
∑

j∈Ni∩B

bij

(

−2

3
‖f̂i‖3 + 2‖f̂j‖f̂j · f̂i −

4

3
‖f̂j‖3

)

− 2
∑

i∈B

γi
∑

j∈Ni∩A

bij‖f̂i‖3 =: r(γ, ā,XB).

The term

r1(γ, ā,XB) :=
∑

i∈B

γi
∑

j∈Ni∩B

bij

(

−2

3
‖f̂i‖3 + 2‖f̂j‖f̂j · f̂i −

4

3
‖f̂j‖3

)

≤
∑

i∈B

γi
∑

j∈Ni∩B

bij

(

−2

3
‖f̂i‖3 + 2‖f̂i‖‖f̂j‖2 −

4

3
‖f̂j‖3

)

is less than or equal to zero with equality only when f̂i = f̂j
for all i, j ∈ B and as such r(γ, ā,XB) is less than or equal

to zero with equality only when f̂i = f̂j for all i, j ∈ B.

Now we prove that r(γ, ā,XB) = 0 only if f̂i = 0
for all robots i ∈ B. In the case that A is not empty,

the inequality r(γ, ā,XB) ≤ −2
∑

i∈B γi
∑

j∈Ni∩A
bij‖f̂i‖3
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implies r(γ, ā,XB) = 0 only if f̂i = 0 for any i ∈ B
with a neighbor in A. As such, by the previous arguments,

r(γ, ā,XB) = 0 only if f̂i = 0 for all i ∈ B. On the

other hand, if A is empty, then B is isolated and strongly

connected. Therefore r(γ, ā,XB) = r1(γ, ā,XB) is equal

to zero only if r1(γ, ā,XB) = 0 which is the case only

if f̂i = f̂j for all i, j ∈ B. For all XB ∈ XB (i.e., all

well-defined values of XB ∈ R
2r), this implies that there

exists x = (x1, . . . , xr) such that diag(A1, · · · , Ar)XB =
(L ⊗ I2)x ∈ span{1 ⊗ e1,1 ⊗ e2} where L is the Laplace

matrix for the agents in B (isolated). Since B is strongly

connected, for all ā ∈ K(G, ρ1, ρ2) there exists a unique vector

γ̄ (with positive entries) such that γ̄⊤(L ⊗ I2) = 0. Since

γ̄⊤(L ⊗ I2)x = γ̄⊤1 ⊗ (αe1 + βe2) for some α, β ∈ R, it

holds that γ̄⊤1⊗ (αe1 + βe2) = 0. Since all entries of γ̄ are

positive, this implies α = β = 0 and (L⊗I2)x = 0. Therefore

x ∈ span{1⊗ e1,1⊗ e2} or, equivalently, that f̂i = 0 for all

i ∈ B.

Therefore r(γ, ā,XB) = 0 only if Xi = 0 for all i ∈ B and

as such r(γ, ā,XB) is negative definite. Note that r(γ, ā,XB)
is homogeneous of degree three with respect to XB because

f̂i is homogeneous of degree one with respect to XB for all

i ∈ B. This completes the proof of the claim.
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