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Abstract— A bang bang hybrid controller is presented that
globally practically stabilizes the origin of a double-integrator
with bounded disturbances. The proposed controller has finite
switching frequency and, when the disturbances are absent,
it reduces to the time-optimal bang-bang controller for the
double-integrator.

I. INTRODUCTION

In this paper we consider the perturbed double-integrator

system
ẋ1 = x2

ẋ2 = f(x, t) + u,
(1)

where (x1, x2) ∈ R×R, u ∈ U := {−ū, 0,+ū}, with ū > 0,

and f(x, t) is a map in the class F of functions R2×R → R

that are locally Lipschitz with respect to x, measurable with

respect to t, and uniformly bounded by a constant f̄ > 0,

i.e., sup |f | ≤ f̄ . We investigate the following stabilization

problem.

Stabilization by Constant Controls Problem (SCCP).

Consider system (1), where f ∈ F . Design a feedback

controller with values in U = {−ū, 0, +ū} such that the

following properties hold:

(i) If f ≡ 0, there exist controller parameters such that

x = 0 is reached in finite time.

(ii) For all f ∈ F , the point x = 0 is globally practically

stable for the closed-loop system, i.e., for all r >
0 there exist controller parameters such that, for all

x0 ∈ R
2 and all t0 ∈ R, the solution x(t) with initial

condition x(t0) = x0 is such that there exists T > 0
such that x(t) ∈ Br(0) for all t ≥ T .

(iii) The controller has a finite switching frequency, i.e.,

given any compact time interval [t0, t1], u switches

value a finite number of times.

The control of double integrators plays an important role

in control theory. Many aerospace and robotic systems, for

example, can be modeled as cascades of linear or rotational

double integrators, [1]. For some of these applications bang-

bang solutions are of particular interest in that many actuators

can be modeled as on-off functions, [2], [3]. It is well-

known that the unperturbed double integrator admits a bang
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bang time optimal solution, [4], [5]. As shown in [5], this

controller is robust to a certain class of bounded disturbances,

but it induces a sliding mode along the switching boundary,

therefore violating specification (iii) of SCCP. Sliding mode

controllers with hysteresis bands alleviate the issues related

to the switching frequency. It is shown in [6] that when

the perturbation f(x, t) is known, the controller’s switching

frequency can be kept constant by adjusting the size of the

hysteresis band. This constrains the size of the ball that the

controller can stabilize. Moreover, as shown in [7], the use

of hysteresis loops with linear sliding surfaces results only

in local stabilization properties. In [8], [9], a discontinuous

controller has been proposed that guarantees the convergence

of the state trajectory to the origin in finite time. Although the

authors only prove convergence to the origin and not stability,

we believe that a simple modification to the controller

in [8], [9] can be adopted to solve SCCP. It has been shown

in [10], [11], [12] that hybrid feedback is advantageous over

discontinuous feedback since it has the potential of being

robust with respect to measurement noise. Motivated by this

observation, we seek a hybrid solution to SCCP. When

the perturbation f ≡ 0, our hybrid controller recovers the

time-optimal bang-bang stabilizer for the double-integrator.

The idea of our solution is roughly this. We consider the

switching boundary of the time-optimal bang-bang stabilizer,

and add another switching boundary, the set {x2 = 0}. We

then define a finite state machine that selectively enables and

disables switching surfaces in such a way that the resulting

sequence of switching points contracts to the origin, and

sliding modes are avoided.

The paper is organized as follows. In Section II we present

the solution of SCCP and state the main result, Theorem 2.1.

In Section III we review a basic result from [13] charac-

terizing the boundary of attainable sets of planar nonlinear

systems, and apply it to the perturbed double-integrator (1).

In Section IV we find conditions for the existence of a well-

defined switching sequence. The proof of the main theorem

is presented in Section V. Section VI presents simulation

results.

Notation: We denote Bǫ(0) = {x ∈ R
2 : (xTx)1/2 < ǫ}

and B̄ǫ(0) = {x ∈ R
2 : (xTx)1/2 ≤ ǫ}. These definitions

imply that the set B0(0) is empty, while B̄0(0) = {0}. The

boundary of a set A is defined as ∂A = Ā \ intA where Ā
is the closure of A and intA is its interior. We denote by Ac

the set Ac = R
2 \A.



II. CONTROL LAW

Referring to Figures 1(a) and 1(b), define initialization

sets Γ+, Γ− as

Γ+ ={(x1, x2) : x1 < 0, x2 <
√
−2ūx1} ∪

{(x1, x2) : x1 > 0, x2 ≤ −
√
2ūx1},

Γ− ={(x1, x2) : x1 < 0, x2 ≥
√
−2ūx1} ∪

{(x1, x2) : x1 > 0, x2 > −
√
2ūx1}.

x1

x2

Γ−

(a) Initialization set Γ−.

Γ+

x1

x2

(b) Initialization set Γ+.

Fig. 1.

Referring to Figure 2, define switching sets Λ+, Λ− as

Λ+ ={(x1, x2) : x1 < 0, x2 ≤ 0} ∪
{(x1, x2) : x1 > 0, x2 ≤ −

√
2ūx1},

Λ− ={(x1, x2) : x1 > 0, x2 ≥ 0} ∪
{(x1, x2) : x1 < 0, x2 ≥

√
−2ūx1}.

(2)

The boundaries of sets Λ+ and Λ− are given by

∂Λ+ = S+ ∪ {(x1, 0) : x1 ≤ 0}
∂Λ− = S− ∪ {(x1, 0) : x1 ≥ 0}, (3)

where S+, S− are half-parabolas

S+ = {(x1,−
√
2ūx1) : x1 > 0},

S− = {(x1,
√
−2ūx1) : x1 < 0}.

Λ+

S+

x1

x2

Λ−

S−

Fig. 2. The switching sets Λ−, Λ+.

The proposed control law solving SCCP is described by

the automaton A in Figure 3, and is characterized by discrete

states Q = {q1, q2, q3} and continuous states x ∈ R
2. The

automaton depends on two design parameters δ1, δ2, with

0 ≤ δ1 < δ2. A state transition from state qi to state qj , with

j 6= i, will be denoted as qi → qj . The control value is given

by the hybrid feedback u⋆ : Q → R defined as

u⋆(q1) = −ū
u⋆(q2) = +ū
u⋆(q3) = 0.

(4)

q1

u⋆(q1)

q3

u⋆(q3)

q2

u⋆(q2)

x ∈
B̄
δ
1 (0)
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+ \ B

δ2
(0)

x
∈
Λ

−

\
B̄

δ
1
(0
)

x ∈ Λ+ \ B̄δ1(0)

x ∈ B̄δ1
(0)

x ∈ Γ −

\ B
δ
2 (0)

x0 ∈ Γ− \ B̄δ1(0)

x0 ∈ Γ+ \ B̄δ1(0)
x0 ∈ B̄δ1(0)

Fig. 3. The automaton A representing the proposed controller.

The discrete states q1 and q2 in the automaton A activate and

deactivate the switching sets Λ+ and Λ−, so that a switch in

the control value is allowed only when the trajectory enters

the switching set which is currently active. This mutually

exclusive activation of the switching sets eliminates sliding

modes. Moreover, referring to Figure 2, the gap between Λ+

and Λ− (white region) guarantees that when trajectories are

away from the origin, the switching frequency is bounded.

Near the origin, an hysteresis mechanism, regulated by two

nested balls Bδ1(0) ⊂ Bδ2(0) and by the discrete state

q3, guarantees the boundedness of the switching frequency.

To illustrate, referring to Figure 3, if x0 ∈ Γ− \ B̄δ1(0)
the automaton is initialized with discrete state at q1. The

associated control value is therfore u⋆(q1) = −ū. A state

transition from q1 is allowed either when x(t) enters B̄δ1(0)
(q1 → q3), switching the control value to u⋆(q3) = 0, or

when x(t) enters Λ+ \ B̄δ1(0), (q1 → q2), switching u⋆ to

u⋆(q2) = +ū. Therefore, if the discrte state is at q1, the

switching set Λ− is disabled. Similarly in q2, the switching

set Λ+ is disabled. A state transition occurs only when the

state enters B̄δ1(0) or when it enters set Λ− \ B̄δ1(0). If the

discrete state is at q3, the controller is turned off, i.e. u⋆ = 0.

The controller will be turned on again only if the state exits

Bδ2(0). The following state transition will depend on the

location of such exiting point: the control value will switch

to + ū if x(t) enters Γ+ \Bδ2(0) (q3 → q2), and to − ū if

x(t) enters Γ− \Bδ2(0), (q3 → q1).

For appropriate choices of ū, δ1,δ2 controller (4) solves

SCCP.

Theorem 2.1: Controller (4) solves SCCP if, and only if,

ū satisfies ū > f̄(1 +
√
5)/2. In particular, if this inequality

holds, then for any r > 0 there exist scalars δ1, δ2 with

0 < δ1 < δ2 < r, such that for all solutions through x0

there is Tx0
> 0 such that x(t) ∈ Br(0) for all t ≥ Tx0

.



Remark 2.2: When the perturbation f ≡ 0, by setting

δ1 = 0 and δ2 > 0 the proposed hybrid feedback reduces

to the time-optimal bang-bang controller for the double-

integrator. Moreover, for arbitrary f ∈ F , it can be shown

that setting δ1 = 0 and δ2 > 0 makes the origin globally

finite-time stable, but the switching frequency becomes in-

finite when solutions reach the origin, violating requirement

(ii) of SCCP. Finally, the proposed feedback is robust

against measurement noise. The proof of this fact will be

shown elsewhere.

III. BOUNDARIES OF ATTAINABLE SETS

In this section we characterize the boundaries of attainable

sets of system (1) under the hybrid feedback (4), assuming

that the control value ū is larger than the bound f̄ on the

perturbation f ∈ F . We begin with some preliminary notions

taken from [13].

Consider the planar system

ẋ = λ(x, t)F1(x) + (1− λ(x, t))F2(x) (5)

where F1, F2 : R2 → R
2 are planar C1 vector fields and

λ : R2 × R → [0, 1] is a function that is locally Lipschitz

with respect to x and measurable with respect to t. Define

sets R− and R+ as

R− = {x ∈ R
2 : det [F1(x) F2(x)] < 0},

R+ = {x ∈ R
2 : det [F1(x) F2(x)] > 0}.

(6)

Definition 3.1: The extremal vector fields FL(x) and

FR(x) are defined as

FL(x) =

{

F1(x), x ∈ R+

F2(x), x ∈ R−

FR(x) =

{

F2(x), x ∈ R+

F1(x), x ∈ R−.

(7)

The solutions at time t of the extremal vector fields FL(x)
and FR(x) are called extremal solutions and are denoted

by φL(t, x0) and φR(t, x0), respectively. The images of

extremal solutions on the plane are called extremal arcs.

In particular, the L-arc (resp. R-arc) through x0, denoted

by γL(x0) (resp. γR(x0)), is the image of the map t 7→
φL(t, x0) (resp. t 7→ φR(t, x0)) for t ranging over some

interval over which the map is defined. △
Vector field FL(x) (resp. FR(x)) is said to be extremal,

in that it represents the vector field of (5) of maximum (resp.

minimum) slope. Similarly, extremal arcs of (5) are the phase

curves of (5) with minimum and maximum slope.

Definition 3.2: The attainable set A(x0, t) from x0 at

time t of system (5) is the set

A(x0, t) = {x(t) : x(t) is a solution of (5) through x0 for

some admissible λ(x, t)}
The attainable set A(x0) from x0 of system (5) is the set

A(x0) =
⋃

t≥0 A(x0, t). △
The next lemma states that extremal arcs form the boundary

of attainable sets. Before stating the lemma we recall that

system (5) is said to be small time locally controllable

(STLC) from x0 if, for all T > 0, x0 lies in the interior of

A(x0, [0, T ]).

Lemma 3.3 ([13]): Let x0 ∈ R
2 be such that system (5) is

not STLC from x0. Suppose that for some T > 0 a solution

x(t) of (5) with initial conditions x0 has the property that

x(t) ∈ ∂A(x0, t) for all t ∈ [0, T ] and that system (5)

is not STLC from x(t), for all t ∈ [0, T ]. Then x(t) is a

concatenation of extremal solutions.

Thus, extremal arcs form the boundaries of attainable sets

of system (5) through x0. Now we return to the perturbed

double integrator (1) with the hybrid feedback (4). For each

value1 qi, i ∈ {1, 2}, of the discrete state, the closed-loop

double integrator can be rewritten as

ẋ = λ(x, t)F qi
1 (x) + (1− λ(x, t))F qi

2 (x), (8)

with λ(x, t) =
(

f̄ − f(x, t)
)

/(2f̄) ∈ [0, 1] and

F qi
1 (x) =

[

x2

− f̄ + (−1)iū

]

, F qi
2 (x) =

[

x2

f̄ + (−1)iū

]

.

If ū > f̄ the system is not STLC from x0, since ẋ2 is

bounded away from zero. Therefore, Lemma 3.3 is applicable

to system (8). The sets R+, R− are given by

R+ = {(x1, x2) : x2 > 0}, R− = {(x1, x2) : x2 < 0}.

For each fixed qi, i ∈ {1, 2}, the extremal vector fields of (8)

are given by

F qi
L (x) =

[

x2

− sign(x2)f̄ + (−1)iū

]

F qi
R (x) =

[

x2

sign(x2)f̄ + (−1)iū

]

.

(9)

The associated extremal solutions φqi
L (s, x0) and φqi

R (s, x0)
through x0 for s ≥ 0, can be computed analytically. They

are concatenations of arcs of parabolas Xqi
s (x0) and Y qi

s (x0)
defined as

Xqi
s (x0) =

[
(

−f̄ + (−1)iū
)

s2

2 + x20s+ x10
(

−f̄ + (−1)iū
)

s+ x20

]

Y qi
s (x0) =

[
(

f̄ + (−1)iū
)

s2

2 + x20s+ x10
(

f̄ + (−1)iū
)

s+ x20

]

,

where the concatenation occurs when the solution hits {x2 =
0}. More precisely, for all x0 ∈ R−, we have

φqi
L (s, x0) =

{

Y qi
s (x0), if Y qi

s (x0) ∈ R−

Xqi
s−si

Y
(x0)

◦ Y qi
si
Y
(x0)

(x0), if Y qi
s (x0) ∈ R+

φqi
R (s, x0) =

{

Xqi
s (x0), if Xqi

s (x0) ∈ R−

Y qi
s−si

X
(x0)

◦Xqi
si
X
(x0)

(x0), if Xqi
s (x0) ∈ R+,

(10)

1We do not characterize the attainable set for the discrete state q3, as it
is not needed in our analysis.



while for all x0 ∈ R+, we have

φqi
L (s, x0) =

{

Xqi
s (x0), if Xqi

s (x0) ∈ R+

Y qi
s−si

X
(x0)

◦Xqi
si
X
(x0)

(x0), if Xqi
s (x0) ∈ R−

φqi
R (s, x0) =

{

Y qi
s (x0), if Y qi

s (x0) ∈ R+

Xqi
s−si

Y
(x0)

◦ Y qi
si
Y
(x0)

(x0), if Y qi
s (x0) ∈ R−

(11)

where

siX(x0) = − x02

(−1)iū− f̄
, siY (x0) = − x02

(−1)iū+ f̄
.

The existence of extremal solutions for each x0 ∈ R
2 and

each fixed qi, i ∈ {1, 2}, is guaranteed by the theory of

Filippov in [14], and the fact that the vector fields F qi
1 , F qi

2

are parallel to each other on the line {x2 = 0}, and they are

both tranversal to this line. We denote by γqi
L (x0) and γqi

R (x0)
the extremal arcs generated by φqi

L (s, x0) and φqi
R (s, x0),

respectively, and we denote by Aqi(x0) the attainable set

from x0 of system (8) for fixed qi, i ∈ {1, 2}.

IV. EXISTENCE OF A SWITCHING SEQUENCE

In this section we present necessary and sufficient con-

ditions on the control value ū in order that any solution

of the double-integrator (1) with hybrid feedback (4) gives

rise to a well-defined sequence of switching points {xi},

with i ∈ I ⊂ N, defined below. This result, stated in

Proposition 4.3 below, is useful because it allows us to reduce

the problem of proving convergence to the origin of state

trajectories to the much simpler study of convergence of a

sequence of switching points.

Definition 4.1: Let x(t) be a solution of system (1) with

hybrid feedback (4). A time instant ti is called a switching

time if x(ti) ∈
(

S+ ∪ S− ∪ B̄δ1(0)
)

and at time t = ti a

state transition qi → qk, with i, k ∈ {1, 2, 3}, i 6= k occurs.

The value of the state at a switching time, xi = x(ti) is

called a switching point. △
Lemma 4.2: Let 0 ≤ δ1 < δ2. If, and only if, ū > f̄ , then

for all x0 ∈ (B̄δ1(0))
c and all f ∈ F , there exists a finite

τ > 0 such that at time τ there is a state transition qi → qj ,

for some i, j ∈ {1, 2, 3}, i 6= j.

Lemma 4.2 will now be used to prove the following.

Proposition 4.3: Let 0 ≤ δ1 < δ2. If, and only if, ū > f̄ ,

then for any f ∈ F and any initial condition in (B̄δ1(0))
c,

the solution x(t) of (1) with hybrid feedback (4) induces a

switching sequence {xi}, i ∈ I ⊂ N nonempty, with the

following property:

(x1, . . . , xi ∈ (B̄δ1(0))
c) =⇒ i+ 1 ∈ I. (12)

In other words, as long as the solution x(t) does not

enter B̄δ1(0), there will be new switching points. Therefore,

x(t) → ∞ if and only if I = N and xi → ∞, and x(t)
enters B̄δ1(0) if and only if {xi} enters B̄δ1(0).

Proof: (⇐) Omitted for brevity.

(⇒) If ū > f̄ , then by Lemma 4.2 for any initial condition

in (B̄δ1(0))
c there exists a finite time τ > 0 at which there

is a state transition in the automaton A. The solution at

time τ , x(τ), must lie in ∂Λ+, or in ∂Λ−, or in B̄δ1(0).

x1

x2

S+

γq1
L (x(τ))

γq1
R (x(τ))

x(τ)

Aq1 (x(τ))

Fig. 4. Attainable set from x(τ), Aq1 (x(τ)).

If x(τ) ∈ B̄δ1(0), then x(τ) is a switching point according

to Definition 4.1, and the singleton {x(τ)} trivially meets

property (12). Therefore, the only case of interest is when

x(τ) ∈ (∂Λ+ ∪ ∂Λ−) \ B̄δ1(0). We will consider the case,

x(τ) ∈ ∂Λ− \ B̄δ1(0), the other case being completely

analogous. Either x(τ) ∈ S− or x(τ) ∈ {(x1, 0) : x1 ≥ 0}.

In the former case, x(τ) is a switching point according to

Definition 4.1. In the latter case, x(τ) is not a switching

point, but it induces a state transition q2 → q1, and a new

control value u⋆(q1) = −ū. Lemma 4.2 guarantees the

existence of time t1 > τ at which a new state transition

occurs. We claim that x(t1) ∈ S+, and therefore x(t1) is

a switching point. Indeed, the extremal arcs from x(τ) are

arcs of parabolas with negative concavity, shown in Figure 4,

that intersect S+. This fact and Lemma 3.3 imply that

x(t1) ∈ S+. The proof of sufficiency follows by induction.

A byproduct of Proposition 4.3 is that, when ū > f̄ ,

only three types of switching points are possible. They are

classified in the next definition.

Definition 4.4: Let xi ∈ (S+∪S−)\B̄δ1(0) be a switching

point of a solution x(t) of (1) with hybrid feedback (4) and

ū > f̄ , and consider the next switching point xi+1, whose

existence is guaranteed by Proposition 4.3.

• xi+1 is a 1-switch from xi if one of the points xi, xi+1

belongs to S+, and the other one belongs to S−.

• xi+1 is a 2-switch from xi if xi, xi+1 belong to the

same arc of parabola, S+ or S−.

• xi+1 is a 0-switch from xi if xi+1 ∈ B̄δ1(0).
Figure 5 illustrates a 1-switch and a 2-switch from a point

xi ∈ S+.

V. SOLUTION OF SCCP

In this section we present the proof of Theorem 2.1. In

Proposition 4.3 we have shown that any solution of (1)

with hybrid feedback (4) induces a sequence of switching

points {xi}i∈I . We begin by showing that this sequence is

contracting (i.e., there exists α ∈ (0, 1) such that ‖xi+1‖ ≤
α‖xi‖ for all i ∈ I) for sufficiently large control value ū.

Lemma 5.1: Consider system (1) with hybrid feed-

back (4), and pick δ1, δ2 such that 0 ≤ δ1 < δ2. The

following are equivalent:



x1

x2

∂Λ+

∂Λ−

xi

Λ−

B̄δ1(0)

Fig. 5. Types of switching points induced by hybrid feedback (4). The
1-switch is depicted with a solid line, while the 2-switch by a dashed line.

(i) There exists α ∈ (0, 1) such that for any f ∈ F and

any initial condition, the sequence {xi}i∈I of switching

points induced by the solution x(t) of (1) with hybrid

feedback (4) is contracting as long as xi 6∈ B̄δ1(0):
xi, xi+1 ∈ (B̄δ1(0))

c =⇒ ‖xi+1‖ ≤ α‖xi‖;

(ii) ū > f̄
(

1 +
√
5
)

/2.

Proof:

x1

x2

∂Λ+

∂Λ−

γq2
R (xi)

γq2
L (xi)

p

q

Aq2 (xi) ∩ ∂Λ−

xi

Fig. 6. Attainable switching set from xi.

(ii) ⇒ (i). Assume that xi ∈ S+, so that the automaton A

is at q2 (the argument for the case xi ∈ S− is analogous).

If xi+1 ∈ B̄δ1(0), then part (i) trivially holds. Suppose that

xi+1 6∈ B̄δ1(0). Either xi+1 ∈ S− (i.e., xi+1 is a 1-switch

from xi) or xi+1 ∈ S+ (i.e., xi+1 is a 2-switch from xi).

Suppose first that xi+1 ∈ S−, from which it follows that

xi+1 ∈ Aq2(xi)∩S−. Let p = γq2
R (xi)∩S− (see Figure 6).

Then xi+1 lies on the arc of parabola S− delimited by 0
and p, implying that ‖xi+1‖ ≤ ‖p‖. Using the expression

for φq2
R (s, xi) in (10) one can show that p exists and its first

component p1 is related to the first component xi
1 of xi as

p1 = −α2
1x

i
1, where

α1 =

(

f̄(f̄ + ū)

(ū− f̄)(2ū+ f̄)

)1/2

. (13)

Since ū > f̄
(

1 +
√
5
)

/2, it holds that α1 ∈ (0, 1), and

therefore

‖p‖2 = (α2
1x

i
1)

2+2ūc2xi
1 ≤ α2

1

(

(xi
1)

2 + 2ūxi
1

)

≤ α2
1‖xi‖2.

Hence ‖xi+1‖ ≤ ‖p‖ ≤ α1‖xi‖, with α1 ∈ (0, 1).

Now suppose that xi+1 ∈ S+ is a two-switch from xi.

The switching point xi+1 is reached from xi through the

following sequence of events. (A) The solution from xi with

u⋆(q2) = ū hits the positive x1 axis at a point z, a state

transition q2 → q1 occurs, and the control value becomes

u⋆(q1) = −ū. (B) The solution from z intersects S+ in

xi+1. Consider the point q = γq2
L (xi) ∩ {(x1, 0) : x1 ≥

0} depicted in Figure 6. The point z defined above must

lie on the segment of the x1 axis delimited by 0 and q.

Therefore, ‖z‖ ≤ ‖q‖. Using the expression for φq2
L (xi)

from (10) it can be shown that the first component q1 of

q satisfies q1 = α2
2x

i
1, where α2 ∈ (0, 1) is given by

α2 =
(

1− ū/(ū+ f̄)
)1/2

. Therefore, ‖z‖ ≤ ‖q‖ ≤ α2
2x

i
1.

Now we turn our attention to event (B) above. The point

xi+1 lies in the segment S+∩Aq1(z). The extremal solutions

from z are arcs of parabolas given by φq1
L (s, z) = Y q1

s (z)
and φq1

R (s, z) = Xq1
s (z), defined in Section III. In particular,

the first component of both functions is decreasing with s.

This implies that the first component xi+1
1 of xi+1 satisfies

xi+1
1 < z1 ≤ α2

2x
i
1. We thus have

‖xi+1‖ = [(xi+1
1 )2 + 2ūxi+1

1 ]1/2 ≤ [α4
2(x

i
1)

2 + 2ūα2
2x

i
1]

1/2

≤ α2[(x
i
1)

2 + 2ūxi
1]

1/2 = α2‖xi‖.
By setting α = max{α1, α2}, and noting that α ∈ (0, 1),
the proof of sufficiency is complete.

(i) ⇒ (ii). Let {xi} be a contracting switching se-

quence and suppose, by way of contradiction, that ū ≤
f̄
(

1 +
√
5
)

/2. Let xi, xi+1 ∈ (B̄δ1(0))
c. Assume xi ∈ S+

and let f ∈ F be defined as f(x, t) = f̄ sign(x2(t)).
Then x(t) = φq2

R (t − ti, x
i) for all t ∈ [ti, ti+1]. Therefore

xi+1 = p ∈ S−, as defined in the proof of sufficiency.

Recall that p1 = −α2
1x

i
1, with α1 defined in (13). Since

ū ≤ f̄(1 +
√
5)/2 we have α1 ≥ 1 which contradicts the

hypothesis that the switching sequence is contracting.

Next we show that for any r > 0, there exists a compact

positively invariant subset of Br(0). This will be used to

prove practical stability.

Lemma 5.2: Consider system (1) with the hybrid feed-

back (4). For any r > 0 there exist δ1, δ2, 0 < δ1 < δ2 < r,

and a compact positively invariant set Q ⊂ Br(0) such that

B̄δ2(0) ⊂ Q.

Remark 5.3: δ2 can be chosen as follows.

If (ū − f̄)2 + ūf̄ − f̄
√
ū2 + c2r2 ≤ 0 then choose

δ2 <
√

2f̄(−ū+
√
ū2 + c2r2)− (ū− f̄)2, otherwise

choose δ2 < f̄
ū−f̄

(−ū +
√
ū2 + c2r2), where c =

min {1, (ū− f̄)2/f̄2 + 2ū(ū− f̄)/(rf̄)}. Let δ1 ∈ (0, δ2).
Remark 5.4: Note that δ2 has to be chosen so that δ2 < r:

state trajectories with initial conditions in B̄δ2(0) will even-

tually leave B̄δ2(0), without, however, leaving Q ⊂ Br(0).
We are ready to prove the main result of this paper.

Proof of Theorem 2.1.

(⇒) Similar to the proof of necessity of Lemma 5.1.

(⇐) The proof that the proposed controller meets spec-

ifications (i) and (iii) of SCCP is straightforward and is

omitted. We now prove global practical asymptotic stability.



For any r > 0, by Lemma 5.2 there exists a positively

invariant set Q ⊂ Br(0) and 0 < δ1 < δ2 such that

B̄δ2 ⊂ Q. By Proposition 4.3, for any initial condition in

(B̄δ1(0))
c and any f ∈ F , the solution x(t) gives rise to

a well-defined switching sequence {xi}i∈I . By Lemma 5.1,

this sequence is contracting as long as xi 6∈ B̄δ1(0). Since

B̄δ1(0) ⊂ B̄δ2(0) ⊂ Q, xi ∈ Q for sufficiently large i. By

Lemma 5.2, x(t) ∈ Q ⊂ Br(0) for all t ≥ ti.

VI. SIMULATIONS

Let f̄ = 1.2·10−3 and let the disturbance function be given

by f(x, t) = (f̄/2) (sin (0.7t− π/4) + cos (0.1x1)). f(x, t)
is bounded by f̄ . Suppose the actuator provides an input of

ū = 2 · 10−3 > f̄
(

1 +
√
5
)

/2. We choose r = 5 · 10−3,

δ1 = 5 · 10−4 and δ2 = 2.5 · 10−3 with initial conditions

x0 = (0.5, 0.02). Figure 7 shows the approach of the state

trajectory to the desired neighborhood Br(0), while Figure

8 confirms that Br(0) is indeed stabilized by controller (4).

It can be seen in Figure 8 that whenever the trajectory hits

∂Bδ2(0), the controller turns on and forces the trajectory

toward B̄δ1(0) again, without ever leaving Br(0). Figure 9

presents the time history of the control value u/ū.
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Fig. 7. Convergence of the state trajectory to Br(0).
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VII. CONCLUSIONS

In the paper a hybrid control law has been proposed that

solves the problem of global practical asymptotic stabiliza-

tion of a double integrator affected by unknown bounded

disturbances by means of constant controls. The proposed

controller does not have sliding modes and it undergoes

a finite number of switches in the control value over any

compact time interval. Necessary and sufficient stability

conditions were provided in terms of the control magnitude.
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