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Abstract

A bang-bang hybrid controller is presented that globally practically stabilizes the origin of a double-integrator affected by
an unknown bounded uncertainty at the input side. The proposed controller has two key features: it guarantees a uniformly
bounded number of switches over any compact time interval, and it is robust against bounded measurement errors. When
disturbances are absent, through a proper choice of the control parameters it reduces to the time-optimal bang-bang controller
for the double-integrator.
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1 Introduction

In this paper we investigate the global practical sta-
bilization of the perturbed double-integrator

ẋ1 = x2

ẋ2 = f(x, t) + u,
(1)

where u ∈ U := {−ū, 0, +ū}, with ū > 0, and f(x, t)
is a map in the class F of functions R

2 × R → R that
are locally Lipschitz with respect to x, measurable with
respect to t, and bounded by a constant f̄ > 0, i.e.,

sup |f | ≤ f̄ . We denote x = [x1 x2]
⊤ ∈ R

2. We consider
the following problem.

Stabilization by Constant Controls Problem
(SCCP). Design a piecewise-constant feedback con-
troller with values in U for system (1) such that the
following properties hold:
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(i) For all f ∈ F , the point x = 0 is globally practi-
cally stable for the closed-loop system: For all r > 0
there exist controller parameters such that a com-
pact set Q ⊂ Br(0) with 0 ∈ int Q is globally
asymptotically stable.

(ii) The number of controller switches is uniformly
bounded over compact time intervals: For any
T > 0, there exists N ∈ N such that for any
x0 ∈ R

2 and for any f ∈ F the controller switches
value at most N times over any time interval of
length T .

The control of double-integrators plays an important
role in control theory and applications. In particular,
our formulation of SCCP was inspired by applications in
the field of aerospace engineering. It is common to ap-
proximate the rotational dynamics of a rigid spacecraft
in a neighborhood of its target configuration by a collec-
tion of decoupled double-integrators, [1], [6], [10]. More-
over, in [23] we have shown that the relative transla-
tional dynamics of two spacecraft flying in formation in
a general multi-body gravitational field can be modeled
as a collection of three perturbed double-integrators of
the form (1). The requirement, in SCCP, that the con-
troller be piecewise-constant is motivated by the fact
that spacecraft motion control is usually performed by
means of cold-gas jet thrusters, able to provide only on-
off thrust forces. These actuators are commonly used to
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perform both attitude and position control on modern
spacecraft ([1], [4], [6], [11], [23]). Finally, the require-
ment that the number of control switches be uniformly
bounded over compact time intervals arises from the fact
that, in practice, actuators can only switch value with
bounded frequency. A solution to SCCP, therefore, is key
in enabling a new generation of position and attitude
controllers for spacecraft formations.

Despite its apparent simplicity, SCCP is a largely open
problem. The majority of research on bang-bang sta-
bilization of the origin of the perturbed system (1) re-
lies on sliding mode control. In [19], it is shown that
the time-optimal bang-bang controller for the double-
integrator (e.g., [5]) preserves its finite-time stabilization
property under a restrictive class of disturbances f , but
in the presence of such disturbances it induces a sliding
mode. In [20], a sliding mode controller is presented that
achieves the same result for any measurable bounded
perturbation while satisfying constraints on the state
of the system. Sliding mode controllers, however, vio-
late control specification (ii) of SCCP. Several methods
have been proposed to alleviate the unbounded switch-
ing frequency typical of sliding mode controllers, for in-
stance the state-dependent gain method in [12]. Such
methods, however, often result in control laws that are
not piecewise-constant. Alternatively, hysteresis bands
around switching boundaries have been used to avoid
unbounded switching frequency [12], [16], but they in-
troduce a problematic coupling between the switching
frequency and the asymptotic bound on the state.

To the best of our knowledge, the only attempts at
solving SCCP are found in the context of second-order
sliding mode control [2], [3], [24]. These control algo-
rithms guarantee global finite-time attractivity of the
origin (see, for example Proposition 4.1 in [24]) but
in all cases the controller’s switching frequency is un-
bounded at the origin. One could introduce a hysteresis
mechanism at the origin to guarantee bounded switch-
ing frequency, making the origin globally practically
attractive. The stability of the origin and the robust-
ness of the proposed controllers against measurement
error are not investigated in the above papers. Lev-
ant in [13],[14] presents dynamic feedbacks producing
piecewise-constant controls resulting in global finite-
time stability of the origin. The controllers in [14] have
infinite switching frequency at the origin but, once
again, one could introduce an hysteresis mechanism
eliminating this problem, and turning these controllers
into global practical stabilizers. With this modification,
the controllers presented in [14] solve SCCP. Levant
also shows that his controllers enjoy robustness against
measurement error (see Theorem 3 in [14]). However,
it is unclear whether the switching frequency remains
bounded in the presence of measurement error.

Inspired by the fact, shown in [17], [18], [21], that hy-
brid feedback is advantageous over discontinuous feed-

back for its potential robustness against measurement
error, in this paper we solve SCCP by means of a hybrid
piecewise-constant feedback controller. Necessary and
sufficient stability conditions are provided 1 in terms of
the control magnitude ū. Further, we show that the pro-
posed controller is robust against bounded measurement
error, in the following sense. If the bound on the mea-
surement error is sufficiently small, then the stability
properties of the controller under exact state feedback
and noisy state feedback are identical, and the switching
frequency remains bounded.

In developing a solution to SCCP, we begin with the
time-optimal bang-bang controller for the unperturbed
double-integrator. We add another switching boundary,
the set {x2 = 0}, and define an automaton that selec-
tively enables and disables switching boundaries in such
a way that the resulting sequence of switching points
contracts to the origin. The switching frequency remains
bounded owing to this selective enabling of switching
sets and to an hysteresis mechanism at the origin. If the
hysteresis is removed, the origin becomes globally finite-
time stable, but the switching frequency becomes infinite
when solutions reach the origin, just as in [14]. When
the perturbation is absent, i.e., f ≡ 0, with a suitable
choice of the control parameters our hybrid controller
reduces to the time-optimal bang-bang stabilizer for the
double-integrator.

The paper is organized as follows. In Section 2 we
present the solution of SCCP and state the main results,
Theorem 1 and 3. In preparation for the proofs of these
theorems, in Section 3 we review a basic result from [15]
characterizing the boundary of attainable sets of pla-
nar nonlinear systems, and use it to characterize the at-
tainable sets of the perturbed double-integrator (1) with
constant controls. The proof of Theorem 1 is presented
in Section 4. The proof of Theorem 3, characterizing the
robustness of the proposed controller against measure-
ment error, is presented in Section 5.

Notation: We denote Bǫ(0) = {x ∈ R
2 : (x⊤x)1/2 <

ǫ} and B̄ǫ(0) = {x ∈ R
2 : (x⊤x)1/2 ≤ ǫ}. These defini-

tions imply that the set B0(0) is empty, while B̄0(0) =
{0}. The boundary of a set A is defined as ∂A = Ā\int A
where Ā is the closure of A and int A is its interior. We
denote by Ac the set Ac = R

2 \ A and we denote by
− A the set − A = {x : −x ∈ A}. If A is a closed sub-
set of R2, we define its enlargement Aσ ⊂ R

2, σ > 0,
as Aσ = {x ∈ R

n : d(x, A) ≤ σ}, where d(x, A) denotes
the euclidean point-to-set distance.

1 A preliminary version of these results has been presented
in [23] and [22].
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2 Main Results

In this section we present a hybrid feedback control
law that solves SCCP. We begin by assuming that the
state x(t) is available for feedback. Later, we assume that
the state measurement is corrupted by a bounded error
signal.

We define initialization sets Γ+, Γ− as

Γ+ ={(x1, x2) : x1 < 0, x2 <
√

−2ūx1} ∪
{(x1, x2) : x1 > 0, x2 ≤ −

√
2ūx1},

Γ− = − Γ+.

(2)

Define switching sets Λ+, Λ− as

Λ+ ={(x1, x2) : x1 ≤ 0, x2 ≤ 0} ∪
{(x1, x2) : x1 > 0, x2 ≤ −

√
2ūx1},

Λ− = − Λ+.

(3)

Defining the half-parabolas S+ = {(x1, −√
2ūx1) : x1 ≥

0} and S− = −S+, we have ∂Λ+ = S+ ∪ {(x1, 0) : x1 ≤
0} and ∂Λ− = S− ∪ {(x1, 0) : x1 ≥ 0}. Next, consider

Γ
+

x1

x2

Γ
−

(a)

Λ
+

∂Λ+

x1

x2

Λ
−∂Λ−

(b)

Fig. 1. Sets Γ− and Γ+ (a) and sets Λ− and Λ+ (b).

the automaton A in (4), and denote by Q := {q1, q2, q3}
the set of discrete states of A.

x0∈Γ−\B̄δ1
(0) q1

u⋆(q1)

x∈Λ+\B̄δ1
(0)

x∈B̄
δ
1 (0)

q3

u⋆(q3)

x∈Γ −

\B
δ
2 (0)

x∈Γ
+ \Bδ2

(0)

x0∈Γ+\B̄δ1
(0) q2

u⋆(q2)

x∈B̄δ1
(0)

x
∈

Λ
−

\
B̄

δ
1

(0
)

x0∈B̄δ1
(0)

(4)

Finally, the proposed control law u⋆ : Q → R is

u⋆(q1) = −ū

u⋆(q2) = ū

u⋆(q3) = 0.

(5)

Thus the proposed controller is piecewise-constant with
values in the set {−ū, 0, ū}, and has dynamics that are
governed by the automaton A in (4). An initial condition
x0 of the double-integrator induces an initialization of
the automaton according to the rules in (5). For example,
if x0 ∈ Γ− \ B̄δ1

(0), then A is initialized at q1. A state
transition from state qj to state qk, with k 6= j, will
be denoted as qj → qk. Each edge of the automaton is
associated with a transition condition that determines
whether or not the transition occurs. For instance, a
transition q1 → q3 occurs at time t if and only if x(t) ∈
B̄δ1

(0).

The discrete states q1 and q2 in the automaton acti-
vate and deactivate the switching sets Λ+ and Λ−, so
that a switch in the control value is allowed only when
the trajectory enters the switching set which is currently
active. This mutually exclusive activation of the switch-
ing sets eliminates sliding modes. Moreover, referring to
Figure 1b, the gap between Λ+ and Λ− (white region)
guarantees that when trajectories are away from the ori-
gin, the switching frequency is bounded. Near the origin,
the boundedness of the switching frequency is guaran-
teed by a basic hysteresis mechanism implemented using
two nested balls Bδ1

(0) ⊂ Bδ2
(0) and the discrete state

q3.

To illustrate the selective activation mechanism de-
scribed above, suppose that x0 ∈ Γ− \ B̄δ1

(0). Then the
discrete state is initialized at q1 and the control value is
u⋆(q1) = −ū. The only allowable state transition from
q1 occurs either when x(t) enters B̄δ1

(0) (q1 → q3), in
which case the control value is switched to u⋆(q3) = 0,
or when x(t) enters Λ+ \B̄δ1

(0), (q1 → q2), in which case
u⋆ is switched to u⋆(q2) = +ū. Therefore, the switching
set Λ− is disabled when the discrete state is at q1. Simi-
larly, in q2 the switching set Λ+ is disabled and the con-
trol value can only switch when the state enters B̄δ1

(0)
or when it enters set Λ− \ B̄δ1

(0). In q3, the controller is
turned off, and it will be turned on only when the state
exits Bδ2

(0). This is the hysteresis mechanism at the ori-
gin.

The parameters δ1 and δ2 in the automaton are chosen
according to the following procedure. Let r be the radius
of the ball in part (i) of SCCP. Then pick any number
µ ∈ (0, µ⋆), where µ⋆ = min {1, ((ū − f̄)2/f̄2 + 2ū(ū −
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f̄)/(rf̄))1/2}). Pick δ2 > 0 such that

δ2 <
(

2f̄
√

ū2 + µ2r2 − ū2 − f̄2
)

1
2

, if h < 0

δ2 < | −f̄
ū−f̄

|(−ū +
√

ū2 + µ2r2), otherwise.
(6)

where h = (ū − f̄)2 + ūf̄ − f̄
√

ū2 + µ2r2. Finally, pick
δ1 ∈ (0, δ2).

The next result shows controller (4)-(5), with δ1, δ2

chosen as above, solves SCCP.

Theorem 1 Consider system (1) with perturbation f ∈
F . Controller (4)-(5) solves SCCP if and only if ū >

f̄(1+
√

5)/2. In particular, for any r > 0, if δ1 and δ2 are
chosen so as to satisfy the inequalities in (6), then there
exists a globally asymptotically stable compact subset of
Br(0) containing the origin.

Remark 2 When the perturbation is absent, i.e., f ≡ 0,
by setting δ1 = 0 and δ2 > 0 the proposed hybrid feedback
reduces to the time-optimal bang-bang controller for the
double-integrator. Moreover, for arbitrary f ∈ F , it can
be shown that setting δ1 = 0 and δ2 > 0 makes the ori-
gin globally finite-time stable, but the switching frequency
becomes infinite when solutions reach the origin.

Next, we consider the case when the measured state
signal is

y(t) = x(t) + e(t), (7)

where e(t) is a bounded error signal satisfying sup ‖e(t)‖ ≤
σ, for some σ > 0. Replacing x(t) by y(t) in the automa-
ton A in (4), the question now is whether the stability
properties of Theorem 1 persist in the presence of such
measurement error. The answer is yes, and is contained
in the following result.

Theorem 3 Consider system (1) with controller (4)-
(5) in the presence of bounded measurement error e(t).
If ū > f̄(1 +

√
5)/2, the controller (4)-(5) solves SCCP

in the following sense. For any r > 0, if δ1 and δ2 are
chosen so as to satisfy the inequalities in (6), then there
exists σ⋆ > 0 such that for all σ ∈ [0, σ⋆), and for all
x0 ∈ R

2, the following properties hold:

(i) there exists a globally asymptotically stable compact
subset of Br(0) containing the origin;

(ii) the number of controller switches is uniformly
bounded over compact time intervals.

In essence, the sufficiency part of Theorem 1 remains
unchanged in the presence of sufficiently small measure-
ment error.

We conclude this section with a remark concerning the
switching frequency of the proposed hybrid controller.
Although Theorems 1 and 3 state that the number of

controller switches is uniformly bounded over compact
time intervals, it may happen that the time interval be-
tween two subsequent switches is arbitrarily small. To
take into account the characteristics of a real actuator,
one would have to implement the controller (4)-(5) with
a dwell-time. It turns out that the effects of dwell-time
on the stability analysis are equivalent to those due to
measurement error, so that the proposed controller is
robust against sufficiently small dwell-time. More pre-
cisely, to take dwell-time into account, one may modify
the statement of Theorem 3 by adding after the state-
ment “there exists σ⋆ > 0...” the statement “there exists
a sufficiently small bound on the dwell-time.” This fact,
a direct consequence of results presented in Section 5,
will not be proved here due to space limitations.

3 Boundaries of attainable sets

In preparation for the proofs of Theorems 1 and 3,
we review a result in [15] characterizing the boundaries
of attainable sets of planar single-input systems. Before
presenting the formal definition of attainable set and its
relevant properties, we briefly motivate their relevance
as a tool to solve SCCP. Consider system (1) with the
hybrid feedback (4)-(5). Fix an initial condition x0 and,
for the sake of argument, suppose the automaton state
is fixed at either q1 or q2, so that u = ±ū. The attainable
set of (1) from x0 is the set of states that (1) can reach
from x0 as the perturbation f ranges over the class F .
In order to prove that the closed-loop double-integrator
enjoys certain stability properties independent of per-
turbations f ∈ F , our strategy is to prove an analogous
property for the relevant attainable sets.

For a fixed automaton state qj , j ∈ {1, 2}, we may
rewrite the closed-loop double-integrator as follows:

ẋ = λ(x, t)F
qj

1 (x) + (1 − λ(x, t))F
qj

2 (x), (8)

where λ : R
2 × R → [0, 1] is defined as λ(x, t) =

(

f̄ − f(x, t)
)

/(2f̄), and

F
qj

1 (x) =

[

x2

− f̄ + (−1)j ū

]

, F
qj

2 (x) =

[

x2

f̄ + (−1)j ū

]

,

with j ∈ {1, 2}. Allowing the perturbation f(x, t) to
range over the class F corresponds to replacing λ(x, t)
in (8) by a generic measurable signal λ : R → [0, 1]. In
light of this observation, consider the planar system

ẋ = λ(t)F1(x) + (1 − λ(t)) F2(x) (9)

where F1, F2 : R2 → R
2 are C1 vector fields and λ is an

input signal with values in the interval [0, 1].
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Definition 4 The attainable set A(x0, t) from x0 at
time t of system (9) is the set

A(x0, t) = {x(t) : x(t) is a solution of (9) through x0 for

some measurable control signal λ,

with λ : R → [0, 1]}.

The attainable set A(x0) from x0 of system (9) is the
set A(x0) =

⋃

t≥0 A(x0, t). △

Define sets R− and R+ as

R− = {x ∈ R
2 : det [F1(x) F2(x)] < 0},

R+ = {x ∈ R
2 : det [F1(x) F2(x)] > 0}.

(10)

Definition 5 ([15]) The extremal vector fields
FL(x) and FR(x) are defined as

FL(x) =

{

F1(x), x ∈ R+

F2(x), x ∈ R−

FR(x) =

{

F2(x), x ∈ R+

F1(x), x ∈ R−.

(11)

The solutions at time t with initial condition x0 of the ex-
tremal vector fields FL(x) and FR(x) are called extremal
solutions and are denoted by φL(t, x0) and φR(t, x0),
respectively. The images of extremal solutions on the
plane are called extremal arcs. In particular, the L-arc
(resp. R-arc) through x0, denoted by γL(x0) (resp.
γR(x0)), is the image of the map t 7→ φL(t, x0) (resp.
t 7→ φR(t, x0)) for t ranging over some interval over
which the map is defined. △

Extremal arcs of (9) are the phase curves of (9) with
minimum and maximum slope. The next lemma states
that extremal arcs form the boundary of attainable sets.
Before stating the lemma we recall that system (9) is said
to be small time locally controllable (STLC) from
x0 if, for all T > 0, x0 lies in the interior of A(x0, [0, T ]).

Lemma 6 ([15]) Let x0 ∈ R
2 be such that system (9)

is not STLC from x0. Suppose that for some T > 0 a
solution x(t) of (9) with initial conditions x0 has the
property that x(t) ∈ ∂A(x0, t) for all t ∈ [0, T ] and that
system (9) is not STLC from x(t), for all t ∈ [0, T ]. Then
x(t) is a concatenation of extremal solutions.

Now we return to system (8) with fixed automaton
state qj , j ∈ {1, 2}. If ū > f̄ , ẋ2 is bounded away from
zero, which implies that system (8) with input λ is not
STLC from x0. We may therefore apply Lemma 6 to
system (8). In this context, the sets R+, R− are given
by R+ = {(x1, x2) : x2 > 0}, R− = {(x1, x2) : x2 < 0}.
For each fixed qj , j ∈ {1, 2}, the extremal vector fields

of (8) are given by

F
qj

L (x) =

[

x2

− sign(x2)f̄ + (−1)j ū

]

F
qj

R (x) =

[

x2

sign(x2)f̄ + (−1)j ū

]

.

(12)

The associated extremal solutions φ
qj

L (s, x0) and
φ

qj

R (s, x0) through x0 for s ≥ 0, can be computed ana-
lytically. They are concatenations of arcs of parabolas
X

qj
s (x0) and Y

qj
s (x0) defined as

Xqj
s (x0) =

[

(

−f̄ + (−1)j ū
)

s2

2 + x20s + x10
(

−f̄ + (−1)j ū
)

s + x20

]

Y qj
s (x0) =

[

(

f̄ + (−1)j ū
)

s2

2 + x20s + x10
(

f̄ + (−1)j ū
)

s + x20

]

,

where the concatenation occurs when the solution hits
{x2 = 0}. More precisely, for all x0 ∈ R−, we have

φ
qj

L (s, x0) =

{

Y
qj

s (x0), if Y
qj

s (x0) ∈ R−

X
qj

s−sj

Y
(x0)

◦ Y
qj

sj

Y
(x0)

(x0), if Y
qj

s (x0) ∈ R+

φ
qj

R (s, x0) =

{

X
qj
s (x0), if X

qj
s (x0) ∈ R−

Y
qj

s−sj

X
(x0)

◦ X
qj

sj

X
(x0)

(x0), if X
qj
s (x0) ∈ R+,

(13)
while for all x0 ∈ R+, we have

φ
qj

L (s, x0) =

{

X
qj
s (x0), if X

qj
s (x0) ∈ R+

Y
qj

s−sj

X
(x0)

◦ X
qj

sj

X
(x0)

(x0), if X
qj
s (x0) ∈ R−

φ
qj

R (s, x0) =

{

Y
qj

s (x0), if Y
qj

s (x0) ∈ R+

X
qj

s−sj

Y
(x0)

◦ Y
qj

sj

Y
(x0)

(x0), if Y
qj

s (x0) ∈ R−

(14)

where sj
X(x0) = −x02/((−1)j ū − f̄), sj

Y (x0) =

−x02((−1)j ū + f̄).

The existence of extremal solutions for each x0 ∈ R
2

and each fixed qj , j ∈ {1, 2}, is guaranteed by the the-
ory of Filippov in [8] (see Lemma 4.1 in [15]). We denote
by γ

qj

L (x0) and γ
qj

R (x0) the extremal arcs generated by
φ

qj

L (s, x0) and φ
qj

R (s, x0), respectively. Further, we de-
note by Aqj (x0) the attainable set from x0 of system (8)
for fixed qj , j ∈ {1, 2}.

In conclusion, assuming that the automaton state is
either at q1 or q2, by Lemma 6 we have that ∂Aqj (x0)
is the union of extremal arcs γ

qj

L and γ
qj

R . When the
automaton state is at q3, the controller is turned off (i.e.,
u = 0) and there is no need to characterize attainable
sets.
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4 Proof of Theorem 1

The proof of Theorem 1 unfolds in four steps.

(1) We present necessary and sufficient conditions on
the control value ū so that any solution of the
double-integrator (1) with hybrid feedback (5)-(4)
gives rise to a well-defined sequence of switching
points {xi}, with i ∈ I ⊂ N. This result, stated
in Lemma 8, allows us to reduce the problem of
proving convergence to the origin of state trajecto-
ries to the much simpler study of convergence of a
sequence of switching points.

(2) We prove in Lemma 10 that for any disturbance
f ∈ F , the sequence of switching points {xi}i∈I

induced by controller (4)-(5) contracts to the origin

if and only if ū > f̄(1 +
√

5)/2.
(3) We prove in Lemma 11 that for any r > 0, if δ1

and δ2 are chosen according to condition (6), then
there exists a compact positively invariant set 2

Q ⊂ Br(0).
(4) Finally, we prove Theorem 1 by showing that for

any x0 ∈ R
2 the solution enters set Q in finite time.

Moreover the set Q is stable. It is also shown that if
δ1 and δ2 are chosen according to condition (6), then
the switching frequency of the controller remains
uniformly bounded.

Definition 7 Let x(t) be a solution of system (1) with
hybrid feedback (5)-(4). A time instant ti is called a
switching time of x(t), if x(ti) ∈

(

S+ ∪ S− ∪ B̄δ1
(0)

)

and x(ti) induces a state transition qj → qk, with j, k ∈
{1, 2, 3}, j 6= k. The value of the state at a switching
time, xi = x(ti) is called a switching point of x(t). △

Lemma 8 Let 0 ≤ δ1 < δ2. If, and only if, ū > f̄ , then
for any f ∈ F and any initial condition in (B̄δ1

(0))c, the
solution x(t) of (1) with hybrid feedback (5)-(4) induces
a switching sequence {xi}, i ∈ I ⊂ N nonempty, with the
following property:

(x1, . . . , xi ∈ (B̄δ1
(0))c) =⇒ i + 1 ∈ I. (15)

In other words, as long as the solution x(t) does not enter
B̄δ1

(0), there will be new switching points. Therefore,
x(t) → ∞ if and only if I = N and xi → ∞, and x(t)
enters B̄δ1

(0) if and only if {xi} enters B̄δ1
(0).

PROOF. See also [22]. The proof here is omitted due
to space limitations. ✷

2 In this paper, a set K ⊂ R
2 is said to be positively invariant

for system (1) with controller (4)-(5) if for any (x0, t0) ∈

K × R and for any f ∈ F bounded by f̄ , the closed-loop
solution x(t) remains in K for all t ≥ t0. This notion is
sometimes referred to as strong invariance [7].

A byproduct of Lemma 8 is that, when ū > f̄ , only
three types of switching points are possible. They are
classified in the next definition.

Definition 9 Let xi ∈ (S+ ∪S−)\B̄δ1
(0) be a switching

point of a solution x(t) of (1) with hybrid feedback (5)-(4)
and ū > f̄ , and consider the next switching point xi+1,
whose existence is guaranteed by Lemma 8. xi+1 is a 1-
switch from xi if one of the points {xi, xi+1} belongs to
S+, and the other one belongs to S−; xi+1 is a 2-switch
from xi if {xi, xi+1} belong to the same arc of parabola,
S+ or S−; xi+1 is a 0-switch from xi if xi+1 ∈ B̄δ1

(0).

In Lemma 8 we have shown that hybrid feedback (5)-(4)
induces a sequence of switching points {xi}i∈I . We show
in the following that this sequence is contracting (i.e.,
there exists α ∈ (0, 1) such that ‖xi+1‖ ≤ α‖xi‖ for all
i ∈ I) for sufficiently large control value ū.

Lemma 10 Consider system (1) with hybrid feed-
back (5)-(4), and pick δ1, δ2 such that 0 ≤ δ1 < δ2. The
following are equivalent:

(i) There exists α ∈ (0, 1) such that for any f ∈ F
and any initial condition, the sequence {xi}i∈I of
switching points of the solution x(t) of (1) with
hybrid feedback (5)-(4) is contracting as long as xi 6∈
B̄δ1

(0): xi, xi+1 ∈ (B̄δ1(0))
c =⇒ ‖xi+1‖ ≤ α‖xi‖;

(ii) ū > f̄
(

1 +
√

5
)

/2.

PROOF. (ii) ⇒ (i). Assume that xi ∈ S+, so that
the automaton A is at q2 (the argument for the case
xi ∈ S− is analogous). If xi+1 ∈ B̄δ1

(0), then part
(i) trivially holds. Suppose that xi+1 6∈ B̄δ1

(0). Either
xi+1 ∈ S− (i.e., xi+1 is a 1-switch from xi) or xi+1 ∈ S+

(i.e., xi+1 is a 2-switch from xi). Suppose first that
xi+1 ∈ S−, from which it follows that xi+1 ∈ Aq2(xi) ∩
S−. Let p = γq2

R (xi) ∩ S−. Then xi+1 lies on the arc

x1

x2

∂Λ+

∂Λ−

γ
q2
R (x

i)
γ
q2
L (x

i)

p

v

Aq2(xi) ∩ ∂Λ−

xi

Fig. 2. Attainable switching set from xi.

of parabola S− delimited by 0 and p, implying that
‖xi+1‖ ≤ ‖p‖. Using the expression for φq2

R (s, xi) in (13)
one can show that p exists and its first component p1 is
related to the first component xi

1 of xi as p1 = −α2
1xi

1,

where α1 =
(

(f̄2 + f̄ ū)/(2ū2 − ūf̄ − f̄2)
)1/2

. Since ū >

6



f̄
(

1 +
√

5
)

/2, it holds that α1 ∈ (0, 1), and therefore

‖xi+1‖ ≤ ‖p‖ ≤ α1‖xi‖, with α1 ∈ (0, 1).

Now suppose that xi+1 ∈ S+ is a two-switch from xi.
The switching point xi+1 is reached from xi through the
following sequence of events. (A) The solution from xi

with u⋆(q2) = ū hits the positive x1 axis at a point z,
a state transition q2 → q1 occurs, and the control value
becomes u⋆(q1) = −ū. (B) The solution from z intersects
S+ in xi+1. Consider the point v = γq2

L (xi) ∩ {(x1, 0) :
x1 ≥ 0} depicted in Figure 2. The point z defined above
must lie on the segment of the x1 axis delimited by 0 and
v. Therefore, ‖z‖ ≤ ‖v‖. Using the expression for φq2

L (xi)
from (13) it can be shown that the first component v1 of

v satisfies v1 = α2
2xi

1, with α2 =
(

1 − ū/(ū + f̄)
)1/2 ∈

(0, 1). Therefore, ‖z‖ ≤ ‖v‖ ≤ α2
2xi

1. Now we turn our
attention to event (B) above. The point xi+1 lies in the
segment S+ ∩ Aq1(z). The extremal solutions from z
are arcs of parabolas given by φq1

L (s, z) = Y q1
s (z) and

φq1

R (s, z) = Xq1
s (z), defined in Section 3. In particular,

the first component of both functions is decreasing with
s. This implies that the first component xi+1

1 of xi+1

satisfies xi+1
1 < z1 ≤ α2

2xi
1. Thus ‖xi+1‖ ≤ α2‖xi‖. By

setting α = max{α1, α2}, and noting that α ∈ (0, 1),
the proof that (ii) ⇒ (i) is complete.

(i) ⇒ (ii). Let {xi} be a contracting switching
sequence and suppose, by way of contradiction,
that ū ≤ f̄

(

1 +
√

5
)

/2. Let xi, xi+1 ∈ (B̄δ1
(0))c.

Assume xi ∈ S+ and let f ∈ F be defined as
f(x, t) = f̄ sign(x2(t)). Then x(t) = φq2

R (t − ti, xi) for
all t ∈ [ti, ti+1]. Therefore xi+1 = p ∈ S−, as defined
in the proof of sufficiency. Recall that p1 = −α2

1xi
1,

with α1 =
(

(f̄2 + f̄ ū)/(2ū2 − ūf̄ − f̄2)
)1/2

. Since

ū ≤ f̄(1 +
√

5)/2 we have α1 ≥ 1 which contradicts the
hypothesis that the switching sequence is contracting.

✷

Next we show that for any r > 0, there exists a com-
pact positively invariant subset of Br(0). This will be
used to prove practical stability.

Lemma 11 Consider system (1) with the hybrid feed-

back (5)-(4). If ū > f̄(1 +
√

5)/2 then for any p ∈ S+

there exists a compact set Qp and parameters 0 < δ1 < δ2

in automaton (4) such that Qp is positively invariant.
Moreover, for any r > 0, pick δ1, δ2 > 0 according to
conditions (6). Then the point p can be chosen so that
B̄δ2

(0) ⊂ int Qp ⊂ Qp ⊂ Br(0).

PROOF. Let p ∈ S+ be arbitrary, Let Pp be the com-
pact region depicted in Figure 3a, delimited by the ex-
tremal arcs γq2

R (p), γq2

L (p), and by ∂Λ−. Let Qp = Px̄ ∪
−Px̄. Clearly, 0 ∈ int Qp. We claim that, if δ1 = δ2 = 0,

any solution of (1) with hybrid feedback (5)-(4) originat-
ing in Pp can only exit Pp through ∂Λ− and, similarly,
that any solution originating in − Pp can only exit it
through ∂Λ+. Referring to Figure 3a, the boundary of
Pp is formed by ∂Λ− and two extremal arcs, γq2

R (p) and
γq2

R (p). By the definition of extremal arcs, all solutions
of (1) with hybrid feedback (5)-(4) cross (or are tangent
to) γq2

R (p) from left to right, and γq2

L (p) from right to
left. Therefore solutions in Pp can only exit it through
∂Λ−. The analogous statement for − Pp can be proved
in the same way, and the claim is proved.

In light of the claim above, since Pp ∩∂Λ− ⊂ −Pp and
−Pp ∩∂Λ+ ⊂ Pp, the set Qp is positively invariant when
δ1 = δ2 = 0. Moreover, if one chooses 0 < δ1 < δ2 such
that B̄δ2

(0) ⊂ int Qp, Qp remains positively invariant.

It can be shown that there exists c > 0 such that for
any p ∈ S+, Qp ⊂ Bc‖p‖(0). Then, if we pick p such that
c‖p‖ < r, we have Qp ⊂ Br(0). We have thus established
that for any r > 0, there exist p ∈ S+ and δ2 > 0 such
that Qp is positively invariant, B̄δ2

(0) ⊂ int Qp, and
Qp ⊂ Br(0). As a matter of fact, one such δ2 is given
in (6), and is motivated by the following considerations.
The positive scalar µ > 0 in (6) guarantees that, setting
p = ∂Bµr(0) ∩ S+, we have Qp ⊂ Br(0). The scalar δ2

in (6) guarantees that B̄δ2
(0) ⊂ IntQp. ✷

We are ready to prove the main result of this paper.

Proof of Theorem 1

(⇒) Similar to the proof of necessity of Lemma 10.

(⇐) We prove first global practical stability. For any
r > 0, by Lemma 11 there exists p ∈ S+ and 0 < δ1 < δ2

such that the compact set Qp is positively invariant and

B̄δ2
(0) ⊂ int Qp ⊂ Qp ⊂ Br(0). We claim that Qp is sta-

ble. To this end, we need to show that for any neighbor-
hood V of Qp, there exists a neighborhood U of Qp such
that all solutions of the closed-loop systems originating
in U remain in V for all positive time. For each p in S+,
the boundary of the set Qp of Lemma 11 is formed by
arcs of trajectories of a differential equation that depend
continuously on initial conditions. Therefore, for any V
as above, one can find q ∈ S+ with ‖q‖ > ‖p‖ such that
Qp ⊂ int Qq ⊂ Qq ⊂ V . Setting U = int Qq one obtains
the desired stability property.

We now show that set Qp is globally attractive. By

Lemma 8, for any initial condition in (B̄δ1
(0))c and any

f ∈ F , the solution x(t) gives rise to a well-defined
switching sequence {xi}i∈I . By Lemma 10, this se-
quence is contracting as long as xi 6∈ B̄δ1

(0). Since
B̄δ1

(0) ⊂ B̄δ2
(0) ⊂ Qp, xi ∈ Qp for sufficiently large i.

By Lemma 11, x(t) ∈ Qp ⊂ Br(0) for all t ≥ ti. This
proves that Qp is globally asymptotically stable.
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We are left to show that property (ii) of SCCP holds:
for any T > 0, there exists N ∈ N such that for all
x0 ∈ R

2 and for any f ∈ F , the controller switches
value at most N times over any time interval of length
T . In other words, the automaton A in (4) performs at
most N discrete state transitions qj → qk over an in-
terval of length T . To begin, consider state transitions
not involving the state q3. Suppose that at time t1 a
state transition q2 → q1 occurs, and that a subsequent
state transition q1 → q2 occurs at time t2 > t1. Thus,
x(t1) ∈ Λ−\B̄δ1

(0) and x(t2) ∈ Λ+\B̄δ1
(0). In order

to reach Λ+\B̄δ1
(0) from Λ−\B̄δ1

(0), x2(t) must cover
a minimum distance which is bounded away from zero.
Since |ẋ2| ≤ ū+f̄ , it follows that t2 −t1 is lower bounded
by a constant T1 > 0, independent of x(t1). Therefore
the minimum time between the two consecutive state
transitions above is T1 > 0. By symmetry, the same
holds for state transitions q1 → q2 followed by q2 → q1.
Similarly, the time between two consecutive state tran-
sitions of the type qj → q3 followed by q3 → qk, with
j, k ∈ {1, 2}, is bounded from below by a positive con-
stant, T2 > 0. Indeed, the time between two such tran-
sitions is lower bounded by the minimum time it takes
a closed-loop trajectory initialized in B̄δ1

(0) to exit the
ball B̄δ2

(0). We are left with the analysis of transitions of
the form qj → qk followed by qk → q3 or q3 → qj followed
by qj → qk, with j 6= k, j, k ∈ {1, 2}. In this case, there
is no lower bound on the time between such transitions.
For instance, at the time of a transition q1 → q2, the
state x(t) may be arbitrarily close to the set Λ+ ∩B̄δ1

(0),
and may enter B̄δ1

(0) after arbitrarily small time, trig-
gering a transition q2 → q3. However, the next transi-
tion must have the form q3 → qj , j ∈ {1, 2} which, as we
have proved above, cannot occur before time T2. A sim-
ilar reasoning can be repeated for all other sequences of
transitions described above. If we let T ⋆ = min{T1, T2},
over a time interval of length T ∈ (0, T ⋆) there can be at
most N = 2 state transitions (for instance, the ones dis-
cussed earlier, q1 → q2 followed by q2 → q3). For a time
interval of length T ∈ [0, 2T ⋆), one may have at most
N = 4 state transitions (the prototypical worst case is
the sequence q1 → q2, q2 → q3, q3 → q1, q1 → q2; the
time it takes for the first pair and second pair of transi-
tions to occur may be arbitrarily small, but there must
be at least T ⋆ units of time between the first pair and
the second pair of transitions). Thus, over a time inter-
val T > 0 there can be at most N = 2⌊(T/T ⋆)⌋+2 state
transitions, where ⌊·⌋ denotes the floor function. ✷

5 Proof of Theorem 3

The proof of Theorem 3 unfolds in three steps:

(1) In Lemma 13 we show that if the measurement error
is small enough, the number of controller switches
is uniformly bounded over compact time intervals.

(2) In Lemma 14 we show that if σ is small enough, then
there exists a compact positively invariant set Qσ ⊂

Br(0) containing the origin, that is also stable.
(3) In Lemma 15 we show that if σ is small enough, the

set Qσ is globally attractive, in particular we show
that controller (5)-(4) induces a switching sequence
{xi}i∈I such that xN ∈ Qσ for some N > 0.

We begin our analysis with the following observation.
The identity (7) implies that x(t) ∈ B̄σ(y(t)). In the
presence of measurement error, state transitions in the
automaton A may occur each time the ball Bσ(x(t))
intersects a switching boundary. For instance, suppose
that y(t) enters Λ−\B̄δ1

(0), triggering a transition to q1.
The location of x(t) is uncertain. We only know that,
at the time of the transition to q1, x(t) lies on a neigh-
borhood of radius σ of the set Λ−\B̄δ1

(0). In order to
analyze the effects of measurement error, it is therefore
necessary to consider the enlargements of the various
switching boundaries (see Section 1 for the notion of en-
largement of a set). Accordingly, let S+

σ , S−
σ , (∂Λ+)σ,

and (∂Λ−)σ denote the enlargements of sets S+, S−,
∂Λ+, and ∂Λ−, respectively. Finally, let Sσ = S+

σ ∪ S−
σ .

Definition 12 Let x(t) be a solution of system (1) with
hybrid feedback (5)-(4) in the presence of measurement
error. A time instant ti is called a switching time of
x(t) if x(ti) ∈

(

Sσ ∪ B̄δ1+σ(0)
)

and at time t = ti a state
transition qj → qk, with j, k ∈ {1, 2, 3}, k 6= j occurs.
The value of the state at a switching time, xi = x(ti) is
called a switching point of x(t). △

Lemma 13 Consider system (1) with controller (4)-
(5) in the presence of measurement error e(t) satisfying
sup ‖e(t)‖ ≤ σ. For any r > 0, pick δ1, δ2 > 0 according

to conditions (6). If ū > f̄(1 +
√

5)/2, then there exists
σ > 0 such that property (ii) of SCCP holds.

PROOF. The presence of measurement error can in-
duce two kinds of undesirable high-frequency switching.
First, y(t) could repeatedly enter Λ+ and Λ−, inducing
high-frequency switching between q1 and q2. This can
only happen when x(t) ∈ Λ+

σ ∩ Λ−
σ . On the other hand,

x(t) ∈ Λ+
σ ∩ Λ−

σ only if y(t) ∈ Λ+
2σ ∩ Λ−

2σ. Pick σ small
enough that

Λ+
2σ ∩ Λ−

2σ ⊂ B̄δ1
(0). (16)

Then, when x(t) ∈ Λ+
σ ∩ Λ−

σ we are guaranteed that
u(t) = 0, and therefore the controller does not switch
value.

The second kind of high-frequency switching is in-
duced when the ball B̄σ(x(t)) intersects both B̄δ1

(0)
(possibly inducing a qj → q3 transition) and (Bδ2

(0))c

(possibly inducing a q3 → qk transition). This cannot
occur if the following condition is satisfied

δ2 − δ1 > 2σ. (17)
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If σ > 0 is small enough that conditions (16) and (17)
hold, then the analysis of the number of switches over
compact time intervals reduces to that in the proof of
Theorem 1. This concludes the proof. ✷

Lemma 14 Consider system (1) with controller (4)-
(5) in the presence of measurement error e(t) satisfying

sup ‖e(t)‖ ≤ σ. Let ū > f̄(1 +
√

5)/2 and fix r > 0. Let
δ1, δ2 > 0 be chosen according to conditions (6). Then
there exists σ > 0, a point p ∈ S+, and a compact pos-
itively invariant set Qσ

p which is stable and such that

B̄δ2+σ(0) ⊂ Qσ
p ⊂ Br(0).

PROOF. Let r > 0 be arbitrary, and choose δ1, δ2 ac-
cording to conditions (6). By Lemma 11, there exists p ∈
S+ and a set Qp ⊂ Br(0) which is positively invariant in
the absence of measurement error. We will now construct
a larger set Qσ

p which is positively invariant in the pres-

ence of measurement error. Let Lσ
p = γq1

R (p) ∩ S+
σ . Lσ

p is

the segment of extremal arc γq1

R (p) through p, contained
in S+

σ , as shown in Figure 3b. Let Pσ
p be the compact

region defined as Pσ
p = Aq2(Lσ

p ) ∩ (Λ− \ (∂Λ−)σ)c (Pσ
p

is the shaded region in Figure 3b). Let Qσ
p = Pσ

p ∪ −Pσ
p .

Note that P0
p and Q0

p coincide with the sets Pp and Qp

defined in the proof of Lemma 11. We claim that there

x1

x2

∂Λ−

γ
q2
R (p)

γ
q2
L (p)

p

Pp

(a)

Pσ
p

Lσ
p

σ

S+
σ

S−
σ

x1

x2

p

(b)

Fig. 3. Pictorial representation of sets Pp, (a), and P
σ
p , (b).

exists sufficiently small σ > 0 such that the following
properties hold:

(a) Qσ
p ⊂ Br(0).

(b) Pσ
p ∩ (∂Λ−)σ ⊂ int Qσ

p and −Pσ
p ∩ (∂Λ+)σ ⊂ int Qσ

p .

(c) B̄δ2+σ(0) ⊂ int Qσ
p .

Indeed, the above set inclusions hold when σ = 0. Since
the boundaries of Pσ

p and Qσ
p are formed by arcs of tra-

jectories of differential equations that depends continu-
ously on initial conditions, the same inclusions continue
to hold for sufficiently small σ.

Consider a discrete state transition qk → q2 at time
t̄, with k ∈ {1, 3} and with x̄ = x(t̄) ∈ Pσ

p . Let τ > t̄
be the time of the next state transition. We claim that
x(τ) ∈ Pσ

p . First, by property (c), if the solution exits Pσ
p

before time τ , then the solution cannot be in B̄δ2+σ(0),

and hence the state transition must be q2 → q1. More-
over, in the time interval (t̄, τ), the solution cannot exit
Pσ

p through Lσ
p or through the two extremal arcs in Fig-

ure 3b. It can only exit Pσ
p through the portion of the

boundary of (∂Λ−)σ which is contained in Pσ
p (the thick

line in Figure 3b). At the same time, a state transition
q2 → q1 must occur before the state can exit (∂Λ−)σ.
Therefore, before any solutions can exit Pσ

p there must
be a state transition. We have thus shown, as claimed,
that x̄ ∈ Pσ

p =⇒ x(τ) ∈ Pσ
p . Similarly, x̄ ∈ (−Pσ

p ) =⇒
x(τ) ∈ (−Pσ

p ). These two implications and property (b)
give the implication x̄ ∈ Qσ

p =⇒ x(τ) ∈ Qσ
p . At time τ ,

the discrete state switches to q1 and the reasoning above
reveals that the next state transition must still occur in
Qσ

p . Since the switching times are a subset of the au-
tomaton transition times, the above gives the following
implication: xi ∈ Qσ

p =⇒ xi+1 ∈ Qσ
p . Since solutions

cannot exit Qσ
p between state transitions, we conclude

that Qσ
p is positively invariant. By properties (a) and

(c), B̄δ2+σ(0) ⊂ Qσ
p ⊂ Br(0), as required.

We are left with proving that Qσ
p is stable. The argu-

ment is the same as in the proof of Theorem 1. Namely,
for every neighborhood V of Qσ

p there exists q ∈ S+ such
that Qσ

q is positively invariant and Qσ
p ⊂ int Qσ

q ⊂ Qσ
q ⊂

V . Therefore all solutions of the closed-loop system orig-
inating in int Qσ

q remain in V for all positive time. ✷

Lemma 15 Consider system (1) with controller (4)-(5)
under the hypotheses of Lemma 14. For any r > 0, let
σ > 0 and Qσ

p be as in Lemma 14. Then, by possibly
making σ smaller, for any initial condition the resulting
solution x(t) induces a switching sequence {xi}i∈I , such
that xN ∈ Qσ

p for some N > 0.

The proof of Lemma 15 makes use of the following
fact. The proof is a matter of rote computation and is
omitted due to space limitations.

Fact 16 Consider system (1) with controller (4)-(5) in

the absence of measurement error. Let ū > f̄(1 +
√

5)/2.
Suppose the switching sets Λ+, Λ− in (3) are replaced by

Λ+ ={(x1, x2) : x1 ≤ 0, x2 ≤ 0} ∪
{(x1, x2) : x1 ≥ 0, x2 ≤ −

√

2u+x1},

Λ− ={(x1, x2) : x1 ≥ 0, x2 ≥ 0} ∪
{(x1, x2) : x1 ≤ 0, x2 ≥

√

−2u−x1},

where u+, u− are two positive parameters. Redefine S+ =
{(x1, x2) : x1 ≥ 0, x2 = −√

2u+x1}. If x(t) is any so-
lution inducing a switching sequence {xk}, the following
holds.

(i) If xi+1 is a 1-switch from xi ∈ S+, then |xi+1
1 | ≤
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α1(u+, u−)|xi
1|, where

α1(u+, u−) =
f̄ + ū

−f̄ + ū

(

f̄ − ū + u−

f̄ + ū + u+

)

.

(ii) If xi+1 is a 2-switch from xi ∈ S+, then the
arc of trajectory between xi and xi+1 inter-
sects the positive x1 axis at a point (p1, 0)
such that |p1| ≤ α2(u+)|xi

1|, where α2(u+) =
(

f̄ + ū − u+

)

/
(

ū + f̄
)

.

Since the functions α1(u+, u−) and α2(u+) are contin-
uous, and since α1(ū, ū) < 1, α2(ū) < 1, it follows that
there exists ∆ > 0 such that, letting V = [ū−∆, ū+∆],
we have ᾱ1 := max{α1(u+, u−) : (u+, u−) ∈ V × V } <
1, and ᾱ2 := max{α2(u+) : u+ ∈ V } < 1. The interpre-
tation of this result is that the contraction property of
switching sequences is preserved under small perturba-
tions of the concavity of parabolas defining the switch-
ing boundaries. This is the key idea behind robustness
against measurement noise (and against dwell-time, as
discussed at the end of Section 2).

Proof of Lemma 15. Suppose xi 6∈ Qσ
p . Then xi ∈ Sσ.

Without loss of generality, we assume throughout the
proof that xi ∈ S+

σ . Suppose first xi+1 is a 1-switch from
xi. Then xi ∈ Sσ. Let Θ be defined as follows (see the

shaded set in Figure 4): Θ = {(x, −sign(x)
√

2u|x|) : x ∈
R, u ∈ V }. By part (i) of Fact 16, if xi, xi+1 ∈ Θ then
|xi+1

1 | ≤ ᾱ1|xi
1|, with ᾱ1 ∈ (0, 1). There exists ρ > 0 so

that Sσ ∩ {(x1, x2) : |x1| ≥ ρ} ⊂ Θ holds (see Figure 4).
Then the uniform contraction property |xi+1

1 | ≤ ᾱ1|xi
1|

holds as long as |xi
1|, |xi+1

1 | ≥ ρ. Moreover, ρ → 0 as
σ → 0.

−ρ ρ

Θ

x1

x2

Sσ

Fig. 4. Illustration of the sets used in the proof of Lemma 15.

Suppose now that xi+1 is a 2-switch from xi. As in
the proof of Lemma 10, we have events (A) and (B) de-
picted in Figure 5. (A) The solution from xi remains to
the left of the extremal arc γq2

L (xi) until the state tran-
sition q2 → q1 occurs. In the worst-case scenario, due to
measurement error this transition occurs at the point p
in the figure. Let w = (w1, 0) be the point of intersection
of γq2

L (xi) and the positive x1 axis, as shown in Figure 5.
(B) After the state transition, the solution remains to the

left of γq1

R (p). Let z = (z1, 0) be the point of intersection
of γq1

R (p) and the positive x1 axis, as shown in the figure.
Then, κ := z1 − w1 is constant independent of xi, and
κ → 0 as σ → 0. Suppose that |xi

1| ≥ ρ. Then xi ∈ Θ,

x1

σ

x2

Sσ

z
p

w

xi

γ
q2
L (xi)

γ
q1
R (p)

Fig. 5. Worst-case scenario for a 2-switch in the presence of
measurement error.

and by part (ii) of Fact 16 we have w1 ≤ ᾱ2|xi
1|, with

ᾱ2 ∈ (0, 1). Moreover, |xi+1
1 | ≤ z1. Since z1 = w1 + κ

and |w1| ≤ ᾱ2|xi
1|, we conclude that |xi+1

1 | ≤ ᾱ2|xi
1|+κ.

Now we put everything together. Let ᾱ = max{ᾱ1, ᾱ2}.
If xi 6∈ Qσ

p and |xi
1|, |xi+1

1 | ≥ ρ, then |xi+1
1 | ≤ ᾱ|xi

1| + κ.
Either this sequence of upper bounds converges to
κ/(1 − ᾱ), or there exists M > 0 such that |xM

1 | < ρ.
Since ρ and κ tend to zero as σ → 0, there exists
σ > 0 such that the sets {(x1, x2) ∈ Sσ : |x1| < ρ}
and {(x1, x2) ∈ Sσ : |x1| < κ/(1 − ᾱ)} are contained in
int Qσ

p . Thus, the sequence {xi} enters Qσ
p . ✷

Proof of Theorem 3

By Lemma 13, property (ii) of SCCP holds. By Lemma
14, for any r > 0 for the chosen values of δ1, δ2 > 0, there
exists σ > 0 and a compact set Qσ

p ⊂ Br(0) which is sta-
ble and positively invariant. By Lemma 15, by possibly
making σ smaller, all solutions of the closed-loop system
enter Qσ

p in finite time, and by positive invariance they
remain there. Therefore, Qσ

p is globally attractive, and
hence globally asymptotically stable. ✷

6 Conclusions

We presented a hybrid bang-bang controller that
globally practically stabilizes the origin of a double-
integrator affected by unknown bounded an uncertainty
at the input side. The controller was proved to be ro-
bust against bounded measurement errors, and has a
guaranteed uniform bound on the number of switches
over compact time intervals. Our controller is a hybrid
enhancement of the classical time-optimal stabilizer for
the double-integrator. Instead of parabolas, we could
have used different switching boundaries obtaining the
same results. An avenue for future research is to adapt
the technique presented in this paper to derive a class
of hybrid bang-bang controllers with the stability prop-
erties stated in Theorems 1, 3.
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